Cottage Industry to Factories? The Effects of Electrification on the Macroeconomy

Stephie Fried^a and David Lagakos^b

^aArizona State University, ^bUCSD and NBER

Econometric Society Winter Meetings January 4-6, 2019

Electric Generation Capacity Per Capita in 2000

Electric Generation Capacity Per Capita in 2000

Increase in Generation Capacity Per Capita Since 2000

Increase in Generation Capacity Per Capita Since 2000

Generation Capacity in Ethiopia: 1970-2014

What Are the Macro Effects of Electrification?

- 1 Intensive margin
 - Firms with grid connections get more electricity
 - Fewer power outages

What Are the Macro Effects of Electrification?

- 1 Intensive margin
 - Firms with grid connections get more electricity
 - Fewer power outages
- 2 Extensive margin
 - Entry
 - More firms produce with electricity

What Are the Macro Effects of Electrification?

- 1 Intensive margin
 - Firms with grid connections get more electricity
 - Fewer power outages
- 2 Extensive margin
 - Entry
 - More firms produce with electricity
- 3 Capital accumulation
 - Electricity increases $MP_k \Rightarrow HHs$ accumulate more capital
 - More capital ⇒ higher labor productivity

What We Do

- General equilibrium macro model with all three channels
- Calibrate to match the Ethiopian economy in 2000
- Simulate the observed increases in electricity from 2000-2014

Micro Studies of the Effects of Electrification

- Intensive margin
 - Allcott, Collard-Wexler, O'Connell (2016)
 - Effects of power outages on manufacturing firms in India
 - Eliminating outages increases revenue 5-10 percent

Micro Studies of the Effects of Electrification

- Intensive margin
 - Allcott, Collard-Wexler, O'Connell (2016)
 - Effects of power outages on manufacturing firms in India
 - Eliminating outages increases revenue 5-10 percent
- 2 Extensive margin
 - Kassem (2018)
 - Effects of grid expansions in Indonesia on firm entry and exit
 - Substantial increases in the number of manufacturing firms

Micro Studies of the Effects of Electrification

- Intensive margin
 - Allcott, Collard-Wexler, O'Connell (2016)
 - Effects of power outages on manufacturing firms in India
 - Eliminating outages increases revenue 5-10 percent
- 2 Extensive margin
 - Kassem (2018)
 - Effects of grid expansions in Indonesia on firm entry and exit
 - Substantial increases in the number of manufacturing firms
- 3 Regional analyses
 - Lipscomb, Mobarak, Barham (2013)
 - County-level effects of increase in hyrdopower dams in Brazil
 - Large effects on housing prices and HDI
 - Migration ⇒ can't infer aggregate effects

Model: Three Key Features

- Structural change
 - Traditional sector: produce output with capital and labor
 - Modern sector: produce output with capital, labor, electricity

Model: Three Key Features

- Structural change
 - Traditional sector: produce output with capital and labor
 - Modern sector: produce output with capital, labor, electricity
- ② Grid electricity is rationed
 - Prices do not adjust to clear markets
 - Demand > supply ⇒ power outage

Model: Three Key Features

- Structural change
 - Traditional sector: produce output with capital and labor
 - Modern sector: produce output with capital, labor, electricity
- ② Grid electricity is rationed
 - Prices do not adjust to clear markets
 - Demand > supply ⇒ power outage
- 3 Firms can generate their own electricity
 - More expensive
 - Perfect substitute (a kwh is a kwh, regardless of the source)

Agents

- 1 Measure 1 of identical households
 - Infinitely lived
 - Consume final good and save
- $oldsymbol{0}$ Measure N_t of heterogeneous entrepreneurs
 - Live for one period
 - Produce final good
- 3 Government
 - Produces grid electricity
 - Natural monopoly; geopolitical externalities; appropriation risk

Entrepreneur Productivity and Entry

Pay entry cost to operate: $A\Omega$

Cost scales with TFP (Bollard, Klenow, and Li 2016)

Entrepreneur Productivity and Entry

Pay entry cost to operate: $A\Omega$

• Cost scales with TFP (Bollard, Klenow, and Li 2016)

After entry, draw productivity z from a Pareto distribution

$$G(z)=1-\left(\frac{1}{z}\right)^{\lambda}$$

Entrepreneur Productivity and Entry

Pay entry cost to operate: $A\Omega$

• Cost scales with TFP (Bollard, Klenow, and Li 2016)

After entry, draw productivity z from a Pareto distribution

$$G(z)=1-\left(\frac{1}{z}\right)^{\lambda}$$

Modern sector entry

- Pay entry cost again to operate in the modern sector
- Otherwise, operate in the traditional sector

