Regret Minimization, Path Dependence, and Attribute Non-attendance in Discrete Choice Experiments

Qi Tian Jinhua Zhao

Department of Agricultural, Food, and Resource Economics

Department of Economics

Michigan State University

1/5/2019 ASSA/AERE

Introduction

- Discrete Choice Experiment (DCE) is increasingly used in nonmarket valuation, to elicit environmental preferences (Louiviere et al 2000, Kanninen 2007)
 - Several choice sets
 - Each choice set: multiple alternatives (policies, programs), including "opting out" or "status quo"
 - Each alternative: combinations of values of "attributes"
- Rational decision-making: utility maximization
 - Utility from an alternative: independent of other alternatives
- Limitations
 - Behavioral decision heuristics not incorporated
 - Incentive compatibility

Decision Heuristics

- Behavioral departures from rational decision-making
 - Attributes processing: Cancellation of shared attributes/Elimination by thresholds (e.g., Tversky, 1972; Houston and Sherman, 1995; Layton and Hensher, 2010; Swait, 2001; Hensher and Rose, 2012)
 - Reference dependent/Regret theory (Tversky & Kahneman, 1981; Bell, 1982; Fishburn, 1982; Loomes and Sugden, 1982)
 - Learning/adaptive heuristics (Kahneman, Slovic & Tversky, 1982; Hart 2005)
- Existing literatures addressing behavioral decisions within DCE
 - ANA (Attribute Non-Attendance) (e.g., Hensher et al., 2005)
 - RM (Regret Minimization) (e.g., Chorus et al, 2008, 2010)

Random Regret Minimization (RRM)

- Chorus (2010): generalize anticipated regret to RRM in DCE
- Reference dependence: utility/regret from one alternative depends on other alternatives in the choice set:
 - Utility = f(own attributes, reference attributes), + max utility/min regret (RRM)
 - Utility = f(own attributes), + max utility (RUM)
- Regret of choosing program i for each attribute m::
 - Compare with *each* alternative $j \neq i$: $x_{jm} x_{im}$
 - $x_{im} x_{im} < 0$ rejoice (gain); $x_{im} x_{im} > 0$ regret (loss)
- Decision: min anticipated regret + regret aversion
- Limitations
 - What are the reference points (current/previous choice sets, SQ experience)
 - Weights of multiple reference points

Attribute Non-Attendance (ANA)

 Attributes elimination through ignoring or no attending to them (Hensher et al., 2005) strategically/unconsciously

ANA in DCE:

- Stated ANA (e.g., Hensher et al., 2005)
- Inferred ANA (e.g., Hensher & Greene, 2010)
- Eyes tracking ANA (e.g., Spinks & Mortimer, 2015)

• Inferred ANA:

- The Equality-Constrained Latent Class (ECLC) ANA (e.g., Scarpa et al., 2009)
- Coeffs (ANA_attributes) = 0; Coeffs (other attributes) same across classes

Limitations:

- ANA or preference heterogeneity
- ANA or other decision heuristics (e.g., eliminated by thresholds/references but not completely cancelled or ignored)
- Pattern of ANA in repeated choices

What we do, and what we find

- Examine the interlinkage of ANA and RRM
 - Develop the RRM to account for different reference points
 - Incorporate two decision heuristics (RRM + ANA) within a single model
 - Question: Ignorance vs reference dependence regret min?
- Test the decision heuristics pattern in repeated choices
 - Account for path dependence
 - Separately test each model on each choice set + compare across choice sets
 - Questions: Consistent strategy vs adaptive pattern?
- Attributes are processed in a reference dependent manner
 - Reference dependent RM with multiple reference points with different weights
 - ANA no longer exists after path dependence is controlled
 - Adaptive decision heuristics over repeated choices

Note: This program is not expected to reduce corn yield with appropriate application rates Expected N savings are based on average application rate of 170 lbs/acre with no practice adoption

The program chosen by the majority of respondents will be implemented immediately. If no program is implemented for now, you will be provided with **new information** about N application and **given another chance to decide one year later**.

