Specialization in Bank Lending: Evidence from Exporting Firms

Daniel Paravisini
London School of Economics, CEPR

with Veronica Rappoport (LSE) and Philipp Schnabl (NYU)

January 2019

Conventional Wisdom in (Academic) Banking

- Do banks develop market-specific expertise and lending advantages?
- Outside Relationship Lending (firm-specific informational advantage)...
 Rajan (1992), Stein (2002)
 - banks are presumed perfectly substitutable sources of debt
 - ▶ ... banks are presumed to diversify portfolio of corporate loans
- What if banks specialize in funding projects in specific markets/sectors?
 - Isolated bank failures may have real effects
 - Multiple banks in a location may coexist with market power
 - Bank risk depends on exposure to the market of expertise
 - Rationale for multiple banking relationships for complex firms
 - Demand is bank-specific: not captured by within-firm estimators Khwaja and Mian (2008)

Empirical Setting

- In this paper: Specialization in Export Markets
 - Recent important advances in effect of credit on export performance
 Manova (...), Amiti-Weinstein (2011), Chaney (2005), Paravisini et al (2014),
 - Bank input in exports goes beyond mere funding
 - Capabilities embedded in "credit" are inputs of production and export
- Methodological reasons for working with exports
 - Key: allows measuring the firm's output in every market and the bank's lending to firms in different markets
 - Empirically: allows us to account for firm-specific, country-specific, and bank-specific shocks
- Data: Peru during period 1994-2010
 - Customs data: exports from each firm to every country
 - Credit registry: amount of credit from each bank to each exporter
 - Observations: bank-firm-year (mean debt) and firm-country-year (sum of exports)

Specialization in Lending: An Example

• Consider two large international banks in the data, and two countries

Bank Exposure to Country of Export Destination in 2010

	Country of Export Destination China Switzerland	
Weight in Total Peruvian Exports	0.182	0.093
Weight in bank's exporter portfolio		
Santander (Spain)	0.301	0.000
CitiBank (U.S.)	0.117	0.343

→ Does specialization predict firms' market-specific credit demand?

- Revealed preference argument:
 - ► Test whether firms increase (start) borrowing from Santander when increase (start) exports to China.
 - Controlling for any bank-wide supply shock and firm-wide demand shock

Preview of Results

- Specialization
 - Every bank is a persistent outlier in at least one country
- · Lending advantages
 - Firms that expand exports to a country increase debt 79% more from banks that are specialized in the country
 - Credit supply shocks disproportionately affect the activity in which the bank specializes
 - Macro shocks to a given country disproportionately affect banks specialized in that market
- Characterization of Lending Advantage
 - ► Consistent with local learning...but different from Relationship Lending
 - ▶ Not related to domestic or international network of brunches/subsidiaries

Outline

- Simple Framework
- Data
- Specialization Patterns
- Identifying Lending Advantages
 - Correlation between Exports and Credit
 - ► Destination-Specific Export Demand Shock
 - Bank-Specific Credit Supply Shock
- Narrowing Down Sources of Lending Advantage

Reduced Form Framework to Motivate Empirical Exercise

- A firm is a collection of activities $j \in J_i$:
 - ▶ Each firm *i* uses credit from banks b = 1, ..., B to finance $j \in J_i$:

$$q_{ij}\left(\left\{L_{ib}^{j}\right\}_{b=1}^{B}\right) = \left[\sum_{b=1}^{B} \gamma_{jb}^{\frac{1}{\rho}} \left(L_{ib}^{j}\right)^{\frac{\rho-1}{\rho}}\right]^{\frac{\rho}{\rho-1}}$$

- γ_{jb} is the productivity of bank b in credit specific to market j
- $ho \geq 0$ is the elasticity of substitution between credit from different banks

Banks

- ► Each bank *b* is characterized by the price of lending r_b and a vector of activity-specific productivity $\gamma_b = [\gamma_{1b}, ..., \gamma_{Jb}]$
- r_b may reflect the bank's cost of capital or overall diversification
- \(\gamma_{jb} \) may reflect and activity-specific screening/monitoring advantage, or a service associated with activity \(j \)

Simple Framework to Motivate the Empirical Exercise

Cost minimization problem:

$$\begin{aligned} \min_{\{L_{ib}^{j}\}_{j,b}} \sum_{b=1}^{B} r_b \ L_{ib} \quad s.t. \quad q_{ji} \left(\{L_{ib}^{j}\}_{b=1}^{B}\right) &= \overline{q}_{ji} \quad \forall j \in J_i \\ L_{ib} &= \sum_{j \in J_i} L_{ib}^{j} \quad \forall b \end{aligned}$$

