Nuclear Norm Regularized Estimation of Panel Regression Models

> Hyungsik Roger Moon (USC & Yonsei) Martin Weidner (UCL & CeMMaP)

> > ASSA, 2019

Introduction: Panel Regression Model with Factors

$$Y_{it} = \sum_{k=1}^{K} \beta_{0,k} X_{k,it} + \sum_{r=1}^{R_0} \lambda_{0,ir} f_{0,tr} + E_{it} , \quad i = 1 \dots N, \ t = 1 \dots T ,$$

where Y_{it} is the dependent variable, $X_{k,it}$ are regressors, $f_{0,tr}$ are factors, and $\lambda_{0,ir}$ are factor loadings.

- λ_{0,ir} and f_{0,tr} are unobserved and are treated as parameters (no distributional assumptions, interactive fixed effect model).
- ► *R*₀ is fixed but unknown.
- Object of interest: regression parameters β_0 .
- Classic Example: *Holtz-Eakin, Newey & Rosen (1988).* Study wage-dynamics using PSID data: Y_{it} is hours worked (log), $X_{k,it}$ is wage rate, lagged values of hours worked, f_t describes unobserved changes in working conditions, and λ_i unobserved earnings ability.
- Other applications: risk factors in asset pricing, controlling for global shocks in cross-country panels, etc.

Introduction: Model and Estimation Methods

$$Y_{it} = \sum_{k=1}^{K} \beta_{0,k} X_{k,it} + \sum_{r=1}^{R_0} \lambda_{0,ir} f_{0,tr} + E_{it} , \quad i = 1 \dots N, \ t = 1 \dots T ,$$

• Quasi-Differencing ($R_0 = 1$): Holtz-Eakin, Newey & Rosen (1988)

$$Y_{it} - \frac{f_{0,t}}{f_{0,t-1}} Y_{i,t-1} = \beta'_0 X_{it} - \left(\frac{f_{0,t}}{f_{0,t-1}}\beta_0\right)' X_{i,t-1} + \left(E_{it} - \frac{f_{0,t}}{f_{0,t-1}} E_{i,t-1}\right)$$

then use appropriate IV (e.g. $Y_{i,t-2}$, etc.) to estimate this equation.

- Common Correlated Effects Estimator: Pesaran (2006) Use $\overline{Y}_t = N^{-1} \sum_i Y_{it}$ and $\overline{X}_{k,t} = N^{-1} \sum_i X_{k,it}$ as a proxys for $f_{0,t}$, estimate β including these proxys for $f_{0,t}$ in a linear regression.
- Least Squares Estimator: *Kiefer (1980), Bai (2009), Moon & Weidner (2015, 2017)* Minimize the sum of squared residuals jointly over β, λ and f.
- Others: Ahn, Lee & Schmidt (2001,2013), Chamberlain & Moreira (2009), Juodis & Sarafidis (2018), etc

Introduction: Least Squares Estimator

► Denote Y, X_k: N × T matrices,

$$\lambda$$
: N × R,
f: T × R.
Denote $||A||_2^2 = \sum_{i=1}^N \sum_{t=1}^T A_{it}^2$.

Conventional way of writing the LS estimator:

$$\widehat{\beta}_{\text{LS}} = \underset{\beta}{\operatorname{argmin}} \min_{\lambda, f} \left\| Y - \underbrace{\beta \cdot X}_{:=\sum_{k} \beta_{k} X_{k}} - \lambda f' \right\|_{2}^{2}.$$

Equivalently this can be expressed as

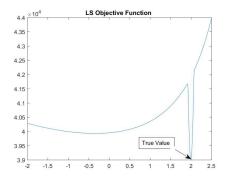
$$\widehat{eta}_{\mathrm{LS}} = \operatorname*{argmin}_{eta} \min_{\Gamma} \ \left\| Y - eta \cdot X - \Gamma \right\|_{2}^{2} \ ext{ s.t. } \operatorname{rank}(\Gamma) \leq R,$$

where Γ is an $N \times T$ matrix, and the model in terms of Γ reads

$$Y_{it} = \sum_{k=1}^{K} \beta_k X_{k,it} + \Gamma_{it} + E_{it}$$

Introduction: Non-convexity of LS objective function Example DGP:

$$\begin{split} y_{it} &= \beta_0 \, x_{it} + \sum_{r=1}^2 \lambda_{0,ir} f_{0,tr} + e_{it}, \qquad x_{it} = 0.04 e_{x,it} + \lambda_{0,i1} f_{0,t2} + \lambda_{x,i} f_{x,t}, \\ \text{where } \beta_0 &= 2, \ \lambda_{0,i} = (\lambda_{0,i1}, \lambda_{0,i2})' \sim \text{i.i.d. } \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix} \right), \\ f_{0,t} &= (f_{0,t1}, f_{0,t2})' \sim \text{i.i.d. } \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix} \right), \\ \lambda_{x,i} \sim \text{i.i.d. } 2\chi^2(1), \ f_{x,t} \sim \text{i.i.d. } 2\chi^2(1), \ e_{x,it}, e_{it} \sim \text{i.i.d. } \mathcal{N}(0,1), \text{ all mutually} \\ \text{independent, choose } N = T = 200. \text{ Plot } Q(\beta) = \min_{\lambda,f} \left\| Y - \beta \cdot X - \lambda f' \right\|_2^2 \end{split}$$



