MONETARY POLICY AND CORPORATE BOND MUTUAL FUND FRAGILITY # JINYUAN ZHANG INSEAD # QUESTION How does monetary policy (level and uncertainty) affect corporate bond mutual fund fragility? • In a **liquid** market, loose monetary policy or high monetary policy uncertainty exacerbates the fragility of corporate bond mutual funds #### MOTIVATING EVIDENCE Federal Fund Rate and Corporate Bond Mutual Fund Fragility • Fund fragility is approximated by fund flow-to-past-performance sensitivity ## KEY INTUITION - Fund fragility arises from **first-mover-advantage** of early-withdrawal investors - Fund investors tradeoff 1) complementarity discounted fund return for 2) bank return - When market is liquid, complementarity discount is weak \Longrightarrow (1) > (2) - Loose monetary policy reduces positive gap between (1) and (2), incentivising investors' withdrawal (high fund fragility) - High monetary policy uncertainty raises the likelihood that (2) bypasses (1), incentivising investors' withdrawal (high fund fragility) #### CONTRIBUTIONS - New evidence on the impacts of monetary policies on non-banking financial intermediary's stability - Highlight the interaction effects between monetary policy and market liquidity on the mutual fund industry through asset allocations ### **ALTERNATIVE EXPLANATION** - Because fund fundamental performance is worse under loose monetary policy such that flow-performance sensitivity is higher? - NO! fund performances are better in the cases with higher fund fragility! | Condition | $Alpha_{i,t}$ | t-stats | $Alpha_{i,t}$ | t-stats | |-------------------------|-----------------|----------|----------------|---------| | Low FF rate | -0.20% | | | | | High FF rate | -0.46% | | | | | Diff | 0.26% | 68.81*** | | | | | | | | | | | High VIX | | Low VIX | | | $Low\ MPU$ | High VIX -0.38% | | Low VIX -0.25% | | | Low MPU
High MPU | | | | | #### MODEL - T_0 : Atomic investors with measure W, each has 1 unit of capital to invest in fund or bank - * Fund manages a long-term asset with expected yield $r_L(L)$ over T_0 to T_2 - * Bank offers a short-term asset with a known return $\bar{\mathbf{r}}$ over $\mathbf{T_0}$ to $\mathbf{T_1}$, and an uncertain return $\bar{\mathbf{r}} + \sigma \mathbf{R}$ over $\mathbf{T_1}$ to $\mathbf{T_2}$, where $R \sim F(\cdot)$ - T_1 : 1) Each investor receives a signal $s_i = R + \sigma_{\varepsilon} \varepsilon_i$ and decides to withdraw from the fund; - 2) Fund manager liquidates the long-term asset at a discount price α to repay with-drawal investors - T_2 : Payoffs are revealed Payoff structure when λ proportion of investors withdrawing | | $0 \le \lambda L \le \alpha L$ (liquid) | $\lambda L > \alpha L$ (illiquid) | |--------------------|--|---| | Withdraw (π^W) | $(1+\bar{r})(1+\bar{r}+\sigma R)$ | $\frac{\alpha L(1+\bar{r})}{\lambda L}(1+\bar{r}+\sigma R)$ | | Stay (π^S) | $\frac{L - \frac{\lambda L(1+\bar{r})}{\alpha(1+\bar{r})}}{(1-\lambda)L} (1 + r_L(L))$ | 0 | - Investors adopt the same threshold-strategy: $\begin{cases} \text{Withdraw} & s_i > R^* \\ \text{Stay} & s_i \leq R^* \end{cases}$ - Fund fragility is the likelihood of fund runs: $Pr(R > R^*) = 1 F(R^*)$ $$R^* = \frac{1}{\sigma} \left(\underbrace{\frac{1 + r_L(L)}{g(\alpha)(1 + \bar{r})}}_{\text{discounted fund return}} - \underbrace{(1 + \bar{r})}_{\text{bank return}} \right) g(\alpha)$$: complementarity discount $\underbrace{1 + r_L(L) - (1 + \bar{r})^2}_{\text{Excess return of the fund}} = \underbrace{\left((1 + \bar{r})^2 - \alpha(1 + \bar{r})^2\right)}_{\text{Liquidity cost}} \times \underbrace{\frac{1 - F(R^*)}{F(R^*)}}_{\text{Illiquid risk}} - \underbrace{\alpha(1 + \bar{r})\sigma\frac{\int_{R^*}^{\infty} RdF(R)}{F(R^*)}}_{\text{option value of running}}$ #### PREDICTIONS Relationship between \bar{r} and fund fragility Relationship between σ and fund fragility 0.795 - H1: The more **liquid** the market is, the looser monetary policy exacerbates the fund fragility - H2: The more **liquid** the market is, the **higher monetary uncertainty** exacerbates the fund fragility #### DATA - Corporate bond mutual funds in CRSP survivor-bias-free US mutual fund Database - Bond market illiquidity: VIX, TED spread, DFL bond illiquidity index (Dick-Nielsen, Feldhutter, and Lando 2012) - Monetary policy uncertainty: MPU (Husted, Rogers, and Sun 2017) - Fund performance: $Alpha_{i,t-1}$ (Chen, Goldstein, and Jiang 2010) $$R_{i,\tau}^e = Alpha_{i,t-1} + \beta_1 R_{B,\tau}^e + \beta_2 R_{M,\tau}^e + \varepsilon_{i,\tau}, \quad \tau \in (t-12, t-1)$$ ## RESULT – H1 $Flow_{i,t} \sim Alpha_{i,t-1} * 1(High FF) + Controls$ $Flow_{i,t} \sim Alpha_{i,t-1} * FF_t * \mathbb{1}(High Illiquidity) + Controls$ | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | | |---------------------------------------|----------|------------------------------|----------------------------| | | VIX | TED | DFL | | -0.996 | | | | | -5.395*** | | | | | | 0.281 | 0.031 | 0.392 | | | 2.994*** | 0.265 | 2.930*** | | | | -0.996
-5.395***
0.281 | VIX TED -0.996 -5.395*** | #### RESULT – H2 $Flow_{i,t} \sim Alpha_{i,t-1} * \mathbb{1}(High MPU) + Controls$ $Flow_{i,t} \sim Alpha_{i,t-1} * MPU_t * \mathbb{1}(High Illiquidity) + Controls$ | Illiquidity | | VIX | TED | DFL | |--|-----------|----------------|-----------|---------| | $Alpha_{i,t-1} * 1(High MPU)$ | -0.978 | | | | | | -7.044*** | | | | | $Alpha_{i,t-1} * MPU_t * 1$ (High illiquidity) | | -1.473 | -1.082 | -0.766 | | | | -4.728^{***} | -3.840*** | -1.770* |