Attributes	Program 1	Program 2	Do not participate
Fall application prohibited	Yes	No	No
Sidedress application required	No	Yes	Yes
Winter cover crops required	Yes	Yes	I would not Noparticipate in
Expected Nitrogen savings	25%	40%	these programs 0
Annual payment level	\$180/acre	\$180/acre	0
I would choose (check only one)			

Yes: 1; No: 0

Note: This program is not expected to reduce corn yield with appropriate application rates Expected N savings are based on average application rate of 170 lbs/acre with no practice adoption

The program chosen by the majority of respondents will be implemented immediately. If no program is implemented for now, you will be provided with **new information** about N application and **given another chance to decide one year later**.

Attributes	Program 1	Program 2	Do not participate
Fall application prohibited	Yes	No	No
Sidedress application required	No	Yes	Yes
Winter cover crops required	Yes	Yes	I would not No participate in
Expected Nitrogen savings	25%	40%	these programs 0
Annual payment level	\$180/acre	\$180/acre	0
I would choose (check only one)			

Yes: 1; No: 0

Strategy 1: utility max

Note: This program is not expected to reduce corn yield with appropriate application rates Expected N savings are based on average application rate of 170 lbs/acre with no practice adoption

The program chosen by the majority of respondents will be implemented immediately. If no program is implemented for now, you will be provided with **new information** about N application and **given another chance to decide one year later**.

Attributes	Program 1	Program 2	Do not participate
Fall application prohibited	Yes	No	No
Sidedress application required	No	Yes	Yes I would not
Winter cover crops required	Yes	Yes	Noparticipate in
Expected Nitrogen savings	25%	40%	these programs 0
Annual payment level	\$180/acre	\$180/acre	0
I would choose (check only one)			

Yes: 1; No: 0

$$\beta_f \times 1$$

$$\beta_s \times 0$$

$$\beta_w \times 1$$

$$\beta_n \times 0.25$$

$$\beta_p \times 180$$

Strategy 2: ignore "Fall": ANA (RUM)

Note: This program is not expected to reduce corn yield with appropriate application rates Expected N savings are based on average application rate of 170 lbs/acre with no practice adoption

The program chosen by the majority of respondents will be implemented immediately. If no program is implemented for now, you will be provided with **new information** about N application and **given another chance to decide one year later**.

Yes: 1; No: 0

Attributes	Program 1	Program 2	Do not participate	
. un upproudent promises	100	No	No	,
Sidedress application required	No	Yes	Yes I would not	$\beta_s \times 0$
Winter cover crops required	Yes	Yes	Noparticipate in	$\boldsymbol{\beta}_{w} \times 1$
Expected Nitrogen savings	25%	40%	these programs 0	$\beta_n \times 0.25$
Annual payment level	\$180/acre	\$180/acre	0	$\beta_p \times 180$
I would choose (check only one)				

Strategy 3: Regret Min

Note: This program is not expected to reduce corn yield with appropriate application rates Expected N savings are based on average application rate of 170 lbs/acre with no practice adoption

The program chosen by the majority of respondents will be implemented immediately. If no program is implemented for now, you will be provided with **new information** about N application and **given another chance to decide one year later**.

A 44 11 4				
Attributes	Program 1	Program 2	Do not participate	
Fall application prohibited	Yes	No	No	
Sidedress application required	No	Yes	Yes I would not	
Winter cover crops required	Yes	Yes	No participate in	
Expected Nitrogen savings	25%	40%	these programs 0	
Annual payment level	\$180/acre	\$180/acre	0	
I would choose (check only one)				

Yes: 1; No: 0

 β : preference par

Strategy 3: Regret Min

Note: This program is not expected to reduce corn yield with appropriate application rates Expected N savings are based on average application rate of 170 lbs/acre with no practice adoption

The program chosen by the majority of respondents will be implemented immediately. If no program is implemented for now, you will be provided with **new information** about N application and **given another chance to decide one year later**.