Digression: Matrix Norms used in this paper

For $N \times T$ matrix Γ , let $s_r(\Gamma)$ be the r^{th} largest singular value of Γ .

$$\|\Gamma\|_{\infty} := s_{1}(\Gamma) = \sup_{u:\|u\|=1} \sup_{v:\|v\|=1} u'\Gamma v.$$
$$\|\Gamma\|_{2} := \left(\sum_{r} s_{r}^{2}(\Gamma)\right)^{1/2} = \operatorname{Tr}(\Gamma'\Gamma)^{1/2}.$$
$$\|\Gamma\|_{1} := \sum_{r} s_{r}(\Gamma) = \sup_{\|A\|_{\infty} = 1} \operatorname{Tr}(A'\Gamma).$$

- IF ||₁ is called nuclear norm, trace norm, Schatten 1-norm, or Ky Fan n-norm.
- $\|\Gamma\|_{\infty} \leq \|\Gamma\|_{2} \leq \|\Gamma\|_{1} \leq \sqrt{\operatorname{rank}(\Gamma)} \|\Gamma\|_{2} \leq \operatorname{rank}(\Gamma) \|\Gamma\|_{1}.$

Introduction: Nuclear norm regularization

• Constraint on unobserved error component Γ_{it} :

$$\Gamma = \lambda f' \quad \Leftrightarrow \quad \operatorname{rank}(\Gamma) \leq R \quad \Leftrightarrow \quad \sum_{r=1}^{\min(N,T)} \mathbb{1}(s_r(\Gamma) > 0) \leq R,$$

where $s_1(\Gamma) \ge s_2(\Gamma) \ge \ldots \ge s_{\min(N,T)}(\Gamma) \ge 0$ are the singular values of Γ .

Convex relaxation of this constraint:

$$\sum_{r=1}^{\min(N,T)} s_r(\Gamma) =: \|\Gamma\|_1 \le \text{const.}$$

Introduction: Nuclear norm penalization

• For some $\psi > 0$ we have

$$\widehat{\beta}_{\psi} = \underset{\beta}{\operatorname{argmin}} \min_{\Gamma} \left\| \left\| Y - \beta \cdot X - \Gamma \right\|_{2}^{2} \text{ s.t. } \|\Gamma\|_{1} \leq \text{const.}$$
$$= \underset{\beta}{\operatorname{argmin}} \min_{\Gamma} \underbrace{\frac{1}{2NT} \left\| Y - \beta \cdot X - \Gamma \right\|_{2}^{2} + \frac{\psi}{\sqrt{NT}} \|\Gamma\|_{1}}_{=Q_{\psi}(\beta,\Gamma)}$$

Nuclear norm penalized estimation used in e.g.

- Machine learning and statistical learning: e.g., Fazel (2002), Candes & Recht (2009), and for a recent survey see Fazel & Parrilo (2010).
- High dimensional low rank matrix estimation: e.g., Rohde & Tsybakov (2011), Negahbab & Wainwright (2011) Negahbab, Ravikumar, Wainwright & Yu (2012), Athey, Bayati, Doudchenko, Imbens & Khosravi (2017), and many others.
- ► Factor models without regressors: Bai & Ng (2017)

Introduction: Nuclear norm minimization

Another estimator that we consider is

$$\widehat{\beta}_* = \underset{\beta}{\operatorname{argmin}} \left\| Y - \beta \cdot X \right\|_1.$$

