Fiscal Policy in Monetary Unions: State Partisanship And Macroeconomic Policy – preliminary – comments welcome –

Jerry Carlino ¹ Thorsten Drautzburg ¹ Bob Inman ² Nick Zarra ³

¹FRB Philadelphia ²Wharton ³NYU Stern

AEA Annual Meeting Atlanta, January 4 – 6, 2019

The views presented here do not necessarily reflect the views of the Federal Reserve Bank of Philadelphia, the Federal Reserve System, or its Board of Governors.

Big picture

- 1. Measured political polarization has risen in the U.S. since 1960s. (Andris et al., 2015, McCarty et al., 2016, Azzimonti, 2018)
- 2. Unclear consequences:
 - Empirically: Gridlock or more partisan policies? (Binder, 1999)
 - Theoretically: Ideological polarization need not lead to more polarized fiscal policies. (Krasa & Polborn, 2014)
- 3. Are state governors partisan in their fiscal policies? (Anecdotally: Yes – see the Medicaid expansion.)

4. If so, are there macroeconomic effects?

Big picture

1. Measured political polarization has risen in the U.S. since 1960s. (Andris et al., 2015, McCarty et al., 2016, Azzimonti, 2018)

Model Time series

Time series evidence 0

Conclusion

Big picture

- 1. Measured political polarization has risen in the U.S. since 1960s. (Andris et al., 2015, McCarty et al., 2016, Azzimonti, 2018)
- 2. Unclear consequences:
 - Empirically: Gridlock or more partisan policies? (Binder, 1999)
 - Theoretically: Ideological polarization need not lead to more polarized fiscal policies. (Krasa & Polborn, 2014)
- 3. Are state governors partisan in their fiscal policies? (Anecdotally: Yes – see the Medicaid expansion.)

4. If so, are there macroeconomic effects?

This paper

- 1. State-level panel of close elections: Estimate causal effects.
 - \Rightarrow Unconditionally, few partisan differences in fiscal policies.
 - ⇒ Significant differences in response to federal transfers: Democrats spend more, Republicans have lower taxes.
- 2. New-Keynesian model with "Republican" and "Democratic" states: Quantify aggregate effects.
 - \Rightarrow GDP federal transfers multiplier lower in the presence of Republicans.
 - \Rightarrow Effects of fiscal politics vary with the share of Republican governors.
- 3. Reduced-form time series model: Validate structural model.
 - \Rightarrow Multipliers indeed vary with share of governors.

Literature

- 1. Public finance:
 - ▶ U.S. partisan differences: Besley & Case (2003), Lee et al. (2004), Ferreira and Gyourko (2009), Beland (2015).
 - Intergovernmental transfers: Gramlich (1969), Inman (1971, 2009), Hines & Thaler (1995), Leduc & Wilson (2017).
- 2. Political economy:
 - Polarization: Andris et al. (2015), McCarty et al. (2016), Azzimonti (2018); Binder (1999), Krasa & Polborn (2014).
 - ▶ Opportunistic business cycles: Nordhaus (1975), Alesina & Roubini (1992).
 - Opportunistic budget cycles: Keech & Pak (1989), Alesina et al. (1992), Alesina & Paradisi (2017).
 - Partisan political cycles: Hibbs (1977, 1994), Alesina (1987, 1988a,b), Alesina et al. (1997), Blinder & Watson (2016).
- 3. Fiscal policy:
 - Regional and national multipliers: Nakamura & Steinsson (2014), Chodorow-Reich (2017), Farhi & Werning (2017), Dupor et al. (2018)
 - Dissecting "G": Carlino & Inman (2013), Oh & Reis (2012), Drautzburg & Uhlig(2015), Bermperoglou et al. (2017)
 - Taxes: Blanchard and Perotti (2002), Mountford & Uhlig (2009), Mertens & Ravn (2013, 2014)
 - Time-varying multipliers: Auerbach & Gorodnichenko (2012a,b), Ramey & Zubairy (2018).

Why intergovernmental transfers?

Anecdotally: Partisan take-up of Obama-era Medicaid expansion.