- If homogeneous goods and competitive export market
 - Firm-bank (observable) outstanding debt:

$$L_{ib} = \left(\frac{1}{r_b}\right)^{\rho} \sum_{i \in J_i} X_{ji} \ \gamma_{jb}$$

where $X_{ji} = q_{ji}p_{ji}$ is (observable) value of exports of firm i in market j

- If $\rho = \infty$, firms borrow from the bank that offers lowest r_b
- If $\rho < \infty$, firms have multiple banking relationships
- r_b influences bank size, measured in overall lending

Simple Framework to Motivate the Empirical Exercise

- Consider two banks b, b' that have same productivity parameters for all activities, with the exception of sectors j and j' for which $\gamma_{bj} = \gamma_{b'j'} > \gamma_{bj'} = \gamma_{b'j}$. Then:
 - 1 The share of lending associated to exports to j is higher for bank with advantage in market j.

$$S_{bj} \equiv \frac{\sum_{i=1}^{I} L_{ib} X_{ij}}{\sum_{k=1}^{J} \sum_{i=1}^{I} L_{ib} X_{ik}} \rightarrow S_{bj} > S_{b'j}$$

The elasticity of credit to exports to j is higher for bank with advantage in market j.

$$\varepsilon_{jb} \equiv \frac{\partial \ln L_{ib}}{\partial \ln X_{ii}} \ge 0 \qquad \rightarrow \qquad \varepsilon_{bj} > \varepsilon_{b'j}.$$

→ The first result justifies our measures of specialization, and the second is the basis for our revealed preference test

Data

- Credit registry
 - Monthly panel loan level data on credit in the domestic banking sector
- Customs
 - ▶ Web crawler to download each individual export document
 - ▶ Data on export volume, price, destination, detailed product characteristics
 - Validation: our data accounts for 99.98% of the aggregate exports reported by the tax authorities
- Sample characteristics
 - Period: 1994-2010
 - Observations: bank-firm-year (mean debt) and firm-country-year (sum of exports)
 - Firm subsample: Only exporting firms
 - Bank subsample: 33 banks, unbalanced due to entry/exit/M&A (exclude savings and loans)
 - ► Country subsample: top 22 export destination markets GRAPH

Banks' Lending Shares by Country

• Define bank b's lending share to country c at time t S_{bct} as:

$$S_{bct} \equiv \frac{\sum_{i=1}^{I} L_{bit} X_{ict}}{\sum_{c=1}^{C} \sum_{i=1}^{I} L_{bit} X_{ict}}$$

or bank-b borrowers' exports to country c, weighted by their debt in bank-b, as a share of bank-b borrowers' total exports

- We are interested in $S_{bct} \overline{S}_{ct}$: difference between the bank's share of lending associated to a given country and the average across banks
 - Captures departures from the overall Peruvian pattern of exports
 - Specialization as exposure based on stock of debt

Distribution of Bank Lending Shares by Country

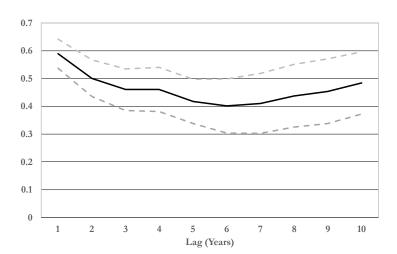
 Bank exposure distribution by market is extremely heterogeneous and right-skewed

		S	$S_{bct} - \overline{S}_{ct}$		
	Std. Dev.	Min (2)	Median (3)	Max (4)	Skewness (5)
BR	0.0281	-0.0504	-0.0050	0.1765	2.02
CA	0.0444	-0.0561	-0.0072	0.4388	4.69
CH	0.0842	-0.0827	-0.0084	0.5919	4.65
CL	0.1550	-0.1344	-0.0340	0.9145	3.98
CN	0.1211	-0.2515	-0.0137	0.6579	1.00
CO	0.0674	-0.0675	-0.0096	0.9051	9.21
ES	0.0643	-0.0652	-0.0062	0.9348	10.62
FR	0.0257	-0.0257	-0.0046	0.2343	5.12
GB	0.0400	-0.0598	-0.0063	0.3577	3.04
IT	0.0255	-0.0351	-0.0034	0.3379	7.70
JP	0.0619	-0.1017	-0.0010	0.6686	5.45
KR	0.0227	-0.0371	-0.0038	0.2119	3.79
US	0.1721	-0.2812	-0.0372	0.8457	1.65
Overall	0.0708	-0.2812	-0.0050	0.9348	5.48

Specialization Measure

Definition 1 (Specialization)

A bank is specialized in the corresponding country, during the corresponding year, if it is an outlier in the country-year distribution of debt shares.


