The Political Economy of Death: Do Coroners Perform as well as Medical Examiners in **Determining Suicide?**

Jose Fernandez

University of Louisville

AEA Meetings: Jan. 5, 2019

Introduction

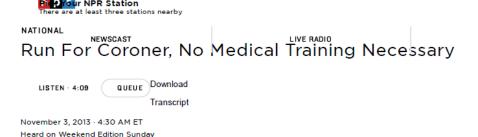


Figure 1:

Introduction

Charlestown High School student now serving as Clark **County Deputy Coroner**

Still months away from graduating high school, one Charlestown senior already has a pretty grown up job.

Sunday, February 25th 2018, 9:34 AM EST Updated: Sunday, February 25th 2018, 11:18 AM EST

By Kate Springer

Figure 2:

Introduction

YOUNG CORONER SET TO TAKE OVER

By Tribune News Services

CHICAGO TRIBUNE

NOVEMBER 20, 2000 | ALBION, INDIANA

t an age when many of his peers are studying for college exams, 20-year-old John Brazzell is preparing to take over the reigns of an unlikely post; county coroner.

Brazzell, who may be Indiana's youngest elected official, defeated Terry Gaff, a physician who had previously served as coroner, on Nov. 7 in the race for Noble County Coroner.

Figure 3:

• The determination of death can nullify some life insurance claims

- The determination of death can nullify some life insurance claims
- Measurement Error in death reports can bias data used for life insurance premiums

- The determination of death can nullify some life insurance claims
- Measurement Error in death reports can bias data used for life insurance premiums
- Delays in death determination are associated with a decrease in cadarvic organ donors (Shafer et al. 1994, 2004)

- The determination of death can nullify some life insurance claims
- Measurement Error in death reports can bias data used for life insurance premiums
- Delays in death determination are associated with a decrease in cadarvic organ donors (Shafer et al. 1994, 2004)
- SIDS cases are reported to be over counted by coroners relative to medical examiners (Walsh et. 2010)

- The determination of death can nullify some life insurance claims
- Measurement Error in death reports can bias data used for life insurance premiums
- Delays in death determination are associated with a decrease in cadarvic organ donors (Shafer et al. 1994, 2004)
- SIDS cases are reported to be over counted by coroners relative to medical examiners (Walsh et. 2010)
- Previous research states that medical examiners under-count suicides Timmermans (2005).

- The determination of death can nullify some life insurance claims
- Measurement Error in death reports can bias data used for life insurance premiums
- Delays in death determination are associated with a decrease in cadarvic organ donors (Shafer et al. 1994, 2004)
- SIDS cases are reported to be over counted by coroners relative to medical examiners (Walsh et. 2010)
- Previous research states that medical examiners under-count suicides Timmermans (2005).
- Klugman et al. (2013) find the opposite in that medical examiners determine about 3 percent more suicides than coroners.

- The determination of death can nullify some life insurance claims
- Measurement Error in death reports can bias data used for life insurance premiums
- Delays in death determination are associated with a decrease in cadarvic organ donors (Shafer et al. 1994, 2004)
- SIDS cases are reported to be over counted by coroners relative to medical examiners (Walsh et. 2010)
- Previous research states that medical examiners under-count suicides Timmermans (2005).
- Klugman et al. (2013) find the opposite in that medical examiners determine about 3 percent more suicides than coroners.
- Ruhm (Addiction, 2018) uses a correction method to identified under-reporting of drug poisoning deaths (20-35%)

• US Resident and County Resident

- US Resident and County Resident
- Minimum Age ranges 18 21

- US Resident and County Resident
- Minimum Age ranges 18 21
- Minimum Education: High School Diploma

- US Resident and County Resident
- Minimum Age ranges 18 21
- Minimum Education: High School Diploma
- 5 State Require Physicians (Kansas, Louisianna, Minnessota, North Dakota, Ohio)

- US Resident and County Resident
- Minimum Age ranges 18 21
- Minimum Education: High School Diploma
- 5 State Require Physicians (Kansas, Louisianna, Minnessota, North Dakota, Ohio)
- Nebraska Requires Coroners to be Lawyers

- US Resident and County Resident
- Minimum Age ranges 18 21
- Minimum Education: High School Diploma
- 5 State Require Physicians (Kansas, Louisianna, Minnessota, North Dakota, Ohio)
- Nebraska Requires Coroners to be Lawyers
- Nevada Requires Coroners to be Law Enforcement

- US Resident and County Resident
- Minimum Age ranges 18 21
- Minimum Education: High School Diploma
- 5 State Require Physicians (Kansas, Louisianna, Minnessota, North Dakota, Ohio)
- Nebraska Requires Coroners to be Lawyers
- Nevada Requires Coroners to be Law Enforcement
- Only 4 states require no felony convictions

Coroners date back to 9th and 10th century England.