At the state level, intergovernmental (IG) transfers account for 25% of revenue. budget share

- ► In NIPA, IG transfers have grown increasingly important:
 - ▶ \approx 3% of GDP in 2017, less than 0.5% in 1947.
 - \blacktriangleright $\approx\!13\%$ of federal expenditures in 2017, less than 2.5% in 1947.
 - NIPA measure understates importance. precise annual measure

Intro

- Systematic and discretionary components: precise annual measure
 - Discretion: Reagan cuts to revenue sharing.
 - ► Systematic: Countercylical increases in 1991 and 2009 recessions.

 $\Delta \log \frac{IG_t}{GDP_{t-1}} = \underset{[0.89]}{0.002} + \underset{[1.82]}{0.023} \times \mathbf{1} \{Recession\}_t - \underset{[2.53]}{0.020} \times \mathbf{1} \{Reagan\}_t, \quad N = 152.$

Are intergovernmental transfers fungible?

- How many dollars of federal transfers pass through to spending?
- "The Flypaper Effect" (Hines & Thaler, 1995).
 Some Estimates of the Flypaper Effect

Author	Sample	Change in spending as grant changes
nman (1971)	Panel study of 41 city budgets	1.00
Veicher (1972)	State aid to 106 municipal governments	0.90
/eicher (1972)	State grants to independent school districts	0.40
ramlich and Galper (1973)	Federal grants to local and state governments	0.43
ramlich and Galper (1973)	Federal and state aid to 10 large urban governments	0.25
wman (1974)	Federal education grants to West Virginia school districts	1.06
owman (1974)	State grants to West Virginia school districts	0.50
ldstein (1975)	State grants to Massachusetts towns	0.60
msted, Denzau and Roberts (1993)	Missouri state aid to local school districts	0.58
ase, Hines and Rosen (1993)	Federal grants to 48 states, 1970–1985	0.65

Leduc & Wilson (2017): 2.40 for state highway spending.

Intro Data Em

Time-variation in partisanship

Model Ti

Time series evidence

Data

Economic data

- Census State and Local Government Finance historical database (up to 2008) by fiscal year.
- Census Annual Surveys of State and Local Government Finances (2007 to 2014) by fiscal year.
- ► BEA: State GDP, GDP deflator, population data by calendar year.
- Merge fiscal years with the calendar years ending in the middle of the fiscal year.

Political data

- Council of State Governments' Book of States: Margin of victory, party affiliation.
- National Governors Association, Wikipedia: non-electoral gubernatorial changes; cross-check.
- Merged by first quarter of fiscal year.

Marginally elected governors

► Absolute margin of victory (MOV) \leq 5pp. 52.5% to 47.5% victory or closer.

Overall Rep-Dem Pep-Dem state by state

Expenditure growth and democratic margin of victory

Unconditional relationship

Time series evidence

Conclusion

Expenditure growth and democratic margin of victory

Conditional on transfer growth in the top quartile

Expenditure growth and democratic margin of victory

Conditional on transfer growth in the top quartile

Conclusion

Main empirical specification

- Begin in fiscal year 1983 (first FY planned with Reagan budget).
- Drop three states with wealth funds.
- ▶ Condition on the last gubernatorial election within ≤ 5pp.

$$\begin{split} \Delta Y_{s,t} &= \mu_s + \nu_t + \epsilon_{s,t} + \alpha_r \mathbf{1}_{\{Gov_{s,t-\frac{1}{2}} = rep\}} + \beta_{sp} \frac{\Delta SP_{s,t-1}}{GDP_{t-1\frac{1}{2}}} + \beta_{gdp} \Delta \ln(GDP_{t-\frac{1}{2}}) \\ &+ (\gamma_{0,+} + \gamma_{r,+} \mathbf{1}_{\{Gov_{s,t-\frac{1}{2}} = rep\}}) \Delta \ln IG_{s,t}^+ + (\gamma_{0,-} + \gamma_{r,-} \mathbf{1}_{\{Gov_{s,t-\frac{1}{2}} = rep\}}) \Delta \ln IG_{s,t}^- \end{split}$$

- $Y_{s,t}$: (log) expenditures or (log) revenue.
- $\Delta \ln IG_{s,t}^+ \equiv \max\{0, \Delta \ln IG_{s,t}\}$ (71% of observations).
- $\Delta \ln IG_{s,t}^{-} \equiv \min\{0, \Delta \ln IG_{s,t}\}$ (29% of observations).
- ▶ Assumption: $\mathbf{1}_{\{\circ\}} \perp\!\!\!\perp (X, \epsilon)$ for close elections.