Production Technology

Traditional sector

$$y_i^t = Az_i^{1-\eta} (k_i^{\alpha} l_i^{1-\alpha})^{\eta}$$

Production Technology

Traditional sector

$$y_i^t = Az_i^{1-\eta} (k_i^{\alpha} l_i^{1-\alpha})^{\eta}$$

Modern sector:

$$y_i^m = A^m z_i^{1-\eta} \left[\min(k_i^{\alpha} I_i^{1-\alpha}, \mu e_i) \right]^{\eta}$$

• Hassler, Krusell, and Olovsson (2018)

Production Technology

Traditional sector

$$y_i^t = Az_i^{1-\eta} (k_i^{\alpha} l_i^{1-\alpha})^{\eta}$$

Modern sector:

$$y_i^m = A^m z_i^{1-\eta} \left[\min(k_i^{\alpha} I_i^{1-\alpha}, \mu e_i) \right]^{\eta}$$

• Hassler, Krusell, and Olovsson (2018)

Two Ways an Entrepreneur Can Get Electricity

- 1 Purchase electricity from the national electric grid, e_i^g
 - Limited and un-predictable
 - Grid electricity is available fraction v of the period
 - electricity supply = (electricity demand) $\times v$

Two Ways an Entrepreneur Can Get Electricity

- 1 Purchase electricity from the national electric grid, e_i^g
 - Limited and un-predictable
 - Grid electricity is available fraction v of the period

electricity supply = (electricity demand)
$$\times v$$

- 2 Generate their own electricity: e_i^s
 - Generator capital: k_i^s
 - Units of final good: y_i^s

$$e_i^s = A^s \min[k_i^s, \chi y_i^s]$$

• Variable of self-generated electricity > price of grid electricity

Profits

Traditional sector

$$\pi_i^t = y_i^t - wl_i - Rk_i$$

Profits

Traditional sector

$$\pi_i^t = y_i^t - wl_i - Rk_i$$

Modern sector

$$\pi_i^m = y_i^m - wI_i - Rk_i^s - Rk_i^s - y_i^s - p^g e_i^g$$

Profits

Traditional sector

$$\pi_i^t = y_i^t - wl_i - Rk_i$$

Modern sector

$$\pi_i^m = y_i^m - wl_i - Rk_i^s - Rk_i^s - y_i^s - p^g e_i^g$$

Structural Change: Modern Sector Entry Decision

Entrepreneurs with $z_i > z^*$ enter the modern sector:

$$\pi^t(z^*) = \pi^m(z^*) - A\Omega$$

Government Produces Grid Electricity

Invests in grid capital and produces electricity

$$K_{t+1}^g = (1 - \delta)K_t^g + I_t^g$$
 $E^g = A^g K^g$

Fixed grid electricity price

$$p^g = MC$$

Government finances investment with lump-sum taxes on HHs

$$I^g = p^g E^g + T$$

Household Optimization

$$\max_{c_t, k_{t+1}} \sum_{t=0}^{\infty} \beta^t \left(\frac{c_t^{1-\sigma}}{1-\sigma} \right)$$

subject to

$$c_t = w_t + (R_t + 1 - \delta)k_t - k_{t+1} + \pi^t + \pi^m - A\Omega(N_t + N_t^m) - T_t$$

Calibration

Goal

• Match the Ethiopian economy in 2000

Two steps

- 1 Take some parameters directly from data/literature
- 2 Choose other parameters to match a set of targets

Direct Calibration

Parameter	Value	Source
Span of control: η	0.85	Midrigan and Xu (2014)
Capital share: α	0.33	Gollin (2002)
Depreciation: δ	0.06	Data
Entry cost: Ω	1	Assumption
Grid productivity: A ^g	1	Assumption

Main Data

Quantity and cost of electric power generation

- PLATTS World Power Plants Data Base
- Technical and Economic Assessment of Grid, Mini-Grid, and Off-Grade Electrification Technologies (World Bank, 2006)

Main Data

Quantity and cost of electric power generation

- PLATTS World Power Plants Data Base
- Technical and Economic Assessment of Grid, Mini-Grid, and Off-Grade Electrification Technologies (World Bank, 2006)

Ethiopia manufacturing surveys: 2001/2002

- Medium and large scale manufacturing
- Small scale manufacturing
- Cottage/handicraft manufacturing

Main Data

Quantity and cost of electric power generation

- PLATTS World Power Plants Data Base
- Technical and Economic Assessment of Grid, Mini-Grid, and Off-Grade Electrification Technologies (World Bank, 2006)

Ethiopia manufacturing surveys: 2001/2002

- Medium and large scale manufacturing ← Modern
- Small scale manufacturing ← Modern
- Cottage/handicraft manufacturing

Main Data

Quantity and cost of electric power generation

- PLATTS World Power Plants Data Base
- Technical and Economic Assessment of Grid, Mini-Grid, and Off-Grade Electrification Technologies (World Bank, 2006)