 $O(S_{bct}) = 1$, if S_{bct} is above the 75-th percentile plus 1.5 interquartile ranges of the distribution of $\{S_{bct}\}$ across banks for a given country-year.

- Same outlier definition used in the standard box-and-whisker plot GRAPH '
- In a normal distribution it corresponds to the 99-th percentile

Bank Specialization Persistence

ullet Correlation between being specialized in a country at t and t- au

$$Corr(O(S_{bct}), O(S_{bct-\tau}))$$
 $\tau = 1, ...10$

Identifying Advantages in Lending

 Does specialization, measured based on stock of loans, signal advantage in lending to firms that export to that country?

$$L_{bit} = L(L_{bt}^{S}, L_{it}^{D}, \mathcal{L}_{bit})$$

- Test whether the covariance between \mathcal{L}_{bit} and X_{cit} is higher for banks specialized in market c
 - Most robust specification: Absorbs for all unobserved firm-specific and bank-specific shocks
- 2 Test whether shocks to export demand X_{cit}^{D} disproportionately affect \mathcal{L}_{bit} for banks specialized in market c
 - Assumption: Credit supply is uncorrelated with country-shocks after absorbing bank-time FE
- **3** Test whether effect change in L_{bt}^{S} on X_{cit}^{S} is higher if destination c is of bank's set of specialization
 - Assumption: Export demand is uncorrelated with shocks to banks, after absorbing product-country-time FE

1. Baseline Specification

$$L_{bit} = L(L_{bt}^{S}, L_{it}^{D}, \mathcal{L}_{bit})$$

 Test whether the covariance between L_{bit} and X_{it}^c is higher for banks specialized in market c

$$\ln L_{bit} = \alpha_{bi}^c + \alpha_{it}' + \alpha_{bt}'' + \beta_1 \ln X_{it}^c + \beta_2 S_{ibt}^c + \beta S_{ibt}^c \times \ln X_{it}^c + \epsilon_{ibt}^c$$

• S_{ibt}^{c} : Rolling window of 3 years. Leaving firm i out of the computation.

$$S_{ibt}^{c} = \frac{1}{3} \sum_{\tau=t-3}^{t} O(S_{-ibct})$$

- Stacked country-bank-firm-year specification
 - Clustered at the bank level: L_{bit} repeated as many times as i's export destinations

1. Baseline Results

- Correlation between exports and credit is 79% larger if lending bank is specialized in country of destination
 - Strategy is robust to any source of variation of credit or exports
 - But without identifying source of shock, the coefficient is of difficult economic interpretation

Dep. Variable	Intensive Margin $\operatorname{In}(L_{ibt})$
$\mathcal{S}^c_{iht} imes ext{In}(X^c_{it})$	0.019***
IDL \ IL'	(0.006)
$ln(X_{it}^c)$	0.024***
	(0.006)
\mathcal{S}^c_{ibt}	0.000
	(0.030)
Observations	334,432
R^2 adj	0.31
firm time bank t	ima firm bank EEs

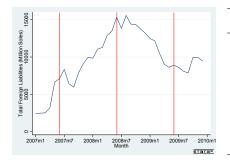
firm-time, bank-time, firm-bank FEs

Alternative Specifications

- 2 Look at the differential elasticity of credit to export demand shocks
 - ▶ The bank-advantage uncovered here is related to destination factors
 - ▶ But export flows do not only depend on destination-specific factors
 - Isolate an export demand shock driven by destination factors
- → Why is this important? To assess bank stress due to isolated events
- 3 Look at the differential effect of a pure credit supply shock
 - ▶ Use setting in Paravisini et al. (2015) allowing for specialized banks
 - Same data, focus on the 2008 financial crisis
 - Use shock to availability of bank foreign funding as source of variation in bank credit supply
 - Use saturated regressions to measure effect of credit supply on real export
- → Why is this important? To assess economic impact of isolated bank shocks