 Maryland was the first state to adopt a Medical Examiner (ME) system in 1860.

- Maryland was the first state to adopt a Medical Examiner (ME) system in 1860.
- A slow trend to replace coroners with ME started in 1877 to the early 1980's

- Maryland was the first state to adopt a Medical Examiner (ME) system in 1860.
- A slow trend to replace coroners with ME started in 1877 to the early 1980's
- The trend has since stopped and states have adopted alternative models.

- Maryland was the first state to adopt a Medical Examiner (ME) system in 1860.
- A slow trend to replace coroners with ME started in 1877 to the early 1980's
- The trend has since stopped and states have adopted alternative models.
 - Switching high population counties into Medical examiner counties

- Maryland was the first state to adopt a Medical Examiner (ME) system in 1860.
- A slow trend to replace coroners with ME started in 1877 to the early 1980's
- The trend has since stopped and states have adopted alternative models.
 - Switching high population counties into Medical examiner counties
 - Requiring Death Investigation Training for elected coroners.

Types of Death Investigation Systems

Medical Examiner systems (22 states)

- Medical Examiner systems (22 states)
 - Centralized Medical Examiner (ME)

- Medical Examiner systems (22 states)
 - Centralized Medical Examiner (ME)
 - Statewide County/District ME

- Medical Examiner systems (22 states)
 - Centralized Medical Examiner (ME)
 - Statewide County/District ME
- Mix of Coroners & ME (18 states)

- Medical Examiner systems (22 states)
 - Centralized Medical Examiner (ME)
 - Statewide County/District ME
- Mix of Coroners & ME (18 states)
- Coroner only states (11 States)

- Medical Examiner systems (22 states)
 - Centralized Medical Examiner (ME)
 - Statewide County/District ME
- Mix of Coroners & ME (18 states)
- Coroner only states (11 States)
- In states with Coroners, some adopt a state medical examiner 13%

- Medical Examiner systems (22 states)
 - Centralized Medical Examiner (ME)
 - Statewide County/District ME
- Mix of Coroners & ME (18 states)
- Coroner only states (11 States)
- In states with Coroners, some adopt a state medical examiner 13%
- In states with Coroners, some require mandatory training (40 to 80 hours) - 14%

 Availability and cost of forensic pathologist limit the expansion of ME states.

- Availability and cost of forensic pathologist limit the expansion of ME states.
- A 2004 Census of Coroner/ME offices finds 80% of offices are county coroners.

- Availability and cost of forensic pathologist limit the expansion of ME states.
- A 2004 Census of Coroner/ME offices finds 80% of offices are county coroners.
- 2/3 of these offices serve areas of 50,000 people or less.

Model (1)

$$ln(E[d/p]) = \beta_1 PctME + \beta_1 Coroner Trained + \beta_2 Centralized ME + \beta_3 StateME + \Gamma X + u_i + \omega_t \quad \textbf{(1)}$$

The death count is given by d and the population of interest is given p. The population of interest is the state population and the total number of violent deaths.

Treatment Variables

PctME: Percentage of the pop. covered by county Medical Examiners

Model (1)

$$ln(E[d/\rho]) = \beta_1 PctME + \beta_1 Coroner Trained + \beta_2 Centralized ME + \beta_3 StateME + \Gamma X + u_i + \omega_t \quad \ (1)$$

The death count is given by d and the population of interest is given p. The population of interest is the state population and the total number of violent deaths.

Treatment Variables

- PctME: Percentage of the pop. covered by county Medical Examiners
- CoronerTrained: Coroner Training is Mandatory in the State

Model (1)

$$\textit{ln}(\textit{E}[\textit{d}/\textit{p}]) = \beta_1 \textit{PctME} + \beta_1 \textit{CoronerTrained} + \beta_2 \textit{CentralizedME} + \beta_3 \textit{StateME} + \Gamma \textit{X} + u_i + \omega_t \quad \text{(1)}$$

The death count is given by d and the population of interest is given p. The population of interest is the state population and the total number of violent deaths.