A co. II			1
Attributes	Program 1	Program 2	Do not participate
Fall application prohibited	Yes	No	No
Sidedress application required	No	Yes	Yes I would not
Winter cover crops required	Yes	Yes	No participate in
Expected Nitrogen savings	25%	40%	these programs 0
Annual payment level	\$180/acre	\$180/acre	0
I would choose (check only one)			

Yes: 1; No: 0

$$\beta_f \times (\mathbf{0} - \mathbf{1})$$

$$\beta_s \times (1 - 0)$$

$$\beta_w \times (1-1)$$

$$\beta_n \times (0.4 - 0.25)$$

$$\beta_p \times (180 - 180)$$

Strategy 3: Regret Min

Note: This program is not expected to reduce corn yield with appropriate application rates Expected N savings are based on average application rate of 170 lbs/acre with no practice adoption

The program chosen by the majority of respondents will be implemented immediately. If no program is implemented for now, you will be provided with **new information** about N application and **given another chance to decide one year later**.

Attributes	Program 1	Program 2	Do not participate
Fall application prohibited	Yes	No	No
Sidedress application required	No Yes		Yes I would not
Winter cover crops required	Yes	Yes	No participate in
Expected Nitrogen savings	25%	40%	these programs 0
Annual payment level	\$180/acre	\$180/acre	Q /
I would choose (check only one)			

Yes: 1; No: 0

$$\beta_f \times (\mathbf{0} - \mathbf{1})$$

$$\beta_s \times (1-0)$$

$$\beta_w \times (0-1)$$

$$\beta_n \times (0-0.25)$$

$$\beta_p \times (0-180)$$

	Program 1	Program 2	Do not participate
Fall application prohibited	Yes	Yes	
Sidedress application required	No	Yes	
Winter cover crops required	Yes	No	I would not participate in
Expected Nitrogen savings	25%	25%	these programs
Annual payment level	\$180/acre	\$100/acre	
I would choose (check only one)			

eld with appropriate application rates n rate of 170 lbs/acre with no practice

The program chosen by the majority of respondents will be implemented immediately. If no program is implemented for now, you will be provided with **new information** about N application and **given another chance to decide one year later**.

Attributes	Program 1	Program 2	Do not participate	Chosen alternative
Fall application prohibited	Yes	No	No	from last choice set
Sidedress application required	No	Yes	Yes I would not	Yes
Winter cover crops required	Yes	Yes	No participate in	No
Expected Nitrogen savings	25%	40%	these programs 0	25%
Annual payment level	\$180/acre	\$180/acre	Q /	\$100/acre
I would choose (check only one)				

RRM: asymmetry in regret/rejoice

• RRM Log functional form (Chorus, 2010):

$$R_{i} = \sum_{j \neq i}^{J} \sum_{m} \ln(1 + \exp[\boldsymbol{\beta}_{m} \cdot (\boldsymbol{x}_{jm} - \boldsymbol{x}_{im})])$$

- RUM: $U_i = \sum_m \beta_m \cdot x_{im}$
- Asymmetry of regret / rejoice:
 - More sensitive to regret than to rejoice
 - Sensitivity to regret increases as difference enlarges
 - Not loss aversion: payoff differentiable at reference point
- Estimation strategy is similar to

RUM:
$$RR_i = R_i + \epsilon_i$$
.

Extreme value distribution + $\max_{i}(-RR_i) \rightarrow \text{Logit}$

Regret R_i

Multiple reference points in RRM: LA-RRM

 Last Round and All Alternatives Referred Random Regret Minimization (LA-RRM)

$$RR_{isj} = R_{isj} + \varepsilon_{isj} =$$

$$\sum_{k \neq sq} \sum_{m} \ln(1 + exp[\beta_m^h \cdot (x_{iskm} - x_{isjm})]) +$$

$$\sum_{m} \ln(1 + exp[\beta_m^{sq} \cdot (x_{issqm} - x_{isjm})]) +$$

$$\sum_{m} \ln(1 + exp[\beta_m^l \cdot (x_{is-1jm} - x_{isjm})]) +$$

$$\beta_0 \cdot sq_{isj} + \varepsilon_{isj}$$

- Reference points: $\beta_m^h \beta_m^{sq}$ and β_m^l
- AA-RRM (Tian and Zhao, 2019) when $\beta_m^l = 0$
- RRM (Chorus, 2010) when $\beta_m^h = \beta_m^{sq}$ and $\beta_m^l = 0$