2. Elasticity of Credit to Export Demand Shock

• Instrument X_{it}^c with shocks to destination: GDP_t^c and RER_t^c


$$\ln L_{bit} = \alpha_{bi}^c + \alpha_{it}' + \alpha_{bt}'' + \beta_1 \ln X_{it}^c + \beta_2 S_{ibt}^c + \beta S_{ibt}^c \times \ln X_{it}^c + \epsilon_{ibt}^c$$

- Qualitatively same results, but point estimates are 7 to 14 \times OLS
 - ► Consistent with 10% of export variation being destination-specific variation

Dep. Variable	$ln(X_{it}^c)$	$ln(L_{ibt})$	
		OLS	IV
$\Delta GDPGrowth_t^c$	0.0104***		
	(0.003)		
$\Delta \ln(RER_t^c)$	0.504***		
	(0.028)		
$\mathcal{S}^c_{ibt} imes ext{ln}(X^c_{it})$		0.019***	0.120**
		(0.006)	(0.059)
$ln(X_{it}^c)$		0.024***	0.339**
		(0.006)	(0.173)
Observations	334,432	334,432	334,432

3. Elasticity of Exports to Credit Supply Shock

- Use bank exposure to crisis 08-09 as instrument for credit supply shock
- How international financial crisis affects domestic banks' balance sheet?
 - Capital flow reversal
 - Heterogeneous dependence on foreign liabilities before the crisis
 - → Negative balance sheet shock to banks with foreign liabilities

Bank	For.Liabilities/Assets
(top 10)	2007-S2
HSBC	0.177
Mibanco	0.168
Continental	0.122
Citibank	0.103
Interamericano	0.075
Financiero	0.073
Credito	0.062
Wiese	0.060
Interbank	0.055
Santander	0.022

(a) Banking Sector Foreign Liabilities

(b) Foreign Liabilities

3. Elasticity of Exports to Credit Supply Shock

Compare exports (same product, same destination) by firms with different shares
of credit received from exposed banks (e.g. cotton T-shirts to Germany)

$$\ln X_{ipct} = \alpha_{ipc} + \frac{\alpha_{pct}}{\alpha_{pct}} + \beta \sum_{b} \omega_{ib} \textit{Exposed}_{b} \times \textit{Post}_{t} + \epsilon_{ipct}$$

 X_{ipct} : volume of exports of product p by firm i to country c at time t $\omega_{ib} \equiv L_{ib}/\sum_b L_{ib}$: share of firm-i's credit from bank-b (in 2006)

	ΔIr	ı X _{ic}
$\sum_b \omega_{ib} \; \textit{Exposed}_b imes \textit{Post}_t$	-0.193*** (0.063)	
$\sum_b \omega_{ib}$ Exposed _b $(S_{bc} = 0) \times Post_t$		-0.165*** (0.061)
$\sum_{b} \omega_{ib}$ Exposed _b $(\mathcal{S}_{bc} > 0) imes extit{Post}_{t}$		-0.220**
		(0.086)
Obs	14,208	14,208
R^2 adj	0.438	0.438

Characterization of Lending Advantage

- Is this lending advantage similar to Relationship Lending?
 - Advantage extends beyond firm-specific knowledge. It is market-wide.
 - Advantage does not diminish with size
 - Advantage transferred to the bigger organization after M&A
- Why is this important?
 - Traditional argument against consolidation of banking system or global banks
- Is this Export-Market Expertise related with Global Banks?
 - Not explained by home country advantage network of affiliates
 - ▶ Not explained by *current* domestic geographic presence

Different from Relationship Lending: Not firm-specific

- Advantage is not firm-specific but market-specific
 - Relationship lending: firm-specific advantages is private information derived from ongoing lending relationship
 - Test: focus on firms with no previous relationship with the bank (extensive margin)
- Prob of starting relationship with bank b after start exporting to c:

$$\begin{aligned} (L_{bit} > 0 | L_{bit-1} = 0) &= & \alpha_b^c + \alpha_{it}' + \alpha_{bt}'' + \beta_1 \left(X_{it-1}^c > 0 | X_{it-2}^c = 0 \right) + \beta_2 \ \mathcal{S}_{ibt}^c \\ &+ \beta \ \mathcal{S}_{ibt}^c \times \left(X_{it-1}^c > 0 | X_{it-2}^c = 0 \right) + \epsilon_{ibt}^c \end{aligned}$$

