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Introduction

I Relationship between democracy and economic growth is of long
standing interest

I We revisit the panel analysis of Acemoglu, Naidu, Restrepo,
Robinson (19, JPE) using modern econometric methods that have
been adapted to deal with high-dimensional nature of the problem

I Conventional panel estimators suffer from biases arising due to
high-dimensionality:

I Fixed Effects Estimator is biased due to estimation of many
nuisance parameters;

I Arellano-Bond Estimator is biased due to the use of many
moments

I De-biased estimators produce substantially higher estimates of
long run effect of democracy on growth



Dynamic Linear Panel Model

Yit = ai + bt + D ′itα + W ′itβ + εit , i = 1, ...,N; t = 1, ...,T

I Yit is the outcome (log GDP) for a country i in year t

I Dit is a vector of treatments (encoding democracy), whose
predictive effect α we would like to estimate

I Wit is a vector of covariates or controls including a constant and
lags of Yit

I ai and bt are unobserved unit and time effects that can be
correlated to Dit and Wit .

I εit is an error term normalized to have zero mean for each unit that
satisfies the weak sequential exogeneity condition

εit ⊥ Iit , Iit := {(Dis ,Wis , bs)ts=1, ai}



Fixed Effects Approach

I Treat unit and time effects as parameters to be estimated

I Applies OLS in the model:

Yit = D ′itα + X ′itγ + εit , Xit := (W ′it ,Q
′
i ,Q

′
t)
′

I Qi is an N-dimensional vector of unit fixed effects and Qt is a
T -dimensional vector of time fixed effects

I FE can be seen as an exactly identified GMM estimator with the
score function

g(Zi , α, γ) = {(Yit − D ′itα− X ′itγ)Mit}
T
t=1 , Mit := (D ′it ,X

′
it)
′

for Zi := {(Yit ,D
′
it ,W

′
it)
′}Tt=1



Problems with Fixed Effects Estimator:
High-Dimensionality

I Here we estimate at least N nuisance parameters

I Need to rely on T large, formally T →∞ in order to drive bias b of
the estimator to zero under the weak exogeneity condition

I But this alone does not suffice for inference, since bias b is large
compared to the stochastic error O(1/

√
NT ) of the estimator of α

I Problems with FE with small T are well documented in
econometrics and machine learning (e.g., Neyman and Scott, 48;
Nickell, 81; Hahn and Kuersteiner, 2011)



AB Approach

I Eliminate ai by taking differences across time

∆Yit = ∆D ′itα + ∆X ′itγ + ∆εit , Xit = (W ′it ,Q
′
t)
′

I Moment conditions for the variables in differences

∆εit ⊥ Mit , Mit = [(D ′is ,W
′
is)t−1s=1,Q

′
t ], t = 2, . . . ,T

I Lead to overidentified GMM with score function

g(Zi , α, γ) = {(∆Yit −∆D ′itα−∆X ′itγ)Mit}Tt=2, Mit = [(D ′is ,W
′
is)

t−1
s=1 ,Q

′
t ]

I This is the Arellano-Bond (91) estimator



Problems with AB: High Dimensionality

I Arellano-Bond is consistent under short-panel asymptotics, but it
can be biased when T is large due to the many instrument problem

I The number of instruments or moment conditions is

m = dim(g(Zi , α, γ)) = O(T 2)

I The bias of the estimator will scale with m2 = O(T 4) and may not
be small compared to the sampling error Op(1/

√
NT ) of the

estimator



High Dimensional Asymptotic Approximation

I In the FE approach, the dimension of α is low, but the dimension of
γ might be high. Think of this as:

p = dim(γ)→∞, n→∞, dim(α) = const.

I In the AB approach, the number of moment conditions,

m = dim(g(Zi , α, γ)),

can be high, while the dimension of α is low. Think of this as:

m→∞, n→∞, dim(α) = const.



GMM in High Dimensions

I The approximate normality and consistency results of GMM
estimator α̂ continue to hold if

p2 and m2 are small compared to n,

formally
(p ∨m)2/n→ 0 as n→∞

Can interpret as the small bias condition.

I But in the FE approach

p2 = O(N2 + T 2) is not small compared to n = NT

I But in the AB approach, if T is large

m2 = O(T 4) is not small compared to n = NT



GMM in High Dimensions

I To understand the rate condition, focus on the exactly identified
case where p = m

I An asymptotic second order expansion of α̂ around α gives

α̂− α = Zn/
√
n + b/n + rn,

I Zn is an asymptotic normal term, b = O(p) is a first order bias
term, and rn is the higher order remainder such as

rn = Op((p/n)3/2 + p1/2/n)

I Zn/
√
n dominates b/n if

√
nb/n→ 0, i.e. p2/n→ 0,

and dominates rn if

√
nrn →P 0, i.e. p3/2/n→ 0



Bias Corrections

I The bias is the bottleneck in the expansion, so can do two things:

a) Analytical bias correction: estimate b/n using analytical
expressions for the bias and set

α̌ = α̂− b̂/n.

b) Split-sample bias correction: split the sample into two parts,
compute the estimator on the two parts α̂(1) and α̂(2), and
then set

α̌ = α̂− (ᾱ− α̂), ᾱ = (α̂(1) + α̂(2))/2.

