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Abstract

Many empirical questions can be cast as inference on a parameter selected

through optimization. For example, researchers may be interested in the effective-

ness of the best policy found in a randomized trial, or the best-performing investment

strategy based on historical data. Such settings give rise to a winner’s curse, where

conventional estimates are biased and conventional confidence intervals are unreliable.

This paper develops optimal confidence sets and median-unbiased estimators that

are valid conditional on the parameter selected and so overcome this winner’s curse.

If one requires validity only on average over target parameters that might have been

selected, we develop hybrid procedures that combine conditional and projection

confidence sets to offer further performance gains relative to existing alternatives.
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1 Introduction

A wide range of empirical questions involve inference on target parameters selected through

optimization over a finite set. In a randomized trial considering multiple treatments, for
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instance, one might want to learn about the true average effect of the treatment that

performed best in the experiment. In finance, one might want to learn about the expected

return of the trading strategy that performed best in a backtest. Perhaps less obviously,

in threshold regression or tipping point models, researchers first estimate the location of

a threshold by minimizing the sum of squared residuals and then seek to estimate the

magnitude of the discontinuity taking the estimated threshold as given.

Estimators that do not account for data-driven selection of the target parameters

can be badly biased, and conventional t-statistic-based confidence intervals may severely

under-cover. To illustrate the problem, consider inference on the true average effect of

the treatment that performed best in a randomized trial.1 Since it ignores the data-driven

selection of the treatment of interest, the conventional estimate for this average effect will be

biased upwards. Similarly, the conventional confidence interval will under-cover, particularly

when the number of treatments considered is large. This gives rise to a form of winner’s

curse, where follow-up trials will be systematically disappointing relative to what we would

expect based on conventional estimates and confidence sets. This form of winner’s curse has

previously been discussed in contexts including genome-wide association studies (e.g. Zhong

and Prentice, 2009; Ferguson et al., 2013) and online A/B tests (Lee and Shen, 2018).

This paper develops estimators and confidence sets that eliminate these biases and

inference failures. There are two distinct perspectives from which to consider bias and

coverage. The first conditions on the target parameter selected, for example on the identity

of the best-performing treatment, while the second is unconditional and averages over

possible target parameters. As we discuss in the next section, conditional validity is

more demanding but may be desirable in some settings, for example when one wants

to ensure validity conditional on the recommendation made to a policy maker. Both

perspectives differ from inference on the effectiveness of the “true” best treatment, as

in e.g. Chernozhukov et al. (2013) and Rai (2018), in that we consider inference on the

1Such a scenario seems to be empirically relevant, as a number of recently published randomized
trials in economics either were designed with the intent of recommending a policy or represent a direct
collaboration with a policy maker. For example, Khan et al. (2016) assesses how incentives for property
tax collectors affect tax revenues in Pakistan, Banerjee et al. (2018) evaluates the efficacy of providing
information cards to potential recipients of Indonesia’s Raskin programme, and Duflo et al. (2018)
collaborates with the Gujarat Pollution Control Board (an Indian regulator tasked with monitoring
industrial emissions in the state) to evaluate how more frequent but randomized inspection of plants
performs relative to discretionary inspection. Baird et al. (2016) finds that deworming Kenyan children
had substantial beneficial effects on their health and labor market outcomes into adulthood, and
Björkman Nyqvist and Jayachandran (2017) finds that providing parenting classes to Ugandan mothers
has a greater impact on child outcomes than targeting these classes at fathers.
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effectiveness of the (observed) best-performing treatment in the experiment rather than

the (unobserved) best-performing treatment in the population.2

Considering first conditional inference, we derive optimal unbiased and equal-tailed

confidence sets. Our results build on the rapidly growing literature on selective inference

(e.g. Harris et al. (2016); Lee et al. (2016); Tian and Taylor (2016); Fithian et al. (2017)),

which derives optimal conditional confidence sets in a range of other settings. We further

observe that the results of Pfanzagl (1994) imply optimal median-unbiased estimators for

conditional settings, which does not appear to have been previously noted in the selective

inference literature. Hence, for settings where conditional validity is desired, we propose

optimal inference procedures that eliminate the winner’s curse noted above. We further

show that in cases where this winner’s curse does not arise (for instance because one

treatment considered is vastly better than the others) our conditional procedures coincide

with conventional ones. Hence, our corrections do not sacrifice efficiency in such cases.

A common alternative remedy for the biases we consider is sample splitting. In settings

with independent observations, choosing the target parameter using the first part of the

data and constructing estimates and confidence sets using the second part ensures unbi-

asedness of estimates and validity of conventional confidence sets conditional on the target

parameter. Such conventional split-sample procedures can have undesirable properties,

however. In particular, the target parameter is generally more variable than if constructed

using the full data. Moreover, since only the second part of the data is used for inference,

Fithian et al. (2017) show that conventional split-sample procedures are inadmissible

within the class of procedures with the same target parameter. Motivated by this result,

in the supplement to the paper we develop computationally tractable confidence sets and

estimators that dominate conventional sample-splitting.

We next turn to unconditional inference. One approach to constructing unconditional

confidence sets is projection, applied in various forms and settings by e.g. Romano and

Wolf (2005), Berk et al. (2013), and Kitagawa and Tetenov (2018a). To obtain a projection

confidence set, we form a simultaneous confidence band for all potential target parameters

and take the implied set of values for the target parameter of interest. The resulting

confidence sets have correct unconditional coverage but, unlike our conditional intervals,

are wider than conventional confidence sets even when the latter are valid. On the other

hand, we find in simulations that projection intervals outperform conditional intervals in

2See Dawid (1994) for an early discussion of this distinction, and an argument in favor of inference
on the best-performing treatment in the experiment.
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cases where there is substantial randomness in the target parameter, e.g. when there is

not a clear best treatment.

Since neither conditional nor projection intervals perform well in all cases, we introduce

hybrid confidence sets that combine conditioning and projection. These maintain most

of the good performance of our conditional confidence intervals in cases for which the

winner’s curse does not arise but are subsets of (conservative) projection intervals by

construction, limiting their maximal under-performance relative to projection confidence

sets. We also introduce hybrid estimators that allow a controlled degree of bias while

limiting the deviation from the conventional estimator.

We derive our main results in the context of a finite-sample normal model with an

unknown mean vector and a known covariance matrix. This model can be viewed as an

asymptotic approximation to non-normal finite sample problems where the optimal policy

may not be obvious from the data. To formalize this connection, in the supplement to

the paper we show that the procedures we derive are uniformly asymptotically valid over

large classes of data-generating processes.

Since we are not aware of any other full-sample procedures that ensure validity condi-

tional on the target parameter, our simulations focus on unconditional performance. The

simulation designs are based on an empirical welfare maximization application from Kita-

gawa and Tetenov (2018b) and a threshold regression application from Card et al. (2008).

In both settings, we find that while our conditional procedures exhibit good unconditional

performance in cases where the objective function determining the target parameter has

a well-separated optimum, their unconditional performance can be poor in other cases. By

contrast, our hybrid procedures perform quite well: hybrid confidence sets are shorter than

the previously available alternative (projection intervals) in all specifications, and are shorter

than conditional intervals in all but the well-separated case (where they are nearly the

same). Hybrid estimators eliminate nearly all the bias of conventional estimators, and are

less dispersed than our exactly median unbiased estimators. These results show that while

optimal conditional performance is attainable, conditional validity can come at the cost

of unconditional performance. By combining conditional and projection approaches, our

hybrid procedures yield better performance than either and offer a substantial improvement

over existing alternatives.

While most of our simulation results focus on comparing our full-sample conditional

and hybrid approaches to existing full-sample alternatives, Card et al. (2008) originally

conducted inference based on a conventional split-sample approach. Hence, our simulations
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based on Card et al. (2008) also compare conventional sample splitting procedures to our

improved split-sample ones. We similarly find substantial performance improvements in

these split-sample settings.

In this paper we focus on frequentist inference, and in particular on ensuring coverage

and controlling bias under all parameter values. If one instead takes a Bayesian perspective

then, as discussed by e.g. Dawid (1994), the selection issue does not arise since Bayesian

inference conditions on the data and thus on any form of data-driven selection. One way to

interpret this point is that e.g. the Bayes posterior median is median unbiased for the true

parameter value under the prior. As highlighted by Dawid (1994), however, this property

hinges crucially on the specification of the prior. If we consider frequentist performance

in cases where the data are generated in a manner inconsistent with the prior, Bayes

procedures may have large biases. In settings where we observe independent estimates

for a large number of different parameters and are willing to assume that these parameters

are drawn from some common unknown distribution, we can avoid this issue by adopting

an empirical Bayes approach and estimating the prior (see Efron, 2011; Ferguson et al.,

2013). Many settings, including our empirical welfare and threshold regression examples,

lack this structure however, rendering this approach inapplicable.

It is important to emphasize that we take the rule for selecting the target parameter as

given. In policy-evaluation contexts, for example, our goal is to evaluate the effectiveness

of recommended policies taking the rule for selecting a recommendation as given, rather

than to improve the rule. There are a number of reasons why valid confidence sets and

median-unbiased estimates are of interest in such settings. One might be interested in

understanding the true effectiveness of a selected policy for scientific reasons. Alternatively,

one might want to assess uncertainty about the effect of a new policy for forecasting and

risk management purposes. Finally, after a policy has been implemented or a follow-up

trial conducted, one may want to test whether observed differences in efficacy can be

explained solely by the winner’s curse.

This paper is related to the literature on tests of superior predictive performance

(e.g. White (2000); Hansen (2005); Romano and Wolf (2005)). This literature studies

the problem of testing whether some strategy or policy beats a benchmark, while we

consider the complementary question of inference on the effectiveness of the estimated

“best” policy. Our conditional inference results combine naturally with the results of this

literature, allowing one to condition inference on e.g. rejecting the null hypothesis that

no policy outperforms a benchmark.
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As mentioned above, our results are also closely related to the growing literature on

selective inference. Fithian et al. (2017) describe a general conditioning approach applicable

to a wide range of settings, while a rapidly growing literature including e.g. Harris et al.

(2016); Lee et al. (2016); Tian and Taylor (2016) works out the details of this approach

for a range of settings. Likewise, our analysis of conditional confidence sets examines the

implications of the conditional approach in our setting. Our results are also related to

the growing literature on unconditional post-selection inference, including e.g. Berk et al.

(2013); Bachoc et al. (2017, 2018); Kuchibhotla et al. (2018). This literature considers

analogs of our projection confidence sets for inference following model selection.

Beyond the new settings considered, we make two main theoretical contributions

relative to the selective and post-selection inference literatures. First, when one only

requires unconditional validity, we propose the class of hybrid inference and estimation

procedures. We find that hybrid procedures offer large gains in unconditional performance

relative both to conditional procedures and to existing unconditional alternatives. Second,

for settings where conditional inference is desired, we observe that the same structure used

to develop optimal conditional confidence sets also allows construction of optimal quantile

unbiased estimators using the results of Pfanzagl (1994).3

In the next section, we begin by introducing the problem we consider and the techniques

we propose in the context of a stylized example. Section 3 introduces the normal model in

which we develop our main results, and shows how it arises as an asymptotic approximation

to empirical welfare maximization and threshold regression examples. Section 4 develops

our optimal conditional procedures, discusses their properties, and compares them to

sample splitting. Section 5 introduces projection confidence intervals and our hybrid

procedures. Finally, Sections 6 and 7 report results for simulations calibrated to empirical

welfare maximization and threshold regression applications, respectively. The supplement

to the paper collects proofs and other supporting material for the results in the main text,

derives a computationally tractable split-sample approach that dominates conventional

split-sample inference, shows that the finite sample results developed in the main text

translate to uniform asymptotic results over large classes of data generating processes, and

provides additional simulation results.

3Our asymptotic results are also novel relative to the literature. In particular, Tibshirani et al. (2018)
establish uniform asymptotic validity for conditional confidence sets based on similar ideas to ours, but
only under particular local sequences. We impose an analagous restriction for some of our asymptotic
results but not others. See the supplement for details and further discussion.
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2 A Stylized Example

We begin by illustrating the problem we consider, along with the solutions we propose,

in a stylized example based on Manski (2004). In the treatment choice problem of Manski

(2004) a treatment rule assigns treatments to subjects based on observable characteristics.

Given a social welfare criterion and (quasi-)experimental data, Kitagawa and Tetenov

(2018b) propose what they call empirical welfare maximization (EWM), which selects the

treatment rule that maximizes the sample analog of the social welfare criterion over a class

of candidate rules.