Expenditure growth

Margin of victory cutoff	100pp.	брр.	5pp.	4pp.	Зрр.	2рр.
Pos IG Δ	0.291***	0.285***	0.369***	0.374***	0.356***	0.0395
	(8.53)	(4.25)	(5.94)	(5.49)	(3.32)	(0.26)
Neg IG Δ	0.0876**	0.0234	0.156	0.0929	-0.0128	0.0523
	(2.58)	(0.31)	(1.60)	(0.85)	(-0.10)	(0.29)
Surplus Δ .	0.0997**	0.182	0.284**	0.229	0.125	0.0748
	(2.06)	(1.55)	(2.05)	(1.51)	(0.70)	(0.56)
GDP Δ	0.170***	0.147	0.101	0.122	0.246	0.207
	(4.38)	(1.49)	(0.83)	(1.09)	(1.31)	(1.19)
GOP Dummy	0.00325	0.00825*	0.00926	0.0169	0.0229	-0.00583
	(1.08)	(1.68)	(1.34)	(1.68)	(1.27)	(-0.23)
$GOP\timesPos\;IG\;\Delta$	-0.104**	-0.165*	-0.246***	-0.416***	-0.467***	-0.270
	(-2.32)	(-2.00)	(-3.16)	(-4.27)	(-3.41)	(-1.22)
$GOP\timesNeg\;IG\;\Delta$	0.166***	0.323***	0.283***	0.362***	0.403**	0.525
	(3.74)	(3.23)	(3.40)	(3.48)	(2.53)	(1.49)
Observations	1462	393	316	264	168	113
R^2	0.435	0.480	0.569	0.565	0.620	0.698

t statistics in parentheses. Standard errors clustered at the state level.

Expenditure growth

Margin of victory cutoff	100pp.	брр.	5pp.	4pp.	Зрр.	2рр.
Pos IG Δ	0.291***	0.285***	0.369***	0.374***	0.356***	0.0395
	(8.53)	(4.25)	(5.94)	(5.49)	(3.32)	(0.26)
Neg IG Δ	0.0876**	0.0234	0.156	0.0929	-0.0128	0.0523
	(2.58)	(0.31)	(1.60)	(0.85)	(-0.10)	(0.29)
Surplus Δ .	0.0997**	0.182	0.284**	0.229	0.125	0.0748
	(2.06)	(1.55)	(2.05)	(1.51)	(0.70)	(0.56)
GDP Δ	0.170***	0.147	0.101	0.122	0.246	0.207
	(4.38)	(1.49)	(0.83)	(1.09)	(1.31)	(1.19)
GOP Dummy	0.00325	0.00825*	0.00926	0.0169	0.0229	-0.00583
	(1.08)	(1.68)	(1.34)	(1.68)	(1.27)	(-0.23)
$GOP\timesPos\;IG\;\Delta$	-0.104**	-0.165*	-0.246***	-0.416***	-0.467***	-0.270
	(-2.32)	(-2.00)	(-3.16)	(-4.27)	(-3.41)	(-1.22)
$GOP\timesNeg\;IG\;\Delta$	0.166***	0.323***	0.283***	0.362***	0.403**	0.525
	(3.74)	(3.23)	(3.40)	(3.48)	(2.53)	(1.49)
Observations	1462	393	316	264	168	113
R^2	0.435	0.480	0.569	0.565	0.620	0.698

t statistics in parentheses. Standard errors clustered at the state level.

Alternative specifications

- 1. Interact everything with governor dummy (Caetano et al., 2017).
- 2. Region \times year fixed effects.
- 3. Drop controls.

