Reconciling Seemingly Contradictory Results from the Oregon Health Insurance Experiment and the Massachusetts Health Reform

Amanda E. Kowalski

Gail Wilensky Professor of Applied Economics and Public Policy Department of Economics, University of Michigan

January 2019

"Doing More When You're Running LATE: Applying Marginal Treatment Effect Methods to Examine Treatment Effect Heterogeneity in Experiments." *NBER WP 22363.*

"How to Examine External Validity Within an Experiment." *NBER WP 24834.*

"Behavior within a Clinical Trial and Implications for Mammography Guidelines" NBER WP 25049.

"Extrapolation using Selection and Moral Hazard Heterogeneity from within the Oregon Health Insurance Experiment." *NBER WP 24647*. Reconciling Seemingly Contradictory Results from Oregon and Massachusetts

- 1. I find selection and treatment effect heterogeneity within Oregon
- 2. I use it to reconcile Oregon and Massachusetts LATEs
- 3. I show that self-reported health & previous ER utilization explain heterogeneity and reconciliation

Reconciling Seemingly Contradictory Results from Oregon and Massachusetts

- 1. I find selection and treatment effect heterogeneity within Oregon
- 2. I use it to reconcile Oregon and Massachusetts LATEs
- 3. I show that self-reported health & previous ER utilization explain heterogeneity and reconciliation

I: fraction insured

 $U_D:$ unobserved net cost of treatment

Reconciling Seemingly Contradictory Results from Oregon and Massachusetts

- 1. I find selection and treatment effect heterogeneity within Oregon
- 2. I use it to reconcile Oregon and Massachusetts LATEs
- 3. I show that self-reported health & previous ER utilization explain heterogeneity and reconciliation

		Μ	Difference in Means			
	All	(1) Always Takers	(2) Compliers	(3) Never Takers	(1) - (2)	(2) - (3)
Oregon Health Insurance Experiment	of 2008					
Fair or Poor Health, Untreated ^a	0.42	_	0.55	0.34	_	0.20
Number of Pre-period ER Visits	0.87	1.36	0.88	0.73	0.48	0.15
Common Observables						
Age	40.69	39.45	42.41	40.25	-2.96	2.16
Female	0.56	0.72	0.53	0.53	0.19	0.003
English	0.91	0.90	0.92	0.91	-0.02	0.01
Ν	$19,\!643$	2,986	$5,\!092$	$11,\!565$		
Massachusetts Health Reform of 2006						
Fair or Poor Health, Untreated ^a	0.19	-	0.21	0.18	_	0.03
Common Observables						
Age	42.00	42.15	42.42	38.98	-0.26	3.43
Female	0.51	0.52	0.43	0.38	0.10	0.04
English	0.96	0.98	0.86	0.81	0.12	0.05
Ν	62,456	55,966	3,175	3,314		

 U_D : unobserved net cost of treatment

Reconciling Seemingly Contradictory Results from Oregon and Massachusetts

- 1. I find selection and treatment effect heterogeneity within Oregon
- 2. I use it to reconcile Oregon and Massachusetts LATEs
- 3. I show that self-reported health & previous ER utilization explain heterogeneity and reconciliation

Appendix

Reconciling Seemingly Contradictory Results from Oregon and Massachusetts

- 1. Findings
 - Selection & treatment effect heterogeneity within Oregon
 - Selection heterogeneity
 - Treatment effect heterogeneity under an ancillary assumption
 - Reconciling Oregon and Massachusetts LATEs
 - Massachusetts MTE(p) also slopes downward
 - MTE-reweighting from Oregon to Massachusetts can reconcile LATEs
 - Self-reported health & previous ER utilization explain heterogeneity and reconciliation
 - Reconciling LATEs using self-reported health
 - Previous ER utilization explains heterogeneity within Oregon
 - LATE-reweighting with common observables cannot reconcile LATEs
 - MTE-reweighting with common observables can reconcile LATEs

Number of ER Visits for Always Takers, Compliers and Never Takers

		Mean			
	(1)	(2)	(3)	Untreated	Treated
	Always		Never	Outcome Test	Outcome Test
	Takers	Compliers	Takers	(2) - (3)	(1) - (2)
Number of ER Visits					
Treated	1.89	1.45	0.55		0.44
	(0.08)	(0.11)	(0.45)		(0.17)
Untreated	1.35	1.19	0.85	0.34	
	(0.17)	(0.11)	(0.03)	(0.13)	
Treatment Effect	0.54	0.27	-0.29		
(Treated - Untreated)	(0.19)	(0.15)	(0.45)		