In some cases we can average over many splits to reduce
variability

I With the bias correction, the rate requirement for GMM becomes
weaker:

(p ∨m)3/2/n→ 0 as n→∞



Why does the sample-splitting method work?

I The key is to split the sample such that the number of nuisance
parameters and moment conditions are the same in all the parts

I Then, assuming that the parts are homogenous, the first order
biases of α̂, α̂(1), and α̂(2) are

b

n
,

b

n/2
,

b

n/2

I The first order bias of α̌ is

2
b

n
−
(

1

2

[
b

n/2

]
+

1

2

[
b

n/2

])
= 0



Implementation of Split-Sample Bias Correction

I Need to determine the right partition of the data

I In FE approach: halve the panel along the time series dimension
(Dhaene and Jochmans, 15)

This partition preserves the time series structure and delivers two
panels with the same number of unit fixed effects and half the
number of observations

I In AB approach: halve the panel along the cross section dimension

This partition delivers two panels where the number of observations
relative to the number of instruments is half of the original panel

Can average across multiple splits to reduce variability because the
cross-sectional ordering of the observations is arbitrary



Analytical Bias Correction for FE Approach

I Bias b is determined by, following Nickell (81) type arguments:

Hb = − 1

T

N∑
i=1

T∑
t=2

t−1∑
s=1

E[Ditεis ], H =
1

NT

N∑
k=1

T∑
t=1

E[D̃itD̃
′
it ],

where D̃it is the residual of the linear projection of Dit on Xit

I b = O(N) because the source of the bias is the estimation of the N
unit fixed effects

I There is no bias from time fixed effects because the model is linear

I An estimator of the bias (Hahn and Kuersteiner, 11) can be formed
as

Ĥb̂ = −
T−1∑
t=1

(t+M)∧T∑
s=t+1

Dis ε̂it
T − s + t

, Ĥ =
1

NT

N∑
k=1

T∑
t=1

D̃itD̃
′
it ,

where ε̂it is the fixed effect residual and M is such that M/T → 0
and M →∞ as T →∞



Democracy and Growth : Acemoglu et al. (19, JPE)

I Extract a balanced panel of 147 countries over the period from 1987
through 2009 from Acemoglu et al. (19, JPE)

I Yit is the logarithm of GDP per capita in 2000 USD as measured by
the World Bank for country i at year t

I Dit is a democracy indicator that combines information from several
sources including Freedom House and Polity IV

It captures a bundle of institutions that characterize electoral
democracies such as free and competitive elections, checks on
executive power, an inclusive political process



Summary Statistics

Mean SD Dem = 1 Dem = 0
Democracy 0.62 0.49 1.00 0.00

Log(GDP) 7.58 1.61 8.09 6.75

Number Obs. 3,381 3,381 2,099 1,282



Empirical Specification

I Dynamic linear panel data model, where we control for unobserved
country effects, time effects (e.g. trends) and rich dynamics of GDP
using four lags of Yit

I The target parameter α measures the instantaneous or short-run
effect of a transition to democracy on economic growth

I The permanent or long-run dynamic effect is

α/(1−
4∑

j=1

βj),

where β1, . . . , β4 are the coefficients corresponding to the lags of Yit



Estimators

I FE estimates p = 170 parameters with n = 147× 19 = 2, 793
observations, after using the first 4 periods as initial conditions, it
fails small bias condition:

(m ∨ p)2/n ≈ 10

I Bias corrected FE-ABC and FE-SBC implement the analytical and
split-sample bias correction for FE

I AB relies on m = 632 instruments and n = 147× 18 = 2, 646
observations, after using the first 5 periods as initial conditions; it
fails small bias condition because

(m ∨ p)2/n ≈ 150

I Bias-Corrected AB- SBC1 and AB-SBC5 implement the split-sample
bias correction for AB with 1 and 5 splits

I Analytical and bootstrap standard errors clustered at the country
level



Effect of Democracy on Economic Growth

Fixed Effects AB
FE FE-ABC FE-SBC AB AB-SBC1 AB-SBC5

Short-run 1.89 2.27 2.44 3.94 5.22 4.53
(×100) (0.65) (1.50)

[0.64] [0.64] [0.96] [1.52] [1.83] [1.91]

Long-run 16.05 25.91 25.69 20.97 26.46 25.24
(×100) (6.67) (9.51)

[6.63] [9.31] [12.12] [9.38] [10.72] [11.29]

Note 1: All the specifications include country and year effects.

Note 2: Clustered standard errors at the country level in parentheses.

Note 3: Bootstrap standard errors in brackets based on 500 replications.



Concluding Remarks

I We revisit the analysis of the causal effect of democracy on
economic growth using state of the art econometrics methods that
address the high-dimensional aspects of the problem.

I Traditional (FE and Arellano-Bond) estimators might be biased due
to high dimensionality (number of estimated nuisance parameters or
number of moments too high). Apply bias corrections for high
dimensionality based on analytical and split-sample methods.

I Bias corrected estimators produce substantially higher estimates
of long run effect of democracy on growth (than the estimates
without bias correction).

I The state-of-the art methods are simple-to-use and are taught in
our first-year econometrics courses, also discussed in our
introductory econometrics book draft (available via MIT
opencourseware for 14.382).