	(1)	(2)	(3)	(4)	(5)	(6)
IG incr.	0.375***	0.345***	0.350***	0.355***	0.330***	0.348***
	(8.32)	(4.58)	(10.24)	(7.01)	(4.36)	(8.25)
IG decr.	0.165	0.156	0.225	0.159	0.116	0.209
	(1.70)	(1.32)	(1.64)	(1.66)	(0.90)	(1.53)
Republican Gov.	0.008		0.009	0.008		0.014**
	(1.24)		(1.41)	(1.17)		(2.07)
Rep x IG incr.	-0.258***	-0.231**	-0.196**	-0.235***	-0.220*	-0.200**
	(-4.70)	(-2.17)	(-2.37)	(-3.71)	(-1.99)	(-2.24)
Rep x IG decr.	0.285**	0.319*	0.274**	0.287**	0.365*	0.286**
	(2.54)	(1.85)	(2.08)	(2.53)	(1.99)	(2.26)
R-squared	0.63	0.71	0.75	0.63	0.71	0.76
R-sq, within	0.27	0.25	0.29	0.28	0.27	0.30
Observations	308	302	289	308	302	289
States	43	43	43	43	43	43
Years	31	31	30	31	31	30
StateFE	Yes	Dem, Rep	Yes	Yes	Dem, Rep	Yes
YearFE	Yes	Dem, Rep	Region	Yes	Dem, Rep	Region
Controls	No	No	No	Yes	Yes	Yes

t statistics in parentheses. Standard errors clustered at the state & year level.

* p<0.10, ** p<0.05, *** p<.01

Conclusion

► Transform elasticities into dollar-per-dollar pass-through.

Response to IG increases						
Governor	Democratic	Republican	Difference			
Estimate	1.30 (0.87, 1.74)	0.43 (-0.00, 0.87)	-0.87 (-1.42, -0.32)			

Implied pass-through

► Transform elasticities into dollar-per-dollar pass-through.

Response to IG increases						
Governor	Democratic	Republican	Difference			
Estimate	1.30 (0.87, 1.74)	0.43 (-0.00, 0.87)	-0.87 (-1.42, -0.32)			

Pass-throughs roughly flipped for negative IG growth.

Response to IG decreases							
Governor	Democratic	Republican	Difference				
Estimate	0.55 (-0.14, 1.24)	1.55 (0.91, 2.18)	1.00 (0.41, 1.58)				

Expenditure vs. revenue side

- > 20-year rolling window regression, otherwise same specification.
- Focus on coefficient for: Republican $\times \Delta \ln IG^+$

Zooming in on the revenue side

- > 20-year rolling window regression, otherwise same specification.
- Focus on coefficient for: Republican $imes \Delta \ln IG^+$

Effects on GDP

- > 20-year rolling window regression, otherwise same specification.
- Focus on coefficient for: Republican $\times \Delta \ln IG^+$

Empirical summary

- ► Republican governors spend less of growth in federal transfers.
- Republican governors pass on more of federal transfer cuts.
- Republican governors adjust income and sales taxes.
- Some evidence for expansionary effects of Republican policies following transfer growth.

Model overview

- Extension of Nakamura & Steinsson (2014).
- Two heterogeneous regions inside a monetary union.
 - Perfect risk sharing across regions.
 - Federal government consumes, taxes.
 - Monetary policy follows a Taylor rule.
- Within each region
 - Representative household elastically supplies labor, consumes.
 - Home bias in consumption.
 - Perfect insurance against idiosyncratic shocks.
 - Home firms produce varieties using labor and capital with CRS.
 - Dollar prices of varieties are Calvo-sticky.
 - No mobility of capital or labor.

Model overview

- Extension of Nakamura & Steinsson (2014).
- Two heterogeneous regions inside a monetary union.
 - Perfect risk sharing across regions.
 - ► Federal government consumes, taxes, and transfers money to regions.
 - Monetary policy follows a Taylor rule.
- Within each region
 - Representative household elastically supplies labor, consumes.
 - Home bias in consumption.
 - Perfect insurance against idiosyncratic shocks.
 - Home firms produce varieties using labor and capital with CRS.
 - Dollar prices of varieties are Calvo-sticky.
 - No mobility of capital or labor.
 - ► State government consumes, taxes, provides services & infrastructure.
- Analyze above-trend increases in IG.