 U_D : unobserved net cost of treatment

8

$$V = V_U + (V_T - V_U)D$$
$$V_T - V_U = \mu_D(Z) - \nu_D$$

$$V = V_U + (V_T - V_U)D$$
$$V_T - V_U = \mu_D(Z) - \nu_D$$

Assumptions:

A.1. (Continuity) $F(\cdot)$: absolutely continuous with respect to the Lebesgue measure

$$V = V_U + (V_T - V_U)D$$

 $V_T - V_U = \mu_D(Z) - \nu_D$
 $U_D = F(\nu_D), U_D \sim U[0, 1]$

Assumptions:

A.1. (Continuity) $F(\cdot)$: absolutely continuous with respect to the Lebesgue measure

$$\begin{array}{l} \text{Proof: } U_D \thicksim U[0,1] \\ F_{U_D}(u) = P(U_D \leq u) \\ &= P(F(\nu_D) \leq u) \\ &= P(\nu_D \leq F^{-1}(u)) \\ &= F(F^{-1}(u)) = u \end{array} \quad (F(\cdot) \text{ absolutely continuous by A.1}) \end{array}$$

$$egin{aligned} V &= V_U + (V_T - V_U) D \ V_T - V_U &= \mu_D(Z) -
u_D \end{aligned} \quad U_D &= F(
u_D), \ U_D \sim U[0,1] \end{aligned}$$

Assumptions:

- A.1. (Continuity) $F(\cdot)$: absolutely continuous with respect to the Lebesgue measure
- **A.2.** (Independence) (U_D, γ_T) and $(U_D, \gamma_U) \perp Z$

$$V = V_U + (V_T - V_U)D$$
$$V_T - V_U = \mu_D(Z) - \nu_D$$
$$D = 1\{0 \le V_T - V_U\}$$
$$\Rightarrow D = 1\{U_D \le P(D = 1 \mid Z = z)\}$$

$$U_D = F(\nu_D), U_D \sim U[0,1]$$

Assumptions:

- A.1. (Continuity) $F(\cdot)$: absolutely continuous with respect to the Lebesgue measure
- **A.2.** (Independence) (U_D, γ_T) and $(U_D, \gamma_U) \perp Z$

$$\begin{array}{ll} \text{Proof: } D = \mathbf{1}\{U_D \leq \mathrm{P}(D = \mathbf{1} \mid Z = z)\} \\ & D = 1\{0 \leq V_T - V_U\} \\ & = 1\{0 \leq \mu_D(Z) - \nu_D\} \\ & = 1\{\nu_D \leq \mu_D(Z)\} \\ & = 1\{F(\nu_D) \leq F(\mu_D(Z))\} & (\text{definition of } F(\cdot) \text{ from A.1}) \\ & = 1\{U_D \leq F(\mu_D(Z))\} & (U_D = F(\nu_D) \text{ by definition}) \\ & = 1\{U_D \leq \mathrm{P}(D = 1 \mid Z = z)\}, \end{array}$$

where the last equality follows from

$$F(\mu_D(Z)) = P(\nu_D \le \mu_D(Z))$$

= $P(\nu_D \le \mu_D(z) \mid Z = z)$ ($U_D \perp Z$ by A.2)
= $P(0 \le \mu_D(Z) - \nu_D \mid Z = z)$
= $P(0 \le V_T - V_U \mid Z = z)$
= $P(D = 1 \mid Z = z)$.

$$V = V_U + (V_T - V_U)D$$
$$V_T - V_U = \mu_D(Z) - \nu_D$$
$$D = 1\{0 \le V_T - V_U\}$$
$$\Rightarrow D = 1\{U_D \le P(D = 1 \mid Z = z)\}$$

$$U_D = F(\nu_D), U_D \sim U[0,1]$$

Assumptions:

- A.1. (Continuity) $F(\cdot)$: absolutely continuous with respect to the Lebesgue measure
- **A.2.** (Independence) (U_D, γ_T) and $(U_D, \gamma_U) \perp Z$
- **A.3.** (Instrument Relevance) $\mu_D(Z)$: nondegenerate random variable

$$\begin{split} V &= V_U + (V_T - V_U)D \\ V_T - V_U &= \mu_D(Z) - \nu_D \\ D &= 1\{0 \le V_T - V_U\} \\ \Rightarrow D &= 1\{U_D \le P(D = 1 \mid Z = z)\} \\ Z &= 0: \quad D = 1\{U_D \le p_C\}, \quad p_C = P(D = 1 \mid Z = 0) \\ Z &= 1: \quad D = 1\{U_D \le p_I\}, \quad p_I = P(D = 1 \mid Z = 1) \end{split}$$