Equality Constrained Latent Class (ECLC) ANA model

- Q classes: heterogeneous attentions of attributes package
- Coeffs (ANA_attributes) = 0 & Coeffs (other attributes) same across classes
- $Pr\left(y_{isj} = 1\right) = \sum_{q=1}^{Q} Pr\left(y_{isj} = 1 \mid class \ q\right) \times Pr\left(class \ q\right)$ • $Pr\left(class \ q\right) = \frac{\exp(s_q)}{\sum_{q=1}^{Q} \exp(s_q)} with \ s_Q = 0$

$$Pr (y_{isj} = 1 | class q) = \begin{cases} \frac{\exp(U_{isj}|class q)}{\sum_{j=1}^{J} \exp(U_{isj}|class q)} (RUM) \\ \frac{\exp(-R_{isj}|class q)}{\sum_{j=1}^{J} \exp(-R_{isj}|class q)} (RRM) \end{cases}$$

Survey and data

- NSF CNH grant to study nutrient management practices
- Mail survey in 2016: corn growers in Michigan, Iowa, and Indiana
- Random draw of farmer names from USDA Farm Service Agency (>100 acres)
- \$2 "thank you"
- 1294 useable surveys, 27% response rate
- Cheap talk treatment
- Follow-up questions about past practices
- A Bayesian efficiency design using pretest data
- 4 choice sets, 3 alts, 5 attributes

Table 1. Attributes and Levels Used in the Choice Design

	Table 1. Attributes and Levels Osed in the Choice Design			
	Attributes	Levels		
	Winter Cover Crops Required	Yes, No		
T	Fall Application of Fertilizer Prohibited	Yes, No		
	Fertilizer Sidedress Application Required	Yes, No		
	Expected Nitrogen Savings	0, 10%, 25%, 40%, 50%		
	Annual Payment/Acre	\$0, \$5, \$20, \$40, \$100, \$180		

Par

 β_{winter}

 β_{fall}

 β_{side}

 β_{pay}

 β_{fall}^h

 β_{side}^h

 β_{pay}^h

 β_{fall}^{sq}

 β_{side}^{sq}

 β_{pay}^{sq}

 β_{fall}^{l}

 β_{side}^{l}

 β_{pay}^{l}

 β_0

AIC

BIC

No. obs

 β_{winter}^{ι}

 eta_{winter}^{sq}

 β_{winter}^h

- RRM outperforms $RUM \rightarrow reference$ dependent
- Multiple RPs: $\beta_m^h, \beta_m^{sq}, \beta_m^l \rightarrow$ across choice set dependent
 - RPs are attributes specific (e.g., Fall, Pay refer hypo but no SQ)

Та	ble 3. RUM, A	A-RRM, LA	AA-RRM	ANA Estima	LA-RRM	s
Dor		c ٩		c ٩		د٩
Par	Est	S.d.	Est	S.d.	Est	S.d.
eta_{winter}	-0.276***	0.0189				
eta_{fall}	-3.82**	1.78				
eta_{side}	-0.129***	0.0187				
$eta_{nitrogen}$	0.798***	0.0977				
eta_{pay}	0.00263***	0.00016				
eta^h_{winter}			0.513***	0.102	1.34***	0.154
eta_{fall}^h			-0.101**	0.0511	0.985***	0.0624
eta^h_{side}			0.648***	0.166	0.142	0.108
$eta_{nitrogen}^h$			1.51***	0.238	2.74***	0.401
eta^h_{pay}			0.00478***	0.000381	0.00402***	0.000684
eta_{winter}^{sq}			-2.15***	0.145	-1.56***	0.307
eta_{fall}^{sq}			0.0171	0.0307	-0.0351	0.0977
eta_{side}^{sq}			-3.84***	0.479	-1.41***	0.105
$eta^{sq}_{nitrogen}$			5.39***	1.85	3.96***	0.724
eta_{pay}^{sq}			0.0341***	0.00337	3.78***	0.0898
eta_{winter}^{l}					-2.22***	0.137
eta_{fall}^{l}					-1.83***	0.198
eta_{side}^{l}					-2.15***	0.138
$eta_{nitrogen}^{l}$					-4.95***	0.721
eta_{pay}^{l}					0.0135***	0.0013
eta_0	-1.17***	0.072	-1.37***	0.118	-1.9***	0.126
P ₀ S _{winter}	-66.8	1.80e+308	44.6***	0.274	-83.1	1.80e+308
S _{fall}	3.23***	0.474	84.8	7.02e+005	-20.2***	0.625
S _{side}	-82.9	1.80e+308	38.3	1.80e+308	-100	1.80e+308
$S_{nitrogen}$	-100	1.80e+308	84.5	7.02e+005	-76.5***	23.8
L L	-4457.536	222 200	-4360.525		-2938.85	
AIC	8935.072		8751.049		5917.7	
BIC	8998.736		8846.545		6039.273	
No. obs	4300		4300		3225	