For simplicity suppose there are only two candidate policies: ✓1 corresponding to “treat

everyone” and ✓2 corresponding to “treat no one.” Suppose further that our social welfare

function is the average of an outcome variable Y. If we have a sample of independent

observations i2{1,...,n} from a randomized trial where a binary treatment Di2{0,1} is

randomly assigned to subjects with Pr{Di=1}= d, then as in Kitagawa and Tetenov

(2018b) the scaled empirical welfare under (✓1,✓2) is

(Xn(✓1),Xn(✓2))=

 
1
p
n

nX

i=1

DiYi

d
,
1
p
n

nX

i=1

(1�Di)Yi

1�d

!
.

EWM selects the rule ✓̂=argmax✓2{✓1,✓2}Xn(✓).4

Kitagawa and Tetenov (2018b) show that the welfare from the policy selected by EWM

converges to the optimal social welfare at the minimax optimal rate, providing a strong

argument for this approach. Even after choosing a policy, we may want estimates and

confidence intervals for its implied social welfare in order to learn about the size of the

policy impact and communicate with stakeholders. For a fixed policy ✓, the empirical

welfare Xn(✓) is unbiased for the true (scaled) social welfare µn(✓) under the corresponding

policy.5 By contrast, the empirical welfare of the estimated optimal policy Xn(✓̂) is biased

upwards relative to the true social welfare µn(✓̂) since we are more likely to select a given

policy when the empirical welfare over-estimates the true welfare. Likewise, confidence

sets for µn(✓̂) that ignore estimation of ✓ may cover µn(✓̂) less often than we intend. This

is a form of winner’s curse: estimation error leads us to over-predict the benefits of our

chosen policy and to misstate our uncertainty about its effectiveness.

4If the summands are instead weighted by sample propensity scores, we obtain Manski’s conditional em-
pirical success rule and the asymptotically optimal rules of Hirano and Porter (2009) with a symmetric loss.

5
Xn(✓) is exactly mean-unbiased and asymptotically median-unbiased.
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To simplify the analysis and develop corrected inference procedures, we turn to asymp-

totic approximations. Under mild conditions the central limit theorem implies that our

estimates of social welfare are asymptotically normal:

 
Xn(✓1)�µn(✓1)

Xn(✓2)�µn(✓2)

!
)N

 
0,

 
⌃(✓1) ⌃(✓1,✓2)

⌃(✓1,✓2) ⌃(✓2)

!!
, (1)

where the asymptotic variance⌃ can be consistently estimated while the scaled social welfare

µn cannot be. To simplify the analysis, for this section only we assume that ⌃(✓1,✓2)=0.6

Motivated by (1), we abstract from approximation error and assume that we observe

 
X(✓1)

X(✓2)

!
⇠N

  
µ(✓1)

µ(✓2)

!
,

 
⌃(✓1) 0

0 ⌃(✓2)

!!

for ⌃(✓1) and ⌃(✓2) known, and that ✓̂=argmax✓2⇥X(✓) with ⇥={✓1,✓2}.

As discussed above, X(✓̂) is biased upwards as an estimator of µ(✓̂). This bias arises

both conditional on ✓̂ and unconditionally. To see this note that ✓̂=✓1 if X(✓1)>X(✓2),

where ties occur with probability zero. Conditional on ✓̂=✓1 and X(✓2), X(✓1) follows

a normal distribution truncated below at X(✓2). Since this holds for all X(✓2), X(✓1) has

positive median bias conditional on ✓̂=✓1 :7

Prµ

n
X(✓̂)�µ(✓̂)|✓̂=✓1

o
>
1

2
for all µ. (2)

Since the same argument holds for ✓̂=✓2, ✓̂ is likewise biased upwards unconditionally:

Prµ

n
X(✓̂)�µ(✓̂)

o
>
1

2
for all µ. (3)

Note that (3) differs from (2) in that the target parameter is random. Unsurprisingly

given this bias, the conventional confidence set which adds and subtracts a quantile of the

standard normal distribution times the standard error need not have correct coverage.

To illustrate these issues, Figure 1 plots the coverage of conventional confidence sets, as

well as the median bias of conventional estimates, in an example with ⌃(✓1)=⌃(✓2)=1. For

comparison we also consider cases with ten and fifty policies, |⇥|=10 and |⇥|=50, where

6One can show that ⌃(✓1,✓2)=�µ(✓1)µ(✓2), so this restriction arises naturally if one models µ as
shrinking with the sample size to keep it on the same order as sampling uncertainty: µn=

1p
n
µ
⇤.

7It also has positive mean bias, but we focus on median bias for consistency with our later results.

8



we again set ⌃(✓)=1 for all ✓ and for ease of reporting assume that all the policies other

than the first are equally effective: µ(✓2)=µ(✓3)= ...=µ(✓�1). The first panel of Figure

1 shows that while the conventional confidence set has reasonable coverage when there are

only two policies, its coverage can fall substantially when |⇥|=10 or |⇥|=50.8 The second

panel shows that the median bias of the conventional estimator µ̂=X(✓̂), measured as the

deviation of the exceedance probability Prµ{X(✓̂)�µ(✓̂)} from 1
2, can be quite large. The

third panel shows that the same is true when we measure bias as the median of X(✓̂)�µ(✓̂).

In all cases we find that performance is worse when we consider a larger number of policies,

as is natural since a larger number of policies allows more scope for selection.

Our results correct these biases. Returning to the case with |⇥|=2 for simplicity, let

FTN(x(✓1);µ(✓1),x(✓2)) denote the (truncated normal) distribution function for X(✓1) trun-

cated below at x(✓2) when the true social welfare for ✓1 is µ(✓1). For fixed x(✓1)>x(✓2) this

function is strictly decreasing in µ(✓1), and for µ̂↵ that solves FTN(X(✓1);µ̂↵,X(✓2))=1�↵,

Proposition 1 below shows that

Prµ

n
µ̂↵�µ(✓̂)|✓̂=✓1

o
=↵ for all µ.

Hence, µ̂↵ is ↵-quantile unbiased for µ(✓̂) conditional on ✓̂=✓1, and the analogous statement

holds conditional on ✓̂=✓2. Indeed, Proposition 1 shows that µ̂↵ is the optimal ↵-quantile

unbiased estimator conditional on ✓̂.

Using this result, we can eliminate the biases discussed above. The estimator µ̂1/2 is me-

dian unbiased and the equal-tailed confidence interval CSET =
⇥
µ̂↵/2,µ̂1�↵/2

⇤
has conditional

coverage 1�↵, where we say that a confidence set CS has conditional coverage 1�↵ if

Pr

n
µ(✓̂)2CS|✓̂=✓j

o
�1�↵ for j2{1,2} and all µ. (4)

While the equal-tailed confidence interval is easy to compute, there are other confidence

sets available in this setting. As in Lehmann and Scheff́e (1955) and Fithian et al. (2017) it is

possible to construct a uniformly most accurate unbiased (UMAU) confidence set, CSU , con-

ditional on ✓̂. To construct CSU , we collect the parameter values not rejected by a uniformly

most powerful unbiased test conditional on ✓̂. While straightforward to implement, the exact

form of this test is somewhat involved and so is deferred to Section 4 below. The equal-tailed

confidence setCSET is not unbiased, so there is not a clear ranking betweenCSET andCSU .

8For example, these could correspond to cases where we consider “treat no one” along with nine or
forty nine different treatment assignment rules, respectively.
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Figure 1: Performance of conventional procedures in examples with 2, 10, and 50 policies.
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The law of iterated expectations implies that CSET and CSU have unconditional

coverage 1�↵ as well:

Prµ

n
µ(✓̂)2CS

o
�1�↵ for all µ. (5)

Unconditional coverage is easier to attain, so relaxing the coverage requirement from (4) to

(5) may yield tighter confidence sets in some cases. Conditional and unconditional coverage

requirements address different questions, however, and which is more appropriate depends

on the problem at hand. In the EWM problem, for instance, a policy maker who is told the

recommended policy ✓̂ along with a confidence interval may want the confidence interval

to be valid conditional on the recommendation, which is precisely the conditional coverage

requirement (4). In particular, this ensures that if one considers repeated instances in

which EWM recommends a particular course of action (e.g. departure from the status

quo), reported confidence sets will in fact cover the true effects a fraction 1�↵ of the time.

On the other hand, if we only want to ensure that our confidence sets cover the true value

with probability at least 1�↵ on average across the distribution of recommendations, it

suffices to impose the unconditional requirement (5).

We are unaware of alternative procedures that ensure conditional coverage (4).9 For

unconditional coverage (5), however, Kitagawa and Tetenov (2018a) propose an uncon-

ditional confidence set based on projecting a simultaneous confidence band for µ to obtain

a confidence set for µ(✓̂). In particular, let c↵ denote the 1�↵ quantile of maxj|⇠j| for ⇠=

(⇠1,⇠2)0⇠N(0,I2) a two-dimensional standard normal random vector. If we define CSP as

CSP =


Y (✓̂)�c↵

q
⌃(✓̂),Y (✓̂)+c↵

q
⌃(✓̂)

�
,

this set has correct unconditional coverage (5).

Figure 2 plots the median (unconditional) length of 95% confidence sets CSET , CSU ,

and CSP , along with the conventional confidence set, again in cases with |⇥|2{2,10,50}.

We focus on median length, rather than mean length, because the results for Kivaranovic

and Leeb (2018) imply that both CSET and CSU have infinite expected length.10 As Figure

2 illustrates, the median lengths of CSET and CSU are shorter than the (nonrandom)

length of CSP when |µ(✓1)�µ(✓�1)| exceeds four, and converges to the length of the

9As noted in the introduction and further discussed in Section 4.3 below, split-sample confidence
intervals also have conditional coverage but change the definition of ✓̂.

10While Kivaranovic and Leeb (2018) do not consider the behavior of unbiased confidence sets, one
can show that the expected length of the level 1�↵ unbiased confidence set is bounded below by that
of the level 1�2↵ equal-tailed confidence set.
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conventional interval as |µ(✓1)�µ(✓�1)| tends to infinity. When |µ(✓1)�µ(✓�1)| is small,

on the other hand, CSET and CSU can be substantially wider than CSP . Both features

become more pronounced as we increase the number of policies considered, and are still

more pronounced for higher quantiles of the length distribution. To illustrate, Figure 3

plots the 95th percentile of the distribution of length in the case with |⇥|=50 policies, while

results for other quantiles and specifications are reported in Section E of the supplement.

In Figure 4 we plot the median absolute errorMedµ

⇣
|µ̂�µ(✓̂)|

⌘
for different estimators,

and find that the median-unbiased estimator likewise exhibits larger median absolute error

than the conventional estimator X(✓̂) when |µ(✓1)�µ(✓�1)| is small.11 This feature is again

more pronounced as we increase the number of policies considered, or if we consider higher

quantiles as in Section E of the supplement.

Recall that CSU is the optimal unbiased confidence set, while the endpoints of CSET are

optimal quantile unbiased estimators. So long as we impose correct conditional coverage (4)

and unbiasedness, there is therefore no scope to improve unconditional performance. If we

instead require only correct unconditional coverage (5), improved performance is possible.

To improve performance, we consider hybrid confidence sets CS
H
ET and CS

H
U . As

detailed in Section 5.2 below, these confidence sets are constructed analogously to CSET

and CSU , but further condition on the event that the true social welfare falls in the level

1�� projection interval CS�
P for �<↵. This ensures that the hybrid confidence sets are

never longer than the level 1�� projection interval, and so both limits the performance

deterioration when |µ(✓1)�µ(✓�1)| is small and ensures that the expected length of hybrid

confidence sets is always finite. These hybrid confidence sets have correct unconditional

coverage (5), but do not in general have correct conditional coverage (4). By relaxing the

conditional coverage requirement, however, we obtain major improvements in unconditional

performance, as illustrated in Figure 2. In particular, we see that in the cases with 10 and

50 policies, the hybrid confidence sets have shorter median length than the unconditional

interval CSP for all parameter values considered. The gains relative to conditional

confidence sets are large for many parameter values, and are still more pronounced for

higher quantiles of the length distribution, as in Figure 3 and Section E of the supplement.

In Figure 4 we report results for a hybrid estimation procedure based on a similar approach

(detailed in Section 5.3 below), and again find substantial performance improvements.

The improved unconditional performance of the hybrid confidence sets is achieved by

11The proof of Proposition 1 of Kivaranovic and Leeb (2018) implies that the mean absolute error
of the median unbiased estimator is infinite.
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Figure 3: 95th percentile of length of confidence sets for µ(✓̂) in case with 50 policies.

requiring only unconditional, rather than conditional, coverage. To illustrate, Figure 5

plots the conditional coverage given ✓̂=✓1 in the case with two policies. As expected, the

conditional intervals have correct conditional coverage, while coverage distortions appear

for the hybrid and projection intervals when µ(✓1)⌧µ(✓2). In this case ✓̂=✓2 with high

probability but the data will nonetheless sometimes realize ✓̂= ✓1. Conditional on this

event, X(✓1) will be far away from µ(✓1) with high probability, so projection and hybrid

confidence sets under-cover.