Assumptions:

- A.1. (Continuity) $F(\cdot)$: absolutely continuous with respect to the Lebesgue measure
- **A.2.** (Independence) (U_D, γ_T) and $(U_D, \gamma_U) \perp Z$
- **A.3.** (Instrument Relevance) $\mu_D(Z)$: nondegenerate random variable

8

$$V = V_U + (V_T - V_U)D$$

$$V_T - V_U = \mu_D(Z) - \nu_D$$

$$D = 1\{0 \le V_T - V_U\}$$

$$\Rightarrow D = 1\{U_D \le P(D = 1 \mid Z = z)\}$$

$$Z = 0: \quad D = 1\{U_D \le p_C\}, \quad p_C = P(D = 1 \mid Z = 0)$$

$$Z = 1: \quad D = 1\{U_D \le p_I\}, \quad p_I = P(D = 1 \mid Z = 1)$$

 U_D : unobserved net cost of treatment

$$V = V_U + (V_T - V_U)D$$

$$V_T - V_U = \mu_D(Z) - \nu_D$$

$$D = 1\{0 \le V_T - V_U\}$$

$$\Rightarrow D = 1\{U_D \le P(D = 1 | Z = z)\}$$

$$Z = 0: \quad D = 1\{U_D \le p_C\}, \quad p_C = P(D = 1 | Z = 0)$$

$$Z = 1: \quad D = 1\{U_D \le p_I\}, \quad p_I = P(D = 1 | Z = 1)$$

$$V = V_U + (V_T - V_U)D$$

$$V_T - V_U = \mu_D(Z) - \nu_D$$

$$D = 1\{0 \le V_T - V_U\}$$

$$\Rightarrow D = 1\{U_D \le P(D = 1 | Z = z)\}$$

$$Z = 0: \quad D = 1\{U_D \le p_C\}, \quad p_C = P(D = 1 | Z = 0)$$

$$Z = 1: \quad D = 1\{U_D \le p_I\}, \quad p_I = P(D = 1 | Z = 1)$$

$$V = V_U + (V_T - V_U)D$$

$$V_T - V_U = \mu_D(Z) - \nu_D$$

$$D = 1\{0 \le V_T - V_U\}$$

$$\Rightarrow D = 1\{U_D \le P(D = 1 \mid Z = z)\}$$

$$Z = 0: \quad D = 1\{U_D \le p_C\}, \quad p_C = P(D = 1 \mid Z = 0)$$

$$Z = 1: \quad D = 1\{U_D \le p_I\}, \quad p_I = P(D = 1 \mid Z = 1)$$

$$V = V_U + (V_T - V_U)D$$

$$V_T - V_U = \mu_D(Z) - \nu_D$$

$$D = 1\{0 \le V_T - V_U\}$$

$$\Rightarrow D = 1\{U_D \le P(D = 1 \mid Z = z)\}$$

$$Z = 0: \quad D = 1\{U_D \le p_C\}, \quad p_C = P(D = 1 \mid Z = 0)$$

$$Z = 1: \quad D = 1\{U_D \le p_I\}, \quad p_I = P(D = 1 \mid Z = 1)$$

$$V = V_U + (V_T - V_U)D$$

$$V_T - V_U = \mu_D(Z) - \nu_D$$

$$D = 1\{0 \le V_T - V_U\}$$

$$\Rightarrow D = 1\{U_D \le P(D = 1 \mid Z = z)\}$$

$$Z = 0: \quad D = 1\{U_D \le p_C\}, \quad p_C = P(D = 1 \mid Z = 0)$$

$$Z = 1: \quad D = 1\{U_D \le p_I\}, \quad p_I = P(D = 1 \mid Z = 1)$$

$$V = V_U + (V_T - V_U)D$$

$$V_T - V_U = \mu_D(Z) - \nu_D$$

$$D = 1\{0 \le V_T - V_U\}$$

$$\Rightarrow D = 1\{U_D \le P(D = 1 \mid Z = z)\}$$

$$Z = 0: \quad D = 1\{U_D \le p_C\}, \quad p_C = P(D = 1 \mid Z = 0)$$

$$Z = 1: \quad D = 1\{U_D \le p_I\}, \quad p_I = P(D = 1 \mid Z = 1)$$

Second Stage:

$$Y = Y_U + (Y_T - Y_U)D$$

$$Y_T = g_T(U_D, \gamma_T)$$

$$Y_U = g_U(U_D, \gamma_U)$$

$$Z \perp (\gamma_T, \gamma_U) \text{ by A.2.}$$

Assumptions (Second Stage):