	Table 3. RUM, A	AA-RRM, LA	-RRM ECLC	ANA Estima	ation Result	ts
	RUM		AA-RRM		LA-RRM	
Par	Est	S.d.	Est	S.d.	Est	S.d.
S _{winter}	-66.8	1.80e+308	44.6***	0.274	-83.1	1.80e+308
s _{fall}	3.23***	0.474	84.8	7.02e+005	-20.2***	0.625
S _{side}	-82.9	1.80e+308	38.3	1.80e+308	-100	1.80e+308
S _{nitrogen}	-100	1.80e+308	84.5	7.02e+005	-76.5***	23.8
Ĺ	-4457.536		-4360.525		-2938.85	
AIC	8935.072		8751.049		5917.7	
BIC	8998.736		8846.545		6039.273	
No. obs	4300		4300		3225	

$$\Pr\left(class\ q\right) = \frac{\exp(s_q)}{\sum_{q=1}^{Q} \exp(s_q)} \ with\ s_Q = 0 \ (Q=Full\ attention)$$

Table 4. Attribute Non-Attendance Class Probability							
Cla	ass	RUM	AA-RRM	LA-RRM			
Fu	ıll attention	3.80%	0.0%	100.00%			
W	inter unattended	0.00%	0.0%***	0.00%			
Fa	ll unattended	96.2%***	57.4%	0.0%***			
Sic	de unattended	0.00%	0.0%	0.00%			
Ni	trogen unattended	0.00%	42.6%	0.0%***			

ANA behavior no longer significant after controlling for *cross choice sets dependence* behavior

Table 5. Attr	ibute Non-At	tendance Cl	ass Probabilit	y by Choice S	et
Sample	All	S=1	S=2	S=3	S=4
Class		7	RUM-ANA		
Full attention	3.80%	100.00%	2.20%	0.00%	0.00%
Winter unattended	0.00%	0.0%***	0.0%***	0.0%***	0.00%
Fall unattended	96.2%***	0.00%	97.8%***	93.1%***	98.2%***
Side unattended	0.00%	0.00%	0.00%	0.0%***	0.00%
Nitrogen unattended	0.00%	0.0%***	0.00%	6.90%	1.8%***
Class	AA-RRM-ANA				
Full attention	0.00%	0.00%	0.00%	0.00%	0.00%
Winter unattended	0.0%***	20.80%	45.30%	0.0%***	0.0%***
Fall unattended	57.40%	51.10%	41.00%	21.4%***	57.4%***
Side unattended	0.00%	0.00%	0.00%	0.0%***	0.00%
Nitrogen unattended	42.60%	28.10%	13.70%	78.6%***	42.6%***
Sample	S=2, 3, 4		S=2	S=3	S=4
Class			LA-RRM		- 1
Full attention	100.00%		78.10%	92.50%	0.00%
Winter unattended	0.00%		0.00%	0.00%	0.00%
Fall unattended	0.0%***		21.90%	0.0%***	0.00%
Side unattended	0.00%		0.00%	0.00%	0.00%
Nitrogen unattended	0.0%***		0.0%***	7.5%***	100.00%

ANA exists but not from the beginning set: starts from set 2 (RUM) and set 3 (AA-RRM)→Fatigue or Path dependence with learning?