3 Setting

This section introduces our general setting, which extends the stylized example of the

previous section in several directions. We assume that we observe normal random vectors
�
X(✓)0,Y (✓)

�0
for ✓2⇥ where ⇥ is a finite set, X(✓)2RdX , and Y (✓)2R. In particular,

for ⇥=
�
✓1,...,✓|⇥|

 
, let X=

⇣
X(✓1)

0
,...,X

�
✓|⇥|

�0⌘0
and Y =

�
Y (✓1),...,Y

�
✓|⇥|

��0
. Then

 
X

Y

!
⇠N(µ,⌃) (6)
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Figure 5: Coverage conditional on ✓̂=✓1 in case with two policies.

for

E

" 
X(✓)

Y (✓)

!#
=µ(✓)=

 
µX(✓)

µY (✓)

!
,

⌃(✓,✓̃)=

 
⌃X(✓,✓̃) ⌃XY (✓,✓̃)

⌃YX(✓,✓̃) ⌃Y (✓,✓̃)

!
=Cov

  
X(✓)

Y (✓)

!
,

 
X(✓̃)

Y (✓̃)

!!
.

We assume that ⌃ is known, while µ is unknown and unrestricted unless noted otherwise.

For brevity of notation, we abbreviate ⌃(✓,✓) to ⌃(✓). We will show that this model arises

naturally as an asymptotic approximation. We assume throughout that ⌃Y (✓)>0 for all

✓2⇥, since the inference problem we study is trivial when ⌃Y (✓)=0.

We are interested in inference on µY (✓̂), where ✓̂ is determined based on X. We define

✓̂ through either the level maximization problem where (for dX=1)

✓̂=argmax
✓2⇥

X(✓), (7)

or the norm maximization problem where (for dX�1)

✓̂=argmax
✓2⇥

kX(✓)k, (8)
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with k·k denoting the Euclidean norm.12 We will again be interested in constructing con-

fidence sets for µY (✓̂) that are valid either conditional on the value of ✓̂ or unconditionally,

as well as median-unbiased estimates. We may also want to condition on some additional

event �̂= �̃, for �̂=�(X) a function of X which takes values in the finite set �. In such

cases, we aim to construct confidence sets for µY (✓̂) that are valid conditional on the pair

(✓̂,�̂). Examples of such additional conditioning events are discussed below.

In the remainder of this section, we show how this class of problems arises in examples

and discuss the choice between conditional and unconditional confidence sets in each case.

We first revisit the EWM problem in a more general setting and show that it gives rise to

the level maximization problem (7) asymptotically. We then discuss threshold regression

models and show that they reduce to the norm maximization problem (8) asymptotically.

We also briefly discuss other examples giving rise to level and norm maximization problems,

and note that finite sample results for level and norm maximization in the normal model

(6) translate to uniform asymptotic results over large classes of models.

Empirical Welfare Maximization As in the last section, we aim to select a welfare-

maximizing treatment rule from a set of policies ⇥ in the EWM problem of Kitagawa

and Tetenov (2018b). Let us assume that we have a sample of independent observations

i2 {1,...,n} from a randomized trial where treatment is randomly assigned conditional

on observables Ci with Pr{Di=1|Ci}=d(Ci). We consider policies that assign units to

treatment based on the observables, where rule ✓ assigns i to treatment if and only if

Ci2C✓. The scaled empirical welfare under policy ✓ is13

Xn(✓)=
1
p
n

nX

i=1

✓
YiDi

d(Ci)
1{Ci2C✓}+

Yi(1�Di)

1�d(Ci)
1{Ci 62C✓}

◆
.

EWM again selects the policy that maximizes empirical welfare: ✓̂n=argmax✓2⇥Xn(✓).

The definition of Yn in this setting depends on the object of interest. We may be

interested in the overall social welfare, in which case we can define Yn=Xn. Alternatively

we could be interested in social welfare relative to the baseline of no treatment, in which

case we can define Yn(✓) as the difference in scaled empirical welfare between policy ✓ and

12For simplicity of notation we will assume ✓̂ is unique almost surely unless noted otherwise. Our
conditional analysis does not rely on this assumption, however: see footnote 20 below.

13Kitagawa and Tetenov (2018b) primarily consider welfare relative to the baseline of no treatment,
which yields the same optimal policy.
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the policy that treats no one, which we denote by ✓=0:

Yn(✓)=Xn(✓)�Xn(0)=
1
p
n

nX

i=1


YiDi

d(Ci)
�
Yi(1�Di)

1�d(Ci)

�
1{Ci2C✓}.

Likewise, we might be interested in the social welfare for a particular subgroup defined

by the observables, say S, in which case we can take

Yn(✓)=

p
n
Pn

i=1

⇣
YiDi
d(Ci)

1{Ci2S\C✓}+
Yi(1�Di)
1�d(Ci)

1{Ci2S\C✓}

⌘

Pn
i=11{Ci2S}

.

For µX,n and µY,n the true scaled social welfare corresponding to Xn and Yn,

 
Xn�µX,n

Yn�µY,n

!
)N(0,⌃) (9)

under mild conditions, where the covariance ⌃ will depend on the data generating process

and the definition of Yn but is consistently estimable. By contrast, the scaling of Xn and

Yn means that µX,n and µY,n are not consistently estimable. As in the last section, this

suggests the asymptotic problem where we observe normal random vectors (X,Y ) as in

(6) with ⌃ known and ✓̂ defined as in (7), the level maximization problem.14

As argued in the last section, if a policy maker is given a recommended policy ✓̂ as well

as a confidence set for µY (✓̂), it is natural to require that the confidence set be valid condi-

tional on the recommendation. It may also be natural to condition on additional variables.

For example, if a recommendation is made only when we reject the null hypothesis that no

policy in ⇥ improves outcomes over the base case of no treatment, H0 :max✓2⇥µ(✓)µ(0),

then it is also natural to condition inference on this rejection.15 To cover this case we

can define �̂=�(X) as a dummy for rejection of H0. If on the other hand we care only

about performance on average across a range of recommendations, we need only impose

unconditional coverage. 4

The level maximization problem arises in a number of other settings as well. For

example, selecting the “best” policy from a collection considered in A/B tests is closely

14Under mild regularity conditions, (9) also holds in settings where the empirical welfare involves
estimated propensity scores and/or estimated outcome regressions, e.g., the hybrid procedures of Kitagawa
and Tetenov (2018b) and the doubly robust welfare estimators of Athey and Wager (2018).

15In the case of |⇥|=2, conditioning on this rejection can be interpreted as conditioning on the event
that the decision criterion of Tetenov (2012) supports the same policy.
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related to EWM. Further afield, the literature on tests of superior predictive performance

(c.f. White (2000); Hansen (2005); Romano and Wolf (2005)) considers the problem of

testing whether some trading strategies or forecasting rules amongst a candiate set beat

a benchmark. If we define Xn=Yn as the vector of performance measures for different

strategies, Xn is asymptotically normal under mild conditions (see e.g. Romano and Wolf

(2005)). If one wants to form a confidence set for the performance of the “best” strategy

based on Xn (perhaps also conditioning on the result of a test for superior performance),

this reduces to our level maximization problem asymptotically.

Another example comes from Bhattacharya (2009) and Graham et al. (2014), who

consider the problem of optimally matching individuals to maximize peer effects. For Xn

again a scaled objective function, the results of Bhattacharya (2009) show that his problem

reduces to level maximization asymptotically when one considers a finite set of assignments.

More broadly, any time we consider M-estimation with a finite parameter space and are

interested in the value of the population objective or some other function at the estimated

optimal value, this falls into our level maximization framework under mild conditions.

We next discuss an example of threshold regression estimation, showing that it gives

rise to our norm-maximization problem asymptotically.

Threshold Regression Estimation Suppose we observe data on an outcome Yi, a

threshold regressor Qi and a k-dimensional vector of regressors Ci for i2 {1,...,n}. We

assume there is a linear but potentially regressor-dependent relationship between Yi and Ci:

Yi=C
0
i(�+'n(Qi))+Ui, (10)

where Qi2R and the residuals Ui are orthogonal to Qi and Ci. Similarly to Elliott and

Müller (2014) and Wang (2018), the function 'n :R!Rk determines the value of the

regressor-dependent coefficient �+'n(Qi). This model nests the traditional threshold

regression model (see e.g. Hansen (2000) and references therein) by taking

'n(Qi)=1(Qi>✓)�, (11)

where ✓2R is the “true” threshold. The threshold model (11) is often used as a parsimo-

nious approximation to a more general linear regression model with regressor-dependent

coefficents. For example, Card et al. (2008) use the threshold model to approximate a

theoretical model with smoothly-varying regressor-dependent coefficients. See also the
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motivations for this model discussed in Hansen (1997, 2000).

Since the threshold regression model is widely used in practice, we consider a researcher

who fits the model (11). To allow the possibility of misspecification, however, we assume

only that the data is generated by (10). To provide a good asymptotic approximation

to finite sample behavior, we follow Elliott and Müller (2007, 2014) and Wang (2018)

and model parameter instability as on the same order as sampling uncertainty, with

'n(Qi)=
1p
ng(Qi) for a fixed function g. We further assume that

1

n

nX

i=1

CiC
0
i1(Qi✓)!p⌃C(✓),

1

n

nX

i=1

CiC
0
ig(Qi)1(Qi✓)!p⌃Cg(✓), (12)

and
1
p
n

nX

i=1

CiUi1(Qi✓))G(✓), (13)

all uniformly in ✓ 2 R. Here ⌃C : R! Rk⇥k is a consistently-estimable matrix-valued

function and ⌃C(✓) is full rank for all ✓ in the interior of the support of Qi, ⌃Cg :R!Rk

is a vector-valued function, and G(·) is a k-dimensional mean zero Gaussian process with a

consistently estimable covariance function that is positive definite when evaluated at points

in the interior of the support of Qi. Conditions (12) and (13) are analogous to Conditions

1(ii) and 1(iv) of Elliott and Müller (2007) for structural break models in a time-series

setting. See Wang (2018) for sufficient conditions that give rise to (12) and (13).

The standard threshold estimator ✓̂n chooses ✓ to minimize the sum of squared residuals

in an OLS regression of Yi on Ci and 1(Qi>✓)Ci across a finite grid of thresholds ⇥.16 For

Xn(✓)=

 
(
Pn

i=1CiC
0
i1(Qi✓))�

1
2 (
Pn

i=1Ci⌘i1(Qi✓))

(
Pn

i=1CiC
0
i1(Qi>✓))�

1
2 (
Pn

i=1Ci⌘i1(Qi>✓))

!
,

with ⌘i⌘Ui+n
�1/2

C
0
ig(Qi), arguments analogous to those in the proof of Proposition 1

in Elliott and Müller (2007) imply that ✓̂n=argmax✓2⇥kXn(✓)k+op(1), where op(1) is an

asymptotically negligible term. Hence, ✓̂n is asymptotically equivalent to the solution to

a particular norm-maximization problem (8).

Suppose we are interested in the approximate change in the jth parameter �j=e
0
j�,

16Note that finiteness of ⇥ is without loss of generality if Qi is finitely-supported, but that we otherwise
limit attention to a finite collection of thresholds.
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where ej is the jth standard basis vector.17 In practice it is common to estimate � by least

squares imposing the estimated threshold ✓̂n. When the threshold regression model (11) is

misspecified, however, there is neither a “true” threshold ✓ nor a “true” change coefficient

�. Instead, the population regression coefficient �(✓) imposing threshold ✓ depends on ✓.

Thus, for threshold ✓, the coefficient of interest is �j(✓). Denote the OLS estimate imposing

threshold ✓ by �̂j(✓) and define Yn(✓)=
p
n�̂j(✓). If we define µY,n(✓)=

p
n�j(✓) as the

scaled coefficient of interest and µX,n(✓) as the population analog of Xn(✓), Section B.2

of the supplement shows that

 
Xn(✓)�µX,n(✓)

Yn(✓)�µY,n(✓)

!
)N(0,⌃(✓)) (14)

uniformly over a parameter space ⇥ contained in the interior of the support of Qi, where

the covariance matrix ⌃(✓) is consistently estimable but µX,n(✓) and µY,n(✓) are not. As

before, this suggests the asymptotic problem (6) where we now define ✓̂ through norm

maximization (8).