A.4. (Treated and Untreated) 0 < P(D = 1) < 1A.5. (Finite Average Outcomes) $E[Y_T], E[Y_U]$ are finite

$$\begin{split} V &= V_U + (V_T - V_U)D \\ V_T - V_U &= \mu_D(Z) - \nu_D \\ D &= 1\{0 \le V_T - V_U\} \\ \Rightarrow D &= 1\{U_D \le P(D = 1 \mid Z = z)\} \\ Z &= 0: \quad D = 1\{U_D \le p_C\}, \quad p_C = P(D = 1 \mid Z = 0) \\ Z &= 1: \quad D = 1\{U_D \le p_I\}, \quad p_I = P(D = 1 \mid Z = 1) \end{split}$$

Second Stage:

8

$$Y = Y_U + (Y_T - Y_U)D$$

$$Y_T = g_T(U_D, \gamma_T)$$

$$Y_U = g_U(U_D, \gamma_U)$$

$$Z \perp (\gamma_T, \gamma_U) \text{ by A.2.}$$

	Always	Compliers	Never Takers
	Takers		
0	$p_C =$	$= 0.15$ $p_I =$	= 0.41 1

 $U_D\colon$ unobserved net cost of treatment

Selection and Treatment Effect Heterogeneity

Selection + Treatment Effect Heterogeneity: Selection Heterogeneity: Treatment Effect Heterogeneity: $MTO(x, p) = E[Y_T | X = x, U_D = p]$ $MUO(x, p) = E[Y_U | X = x, U_D = p]$ $MTE(x, p) = E[Y_T - Y_U | X = x, U_D = p]$

Selection Heterogeneity from Literature: $E[Y_U \mid D = 1] - E[Y_U \mid D = 0]$ Treatment Effect Heterogeneity from Literature: $E[Y_T - Y_U \mid D = 1] - E[Y_T - Y_U \mid D = 0]$

Identifying Selection and Moral Hazard Heterogeneity

Untreated Outcome Test

$$E[Y_U \mid p_C < U_D \le p_I] - E[Y_U \mid p_I < U_D \le 1] = \int_0^1 (\omega(p, p_C, p_I) - \omega(p, p_I, 1)) \operatorname{MUO}(p) \, \mathrm{d}p$$

Treated Outcome Test

 $E[Y_T \mid 0 \le U_D \le p_C] - E[Y_T \mid p_C < U_D \le p_I] = \int_0^1 (\omega(p, 0, p_C) - \omega(p, p_C, p_I)) \operatorname{MTO}(p) dp$

with weights $\omega(p, p_L, p_H) = 1\{p_L \leq p < p_H\}/(p_H - p_L)$

$$V = V_U + (V_T - V_U)D$$

$$V_T - V_U = \mu_D(Z) - \nu_D$$

$$D = 1\{0 \le V_T - V_U\}$$

$$\Rightarrow D = 1\{U_D \le P(D = 1 \mid Z = z)\}$$

$$U_D = F(\nu_D), U_D \sim U[0,1]$$

Second Stage:

Ancillary Assumption:

AA.1. (Linear Selection Heterogeneity and Linear Treatment Effect Heterogeneity)

$$MTO(p) = E[Y_T | U_D = p] = \alpha_T + \beta_T p$$

$$MUO(p) = E[Y_U | U_D = p] = \alpha_U + \beta_U p$$

$$MTE(p) = E[Y_T - Y_U | U_D = p] = (\alpha_T - \alpha_U) + (\beta_T - \beta_U) p.$$