Environment: Home households

Preferences:

$$V_{t} = \mathbb{E}_{t} \sum_{s=0}^{\infty} \beta^{s} U(C_{t+s}, G_{st,t+s}, N_{t+s})$$

$$C_{t} = \left(\phi_{H}^{\frac{1}{\eta}} C_{Ht}^{1-\frac{1}{\eta}} + (1-\phi_{H})^{\frac{1}{\eta}} C_{Ft}^{1-\frac{1}{\eta}}\right)^{\frac{\eta}{\eta-1}}$$

$$C_{Jt} = \left(\int_{0}^{1} c_{jt}^{1-\frac{1}{\theta}} dj\right)^{\frac{\theta}{\theta-1}}, \quad (J,j) \in \{(H,h), (F,f)\}$$

Budget constraint:

$$P_t(C_t + I_t + \kappa(\nu_t)K_{t-1}^p) + \mathbb{E}_t[M_{t,t+1}B_{t+1}(\cdot)]$$

$$\leq B_t + (1 - \tau_t^f - \tau_t^s)W_tL_t + R_t^kK_{t-1}^p\nu_t + \int_0^1 \Xi_{ht}(z)dz - T_t$$

Capital accumulation subject to adjustment cost.

Environment: Home State Government

- Receives per capita transfers IG_t from federal government.
- Spending is partly endogenous:

$$\begin{aligned} G^{s}_{st,t} &= \psi_{IG}IG_t\\ G^{x}_{st,t} &= \mu_{G,st} + \rho_{st,g}G^{x}_{st,t-1} + \omega_{st,g}\epsilon^{x}_{st,t}\\ G_{st,t} &= G^{e}_{st,t} + G^{x}_{st,t} \end{aligned}$$

• Fraction ϕ spent on public infrastructure:

$$K_{st,t} = (1 - \delta_G) K_{st,t-1} + \phi G_{st,t}.$$

Portion of budget financed via labor income taxes:

$$(1 - \gamma^{s})(P_{t}G_{st,t} - IG_{t} - \psi_{G,SP}R_{t-1}^{n}SP_{t-1}) = \tau_{st,t}W_{t}N_{t}.$$

▶ Other state government: Analogous, but with $\psi_{IG}^* \neq \psi_{IG}$.

Other features of the environment

Competitive firms producing. Productive public capital.

► Federal government partly finances IG with labor taxes.

Interest rates follow a Taylor rule.

Competitive equilibrium, solution method

Equilibrium:

- Same initial financial wealth per capita.
- ► Households and firms take prices and government policies as given.
 - Producer reset prices: constant mark-up over current and expected future marginal costs.
 - Price indices follow from cost-minimization.
 - Labor supply to equate after-tax marginal utilities.
 - Risk-sharing across and within regions.

Solution method:

• First order approximation around symmetric steady state.

Calibration: Conceptual choices

► Pass-through parameters drawn from estimated distribution.

- Utility function:
 - Constant Frisch elasticity (Trabandt & Uhlig, 2011).
 - Public services provision optimal in steady state.

 Public capital maximizes production net of investment cost in steady state.