Since the estimated threshold ✓̂ is random and the parameter of interest �j(✓) depends

on ✓, it is important to account for this randomness in our inference procedures. In

particular, it may be appealing to condition inference on the estimated threshold ✓̂, since

we only seek to conduct inference on �j(✓̃) when ✓̂= ✓̃. It may also be natural to condition

inference on additional variables. For example, if we report a confidence set for the

change coefficient �j(✓̂) only when we reject the null hypothesis of parameter constancy,

H0 :'n(✓)=0 for all ✓, it is natural to condition inference on this rejection. As above, this

can be accomplished by defining �̂=�(X) as a dummy for rejection ofH0, and conditioning

inference on (✓̂,�̂). Even if we only desire coverage of �j(✓̂) on average over the distribution

of ✓̂, and so prefer to consider unconditional confidence sets, accounting for the randomness

of ✓̂ remains important. If on the other hand we are confident that the threshold model is

correctly specified, so that (11) holds in the data, it will typically be more appealing to focus

on inference for the “true” parameters as in Elliott and Müller (2014) and Wang (2018). 4

An analogous analysis applies to estimation and inference in the traditional structural

break model (see e.g. Hansen (2001) and Perron (2006) and references therein) under

local asymptotics as in Elliott and Müller (2007, 2014). Moreover, while our discussion

of threshold regression estimation focuses on the linear model (10), Elliott and Müller

17By changing the definition of Yn below, our results likewise apply to the pre-change parameters �j
and the post-change parameters �j+�j, amongst other possible objects of interest.
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(2014) show that structural break estimation in nonlinear models with time-varying pa-

rameters gives rise to the same asymptotic problem. Hence, our results apply in that

setting as well. Likewise, Wang (2018) shows that the same asymptotic problem arises in

nonlinear threshold models.18 Further afield, one could generalize our approach to consider

norm-minimization rather than norm-maximization, and so derive results for GMM-type

problems with finite parameter spaces.

Uniform Asymptotic Validity We have shown that the emprical welfare maximization

and threshold regression problems asymptotically resemble level and norm maximization

based on the finite-sample normal model (6). Section D of the supplement builds on this con-

nection and shows that if we consider classes of data generating processes such that (Xn,Yn)

are uniformly well-approximated by the normal model (6), we have a uniformly consistent

estimator b⌃n for ⌃, and ⌃ satisfies mild regularity conditions, our finite-sample results in

the normal model (6) translate to uniform asymptotic results. These unifomity results apply

to level maximization settings without any restrictions on the behavior of (µX,n,µY,n). In

norm maxmization settings, by contrast, we limit attention to (µX,n,µY,n) lying in bounded

sets, since this is the context for which the asymptotic results of Elliott and Müller (2007,

2014) and Wang (2018) imply an asymptotic norm-maximization representation.19

4 Conditional Inference

This section develops conditional inference procedures for our general setting. We seek

confidence sets with correct coverage conditional on (✓̂,�̂),

Prµ

n
µY (✓̂)2CS|✓̂= ✓̃,�̂= �̃

o
�1�↵ for all ✓̃2⇥, �̃2�, and all µ. (15)

As in the stylized example of Section 2, we consider both equal-tailed and uniformly most ac-

curate unbiased confidence sets.20 We also derive optimal conditionally ↵-quantile-unbiased

estimators, which for ↵2(0,1) satisfy

Prµ

n
µ̂↵�µY (✓̂)|✓̂= ✓̃,�̂= �̃

o
=↵ for all ✓̃2⇥, �̃2�, and all µ. (16)

18In a manuscript circulated after the initial public version of this paper, Hyun et al. (2018) consider
the related problem of conditional inference for changepoint detection, but the changepoint estimation
methods they consider cannot be cast as norm-maximization, so their results do not overlap with ours.

19If one instead considers cases where (µX,n,µY,n) diverges, as occurs for example in threshold regression
with non-vanishing parameter instability, the problem reduces to level-maximization asymptotically.

20If ✓̂ is not unique we change the conditioning event ✓̂= ✓̃ to ✓̃2argmaxX(✓) or ✓̃2argmaxkX(✓)k
for the level and norm maximization problems, respectively.
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Our conditional procedures depend on the conditioning events of interest. We analyze

these conditioning events for our general level and norm maximization settings, and illus-

trate them in our EWM and threshold regression examples. We then discuss conventional

sample splitting as an alternative conditional approach and briefly discuss the construction

of dominating procedures. Finally, we show that our conditional procedures converge to

conventional ones when Prµ

n
✓̂= ✓̃,�̂= �̃

o
!1 so the latter are valid.

4.1 Optimal Conditional Inference

Since ✓̂ and �̂ are functions of X, we can re-write the conditioning event in terms of the

sample space of X as
n
X : ✓̂= ✓̃,�̂= �̃

o
=X (✓̃,�̃). Thus, for conditional inference we are

interested in the distribution of (X,Y ) conditional on X2X (✓̃,�̃). Our results below imply

that under mild conditions, the elements of Y other than Y (✓̃) do not help in constructing a

quantile-unbiased estimate or unbiased confidence set for µY (✓̂) conditional on X2X (✓̃,�̃).

Hence, we limit attention to the conditional distribution of (X,Y (✓̃)) given X2X (✓̃,�̃).

Since (X,Y (✓̃)) is jointly normal unconditionally, it has a multivariate truncated normal

distribution conditional on X 2X (✓̃,�̃). Correlation between X and Y (✓̃) implies that

the conditional distribution of Y (✓̃) depends on both the parameter of interest µY (✓̂) and

µX. To eliminate dependence on the nuisance parameter µX, we condition on a sufficient

statistic. Without truncation and for any fixed µY (✓̃), a minimal sufficient statistic for µX is

Z✓̃=X�

⇣
⌃XY (·,✓̃)/⌃Y (✓̃)

⌘
Y (✓̃), (17)

where we use ⌃XY (·,✓̃) to denote Cov(X,Y (✓̃)). Z✓̃ corresponds to the part of X that

is (unconditionally) orthogonal to Y (✓̃) which, since (X,Y (✓̃)) are jointly normal, means

that Z✓̃ and Y (✓̃) are independent. Truncation breaks this independence, but Z✓̃ remains

minimal sufficient for µX. The conditional distribution of Y (✓̂) given
n
✓̂= ✓̃,�̂= �̃,Z✓̃=z

o

is truncated normal:

Y (✓̂)|✓̂= ✓̃,�̂= �̃,Z=z⇠⇠|⇠2Y(✓̃,�̃,z), (18)

where ⇠⇠N

⇣
µY (✓̃),⌃Y (✓̃)

⌘
is normally distributed and

Y(✓̃,�̃,z)=
n
y :z+

⇣
⌃XY (·,✓̃)/⌃Y (✓̃)

⌘
y2X (✓̃,�̃)

o
(19)

is the set of values for Y (✓̃) such that the implied X falls in X (✓̃,�̃) given Z✓̃=z. Thus,

conditional on ✓̂= ✓̃, �̂= �̃, and Z✓̃=z, Y (✓̂) follows a one-dimensional truncated normal
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distribution with truncation set Y(✓̃,�̃,z).

Using this result, it is straightforward to construct quantile-unbiased estimators for

µY (✓̂). Let FTN(y;µY (✓̃),✓̃,�̃,z) denote the distribution function for the truncated normal

distribution (18). This distribution function is strictly decreasing in µY (✓̃). Define µ̂↵ as

the unique solution to

FTN(Y (✓̂);µ̂↵,✓̃,�̃,Z✓̃)=1�↵. (20)

Proposition 1 below shows that µ̂↵ is conditionally ↵-quantile-unbiased in the sense of

(16), so µ̂1
2
is median-unbiased while the equal-tailed interval CSET =

⇥
µ̂↵/2,µ̂1�↵/2

⇤
has

conditional coverage 1�↵. Moreover, results in Pfanzagl (1979) and Pfanzagl (1994) on

quantile-unbiased estimation in exponential families imply that µ̂↵ is optimal in the class

of quantile-unbiased estimators.

To establish optimality, we add the following assumption:

Assumption 1

If ⌃=Cov((X 0
,Y

0)0) has full rank, then the parameter space for µ is open and convex.

Otherwise, there exists some µ
⇤ such that the parameter space for µ is an open convex

subset of
n
µ
⇤+⌃

1
2v :v2Rdim(X,Y )

o
where ⌃

1
2 is the symmetric square root of ⌃.

This assumption requires that the parameter space for µ be sufficiently rich.21 When ⌃ is

degenerate (for example when X and Y are perfectly correlated as in the EWM example

with X=Y ), this assumption further implies that (X,Y ) have the same support for all

values of µ. This rules out cases in which some a pair of parameter values µ1, µ2 can

be perfectly distinguished based on the data. Under this assumption, µ̂↵ is an optimal

quantile-unbiased estimator.

Proposition 1

Let µ̂↵ be the unique solution of (20). µ̂↵ is conditionally ↵-quantile-unbiased in the sense of

(16). If Assumption 1 holds, then µ̂↵ is the uniformly most concentrated ↵-quantile-unbiased

estimator in that for any other conditionally ↵-quantile-unbiased estimator µ̂
⇤
↵ and any

loss function L

⇣
d,µY (✓̃)

⌘
that attains its minimum at d=µY (✓̃) and is quasiconvex in d

for all µY (✓̃),

Eµ

h
L

⇣
µ̂↵,µY (✓̃)

⌘
|✓̂= ✓̃,�̂= �̃

i
Eµ

h
L

⇣
µ̂
⇤
↵,µY (✓̃)

⌘
|✓̂= ✓̃,�̂= �̃

i

21The assumption that the parameter space is open can be relaxed at the cost of complicating the
statements below.
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for all µ and all ✓̃2⇥, �̃2�.

Proposition 1 shows that µ̂↵ is optimal in the strong sense that it has lower risk (expected

loss) than any other quantile-unbiased estimator for a large class of loss functions.

Rather than considering equal-tailed intervals, we can alternatively consider unbiased

confidence sets. Following Lehmann and Romano (2005), we say that a level 1�↵ two-sided

confidence set CS is unbiased if its probability of covering any given false parameter value is

bounded above by 1�↵. Likewise, a one sided lower (upper) confidence set is unbiased if its

probability of covering a false parameter value above (below) the true value is bounded above

by 1�↵. Using the duality between tests and confidence sets, a level 1�↵ confidence set CS

is unbiased if and only if �(µY,0)=1{µY,0 /2CS} is an unbiased test for the corresponding

family of hypotheses.22 The results of Lehmann and Scheff́e (1955) applied in our setting

imply that optimal unbiased tests conditional on
n
✓̂= ✓̃,�̂= �̃

o
are the same as optimal

unbiased tests conditional on
n
✓̂= ✓̃,�̂= �̃,Z✓̃=z✓̃

o
. These optimal tests take a simple form.

Define a size ↵ test of the two-sided hypothesis H0 :µY (✓̃)=µY,0 as

�TS,↵(µY,0)=1
n
Y (✓̃) 62 [cl(Z✓̃),cu(Z✓̃)]

o
(21)

where cl(z), cu(z) solve

Pr{⇣2 [cl(z),cu(z)]}=1�↵, E[⇣1{⇣2 [cl(z),cu(z)]}]=(1�↵)E[⇣]

for ⇣ that follows a truncated normal distribution

⇣⇠⇠|⇠2Y(✓̃,�̃,z), ⇠⇠N

⇣
µY,0,⌃Y (✓̃)

⌘
.

Likewise, define a size ↵ test of the one-sided hypothesis H0 :µY (✓̃)�µY,0 as

�OS�,↵(µY,0)=1
n
FTN(Y (✓̃);µY,0,✓̃,�̃,z)↵

o
(22)

and a test of H0 :µY (✓̃)µY,0 as

�OS+,↵(µY,0)=1
n
FTN(Y (✓̃);µY,0,✓̃,�̃,z)�1�↵

o
. (23)

22That is, H0 :µY (✓̃)=µY,0 for a two-sided confidence set, H0 :µY (✓̃)�µY,0 for a lower confidence set
and H0 :µY (✓̃)µY,0 for an upper confidence set.

25



Proposition 2

If Assumption 1 holds, �TS,↵, �OS�,↵, and �OS+,↵ are uniformly most powerful unbiased

size ↵ tests of their respective null hypotheses conditional on ✓̂= ✓̃ and �̂= �̃.

To form uniformly most accurate unbiased confidence sets we collect the values not

rejected by these tests. The two-sided uniformly most accurate unbiased confidence set

is CSU ={µY,0 :�TS,↵(µY,0)=0}. CSU is unbiased and has conditional coverage 1�↵ by

construction. Likewise, we can form lower and upper one-sided uniformly most accu-

rate unbiased confidence intervals as CSU,�={µY,0 :�OS�,↵(µY,0)=0}=(�1,µ̂1�↵], and

CSU,+={µY,0 :�OS+,↵(µY,0)=0}=[µ̂↵,1), respectively. Hence, we can view CSET as the

intersection of level 1�↵
2 uniformly most accurate unbiased upper and lower confidence

intervals. Unfortunately, no such simplification is generally available for CSU , though

Lemma 5.5.1 of Lehmann and Romano (2005) guarantees that this set is an interval.