Prob of starting exporting to c after start borrowing from bank b:

$$\begin{aligned} (X_{it}^c > 0 | X_{it-1}^c = 0) &= & \alpha_b^c + \alpha_{it}' + \alpha_{bt}'' + \beta_1 \ (L_{ibt-1} > 0 | L_{ibt-2} = 0) + \beta_2 \ \mathcal{S}_{ibt}^c \\ &+ \beta \ \mathcal{S}_{ibt}^c \times (L_{ibt-1} > 0 | L_{ibt-2} = 0) + \epsilon_{ibt}^c \end{aligned}$$

Different from Relationship Lending: Not firm-specific

- Prob start borrowing from b the year after entry country-c is 6.9X larger if b specialized in c than if b not specialized in c.
- Prob enter country-c 3.8X larger the year after first borrowing from bank specialized in c.

Dep. Variable	$(L_{ibt} > 0 L_{ibt-1} = 0)$ (×100)	$(X_{it}^c > 0 X_{it-1}^c = 0)$ (x100)
$S_{ibt}^{c} \times (X_{it-1}^{c} > 0 X_{it-2}^{c} = 0)$	0.400***	
	(0.065)	
$(X_{it-1}^c > 0 X_{it-2}^c = 0)$	0.058***	
	(0.006)	
$\mathcal{S}^c_{ibt} imes (L_{ibt-1} > 0 L_{ibt-2} = 0)$		2.578***
		(0.155)
$(L_{ibt-1} > 0 L_{ibt-2} = 0)$		-0.006
		(0.005)
${\cal S}^c_{ibt}$	-0.003**	-0.190***
	(0.002)	(0.015)
Observations	145,599,237	145,869,772
R^2 adj	0.28	0.26

Different from Relationship Lending: Doesn't Diminish with Size

- Characterization is different from relationship lending
 - No correlation in the cross section or time series with local size
 - ▶ Banks become more specialized when acquired by foreign banks]

Dep. Variable	${\cal S}_{bct}$		
	between	within	
$In(Size_{bt})$	-0.006	0.004	
	(0.006)	(0.004)	
Foreign _{bt}	-0.021**	0.017***	
	(0.010)	(0.002)	
Bank FE	No	Yes	
Country FE	Yes	Yes	
Year FE	Yes	Yes	
Observations	7,560	7,560	
R-squared	0.49	0.51	

Different from Relationship Lending: Doesn't Diminish with Size

Dep. Variable	In(-ibt)
$S_{ibt}^c imes ln(X_{it}^c)$	0.019**	0.019**
	(0.007)	(800.0)
$ln(X_{it}^c)$	0.031***	0.015***
	(0.006)	(0.005)
${\cal S}^c_{ibt}$	-0.003	-0.027
	(0.030)	(0.032)
$\mathcal{S}^c_{ibt} imes In(X^c_{it}) imes \mathit{SmallBank}_b$	-0.010	
	(0.028)	
$\ln(X_{it}^c) imes SmallBank_b$	-0.028*	
	(0.015)	
$\mathcal{S}^c_{ibt} imes \mathit{SmallBank}_b$	0.018	
	(0.011)	
$\mathcal{S}^c_{ibt} imes ln(X^c_{it}) imes \mathit{LargeFirm}_{it}$		-0.004
		(0.014)
$ln(X_{it}^c) imes LargeFirm_{it}$		0.024***
		(0.005)
$\mathcal{S}^c_{ibt} imes extsf{LargeFirm}_{it}$		0.055***
		(0.011)

Different from Relationship Lending: Preserved after M&A

- Merger events, 3 year before/after windows (all FE × merger dummy)
- Advantage on pre-merger specialization market increase after mergers
 - ► Same result if use specialization set of the target bank only

Dep. Variable	$ln(L_{ibt})$	
$\mathcal{S}_{bPreMerger}^{j} imes ext{In}(X_{it}^{j})$	0.014***	0.012**
	(0.004)	(0.004)
$ln(X_{it}^j)$	0.011***	0.014***
	(0.003)	(0.003)
$S^{j}_{bPreMerger} imes In(X^{j}_{it}) imes Merger_{bt}$		0.023*
		(0.013)
$ln(X_{it}^j) imes Merger_{bt}$		-0.024***
		(0.009)
$\mathcal{S}_{bPreMerger}^{j} imes Merger_{bt}$		0.045***
· ·		(0.015)
Observations	586,097	586,097
R-squared	0.29	0.29