Calibration: Parameters

Parameter	Value	
Discount factor β	0.99	
Frisch elasticity of labor supply $ u$	1	4
Calvo stickiness α	0.75	01
Private capital share in production α	0.33	0
Within-region elasticity of demand θ	6	sor
Across-region elasticity of demand η	2	sins
Home demand for home goods ϕ_H	0.69	Ste
Foreign demand for home goods ϕ_H^*	$\frac{n}{1-n}(1-\phi_H)$	8
Investment adj. cost	0.7	ıra
Utilization cost elasticity	1	m
Taylor rule: inflation ϕ_{π}	1.5	lakë
Taylor rule: output ϕ_y	0.5	z
Taylor rule: smoothing ρ_r	0.8	
Size of home (Republican) region n	0.5 (equal size)	
Elasticity of substitution w.r.t state consumption λ	0.5 (complements)	
Speed of income tax adjustment $\gamma^f=\gamma^s$	0.3	
Federal government consumption $ar{G}/ar{Y}$	0.075 (data)	
Federal government IG $\overline{IG}/ar{Y}$	0.025 (data)	
State government consumption $ar{G}/ar{Y}$	0.125 (data)	
Persistence of IG ρ_{IG}	0.89 (2009 ARRA stimulus)	
Standard deviation of IG σ_{IG}	0.10 (2009 ARRA stimulus)	
Republican transfer pass-through ψ_{IG}	drawn from estimates	
Democratic transfer pass-through ψ^*_{IG}	drawn from estimates	

Calibration: Parameters

Value
0.5 (equal size)
0.5 (complements)
0.3
0.075 (data)
0.025 (data)
0.125 (data)
0.89 (2009 ARRA stimulus)
0.10 (2009 ARRA stimulus)
drawn from estimates
drawn from estimates

Intro Data Em

Empirics since Reagan

Time-variation in partisanship

Model Tir

Time series evidence

Conclusion

IG shock: Federal impulse, state pass-through

Labor income tax rates

Exchange rate and inflation

GDP

IG shock: summary

Varying the share of Republican governors

PDV multiplier

Political data in model: Time-varying fiscal multipliers

 Fix parameters at Reagan-era estimates, focus on variation due to changing partisan composition.

Time-variation in degree of partisanship implies additional variation.

Time series: Do IG multipliers vary with state of politics?

- Estimate GDP response to IG innovations in 10-year rolling window local projections.
- Compute implied impact multiplier.
- ► corr(10-year multiplier, 10-year Republican share) = -0.48 (t=-2.76).

Conclusion

Contributions

State panel data:

- Causal inference from close elections.
- Republican governors spend less.
- Republican governors cut income and sales taxes.

Model:

- ► (Short-run) transfer multiplier lower in presence of Republicans.
- Time-variation in transfer multiplier due to political composition and degree of partisanship.

Time series:

► Reduced-form multipliers vary with fraction of Republican governors.

Appendix

IG transfers as a recent policy tool

- ► Total 2009 ARRA stimulus bill: \$796 bn.
- ▶ Of which: Intergovernmental transfers: \$318 bn. (39.9%)
 - Medicaid funding: \$101 bn.
 - Education spending: \$93 bn.
 - Infrastructure spending: \$70 bn.
 - Low-income assistance: \$48 bn.
 - Public housing: \$6 bn.

(Carlino & Inman, 2016)

General revenue growth

Margin of victory cutoff	100pp.	брр.	5pp.	4pp.	Зрр.	2pp.
Pos IG Δ	0.0910*	0.0641	0.179**	0.232***	0.188*	0.114
	(2.00)	(0.77)	(2.53)	(3.96)	(1.93)	(0.75)
Neg IG Δ	-0.0105	-0.0874	-0.153	-0.184	-0.299*	-0.256*
	(-0.27)	(-1.46)	(-1.19)	(-1.39)	(-1.92)	(-1.77)
Surplus Δ .	-0.124**	-0.369**	-0.362*	-0.331	-0.386	-0.132
	(-2.14)	(-2.31)	(-1.81)	(-1.57)	(-1.69)	(-0.72)
GDP Δ	0.329***	0.406***	0.355**	0.326**	0.0638	0.134
	(7.43)	(3.64)	(2.50)	(2.47)	(0.32)	(0.71)
GOP Dummy	0.00348	0.00215	0.00597	0.00266	0.00529	-0.0339
	(0.70)	(0.25)	(0.60)	(0.18)	(0.23)	(-1.58)
$GOP\timesPos\:IG\:\Delta$	-0.0413	-0.107	-0.180***	-0.255***	-0.270*	-0.173
	(-0.62)	(-1.19)	(-2.70)	(-2.81)	(-1.87)	(-0.78)
$GOP\timesNeg\;IG\;\Delta$	-0.0104	0.163	0.251	0.207	0.150	-0.0181
	(-0.15)	(1.46)	(1.57)	(1.08)	(0.75)	(-0.14)
Observations	1462	393	316	264	168	113
R^2	0.381	0.404	0.427	0.475	0.454	0.659

t statistics in parentheses. Standard errors clustered at the state level.