4.2 Conditioning Sets

Thus far we have left the conditioning events X (✓̃,�̃) and Y(✓̃,�̃,z) abstract. To implement

our conditional procedures, however, we need tractable representations of Y(✓̃,�̃,z). We

first derive the form of this conditioning event for the level maximization problem (7) and

the norm maximization problem (8) without additional conditioning variables �̂. We then

discuss the effect of adding conditioning variables and illustrate in our examples.

In level maximization problems without additional conditioning variables, we are in-

terested in inference conditional on X2X (✓̃) for X (✓̃)=
n
X :X(✓̃)=max✓2⇥X(✓)

o
. The

following result, based on Lemma 5.1 of Lee et al. (2016), derives Y(✓̃,z) in this setting.

Proposition 3

Let ⌃XY (✓̃)=Cov(X(✓̃),Y (✓̃)). Define

L(✓̃,Z✓̃)= max
✓2⇥:⌃XY (✓̃)>⌃XY (✓̃,✓)

⌃Y (✓̃)
⇣
Z✓̃(✓)�Z✓̃(✓̃)

⌘

⌃XY (✓̃)�⌃XY (✓̃,✓)
,

U(✓̃,Z✓̃)= min
✓2⇥:⌃XY (✓̃)<⌃XY (✓̃,✓)

⌃Y (✓̃)
⇣
Z✓̃(✓)�Z✓̃(✓̃)

⌘

⌃XY (✓̃)�⌃XY (✓̃,✓)
,

and

V(✓̃,Z✓̃)= min
✓2⇥:⌃XY (✓̃)=⌃XY (✓̃,✓)

�

⇣
Z✓̃(✓)�Z✓̃(✓̃)

⌘
.

If V(✓̃,z)�0, then Y(✓̃,z)=
h
L(✓̃,z),U(✓̃,z)

i
. If V(✓̃,z)<0, then Y(✓̃,z)=;.
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Thus, the conditioning event Y(✓̃,z) is an interval bounded above and below by easy-to-

calculate functions of z. While we must have V(✓̃,z)�0 for this interval to be non-empty,

Prµ

n
V(✓̂,Z✓̂)<0

o
=0 for all µ so this constraint holds almost surely when we consider the

value ✓̂ observed in the data. Hence, in applications we can safely ignore this constraint

and calculate only L(✓̂,Z✓̂) and U(✓̂,Z✓̂).

The norm maximization conditioning event is X (✓̃)=
n
X :kX(✓̃)k=max✓2⇥kX(✓)k

o
.

This conditioning event involves nonlinear constraints so the results of Lee et al. (2016)

do not apply. The expression for Y(✓̃,z) is more involved, but remains easy to calculate.

Proposition 4

Define

A(✓̃,✓)=⌃Y (✓̃)
�2

dXX

i=1

h
⌃XY,i(✓̃)

2
�⌃XY,i(✓,✓̃)

2
i
,

BZ(✓̃,✓)=2⌃Y (✓̃)
�1

dXX

i=1

h
⌃XY,i(✓̃)Z✓̃,i(✓̃)�⌃XY,i(✓,✓̃)Z✓̃,i(✓)

i
,

CZ(✓̃,✓)=
dXX

i=1

h
Z✓̃,i(✓̃)

2
�Z✓̃,i(✓)

2
i
.

For

DZ(✓̃,✓)=BZ(✓̃,✓)
2
�4A(✓̃,✓)CZ(✓̃,✓), HZ(✓̃,✓)=

�CZ(✓̃,✓)

BZ(✓̃,✓)
,

GZ(✓̃,✓)=
�BZ(✓̃,✓)�

q
DZ(✓̃,✓)

2A(✓̃,✓)
, and KZ(✓̃,✓)=

�BZ(✓̃,✓)+
q
DZ(✓̃,✓)

2A(✓̃,✓)
,

define

`
1
Z(✓̃)=max

⇢
max

✓2⇥:A(✓̃,✓)<0,DZ(✓̃,✓)�0
GZ(✓̃,✓), max

✓2⇥:A(✓̃,✓)=0,BZ(✓̃,✓)>0
HZ(✓̃,✓)

�
,

`
2
Z(✓̃,✓)=max

⇢
max

✓2⇥:A(✓̃,✓)<0,DZ(✓̃,✓)�0
GZ(✓̃,✓), max

✓2⇥:A(✓̃,✓)=0,BZ(✓̃,✓)>0
HZ(✓̃,✓),GZ(✓̃,✓)

�
,

u
1
Z(✓̃,✓)=min

⇢
min

✓2⇥:A(✓̃,✓)<0,DZ(✓̃,✓)�0
KZ(✓̃,✓), min

✓2⇥:A(✓̃,✓)=0,BZ(✓̃,✓)<0
HZ(✓̃,✓),KZ(✓̃,✓)

�
,

u
2
Z(✓̃)=min

⇢
min

✓2⇥:A(✓̃,✓)<0,DZ(✓̃,✓)�0
KZ(✓̃,✓), min

✓2⇥:A(✓̃,✓)=0,BZ(✓̃,✓)<0
HZ(✓̃,✓)

�
,
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and

V(✓̃,Z✓̃)= min
✓2⇥:A(✓̃,✓)=BZ(✓̃,✓)=0 or DZ(✓̃,✓)<0

CZ(✓̃,✓).

If V(✓̃,Z✓̃)�0 then

Y(✓̃,Z✓̃)=
\

✓2⇥:A(✓̃,✓)>0,DZ(✓̃,✓)�0

h
`
1
Z(✓̃),u

1
Z(✓̃,✓)

i
[

h
`
2
Z(✓̃,✓),u

2
Z(✓̃)

i
.

If V(✓̃,Z✓̃)<0, then Y(✓̃,Z✓̃)=;.

While the expression for Y(✓̃,z) in this setting is long, it is easy to calculate in practice

and can be expressed as a finite union of intervals using DeMorgan’s laws. As before,

Prµ

n
V(✓̂,Z✓̂)<0

o
=0 for all µ so we can ignore this constraint in applications.

Our derivations have so far assumed we have no additional conditioning variables �̂.

If we also condition on �̂= �̃, then for X�(�̃)= {X :�(X)= �̃}, we can write X (✓̃,�̃)=

X (✓̃)\X�(�̃). Likewise, for Y�(�̃,z) defined analogously to (19), Y(✓̃,�̃,z)=Y(✓̃,z)\Y�(�̃,z).

The form of X�(�̃) and Y�(�̃,z) depends on the conditioning variables �̂ considered. To

illustrate we next discuss the effect of conditioning on the outcomes of pretests in our

EWM and threshold regression examples.

Empirical Welfare Maximization (continued) Suppose that we report estimates

and confidence sets for welfare only if the improvement in empirical welfare from the esti-

mated optimal policy over a baseline policy ✓=0 exceeds a threshold c, i.e.X(✓̂)�X(0)�c.

For instance, we might report results only when the test of White (2000) rejects the null

that no policy has performance exceeding the baseline, H0 :max✓2⇥µX(✓)µX(0). This

implies that we report results only if X(✓̂)�X(0)�c for c a critical value depending on ⌃.

We can set �(X)=1
n
X(✓̂)�X(0)�c

o
and it is natural to condition inference on �̂=1.

Assuming ⌃XY (✓̃)�⌃XY (✓̃,0)>0 for simplicity, the conditioning event in this setting

is X�(1)=
n
X :X(✓̂)�X(0)�c

o
and one can show that

Y�(1,Z✓̃)=

8
<

:y :y�
⌃Y (✓̃)

⇣
c�Z✓̃(✓̃)+Z✓̃(0)

⌘

⌃XY (✓̃)�⌃XY (✓̃,0)

9
=

;.

See Section B.1 of the supplement for details, as well as expressions for other val-

ues of ⌃XY (✓̃)� ⌃XY (✓̃,0). In the present case, provided V(✓̃,Z✓̃) � 0, Y(✓̃,1,Z✓̃) =
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h
L

⇤(✓̃,Z✓̃),U(✓̃,Z✓̃)
i
, where U(✓̃,Z✓̃) is the upper bound derived in Proposition 3 while

L
⇤(✓̃,Z✓̃)=max

8
<

:L(✓̃,Z✓̃),
⌃Y (✓̃)

⇣
c�Z✓̃(✓̃)+Z✓̃(0)

⌘

⌃XY (✓̃)�⌃XY (✓̃,0)

9
=

;,

for L(✓̃,Z✓̃) defined as in Proposition 3. Hence, when ⌃XY (✓̃)�⌃XY (✓̃,0)>0, conditoning

on �̂=1 simply modifies the lower boundL(✓̃,Z✓̃). Likewise, when⌃XY (✓̃)�⌃XY (✓̃,0)<0 or

⌃XY (✓̃)�⌃XY (✓̃,0)=0, conditioning on �̂=1modifies U(✓̃,Z✓̃) and V(✓̃,Z✓̃), respectively. 4

Threshold Regression Estimation (continued) Suppose that we report estimates

and confidence sets for the change parameter �j(✓̂) only if we reject the null hypothesis of

no threshold, H0 :�(✓)=0 for all ✓2⇥. Suppose, in particular, that we test this hypothesis

with the sup-Wald test of Andrews (1993). Analogous results to those shown in Elliott

and Müller (2014) provide that in our setting, such a test rejects asymptotically if and only

if kX(✓̂)k>c for a critical value c that depends on ⌃. We can set �(X)=1
n
kX(✓̂)k>c

o

and it is again natural to condition inference on �̂=1.

In this setting X�(1)=
n
X :kX(✓̂)k>c

o
. As before, the expressions for the conditioning

sets are involved but straightforward to compute. In particular, for V̄(Z✓̃), L̄(Z✓̃), and Ū(Z✓̃)

defined in Section B.2 of the supplement, if V̄(Z✓̃)�0 then Y�(1,Z✓̃)=
�
L̄(Z✓̃),Ū(Z✓̃)

�c
,

where Sc denotes the complement of a generic set S. Thus,

Y(✓̃,1,Z✓̃)=
�
L̄(Z✓̃),Ū(Z✓̃)

�c
\

\

✓2⇥:A(✓̃,✓)>0,DZ(✓̃,✓)�0

h
`
1
Z(✓̃),u

1
Z(✓̃,✓)

i
[

h
`
2
Z(✓̃,✓),u

2
Z(✓̃)

i

when min
n
V(✓̃,Z✓̃),V̄(Z✓̃)

o
�0. Details and expressions under other realizations of V̄(Z✓̃)

can be found in Section B.2 of the supplement. 4

As these example illustrate, it is straightforward to incorporate additional conditioning

variables �̂ in both the level and norm maximization problems provided one can characterize

the set Y�(�̃,z).While such characterizations are easy to obtain in many cases, they depend

on the conditioning variable considered and must be derived on a case-by-case basis.

4.3 Comparison to Sample Splitting

A common remedy in practice for the problems we study is to split the sample. If we have

iid observations and select ✓̂1 based on the first half of the data, conventional estimates

and confidence intervals for µY (✓̂1) that use only the second half of the data will be
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(conditionally) valid. Hence, it is natural to ask how our conditioning approach compares

to this conventional sample splitting approach.

For ease of exposition, in this section we focus on even sample splits. Asymptotically,

such splits yield a pair of independent and identically distributed normal draws (X1
,Y

1) and

(X2
,Y

2), both of which follow (6), albeit with a different scaling for (µ,⌃) than in the full-

sample case.23 Sample splitting procedures calculate ✓̂1 as in (7) and (8) for level and norm

maximization, respectively, replacingX byX1
. Inference on µY (✓̂1) is then conducted using

(X2
,Y

2). In particular, the conventional 95% sample-splitting confidence interval for µY (✓̂1),


Y

2(✓̂1)�1.96
q
⌃Y (✓̂1),Y

2(✓̂1)+1.96
q
⌃Y (✓̂1)

�
,

has correct (conditional) coverage and Y
2(✓̂1) is a median-unbiased estimator for µY (✓̂1).

While conventional sample splitting resolves the inference problem, this comes at a

cost. First, ✓̂1 is based on less data than in the full-sample case, which is unappealing since

a policy recommendation estimated with a smaller sample size leads to a lower expected

welfare (see, e.g., Theorems 2.1 and 2.2 in Kitagawa and Tetenov (2018b)). Moreover, even

after conditioning on ✓̂
1, the full-sample average 1

2(X
1
,Y

1)+ 1
2(X

2
,Y

2) remains a minimal

sufficient statistic for µ. Hence, using only (X2
,Y

2) for inference sacrifices information.