MTE-Reweighting from Oregon to Massachusetts Can Reconcile LATEs

Integrate the weighted MTE, MTO and MUO functions over a general range of enrollment margin $p_L < U_D \leq p_H$

$$E[Y_T \mid p_L < U_D \le p_H] = \int_0^1 \omega(p, p_L, p_H) \operatorname{MTO}(p) \, dp$$
$$E[Y_U \mid p_L < U_D \le p_H] = \int_0^1 \omega(p, p_L, p_H) \operatorname{MUO}(p) \, dp$$
$$E[Y_T - Y_U \mid p_L < U_D \le p_H] = \int_0^1 \omega(p, p_L, p_H) \operatorname{MTE}(p) \, dp$$

using weights $\omega(p, p_L, p_H) = 1\{p_L$

$$V = V_U + (V_T - V_U)D$$

$$V_T - V_U = \mu_D(Z, X) - \nu_D$$

$$U_D = F(\nu_D | X), U_D \sim U[0, 1]$$

$$D = 1\{0 \le V_T - V_U\}$$

$$\Rightarrow D = 1\{U_D \le P(D = 1 | Z = z, X)\}$$

$$Z = 0: \quad D = 1\{U_D \le p_{CX}\}, \quad p_{CX} = P(D = 1 | Z = 0, X)$$

$$Z = 1: \quad D = 1\{U_D \le p_{IX}\}, \quad p_{IX} = P(D = 1 | Z = 1, X)$$

Second Stage with Shape Restriction:

Ancillary Assumption - Linearity of MTO(x, p), MUO(x, p) in p:

AA.2. MTO
$$(x,p) = \mathbb{E}[Y_T \mid X = x, U_D = p] = \delta'_T x + \lambda_T p$$

AA.3. MTO $(x,p) = \mathbb{E}[Y_T \mid X = x, U_D = p] = \delta'_T x + \lambda_T p$
MTO $(x,p) = \mathbb{E}[Y_T - Y_U \mid X = x, U_D = p] = (\delta'_T - \delta'_T)x + (\lambda_T - \lambda_U)p$

Subgroup Analysis of Common Observables with LATE and $\mathrm{MTE}(p)$

	(1)	(2)	(3)	(4)	(5)	(6)	(7)		
		Age	Age				Non-		
_	All	$\geq \text{median}^{a}$	< median ^a	Female	Male	English	English		
Oregon Health I	Oregon Health Insurance Experiment of 2008								
LATE	0.27	0.14	0.44	0.14	0.39	0.30	-0.15		
	(0.15)	(0.18)	(0.25)	(0.21)	(0.21)	(0.16)	(0.34)		
P_{C}	0.15	0.13	0.17	0.20	0.10	0.15	0.16		
	(0.003)	(0.005)	(0.005)	(0.005)	(0.004)	(0.004)	(0.01)		
p_I	0.41	0.43	0.39	0.43	0.38	0.41	0.38		
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.02)		
MTE intercept	0.64	0.98	0.31	0.48	0.92	0.72	0.14		
	(0.24)	(0.28)	(0.39)	(0.32)	(0.33)	(0.25)	(0.47)		
MTE slope	-1.32	-3.01	0.48	-1.06	-2.20	-1.51	-1.07		
	(0.88)	(1.04)	(1.49)	(1.08)	(1.40)	(0.92)	(2.07)		
p^*	0.48	0.33	-0.63	0.45	0.42	0.48	0.13		
	(2.84)	(0.85)	(10.37)	(1.49)	(3.47)	(4.53)	(11.99)		
N	19,622	9,816	9,806	10,932	8,690	17,871	1,751		

Subgroup Analysis of Common Observables with LATE and $\mathrm{MTE}(p)$

	(1)	(2)	(3)	(4)	(5)	(6)	(7)		
		Age	Age				Non-		
	All	$\geq \text{median}^{\mathbf{a}}$	< median ^a	Female	Male	English	English		
Massachusetts	Massachusetts Health Reform of 2006								
P_{C}	0.90	0.93	0.87	0.92	0.87	0.91	0.55		
	(0.003)	(0.003)	(0.005)	(0.003)	(0.005)	(0.003)	(0.02)		
p_I	0.95	0.96	0.93	0.96	0.93	0.96	0.74		
	(0.002)	(0.002)	(0.004)	(0.002)	(0.004)	(0.002)	(0.02)		
Ν	$62,\!456$	40,492	21,964	38,808	23,648	59,233	3,223		

Reconciling Seemingly Contradictory Results from Oregon and Massachusetts

• Build on selection/moral hazard in insurance

- Einav, Finkelstein, and Cullen (2010)
- Hackmann, Kolstad, and Kowalski (2015)

• Build on MTE and LATE

- Bjorklund and Moffitt (1987)
- Imbens and Angrist (1994)
- Heckman and Vytlacil (1999, 2005, 2007)
- Vytlacil (2002)
- Brinch, Mogstad, Wiswall (2015)