Sample	All	S=1	S=2	S=3	S=4
Class		7	RUM-ANA		
Full attention	3.80%	100.00%	2.20%	0.00%	0.00%
Winter unattended	0.00%	0.0%***	0.0%***	0.0%***	0.00%
Fall unattended	96.2%***	0.00%	97.8%***	93.1%***	98.2%***
Side unattended	0.00%	0.00%	0.00%	0.0%***	0.00%
Nitrogen unattended	0.00%	0.0%***	0.00%	6.90%	1.8%***
Class			AA-RRM-ANA		
Full attention	0.00%	0.00%	0.00%	0.00%	0.00%
Winter unattended	0.0%***	20.80%	45.30%	0.0%***	0.0%***
Fall unattended	57.40%	51.10%	41.00%	21.4%***	57.4%***
Side unattended	0.00%	0.00%	0.00%	0.0%***	0.00%
Nitrogen unattended	42.60%	28.10%	13.70%	78.6%***	42.6%***
Sample	S=2, 3, 4		S=2	S=3	S=4
Class			LA-RRM		
Full attention	100.00%		78.10%	92.50%	0.00%
Winter unattended	0.00%		0.00%	0.00%	0.00%
Fall unattended	0.0%***		21.90%	0.0%***	0.00%
Side unattended	0.00%		0.00%	0.00%	0.00%
Nitrogen unattended	0.0%***		0.0%***	7.5%***	100.00%

• ANA no longer exists after path dependence is controlled

Table 5. Attr	ibute Non-At	tendance Cl	ass Probabilit	y by Choice S	et
Sample	All	S=1	S=2	S=3	S=4
Class		/	RUM-ANA		
Full attention	3.80%	100.00%	2.20%	0.00%	0.00%
Winter unattended	0.00%	0.0%***	0.0%***	0.0%***	0.00%
Fall unattended	96.2%***	0.00%	97.8%***	93.1%***	98.2%***
Side unattended	0.00%	0.00%	0.00%	0.0%***	0.00%
Nitrogen unattended	0.00%	0.0%***	0.00%	6.90%	1.8%***
Class AA-RRM-ANA					
Full attention	0.00%	0.00%	0.00%	0.00%	0.00%
Winter unattended	0.0%***	20.80%	45.30%	0.0%***	0.0%***
Fall unattended	57.40%	51.10%	41.00%	21.4%***	57.4%***
Side unattended	0.00%	0.00%	0.00%	0.0%***	0.00%
Nitrogen unattended	42.60%	28.10%	13.70%	78.6%***	42.6%***
Sample	S=2, 3, 4		S=2	S=3	S=4
Class			LA-RRM		
Full attention	100.00%		78.10%	92.50%	0.00%
Winter unattended	0.00%		0.00%	0.00%	0.00%
Fall unattended	0.0%***		21.90%	0.0%***	0.00%
Side unattended	0.00%		0.00%	0.00%	0.00%
Nitrogen unattended	0.0%***		0.0%***	7.5%***	100.00%

ANA exists but not from the beginning set: starts from set 2 (RUM) and set 3 (AA-RRM)→Fatigue or Path dependence with learning? ANA no longer exists after path dependence is controlled ANA behaviors

ANA behaviors inconsistent across models

- RUM: ANA ↑ as S ↑ (Fall)
- AA-RRM: ANA ↑ as
 S ↑ (Fall & Nitrogen)
- LA-RRM: no ANA

Implication #1: Decision heuristics

- Attributes inferred as ANA are actually processed with alternative strategy
- Reference dependence RM is an essential strategy
- Alternatives in the current and previous sets are RPs
- RPs are attributes specific

Implication #2: Strategy pattern in repeated choices

- Reference points change after making the first choice
- Inferred ANA growing over choice sets is actually path dependence strategy
- More attributes, more choice sets to be checked
 Implication #3. Regret minimization in DCE
- Behavior strategies (including ANA) are captured
- Better model performance
- Survey design should exactly mimic the real choice scenario to be incentive compatible

Thank you!

Contact to request the full paper: tianqi@msu.edu