Fithian et al. (2017) formalize this point and show that conventional sample splitting

tests (and thus confidence sets) are inadmissible.24 Motivated by this result, in Section C of

the supplement we derive optimal confidence sets and estimates that are valid conditional

on ✓̂
1
. These optimal split-sample procedures involve truncated normal distributions which

are difficult to compute, however, so we also propose computationally straightforward

alternatives. These alternatives dominate conventional split-sample methods, but are in

turn dominated by the (computationally intractable) optimal split-sample procedures.

Nevertheless, these computationally straightforward alternative procedures dominate their

conventional counterparts by a substantial margin in simulations calibrated to Card et al.

(2008) and reported in Section 7.

Splitting the sample changes the target parameter from µY (✓̂) to µY (✓̂1), so split-sample

23Section C of the supplement considers cases with general sample splits and describes the scaling
for (µ,⌃). Intuitively, the scope for improvement over conventional split-sample inference is increasing
in the fraction of the data used to construct X1.

24Corollary 1 of Fithian et al. (2017) applied in our setting shows that for any sample splitting test
based on Y

2, there exists a test that uses the full data and has weakly higher power against all alternatives
and strictly higher power against some alternatives.
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approaches are not directly comparable to our full-sample conditioning approach developed

above. Nonetheless, while conventional sample splitting methods are dominated, calculating

✓̂
1 based on only part of the data may increase the amount of information available for

inference and so allow tighter confidence intervals. Thus, depending on how we weight

noisier choices of ✓ against more precise inference on µY (✓̂), it may be helpful to split the

sample and use a procedure that dominates conventional split-sample inference. See Tian

and Taylor (2016) and Tian et al. (2016) for related discussions.

4.4 Behavior When Prµ

n
✓̂= ✓̃,�̂= �̃

o
is Large

As discussed in Section 2, if we ignore selection and compute the conventional (or “naive”)

estimator µ̂N=Y (✓̂) and the conventional confidence set

CSN=


Y (✓̂)�c↵/2,N

q
⌃Y (✓̂),Y (✓̂)+c↵/2,N

q
⌃Y (✓̂)

�
(24)

where c↵,N is the 1�↵-quantile of the standard normal distribution, µ̂N is biased and

CSN has incorrect coverage conditional on ✓̂ = ✓̃, �̂ = �̃. These biases are mild when

Prµ

n
✓̂= ✓̃,�̂= �̃

o
is close to one, however, since in this case the conditional distribution is

close to the unconditional one. Intuitively, Prµ
n
✓̂= ✓̃

o
is close to one for some ✓̃ when µX(✓)

or kµX(✓)k has a well-separated maximum in the level and norm maximization problems, re-

spectively. This section shows that our procedures converge to conventional ones in this case.

In particular, suppose first that for some sequence of values µY,m and z✓̃,m the probability

that ✓̂= ✓̃ and �̂= �̃, conditional on Z✓̃=z✓̃,m, converges to one as m!1. Then our con-

ditional confidence sets and estimates converge to the usual confidence sets and estimates.

Lemma 1

Consider any sequence of values µY,m and z✓̃,m such that PrµY,m

n
✓̂= ✓̃,�̂= �̃|Z✓̃=z✓̃,m

o
!1.

Then under µY,m, conditional on
n
✓̂= ✓̃,�̂= �̃,Z✓̃=z✓̃,m

o
we have CSU!pCSN , CSET !p

CSN , and µ̂1
2
!pY (✓̃), where for confidence sets !p denotes convergence in probability

of the endpoints.

Lemma 1 discusses probabilities conditional on Z✓̃. If we consider a sequence of values

µm such that Prµm

n
✓̂= ✓̃,�̂= �̃

o
!p1, the same result holds when conditioning only on

n
✓̂= ✓̃,�̂= �̃

o
and unconditionally.

Proposition 5

Consider any sequence of values µm such that Prµm

n
✓̂= ✓̃,�̂= �̃

o
!1. Then under µm,

31



we have CSU!pCSN , CSET !pCSN , and µ̂1
2
!pY (✓̃) both conditional on

n
✓̂= ✓̃,�̂= �̃

o

and unconditionally.

These results provide an additional argument for using our procedures: they remain

valid when conventional procedures fail, but coincide with conventional procedures when

the latter are valid. On the other hand, as we saw in Section 2, there are cases where our

conditional procedures have poor unconditional performance.

5 Unconditional Inference

Rather than requiring validity conditional on (✓̂,�̂) we can instead require coverage only

on average, yielding the unconditional coverage requirement

Pr

n
µ(✓̂)2CS

o
�1�↵ for all µ. (25)

All confidence sets with correct conditional coverage in the sense of (15) also have correct

unconditional coverage provided ✓̂ is unique with probability one.

Proposition 6

Suppose that ✓̂ is unique with probability one for all µ. Then any confidence set CS with

correct conditional coverage (15) also has correct unconditional coverage (25).

Uniqueness of ✓̂ implies that the conditioning events X (✓̃,�̃) partition the support of X

with measure zero overlap. The result then follows from the law of iterated expectations.

A sufficient condition for almost sure uniqueness of ✓̂ is that ⌃X has full rank. A weaker

sufficient condition is given in the next lemma. Cox (2018) gives sufficient conditions for

uniqueness of a global optimum in a much wider class of problems.

Lemma 2

Suppose that for all ✓, ✓̃2⇥ such that ✓ 6= ✓̃, either V ar

⇣
X(✓)|X(✓̃)

⌘
6=0 or V ar

⇣
X(✓̃)|X(✓)

⌘
6=

0. Then ✓̂ is unique with probability one for all µ.

While the conditional confidence sets derived in the last section are unconditionally

valid, unconditional coverage is less demanding than conditional coverage. Hence, if we

are only concerned with unconditional coverage, relaxing the coverage requirement from

(15) to (25) may allow us to obtain shorter confidence sets in some settings.

In this section we explore the benefits of such a relaxation. We begin by introducing

unconditional confidence sets based on projections of simultaneous confidence bands for
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µ. We then introduce hybrid confidence sets that combine projection confidence sets with

conditioning arguments. We do not know of estimators for µY (✓̂) that are unconditionally

↵-quantile-unbiased but not conditionally unbiased, but introduce hybrid estimators which

substantially reduce variability at the cost of permitting a small unconditional bias.

5.1 Projection Confidence Sets

One approach to obtain an unconditional confidence set for µY (✓̂) is to start with a joint con-

fidence set for µ and project on the dimension corresponding to ✓̂. This approach was used

by Kitagawa and Tetenov (2018a) for inference in EWM, and by Romano and Wolf (2005)

in the context of multiple testing. This approach has also been used in a large and growing

statistics literature on post-selection inference including e.g. Berk et al. (2013), Bachoc et al.

(2017), Kuchibhotla et al. (2018), and Bachoc et al. (2018). Laber and Murphy (2011) con-

sider a variant of projection for inference on the generalization error of an estimated classifier,

obtaining a smaller critical value via a first-stage pretest with a divergent critical value.

To formally describe the projection approach, let c↵ denote the 1�↵ quantile of

max✓|⇠(✓)|/
p
⌃Y (✓) for ⇠⇠N(0,⌃Y ). If we define

CSµ=
n
µ : |Y (✓)�µY (✓)|c↵

p
⌃Y (✓) for all ✓2⇥

o
,

then CSµ is a level 1�↵ confidence set for µ.25 If we then define

CSP =
n
µ̃Y (✓̂):9µ2CSµ such that µY (✓̂)=µ̃Y (✓̂)

o
=


Y (✓̂)�c↵

q
⌃Y (✓̂),Y (✓̂)+c↵

q
⌃Y (✓̂)

�

as the projection of CSµ on the parameter space for µY (✓̂), then since µ2CSµ implies

µY (✓̂)2CSP , CSP satisfies the unconditional coverage requirement (25). As noted in

Section 2, however, CSP does not generally have correct conditional coverage.

The width of the confidence set CSP depends on the variance ⌃Y (✓̂) but does not

otherwise depend on the data. To account for the randomness of ✓̂, the critical value c↵

is larger than the conventional two-sided normal critical value. This means that CSP will

be conservative in cases where ✓̂ takes a given value ✓̃ with high probability. To improve

performance in this case, we next consider hybrid confidence sets.

25Note that we consider a studentized confidence band that adjusts the width based on ⌃Y (✓̂), while
Kitagawa and Tetenov (2018a) consider an unstudentized band. Romano and Wolf (2005) argue for
studentization in a closely related problem.
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5.2 Hybrid Confidence Sets

As shown in Section 2, conditional and projection confidence sets each have good uncon-

ditional performance in some cases, but neither is fully satisfactory. Hybrid confidence sets

combine these procedures to obtain good performance over a wide range of parameter values.

Hybrid confidence sets are constructed to be subsets of the level 1�� projection con-

fidence set CS�
P for 0�<↵. A hybrid confidence set collects the values µY,02CS

�
P not

rejected by a hybrid test. Like our conditional tests, hybrid tests of H0 :µY (✓̃)=µY,0 condi-

tion on
n
✓̂= ✓̃,�̂= �̃

o
, but they further condition on the event that the null value is contained

in the projection confidence set, i.e. µY,02CS
�
P . This changes the conditioning event to

Y
H(✓̃,�̃,µY,0,z)=Y(✓̃,�̃,z)\


µY,0�c�

q
⌃Y (✓̃),µY,0+c�

q
⌃Y (✓̃)

�

for c� as defined in Section 5.1.

Similarly to our conditional confidence sets, we construct hybrid confidence sets by

inverting both equal-tailed and uniformly most powerful unbiased hybrid tests. To con-

struct the equal-tailed test, we define �H
OS�,↵ and �

H
OS+,↵ analogously to �OS�,↵ and �OS+,↵

in (22) and (23), respectively, using the conditioning event YH(✓̃,�̃,µY,0,Z✓̃) rather than

Y(✓̃,�̃,Z✓̃). The equal-tailed hybrid test of H0 :µY (✓̃)=µY,0 is

�
H
ET,↵(µY,0)=max

�
�
H
OS�,↵/2(µY,0),�

H
OS+,↵/2(µY,0)

 
,

which rejects if either of the upper or lower size ↵/2 one-sided tests rejects. The level

1�↵ equal-tailed hybrid confidence set is CSH
ET =

⇢
µY,02CS

�
P :�

H
ET,↵��

1��

(µY,0)=0

�
, which

collects the set of values in CS
�
P which are not rejected by �

H
ET,↵��

1��

.

To form a hybrid confidence set based on inverting unbiased tests, we likewise define

�
H
TS,↵ analogously to �TS,↵ in (21), using the conditioning event YH(✓̃,�̃,µY,0,Z✓̃) rather than

Y(✓̃,�̃,Z✓̃). By the results of Proposition 2, we know that �H
TS,↵(µY,0) is the uniformly most

powerful level ↵ unbiased test of H0 :µY (✓̃)=µY,0 conditional on
n
✓̂= ✓̃,�̂= �̃,µY,02CS

�
P

o
.

The corresponding level 1�↵ confidence set is then CS
H
U =

⇢
µY,02CS

�
P :�

H
U,↵��

1��

(µY,0)=0

�
.

For �=0 the hybrid confidence sets coincide with the conditional confidence sets CSET

and CSU . For �>0 on the other hand, the hybrid confidence sets are contained in CS
�
P and

the level of hybrid tests that condition on
n
✓̂= ✓̃,�̂= �̃,µY,02CS

�
P

o
are correspondingly
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adjusted to ↵��
1�� . This adjustment is necessary because the true value µY (✓̂) sometimes falls

outside CS�
P , and if we do not account for this our hybrid confidence sets may under-cover.

With this adjustment, however, hybrid confidence sets have coverage at least 1�↵ both

conditionally and unconditionally.

Proposition 7

The hybrid confidence sets CSH
ET and CS

H
U have conditional coverage 1�↵

1�� :

Prµ

n
µ(✓̃)2CS

H
ET |✓̂= ✓̃,�̂= �̃,µY (✓̃)2CS

�
P

o
=
1�↵

1��
,

Prµ

n
µ(✓̃)2CS

H
U |✓̂= ✓̃,�̂= �̃,µY (✓̃)2CS

�
P

o
=
1�↵

1��
,

for all ✓̃2⇥, �̃2�, and all µ. Moreover, provided ✓̂ is unique with probability one for all

µ, both confidence sets have unconditional coverage between 1�↵ and 1�↵
1�� 1�↵+�:

inf
µ
Prµ

n
µ(✓̂)2CS

H
ET

o
�1�↵, sup

µ
Prµ

n
µ(✓̂)2CS

H
ET

o

1�↵

1��
,

inf
µ
Prµ

n
µ(✓̂)2CS

H
U

o
�1�↵, sup

µ
Prµ

n
µ(✓̂)2CS

H
U

o

1�↵

1��
.