Ethiopia manufacturing surveys: 2001/2002

- Medium and large scale manufacturing ← Modern
- Small scale manufacturing ← Modern
- Cottage/handicraft manufacturing ← Traditional

Parameter	Value	Target
Generator efficiency: χ	4.73	$({\sf variable\ self})/p^g=1.9$
Generator productivity: As	1.05	$(AC self)/p^g = 3.18$
Grid capital: K_{2000}^g	0.09	$K^g/K=0.0249$
Leontief parameter: μ	0.90	$\begin{array}{l} \text{Modern electricity} \\ \text{share} = 0.16 \end{array}$
Pareto parameter: λ	2.50	Frac modern labor= 0.13
Modern productivity: A^m	1.43	Frac modern firms= 0.033
Discount rate: β	0.96	r = 0.04

Parameter	Value	Target
Generator efficiency: χ	4.73	$(variable self)/p^g = 1.9$
Generator productivity: As	1.05	$(AC self)/p^g = 3.18$
Grid capital: K_{2000}^g	0.09	$K^g/K=0.0249$
Leontief parameter: μ	0.90	$\begin{array}{l} \text{Modern electricity} \\ \text{share} = 0.16 \end{array}$
Pareto parameter: λ	2.50	Frac modern labor= 0.13
Modern productivity: A^m	1.43	Frac modern firms= 0.033
Discount rate: β	0.96	r = 0.04

Parameter	Value	Target
Generator efficiency: χ	4.73	$(variable self)/p^g = 1.9$
Generator productivity: As	1.05	$(AC self)/p^g = 3.18$
Grid capital: K_{2000}^g	0.09	$K^g/K=0.0249$
Leontief parameter: μ	0.90	Modern electricity share $= 0.16$
Pareto parameter: λ	2.50	Frac modern labor= 0.13
Modern productivity: A^m	1.43	Frac modern firms= 0.033
Discount rate: β	0.96	r = 0.04

Parameter	Value	Target
Generator efficiency: χ	4.73	$(\text{variable self})/p^g = 1.9$
Generator productivity: As	1.05	$(AC self)/p^g = 3.18$
Grid capital: K_{2000}^g	0.09	$K^g/K=0.0249$
Leontief parameter: μ	0.90	$\begin{array}{l} \text{Modern electricity} \\ \text{share} = 0.16 \end{array}$
Pareto parameter: λ	2.50	Frac modern labor= 0.13
Modern productivity: A^m	1.43	Frac modern firms= 0.033
Discount rate: β	0.96	r = 0.04

Quantitative Exercise

- Begin in year 2000 steady state
- Shock economy each year from 2000-2014 with observed per capita increase in grid electricity capital
- Transition to new SS with 2014 levels of electricity per capita

Welfare Effects of Electrification

Consumption Equivalent Variation

Steady State	Transition
4.20	0.89

Decomposition

Steady State Effects

	% ΔY ^t	% ΔY ^m	% ΔΥ
Benchmark	-19.8	135.0	6.9

Decomposition

Steady State Effects

	$\% \Delta Y^t$	% Δ <i>Y</i> ^m	% ΔΥ
Benchmark	-19.8	135.0	6.9
Intensive margin	-2.4	17.3	1.8

• Intensive margin: $v = v_{2014}$, $N^t = N_{2000}^t$, $N^m = N_{2000}^m$

Decomposition

Steady State Effects

	% Δ <i>Y</i> ^t	% ΔY ^m	% ΔΥ
Benchmark	-19.8	135.0	6.9
Intensive margin	-2.4	17.3	1.8
Extensive margin	-15.5	104.3	3.4

- Intensive margin: $v = v_{2014}$, $N^t = N_{2000}^t$, $N^m = N_{2000}^m$
- Extensive margin: $v = v_{2000}$, $N^t = N_{2014}^t$, $N^m = N_{2014}^m$

Comparison to Micro Studies

Allcott, Collard-Wexler, O'Connell (2016) experiment

- Reduce power outages by 7.2 percentage points
- Partial equilibrium: hold prices and entry constant
- Modern firms only

Increase in modern firm output (percent)

Ethiopia	Allcott et al. (2016)
4.9	5-10

The Effects of Electrification on the Macroeconomy

- Substantial increases in output per worker
- Intensive margin: existing modern firms get more electricity
 - Explains $\approx 1/4$ of increase in output per worker
- Extensive margin: entry into modern production
 - Explains $\approx 1/2$ of increase in output per worker

The Effects of Electrification on the Macroeconomy

- Substantial increases in output per worker
- Intensive margin: existing modern firms get more electricity
 - Explains $\approx 1/4$ of increase in output per worker
- Extensive margin: entry into modern production
 - Explains $\approx 1/2$ of increase in output per worker

Thank you!