Treatment Variables

- PctME: Percentage of the pop. covered by county Medical Examiners
- CoronerTrained: Coroner Training is Mandatory in the State
- CentralizedME: A Centralized State Medical Examiner System

Model (1)

$$ln(E[d/\rho]) = \beta_1 PctME + \beta_1 Coroner Trained + \beta_2 Centralized ME + \beta_3 StateME + \Gamma X + u_i + \omega_t \quad \ (1)$$

The death count is given by d and the population of interest is given p. The population of interest is the state population and the total number of violent deaths.

Treatment Variables

- PctME: Percentage of the pop. covered by county Medical Examiners
- CoronerTrained: Coroner Training is Mandatory in the State
- CentralizedME: A Centralized State Medical Examiner System
- StateME: State Medical Examiner present in Coroner State.

Model (2)

$$\textit{In}(\textit{E}[\textit{d/p}]) = \beta_1 \textit{PctME} + \beta_1 \textit{CoronerTrained} + \beta_2 \textit{CentralizedME} + \beta_3 \textit{StateME} + \Gamma \textit{X} + \textit{u}_i + \omega_t \quad \text{(2)}$$

Control Variables				
Pct White	Pct greater than 64 yrs			
Pct Black	log state population			
Pct Female	log state income per capita			
Pct BA	Pct married			
Pct HS Grad	Pct separated			
Pct under 5 yrs	Pct widowed			
Pct between 5-17 yrs	Pct divorced			

We also control, but do not report if the coroner is required to be a physician.

• Death Counts by State Compressed Mortality File 1968-2016

- Death Counts by State Compressed Mortality File 1968-2016
- Demographic Data are from IPUMS and ACS

- Death Counts by State Compressed Mortality File 1968-2016
- Demographic Data are from IPUMS and ACS
- Changes in death investigation laws

- Death Counts by State Compressed Mortality File 1968-2016
- Demographic Data are from IPUMS and ACS
- Changes in death investigation laws
 - Hanzlick (1998) and Hanzlick (2007)

- Death Counts by State Compressed Mortality File 1968-2016
- Demographic Data are from IPUMS and ACS
- Changes in death investigation laws
 - Hanzlick (1998) and Hanzlick (2007)
 - CDC Public Health Law Program: Coroner/Medical Examiner Laws, by State database

- Death Counts by State Compressed Mortality File 1968-2016
- Demographic Data are from IPUMS and ACS
- Changes in death investigation laws
 - Hanzlick (1998) and Hanzlick (2007)
 - CDC Public Health Law Program: Coroner/Medical Examiner Laws, by State database
 - Verified looking up state statues and calling municipalities

Why Fixed Effects Matter: Per Violent Death

Table 1: Rate of Suicide by Violent Death

	(1)	(2)	(3)
VARIABLES	Model 1	Model 2	Model 3
Pct of Pop. Covered by ME	0.1161*	0.1180*	0.0368
	(0.0592)	(0.0709)	(0.0479)
Coroner Required Training	0.0673**	-0.0076	-0.0298
	(0.0342)	(0.0306)	(0.0184)
State Level ME - Centralized	0.1125*	0.1835**	0.1602**
	(0.0613)	(0.0923)	(0.0653)
State Level ME - Coroner State	-0.1112**	0.1562***	0.1081***
	(0.0447)	(0.0431)	(0.0376)
Observations	2,433	2,433	2,433
Control Variables	No	No	Yes
State FE	No	Yes	Yes
Year FE	No	Yes	Yes
Number of fips		50	50

Primary Results: Per Capita

Table 2: Poisson Regression: Rate of Death Type by Population

VARIABLES	Accidents	Suicide	Homicide	Autopsy
V/ ((// (BEES	7 teerderres	Suiciae	Homiciae	, tatopsy
Pct of Pop. Covered by ME	0.1060	0.1667	0.1341	0.0356
	(0.0392)***	(0.0480)***	(0.0972)	(0.0970)
	`[0.0553]*	[0.0632]***	[0.1323]	[0.1675]
Coroner Required Training	0.0117	-0.0024	0.0938	0.0021
	(0.0206)	(0.0159)	(0.0485)*	(0.0552)
	[0.0324]	[0.0200]	[0.0659]	[0.0769]
State Level ME - Centralized	-0.0573	0.1421	0.0945	0.0744
	(0.0330)*	(0.0674)**	(0.0879)	(0.1031)
	[0.0499]	[0.0758]*	[0.1178]	[0.1479]
State Level ME - Coroner State	-0.0801	0.0246	0.0266	0.0852
	(0.0346)**	(0.0337)	(0.1008)	(0.0540)
	[0.0507]	[0.0529]	[0.1711]	[0.0917]
Observations	2,450	2,450	2,433	1,800
Number of fips	50	50	50	50
Control Variables	Yes	Yes	Yes	Yes
State FE	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes

Primary Results: Per Violent Death

Table 3: Poisson Regression: Rate of Death Type by Total Violent Deaths

VARIABLES	Accidents	Suicide	Homicide	Autopsy
Pct of Pop. Covered by ME	-0.0213	0.0345	0.0197	-0.1288
	(0.0160)	(0.0474)	(0.0715)	(0.0997)
	[0.0208]	[0.0675]	[0.0990]	[0.1860]
Coroner Required Training	-0.0047	-0.0230	0.0687	-0.0240
	(0.0084)	(0.0188)	(0.0387)*	(0.0635)
	[0.0103]	[0.0272]	[0.0510]	[0.0893]
State Level ME - Centralized	-0.0429	0.1609	0.1185	0.0538
	(0.0223)*	(0.0660)**	(0.0757)	(0.1022)
	[0.0267]	[0.0790]**	[0.0974]	[0.1542]
State Level ME - Coroner State	-0.0283	0.0861	0.0663	0.1349
	(0.0145)*	(0.0329)***	(0.0771)	(0.0608)**
	[0.0222]	[0.0450]*	[0.1226]	[0.1068]
Observations	2,433	2,433	2,433	1,789
Number of fips	50	50	50	50
Control Variables	Yes	Yes	Yes	Yes
State FE	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes

Female - Male

Table 4: Rate of Death Type by Total Violent Deaths: Female - Male

	Female			lale
VARIABLES	Accidents	Suicide	Accidents	Suicide
D (D C)	0.04.00			0.0510
Pct of Pop. Covered by ME	-0.0192	0.0035	-0.0225	0.0510
	(0.0131)	(0.0512)	(0.0177)	(0.0469)
	[0.0199]	[0.0789]	[0.0224]	[0.0644]
Coroner Required Training	0.0019	-0.0259	-0.0051	-0.0296
	(0.0062)	(0.0276)	(0.0099)	(0.0177)*
	[0.0079]	[0.0379]	[0.0124]	[0.0261]
State Level ME - Centralized	-0.0543	0.2283	-0.0334	0.1351
	(0.0172)***	(0.0725)***	(0.0247)	(0.0658)**
	`[0.0229́]**	[0.1002]**	[0.0293]	[0.0774]*
State Level ME - Coroner State	-0.0149	0.0800	-0.0333	0.0851
	(0.0097)	(0.0402)**	(0.0169)**	(0.0323)***
	[0.0146]	[0.0604]	[0.0272]	`[0.0470]*
Observations	2,234	2,234	2,387	2,387
Number of fips	50	50	50	50
Control Variables	Yes	Yes	Yes	Yes
	Yes	Yes	Yes	Yes
State FE	res	res	res	res

Black - White

Table 5: Rate of Death Type by Total Violent Deaths: Black - White

	Black		White	
VARIABLES	Accidents	Suicide	Accidents	Suicide
Pct of Pop. Covered by ME	0.0239	0.1100	-0.0239	0.0240
Tet of Top. Covered by ME	(0.0297)	(0.0800)	(0.0129)*	(0.0459)
	[0.0740]	[0.1605]	[0.0176]	[0.0639]
Coroner Required Training	-0.0358	-0.1131	-0.0012	-0.0125
	(0.0237)	(0.0446)**	(0.0067)	(0.0179)
	[0.0285]	[0.0681]*	[0.0085]	[0.0243]
State Level ME - Centralized	-0.1734	0.2602	-0.0392	0.1414
	(0.0482)***	(0.1183)**	(0.0178)**	(0.0555)**
	[0.0693]**	[0.1975]	[0.0225]*	[0.0695]**
State Level ME - Coroner State	-0.0079	0.0449	-0.0300	0.0769
	(0.0380)	(0.0434)	(0.0134)**	(0.0336)**
	[0.0500]	[0.1140]	[0.0214]	`[0.0498]
Observations	1,749	1,749	2,389	2,389
Number of fips	45	45	50	50
Control Variables	Yes	Yes	Yes	Yes
State FE	Yes	Yes	Yes	Yes