Tax revenue growth

Margin of victory cutoff	100pp.	брр.	5pp.	4рр.	Зрр.	2рр.
Pos IG Δ	0.0679	0.0746	0.199**	0.253***	0.203*	0.213
	(1.61)	(0.81)	(2.61)	(3.56)	(1.79)	(1.32)
Neg IG Δ	-0.0650	-0.219***	-0.276**	-0.317**	-0.367**	-0.288*
	(-1.26)	(-3.52)	(-2.05)	(-2.11)	(-2.15)	(-1.94)
Surplus Δ .	-0.0978*	-0.289	-0.385	-0.330	-0.335	-0.286
	(-1.69)	(-1.66)	(-1.63)	(-1.62)	(-1.46)	(-1.47)
GDP Δ	0.472***	0.457***	0.487**	0.380**	0.0941	0.268
	(8.57)	(2.91)	(2.57)	(2.33)	(0.41)	(1.04)
GOP Dummy	0.000249	0.0101	0.0143	0.00937	0.0253	-0.0192
	(0.03)	(1.10)	(1.18)	(0.54)	(1.04)	(-0.79)
$GOP\timesPos\;IG\;\Delta$	0.0407	-0.153	-0.225***	-0.264**	-0.307*	-0.223
	(0.44)	(-1.60)	(-3.17)	(-2.37)	(-1.94)	(-0.90)
$GOP imes Neg \ IG \ \Delta$	0.0183	0.311**	0.378**	0.370	0.384	0.146
	(0.17)	(2.49)	(2.11)	(1.65)	(1.68)	(0.91)
Observations	1462	393	316	264	168	113
R^2	0.398	0.416	0.439	0.510	0.502	0.674

t statistics in parentheses. Standard errors clustered at the state level.

Which taxes adjust?

Income and sales taxes			Other taxes			
Margin of victory cutoff	100pp.	5pp.	Margin of victory cutoff	100pp.	5рр.	
Pos IG Δ	0.0697	0.193**	Pos IG Δ	0.0595	0.103	
	(1.64)	(2.25)		(1.31)	(1.08)	
Neg IG Δ	-0.0891	-0.296**	Neg IG Δ	-0.00997	-0.0421	
	(-1.67)	(-2.20)		(-0.18)	(-0.25)	
Surplus Δ .	-0.0958*	-0.479*	Surplus Δ .	-0.112*	-0.372**	
	(-1.75)	(-1.97)		(-1.83)	(-2.27)	
GDP Δ	0.362***	0.432**	GDP Δ	0.360***	0.461**	
	(7.13)	(2.40)		(7.14)	(2.11)	
GOP Dummy	-0.00177	0.0190	GOP Dummy	-0.00329	0.00892	
	(-0.23)	(1.58)		(-0.34)	(0.67)	
$GOP\timesPos\;IG\;\Delta$	0.0699	-0.222***	$GOP\timesPos\;IG\;\Delta$	0.121	-0.119	
	(0.66)	(-2.73)		(0.92)	(-1.30)	
${\rm GOP} \times {\rm Neg} \; {\rm IG} \; \Delta$	0.0462	0.493**	GOP $ imes$ Neg IG Δ	-0.0617	0.104	
	(0.41)	(2.64)		(-0.50)	(0.60)	
Observations	1462	316	Observations	1462	316	
R^2	0.415	0.457	R^2	0.214	0.274	

t statistics in parentheses. Standard errors clustered at the state level.

Are there effects on economic activity?