Narrowing Sources of Advantage: Global Banks

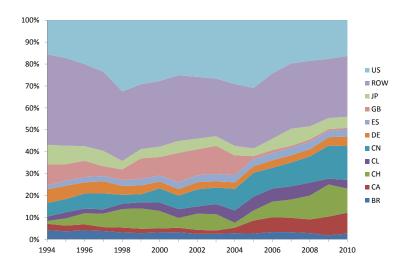
- Portfolio exposure is correlated with country of ownership and its characteristics
- Not correlated with the subsidiary network location

Dep. Variable	${\mathcal S}_{bj}$
CountryOwnership _{bj}	0.095***
	(0.018)
DistanceToHeadquarters _{bj}	0.005*
	(0.003)
$CommonLanguage_{bj}$	0.027***
	(0.009)
CountrySubsidiary _{bj}	-0.002
	(0.008)
Bank FE	Yes
Country FE	Yes
Year FE	Yes
Observations	7,560
R ² adj	0.51

Narrowing Sources of Advantage: Global Banks

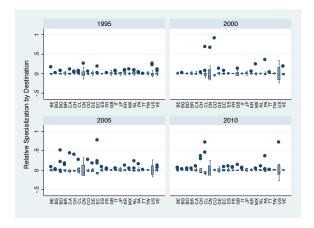
• Multinational bank characteristics cannot explain lending advantage

Dep. Variable	In(Libt)
$\mathcal{S}_{ibt}^c imes ln(X_{it}^c)$	0.021**	
	(800.0)	
$CountryOwnership_b^c imes ln(X_{it}^c)$	-0.028	-0.031
	(0.024)	(0.022)
$In(Distance to Headquarter s_b^c) imes In(X_{it}^c)$	-0.004	-0.002
	(0.006)	(0.006)
$CommonLanguage_b^c imes ln(X_{it}^c)$	0.008	0.007
	(0.007)	(0.006)
CountrySubsidiary $_b^c \times ln(X_{it}^c)$	0.012	0.016
	(0.010)	(0.010)
$ln(X_{it}^c)$	0.050	0.042
	(0.056)	(0.052)
${\cal S}^c_{ibt}$	0.000	
	(0.030)	
Observations	334,432	366,721
R ² adj	0.31	0.31


What is the Source of Comparative Advantage?

- Physical ability?
 - ► No evidence of connection with country of origin
 - No evidence of foreign-bank advantage
 - No significant differences in domestic location of branches
- Acquired capability?
 - Information from firms in portfolio
 - Development of services demanded by firms in portfolio
 - Coordination between bank availability of credit and market-specific demand
- · Surely reinforcing mechanisms
 - Potential initial geographical differences resulted in different capability paths even if those differences are no longer present
 - Are capabilities related to country or product mix?

Conclusions


- Method to measure bank market specialization and lending advantage
- Application to export markets:
 - Banks have portfolios that diverge sharply from a "market" portfolio, and tend to specialize (persistently) in a few markets
 - ▶ Banks have substantial lending advantage in their markets of specialization
 - Firms use marginal funding from specialized banks to expand output in the country of specialization
 - Start exporting to a country is substantially higher after start borrowing from a specialized bank
 - Specialization and lending advantage are scalable (do not diminish with size) suggesting that they are not driven by soft information
 - Ownership cannot explain the specialization or the comparative advantage patters

Composition of Exports (Value) by Destination

Definition of Outlier: Example

• Outlier: $O(S_{bjt}) = 1$ if S_{bjt} is above the 75-th percentile plus 1.5 IQR of the distribution of $\{S_{bjt}\}$ across banks for a given country-year

In a Normal: 99th percentile

Lending Advantage on Export Products or Destinations?

- In our data 2-digit products and destinations are mapped almost 1-to-1
- We cannot distinguish them, but destination is statistically stronger

Dep. Variable	$ln(L_{ibt})$	
$\mathcal{S}^c_{ibt} imes \operatorname{In}(X^{pc}_{it})$	0.014**	
	(0.007)	
$S_{ibt}^{p} imes ln(X_{it}^{pc})$	-0.007	
	(0.024)	
$ln(X_{it}^{pc})$	0.019***	
	(0.005)	
\mathcal{S}^p_{ibt}	0.205***	
	(0.054)	
\mathcal{S}^{c}_{ibt}	0.031	
	(0.023)	
Observations	402,332	
R ² adj	0.29	

Firm-year, bank-year, country-product-bank FEs