Robustness Results: Firearms

Table 6: Poisson Regression: Suicide Rate by Firearm Use

VARIABLES	Suicide w/o Firearms	Suicide w/ Firearms
Pct of Pop. Covered by ME	0.0141	0.0907
	(0.0864)	(0.0431)**
	[0.1136]	[0.0668]
Coroner Required Training	0.0044	-0.0443
	(0.0326)	(0.0183)**
	[0.0478]	[0.0252]*
State Level ME - Centralized	0.2478	0.0948
	(0.0923)***	(0.0553)*
	[0.1098]**	[0.0659]
State Level ME - Coroner State	0.1795	0.0205
	(0.0587)***	(0.0348)
	[0.0816]**	[0.0486]
Observations	2,433	2,326
Number of fips	50	50
Control Variables	Yes	Yes
State FE	Yes	Yes
Year FE	Yes	Yes

Robustness Results: Unemployment

Table 7: Rate of Death Type by Total Violent Deaths: Unemployment

VARIABLES	Accidents	Suicide	Homicide	Autopsy
Unemployment Rate	-0.0040	0.0172	-0.0092	0.0130
	(0.0014)***	(0.0036)***	(0.0079)	(0.0077)*
	[0.0016]**	[0.0039]***	[0.0081]	[0.0086]
Pct of Pop. Covered by ME	-0.0199	0.0492	0.0188	-0.1316
	(0.0251)	(0.0793)	(0.0756)	(0.1981)
	[0.0515]	[0.1357]	[0.1674]	[0.3915]
Coroner Required Training	-0.0127	-0.0148	0.0943	-0.0461
	(0.0071)*	(0.0161)	(0.0282)***	(0.0615)
	[0.0085]	[0.0229]	[0.0378]***	[0.0870]
State Level ME - Centralized	-0.0721	0.1838	0.1895	-0.0119
	(0.0381)*	(0.1156)	(0.0675)***	(0.2031)
	[0.0544]	[0.1415]	`[0.1123]*	[0.2883]
State Level ME - Coroner State	-0.0240	0.0691	0.0084	0.1325
	(0.0133)*	(0.0293)**	(0.0508)	(0.0670)**
	[0.0226]	[0.0429]	[0.0932]	[0.1200]
Observations	2,033	2,033	2,033	1,589
Number of fips	50	50	50	50
Control Variables	Yes	Yes	Yes	Yes
State FE	Yes	Yes	Yes	Yes

Robustness Results: Murder

Table 8: Rate of Death Type by Total Violent Deaths: Murder

VARIABLES	Accidents	Suicide	Murder	Autopsy
Pct of Pop. Covered by ME	-0.0014	0.0540	-0.1209	-0.0907
	(0.0146)	(0.0489)	(0.0794)	(0.1008)
Coroner Required Training	-0.0055	-0.0227	0.0841**	-0.0237
	(0.0083)	(0.0193)	(0.0401)	(0.0641)
State Level ME - Centralized	-0.0246	0.1787***	-0.0594	0.0853
	(0.0223)	(0.0660)	(0.0863)	(0.1046)
State Level ME - Coroner State	-0.0275**	0.0847***	0.0432	0.1303**
	(0.0134)	(0.0320)	(0.0682)	(0.0617)
Observations	2,450	2,450	2,450	1,800
Number of fips	50	50	50	50
Control Variables	Yes	Yes	Yes	Yes
State FE	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes

• Obtain Restricted Death data to eliminate missing observations

- Obtain Restricted Death data to eliminate missing observations
- Estimate the effects of Death Investigation on SIDS cases

- Obtain Restricted Death data to eliminate missing observations
- Estimate the effects of Death Investigation on SIDS cases
- County level analysis

- Obtain Restricted Death data to eliminate missing observations
- Estimate the effects of Death Investigation on SIDS cases
- County level analysis
- Drug related death differences (similar to Ruhm 2018)

• We find evidence of measurement error between coroner and medical examiner systems.

- We find evidence of measurement error between coroner and medical examiner systems.
- There exist a misclassification of suicides as accidents among coroners.

- We find evidence of measurement error between coroner and medical examiner systems.
- There exist a misclassification of suicides as accidents among coroners.
- The measurement error is mitigated when a state level medical examiner is available.

- We find evidence of measurement error between coroner and medical examiner systems.
- There exist a misclassification of suicides as accidents among coroners.
- The measurement error is mitigated when a state level medical examiner is available.
- The measurement error is more pronounced for non-firearm deaths.

Question

Jose M. Fernandez University of Louisville

email: jose.fernandezlouisville.edu

louisville.edu/faculty/jmfern02 (Work webpage)

https://twitter.com/UofLEcon