Hybrid confidence sets strike a balance between the conditional and projection ap-

proaches. The maximal length of hybrid confidence sets is bounded above by the length of

CS
�
P . For small �, hybrid confidence sets will be close to conditional confidence sets and

thus to the conventional confidence set when
n
✓̂= ✓̃,�̂= �̃

o
with high probability. However,

for �>0, hybrid confidence sets do not fully converge to conventional confidence intervals

as Prµ
n
✓̂= ✓̃,�̂= �̃

o
!1.26 Nevertheless, in our simulations we find the performance of

the hybrid and conditional approaches to be quite similar in these well-separated cases.

While hybrid confidence sets combine the conditional and projection approaches, they

can yield overall performance more appealing than either. In Section 2 we found that

hybrid confidence sets had a shorter median length for many parameter values than did

either the conditional or projection approaches used in isolation. Our simulation results

in Sections 6 and 7 below provide further evidence of outperformance in realistic settings.

26Indeed, one can directly choose � to yield a given maximal power loss for the hybrid tests relative to
conditional tests in the well-separated case. Such a choice of � will depend on ⌃, however. For simplicity
we instead use �=↵/10 in our simulations. Romano et al. (2014) and McCloskey (2017) find this choice
to perform well in two different settings when using a Bonferroni correction.
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It is worth contrasting our hybrid approach with more conventional Bonferroni correc-

tions as in e.g. Romano et al. (2014); McCloskey (2017). A simple Bonferroni approach for

our setting intersects a level 1�� projection confidence interval CS�
P with a level 1�↵+�

conditional interval that conditions only on
n
✓̂= ✓̃,�̂= �̃

o
. Bonferroni intervals differ from

our hybrid approach in two respects. First, they use a level 1�↵+� conditional confidence

interval, while the hybrid approach uses a level 1�↵
1�� conditional interval, where 1�↵

1�� 1�↵+

�. Second, the conditional interval used by the Bonferroni approach does not condition on

µY (✓̃)2CS
�
P ,while that used by the hybrid approach does. Consequently, hybrid confidence

sets never contains the endpoints of CS�
P , while the same is not true of Bonferroni intervals.

5.3 Hybrid Estimators

The simulation results of Section 2 showed that our median-unbiased estimator can some-

times be much more dispersed than the conventional estimator µ̂=Y (✓̂). While we do not

know of an alternative approach to construct exactly median-unbiased estimators in our

setting, a version of our hybrid approach yields estimators that control both median bias

and dispersion relative to µ̂=Y (✓̂).

To construct hybrid estimators we again condition on both
n
✓̂= ✓̃,�̂= �̃

o
and µY (✓̃)2

CS
�
P .Conditional on these events andZ✓̃=z, we know that Y (✓̃) again lies inYH(✓̃,�̃,µY (✓̃),z).

Let FH
TN(y;µY (✓̃),✓̃,�̃,z) denote the conditional distribution function of Y (✓̃), and define

µ̂
H
↵ to solve FH

TN(Y (✓̂);µ̂H
↵ ,✓̂,�̂,Z✓̃)=1�↵.

Proposition 8

For ↵2 (0,1), µ̂H
↵ is unique and µ̂

H
↵ 2CS

�
P . If ✓̂ is unique almost surely for all µ, µ̂H

↵ is

↵-quantile-unbiased conditional on µY (✓̂)2CS
�
P :

Prµ

n
µ̂
H
↵ �µY (✓̂)|µY (✓̂)2CS

�
P

o
=↵ for all µ.

Proposition 8 implies several notable properties for the hybrid estimator. First, since

Prµ

n
µY (✓̂)2CS

�
P

o
�1�� by construction, one can show that

���Prµ
n
µ̂
H
↵ �µY (✓̂)

o
�↵

���� ·max{↵,1�↵} for all µ.

This implies that the absolute median bias of µ̂H
1
2
(measured as the deviation of the ex-

ceedance probability from 1/2) is bounded above by �/2.On the other hand, since µ̂H
1
2
2CS

�
P

we have
���µ̂H

1
2
�Y (✓̂)

���c�

q
⌃Y (✓̃), so the difference between µ̂

H
1
2
and the conventional esti-
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mator Y (✓̂) is bounded above by half the width of CS�
P . As � varies, the hybrid estimator in-

terpolates between the median-unbiased estimator µ̂1
2
and the conventional estimator Y (✓̂).

6 Simulations: Empirical Welfare Maximization

Our first set of simulations considers the EWM setting introduced in Section 3. We calibrate

our simulations to experimental data from the National Job Training Partnership Act

(JTPA) Study, which was previously used by Kitagawa and Tetenov (2018b) to study empir-

ical welfare maximization. For a detailed description of the study see Bloom et al. (1997).

We have data on n=11,204 individuals i and the treatmentDi is binary;Di=1 indicates

assignment to a job training program and Di=0 indicates non-assignment. The probability

of assignment is constant: d(c)=Pr(Di=1|Ci=c)=2/3. We consider rules that allocate

treatment based on years of education Ci. In the data, C takes integer values ranging

from 6 to 18 years. As in Section 3, rule ✓ assigns i to treatment if and only if Ci2C✓.

We consider two classes of policies. The first, which we call threshold policies, treat all

individuals with fewer than ✓ years of education: C✓={C :C✓}. The second, which we

call interval policies, treat all individuals with between ✓l and ✓u years of education: C✓=

{C :✓lC✓u}, where a policy ✓ consists of a (✓l,✓u) pair. The total number of policies

|⇥| is equal to 13 and 91 for the threshold and interval cases, respectively. We define Xn(✓)

as a scaled estimate for the increase in income from policy ✓ relative to the baseline of

no treatment. For Yi individual income measured in hundreds of thousands of dollars,

Xn(✓)=
1
p
n

nX

i=1

✓
YiDi

d(Ci)
1{Ci2C✓}�

Yi(1�Di)

1�d(Ci)
1{Ci 62C✓}

◆
,

and we consider inference on the average increase in income, so Yn=Xn.

For our simulations, we focus on the asymptotic problem and draw normal vectors X

with known variance ⌃X equal to a (consistent) estimate for the asymptotic variance of

Xn based on the JTPA data and take ✓̂=argmax✓X(✓). The object of interest is thus

µX(✓̂). The mean vector µX,n of Xn is not consistently estimable due to the
p
n scaling,

so we consider three specifications for the mean µX of X. Specification (i) sets µX =0,

so all policies yield the same welfare as the baseline of no treatment. Specification (ii)

sets µX=(0,�105,...,�105), so one policy is vastly more effective than the others. Finally,

specification (iii) sets µX=Xn for Xn calculated in the JTPA data. Intuitively, we expect

that specification (i) will be unfavorable to conditional confidence sets since in Section 2

these performed poorly when all policies were equally effective. Specification (ii) should
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be favorable to conditional confidence sets since in this case ✓̂ selects one policy with high

probability, and the results of Section 4.4 apply. Finally, specification (iii) is calibrated

to the data and it is not obvious which approaches will perform well in this setting.

To the best of our knowledge our conditional confidence sets are the only known proce-

dures available with correct conditional coverage given ✓̂. Hence, we focus on unconditional

performance and compare the conditional confidence sets CSET and CSU and the hybrid

confidence sets CSH
ET and CS

H
U to the projection confidence set CSP . The conditional and

hybrid confidence sets are novel to this paper, but (unstudentized) projection confidence

sets were previously considered for this problem by Kitagawa and Tetenov (2018a). We

take ↵=0.05 in all cases and so consider 95% confidence sets. For hybrid confidence sets

we set �=↵/10= .005. All reported results are based on 104 simulation draws.

Table 1 reports the unconditional coverage Prµ{µX(✓̂)2CS} of all five confidence sets,

along with the conventional confidence set CSN as in (24). As expected, all confidence

sets other than CSN have correct coverage in all settings considered. The conditional

confidence sets are exact, with coverage equal to 95% up to simulation error. By contrast,

hybrid confidence sets tend to be slightly conservative, and projection confidence sets are

often quite conservative, with coverage close to one when we consider interval policies.

Table 1: Unconditional Coverage Probability

DGP CSET CSU CS
H
ET CS

H
U CSP CSN

Class of Threshold Policies
(i) 0.949 0.950 0.952 0.953 0.986 0.922
(ii) 0.952 0.952 0.956 0.956 0.991 0.952
(iii) 0.95 0.95 0.955 0.955 0.992 0.952

Class of Interval Policies
(i) 0.952 0.949 0.956 0.953 0.992 0.837
(ii) 0.95 0.951 0.954 0.954 0.998 0.950
(iii) 0.951 0.95 0.954 0.955 0.998 0.948

We next compare the length of confidence sets. Projection confidence sets were pro-

posed in the previous literature and their length is proportional to the standard errorq
⌃X(✓̂) for the welfare of the estimated optimal policy. Hence, CSP provides a natural

benchmark against which to compare the length of our new confidence sets. In Table 2

we compare our new confidence sets to this benchmark in two ways, first reporting the

median lengths of CSET , CSU , CS
H
ET , and CS

H
U relative to CSP (that is, the ratio of the

median of their lengths), and then reporting the fraction of simulation draws for which
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our new confidence sets are longer than CSP .

Focusing first on specification (i) for which µX=0, we see that conditional confidence

sets are longer than CSP according to both measures in the threshold and interval policy

specifications. Hence, as expected, this case is unfavorable to these confidence sets. By

contrast, our hybrid confidence sets are shorter than the projection sets both in median

length and in the substantial majority of simulation draws. Turning next to specification

(ii) for which µX has a well-separated maximum, we see that, as expected, conditional

confidence sets are much shorter than projection confidence sets. Hybrid confidence sets

perform nearly as well. Finally in specification (iii) for which µX is calibrated to the data,

we see that the performance of the conditional sets is between its performance in cases

(i) and (ii), and that hybrid confidence sets again perform best.

Overall, these simulation results favor the hybrid confidence sets relative to both the

conditional and projection sets. The benefits of hybrid confidence sets are still more

pronounced if we consider higher quantiles of the length distribution, reported in Section

F of the supplement. We do not find a strong advantage for either CSH
ET or CSH

U , though

when the two differ CSH
ET typically performs better. Since CSH

ET is also typically easier

to calculate, these simulation results suggest using CS
H
ET in this setting.

Table 2: Length of Confidence Sets Relative to CSP in EWM Simulations

DGP Median Length Relative to CSP Probability Longer than CSP

CSET CSU CS
H
ET CS

H
U CSET CSU CS

H
ET CS

H
U

Class of Threshold Policies
(i) 1.17 1.27 0.63 0.64 0.71 0.80 0.04 0.35
(ii) 0.75 0.75 0.76 0.76 0 0 0 0
(iii) 0.84 0.93 0.84 0.89 0.33 0.43 0 0.19

Class of Interval Policies
(i) 1.54 1.65 0.77 0.76 0.79 0.88 0 0
(ii) 0.63 0.64 0.65 0.65 0 0 0 0
(iii) 0.78 0.88 0.76 0.81 0.32 0.42 0 0

We next consider the properties of our point estimators. The initial columns of Table

3 report the simulated median bias of our median unbiased estimator µ̂1
2
, our hybrid

estimator µ̂H
1
2
, and the conventional estimator X(✓̂), measured both as the difference in

the exceedance probability from 1
2 and as the median studentized estimation error. The

hybrid estimator is quite close to being median unbiased. By constrast, the conventional

estimator exhibits substantial bias when µX does not have a well-separated maximum.
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The final three columns of Table 3 report the median absolute studentized error for

the estimators considered. These results show that the median unbiased estimator µ̂1
2

has a larger median absolute error than the conventional estimator X(✓̂) in all designs

except the well-separated case (ii), where all three estimators perform similarly. The

hybrid estimator µ̂H
1
2
likewise has a larger median absolute error than the conventional

estimator. Additional results reported in Section F of the supplement show that the hybrid

estimator substantially outperforms the median unbiased estimator when one considers

higher quantiles of absolute error.