• Future $(t + \frac{1}{2})$ GDP growth

Margin of victory cutoff	100pp.	брр.	5pp.	4pp.	Зрр.	2рр.
Pos IG Δ	-0.000276	-0.0245	-0.0827**	-0.0813*	-0.0439	0.0284
	(-0.02)	(-0.60)	(-2.16)	(-1.93)	(-0.69)	(0.21)
Neg IG Δ	-0.0192	-0.0669*	0.0267	0.0843**	0.114**	0.0355
	(-0.95)	(-1.70)	(0.63)	(2.17)	(2.29)	(0.45)
Surplus Δ .	-0.0125	-0.0267	0.0460	-0.00156	-0.0615	-0.113
	(-0.47)	(-0.34)	(0.53)	(-0.02)	(-0.55)	(-0.77)
GDP Δ	0.157***	0.214***	0.143**	0.0767	0.0569	0.160
	(4.19)	(3.68)	(2.04)	(1.45)	(0.61)	(1.14)
GOP Dummy	0.000401	-0.00157	-0.00695	-0.0141**	-0.0228**	-0.00606
	(0.24)	(-0.41)	(-1.46)	(-2.07)	(-2.30)	(-0.52)
GOP Pos IG Δ	0.0143	0.0224	0.0764*	0.112**	0.112	0.191
	(0.67)	(0.60)	(1.95)	(2.17)	(1.68)	(1.64)
GOP Neg IG Δ	0.00605	0.0454	-0.0305	-0.0954	-0.124	-0.0707
	(0.23)	(0.92)	(-0.58)	(-1.55)	(-1.67)	(-0.93)
Observations	1462	393	316	264	168	113
R^2	0.405	0.478	0.529	0.524	0.560	0.665

t statistics in parentheses. Standard errors clustered at the state level.

Environment: Home firms

Production technology

$$y_{ht}(\ell) = \left(\frac{K_{st,t-1}}{\overline{y}_{H,t}}\right)^{\frac{\zeta}{1-\zeta}} K_t(\ell)^{\alpha} N_t(\ell)^{1-\alpha}.$$

- Public infrastructure with congestion externality. Equilibrium share ζ .
- Firms stuck with price $p_{h,t+s}(\ell) = p_{ht}(\ell)$ with iid Calvo probability $\xi \in (0,1)$.
- Objective

$$\mathbb{E}_{t} \sum_{s=0}^{\infty} M_{t,t+s} \left(p_{h,t+s}(\ell) y_{h,t+s}(\ell) - W_{t+s} N_{t+s} - R_{t+s}^{k} K_{t+s} \right)$$

Environment: Federal Government

- Fraction γ^f of expenditures financed via lump-sum taxes.
- ▶ Transfers equal (nominal) per capita amounts *IG*_t to each region.
- Transfers exogenous (today):

$$IG_t = \rho_{IG}IG_{t-1} + \sigma_{IG}\epsilon_{IG,t}.$$

- Purchases equal real per capita amounts G^f_{Ht} = G^f_{Ft} = G^f_t per region (exogenous).
- Portion of budget financed via labor income taxes:

$$(1 - \gamma^f)(nP_{Ht}G_{Ht} + (1 - n)P_{Ft}G_{Ft} + IG_t) = \tau_t^f \int_0^1 W_t(x)L_t(x)dx.$$

n is the relative size of home region.

Environment: Monetary authority

Interest rate rule:

$$\ln R_t^n = \rho_r \ln R_{t-1}^n + (1 - \rho_r) \left(-\ln\beta + \phi_\pi \ln \Pi_t^{agg} + \phi_y \ln \frac{Y_t^{agg}}{\bar{Y}} \right)$$
$$\Pi_t^{agg} = n\Pi_t + (1 - n)\Pi_t^*$$
$$Y_t^{agg} = nY_t + (1 - n)Y_t^*$$

Fraction of Republican governors

Marginal governors

Governors by state and year

WA* VTX* SD* OH* NC* NH* NO* MN* MA* KY IA* CT* CA*							₩Y ₩A UTTSCA OND Y Z Z V T M M M M M M M M M M M M M M M M M M
1980	1985	1990	1995	2000	2005	2010	2015
		 Demo 	crat × Re	epublican	 Other 		

* ever in 5pp MOV sample