Table 3: Bias and Median Absolute Error of Point Estimators

DGP Prµ

n
µ̂>µX(✓̂)

o
�

1
2 Medµ

✓
µ̂�µX(✓̂)
p

⌃X(✓̂)

◆
Medµ

✓
|µ̂�µX(✓̂)|
p

⌃X(✓̂)

◆

µ̂1
2

µ̂
H
1
2

X(✓̂) µ̂1
2

µ̂
H
1
2

X(✓̂) µ̂1
2

µ̂
H
1
2

X

⇣
✓̂

⌘

Class of Threshold Policies
(i) -0.007 -0.007 0.391 -0.02 -0.02 0.82 1.11 1.10 0.88
(ii) -0.001 0.001 0.001 0 0 0 0.67 0.67 0.67
(iii) -0.001 -0.001 0.104 0 0 0.25 0.80 0.79 0.67

Class of Interval Policies
(i) 0 0.003 0.5 0 0.02 1.3 1.42 1.39 1.30
(ii) -0.002 0.001 0.001 0 0 0 0.65 0.65 0.66
(iii) 0 0.001 0.148 0 0 0.35 0.86 0.86 0.69

The results of this section confirm our theoretical findings. Conditional confidence

sets and estimators perform well when the optimal policy is well-separated but can oth-

erwise underperform existing alternatives. Hybrid confidence sets outperform existing

alternatives in all cases, nearly matching conditional confidence sets in well-separated cases

while maintaining much better performance in other settings. Finally, hybrid estimators

eliminate almost all median bias while obtaining a substantially smaller median absolute

error than the exact median-unbiased estimator. Hence, we find strong evidence favoring

our hybrid confidence sets relative to the available alternatives and evidence favoring our

hybrid estimators if bias reduction is desired.

7 Simulations: Tipping Point Estimation

Our second set of simulation results is based on the tipping point model of Card et al.

(2008), a leading application of the threshold regression model discussed throughout this

paper as a running example. Card et al. (2008) study the evolution of neighborhood
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composition as a function of minority population share. In particular, for Yi the normalized

change in the white population of census tract i between 1980 and 1990, Ci a vector of

controls, and Qi the minority share in 1980, Card et al. (2008) consider the specification

Yi=�+C
0
i↵+�1{Qi>✓}+Ui,

which allows the white population share to change discontinuously when the minority

share exceeds some threshold ✓. They then fit this model, including the break point ✓, by

least squares. See Card et al. (2008) for details on the data and motivation. We consider

data from Chicago and Los Angeles with n=1,820 and n=2,035 observations, respectively,

estimating the model separately in each city.27

Results in Wang (2018) show that if we model the coefficient � as on the same order

as sampling uncertainty, this threshold regression model satisfies the high-level conditions

(12)–(13) we introduced in Section 3. Hence, we can immediately apply our results for the

norm-maximization problem to the present setting. Specifically, we defineXn as discussed in

Section 3 and ✓̂n is again asymptotically equivalent to the solution to a norm-maximization

problem argmax✓2⇥kX(✓)k.28 We define Yn(✓)=
p
n�̂(✓) to be proportional to the estimated

change coefficient imposing tipping point ✓, so we again consider the problem of inference

on the change coefficient while acknowledging randomness in the estimated threshold.

Our simulations draw normal random vectors (X,Y ) from the limiting normal model

derived in Section 3. This model depends on the function ⌃C and the covariance function

of G in Section 3 which we (consistently) estimate from the Card et al. (2008) data. It

also depends on the function ⌃cg(·). Since this is not consistently estimable, we consider

three specifications. Specification (i) assumes there is no coefficient change, corresponding

to �=0. Specification (ii) assumes that there is a single large change, setting �=�100%

and taking the true threshold to equal the estimate in the Card et al. (2008) data. Finally,

specification (iii) calibrates ⌃cg(·) to the data, corresponding to the analog of model (10)

where the intercept term in the regression may depend arbitrarily upon a neighborhood’s

minority share. This specification implies that the break model is misspecified but as

discussed above, our approach remains applicable in this case, unlike the results of Wang

27We focus on these cities following Wang (2017), a previous version of Wang (2018), since Card et al.
(2008) note that their tipping point estimation method appears more appropriate for larger cities.

28While Card et al. (2008) optimize over all possible tipping points between 5% and 60%, consistent
with our theoretical results we limit attention to a finite set of thresholds. In particular, we consider 100
evenly-spaced quantiles of the minority share, and then further restrict attention to thresholds between
5% and 60%. We also tried several other discretization schemes and found very similar results in all cases.
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(2018). Indeed, Card et al. (2008) acknowledge that the tipping point model only ap-

proximates their underlying theoretical model of neighborhood ethnic composition, so

misspecification seems likely in this setting.

We again focus on the unconditional performance of our proposed procedures along

with existing alternatives. All reported results are based on 104 simulation draws. Table

4 reports coverage for the confidence sets CSET , CSU , CS
H
ET , CS

H
U , and CSP , along with

the conventional confidence set CSN . As for the simulations calibrated to the EWM ap-

plication, we see that all confidence sets other than CSN have correct coverage, CSP often

over-covers, the conditional confidence sets have exact coverage and the hybrid confidence

sets exhibit minimal over-coverage. In this application, the conventional confidence set

CSN severely under-covers for some simulation designs.

Table 4: Unconditional Coverage Probability

DGP CSET CSU CS
H
ET CS

H
U CSP CSN

Chicago Data Calibration
(i) 0.948 0.95 0.949 0.949 0.95 0.750
(ii) 0.951 0.95 0.956 0.955 0.994 0.951
(iii) 0.947 0.946 0.951 0.951 0.990 0.934

Los Angeles Data Calibration
(i) 0.949 0.948 0.949 0.948 0.95 0.615
(ii) 0.952 0.952 0.956 0.956 0.996 0.952
(iii) 0.951 0.949 0.955 0.954 0.996 0.95

Table 5 compares the lengths of our confidence sets to that of CSP . For each confidence

set we again report both median length relative to CSP and the frequency with which

the confidence set is longer than CSP . Here we see that the conditional confidence sets

can be relatively long, while the hybrid confidence sets provide marked performance

improvements across the specifications considered. Similarly to the simulation exercises

of the previous section, the benefits of the hybrid confidence sets can become even more

pronounced at different length quantiles. See Section G of the supplemental appendix.

Remarkably, neither of the hybrid confidence sets is longer than CSP in any simulation draw

across all specifications examined. The overall message is similar to that of the previous

section: hybrid confidence sets possess clear advantages for unconditional inference and

CS
H
ET seems to be the most compelling option, especially given its computational simplicity.

Finally, we consider the properties of our point estimators. The initial columns of

Table 6 report median bias measured both with the deviation of the exceedance proba-
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Table 5: Length of Confidence Sets Relative to CSP in Tipping Point Simulations

Median Length Relative to CSP Probability Longer than CSP

CSET CSU CS
H
ET CS

H
U CSET CSU CS

H
ET CS

H
U

Chicago Data Calibration
(i) 1.33 1.38 0.94 0.94 0.83 0.89 0 0
(ii) 0.72 0.72 0.74 0.74 0 0 0 0
(iii) 0.82 0.93 0.82 0.87 0.35 0.44 0 0

Los Angeles Data Calibration
(i) 1.26 1.29 0.86 0.85 0.58 0.62 0 0
(ii) 0.68 0.68 0.69 0.69 0 0 0 0
(iii) 0.68 0.70 0.70 0.72 0.15 0.19 0 0

bility from 1
2 and with the studentized median estimation error. We again see that µ̂1

2
is

median-unbiased (up to simulation error) and that µ̂H
1
2
exhibits minimal median bias. By

contrast, in specification (i) the conventional estimator Y (✓̂) has substantial median bias

as measured by the studentized median estimation error, though very little as measured

by the exceedance probability. This latter feature reflects the fact that the density of

Y (✓̂)�µY (✓̂) has very little mass near zero in this specification.

Turning to median absolute studentized error, we see that all estimators perform sim-

ilarly when the series has a single large break. By contrast, the median unbiased estimator

µ̂1
2
performs better than the conventional estimator Y (✓̂) in specification (i) (no break) but

performs worse in specification (iii). The hybrid estimator is weakly better than the unbi-

ased estimator in all cases, with perfomance gains in case (i) and equal performance in the

other two cases. Again, the performance gains are more pronounced if one considers higher

quantiles of the absolute error distribution, as reported in Section G of the supplement.

7.1 Split-Sample Procedures

While we have so far compared the performance of our conditional and hybrid procedures

to the projection confidence set CSP and conventional estimator Y (✓̂), Card et al. (2008)

instead adopt a sample-splitting approach, using two-thirds of the data to select the break-

date and a third of the data for inference. In this section we compare the performance

of this conventional split-sample procedure to that of the implementable split-sample

alternative developed in Section C of the supplement. We consider the same calibrations to

the Card et al. (2008) data as above and choose the sample split as in Card et al. (2008).

Table 7 compares the conventional split-sample confidence set CSSS and estimator

Y
2(✓̂1) used by Card et al. (2008) to our (equal-tailed) alternative split-sample confidence
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Table 6: Bias and Median Absolute Error in Tipping Point Simulations

Prµ

n
µ̂>µY (✓̂)

o
�

1
2 Medµ

✓
µ̂�µY (✓̂)
p

⌃Y (✓̂)

◆
Medµ

✓����
µ̂�µY (✓̂)
p

⌃Y (✓̂)

����

◆

µ̂1
2

µ̂
H
1
2

Y (✓̂) µ̂1
2

µ̂
H
1
2

Y (✓̂) µ̂1
2

µ̂
H
1
2

Y (✓̂)

Chicago Data Calibration
(i) 0 0 0.01 -0.01 0.01 0.64 1.51 1.38 1.52
(ii) -0.01 -0.01 -0.01 -0.03 -0.03 -0.03 0.66 0.66 0.66
(iii) -0.01 -0.01 -0.15 -0.03 -0.03 -0.37 0.83 0.83 0.71

Los Angeles Data Calibration
(i) 0 0 0 0 0 -0.8 1.38 1.29 1.80
(ii) 0 0 0 0.01 0.01 0.01 0.67 0.67 0.67
(iii) 0 0 0.006 0 -0.01 -.016 0.74 0.74 0.68

set CA
SS and median-unbiased estimator µ̂A

1
2 ,SS

. See Section C of the supplement for defini-

tions. These results clearly reflect the dominance of our alternative split-sample procedures,

with substantial performance improvements for both confidence sets and estimators across

all calibrations. These improvements are largest in the well-separated case (ii), but are

nearly as large in the data-calibrated case (iii). Section G of the supplement provides ratios

of the 5th, 25th, 50th, 75th and 95th quantiles of the lengths of CSA
SS relative to the those

of CSSS as well as the quantiles of
���µ̂�µY (✓̂1)

���/
q
⌃Y (✓̂1) for µ̂= µ̂

A
1
2 ,SS

and µ̂=Y
2(✓̂1).

There, our new split-sample procedures can be seen to dominate the conventional ones

across all quantiles and simulation designs considered, often by very wide margins.

Table 7: Performance Measures of Split-Sample Procedures

Median Length
Relative to CSSS

Medµ

✓
|µ̂�µY (✓̂1)|
p

⌃Y (✓̂1)

◆

DGP CS
A
SS µ̂

A
1
2 ,SS

Y
2(✓̂1)

Chicago Data Calibration
(i) 0.83 0.57 0.67
(ii) 0.58 0.38 0.66
(iii) 0.64 0.44 0.67

Los Angeles Data Calibration
(i) 0.78 0.55 0.69
(ii) 0.58 0.39 0.67
(iii) 0.59 0.42 0.68
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8 Conclusion

This paper considers a form of the winner’s curse that arises when we select a target

parameter for inference based on optimization. We propose confidence sets and quantile

unbiased estimators for the target parameter that are optimal conditional on its selection.

We hence recommend our conditional inference procedures when it is appropriate to

remove uncertainty about the choice of target parameters from inferential statements.

These conditionally valid procedures are also unconditionally valid, but we find that they

sometimes have unappealing (unconditional) performance relative to existing alternatives.

If one is satisfied with correct unconditional coverage and (in the case of estimation) a

small, controlled degree of bias, we propose hybrid inference and estimation procedures

which combine conditioning with projection confidence sets. Examining performance in

simulations calibrated to empirical welfare maximization and tipping point applications,

we find that our hybrid approach performs well in both cases.

Our results suggest a range of opportunities for future work. First, rather than consider-

ing inference on µY (✓̂), under suitable assumptions one could build on our results to forecast

Y (✓̂). Alternatively, while conditional and projection confidence sets have antecedents in

the literature on inference after model selection, including in Berk et al. (2013) and Fithian

et al. (2017), there is no analog of our hybrid approach in this literature. Our very positive

simulation results for the hybrid approach in the present setting suggest that this approach

might yield appealing performance in a range of post-selection-inference settings. Even if a

fully conditional approach is desired in the post-selection problem, as in Fithian et al. (2017),

one could consider the analog of our optimal median-unbiased estimates that condition on

the selected model. Finally, the problem of estimating the value of a dynamic treatment rule

(c.f. Chakraborty and Murphy, 2014; Han, 2018) is closely related to our level-maxmization

setting, so it seems likely that our results could prove to be useful there as well.
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