One can show that

$$\widehat{\beta}_* = \lim_{\psi \to 0} \widehat{\beta}_{\psi},$$

because
$$\lim_{\psi o 0} \widehat{\Gamma}_{\psi} o Y - eta \cdot X$$

Introduction: Contributions of this paper

- Study nuclear-norm regularized estimator $\widehat{\beta}_{\psi}$ and its $\psi \to 0$ limit $\widehat{\beta}_*$.
- ▶ Show consistency of $\hat{\beta}_{\psi}$ and $\hat{\beta}_{*}$ as $N, T \to \infty$ and $\psi = \psi_{NT} \to 0$, under appropriate assumptions.
- ▶ Find that generically the convergence rate of $\hat{\beta}_{\psi}$ and $\hat{\beta}_{*}$ is at most $1/\sqrt{\min(N, T)}$, while the convergence rate of $\hat{\beta}_{LS}$ is $1/\min(N, T)$ ⇒ Therefore we suggest to use $\hat{\beta}_{\psi}$ and $\hat{\beta}_{*}$ as preliminary estimators (initial conditions), and obtain improved estimators that are asymptotically equivalent to $\hat{\beta}_{LS}$ in a finite number of simple LS iteration steps.
- Motivations to consider $\widehat{\beta}_{\psi}$ and $\widehat{\beta}_{*}$:
 - Computational advantage of a convex objective function, in particular when dim β is large.
 - Identification of interactive fixed effect models when the true <u>number of factors *R* is unknown</u>, and there are low-rank regressors.

Introduction: Contributions of this paper (cont.)

Post-nuclear-norm-regularized Estimation:

- \blacktriangleright Use $\widehat{\beta}_\psi$ and $\widehat{\beta}_*$ as a preliminary consistent estimator.
- Then iterate estimating β^0 and $\lambda^0 f^{0'}$.
- After two iterations, we have an estimator that is asympotically equivalent to the LS estimator (QMLE).
- Extensions: Nonlinear single-index models of unbalanced panel. These include panel probit and quantile regressions. We show consistency of $\hat{\beta}_{\psi}$: New in the literature.

Outline of the remaining talk

- 1. Motivation (convex relaxation / unique matrix separation)
- 2. Consistency and convergence rate results for $\widehat{\beta}_\psi$ and $\widehat{\beta}_*$
- 3. Post-nuclear-norm regularized estimation
- 4. Monte Carlo Simulations
- 5. Extensions: Single Index Models with Unbalanced Panel

Two Main Motivations

Non-convex Least-Squares Objective Function

$$\begin{split} L_{R}(\beta) &= \min_{\lambda \in \mathbb{R}^{N \times R}} \min_{f \in \mathbb{R}^{T \times R}} \frac{1}{2NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \left(Y_{it} - \beta' X_{it} - \lambda'_{i} f_{t} \right)^{2} \\ &= \frac{1}{2} \sum_{r=R+1}^{\min(N,T)} \left[s_{r} \left(\frac{Y - \beta \cdot X}{\sqrt{NT}} \right) \right]^{2} \\ &= \sum_{r=1}^{\min(N,T)} \ell_{\psi} \left[s_{r} \left(\frac{Y - \beta \cdot X}{\sqrt{NT}} \right) \right], \end{split}$$

where

$$\ell_{\psi}(s) := \left\{ egin{array}{cc} rac{1}{2} \, s^2, & ext{for } s < \psi, \ 0, & ext{for } s \geq \psi, \end{array}
ight.$$

and

$$s_{R+1}\left(\frac{Y-\beta\cdot X}{\sqrt{NT}}\right) < \psi(\beta,R) \leq s_R\left(\frac{Y-\beta\cdot X}{\sqrt{NT}}\right).$$

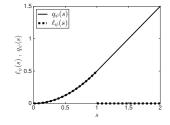
(one-to-one relationship between $R\leftrightarrow\psi$)

Motivation 1: Convex Relaxation

$$\begin{aligned} \mathcal{Q}_{\psi}(\beta) &= \min_{\Gamma \in \mathbb{R}^{N \times T}} \left[\frac{1}{2NT} \| Y - \beta \cdot X - \Gamma \|_{2}^{2} + \frac{\psi}{\sqrt{NT}} \| \Gamma \|_{1} \right] \\ &= \sum_{r=1}^{\min(N,T)} q_{\psi} \left[s_{r} \left(\frac{Y - \beta \cdot X}{\sqrt{NT}} \right) \right], \end{aligned}$$

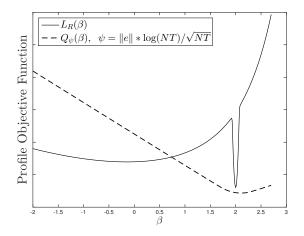
where

$$q_\psi(s) := \left\{egin{array}{cc} rac{1}{2}\,s^2, & ext{for } s < \psi, \ \psi s - rac{\psi^2}{2}, & ext{for } s \geq \psi, \end{array}
ight.$$



Plot of the functions $q_{\psi}(s)$ and $\ell_{\psi}(s)$ for $\psi = 1$.

Motivation 1: Convex Relaxation



Plot of $L_R(\beta)$ and $Q_{\psi}(\beta)$ for the example with R = 2 above and $\beta_0 = 2$.

Motivation 2: Unknown number of factors

- (1) The LS estimator for β requires specifying the number of factors R.
- (2) In order to estimate R one requires a preliminary consistent estimator for β — to apply e.g. Bai & Ng (2002), Onatski (2010), Ahn & Horenstein (2013) to Y - β · X.
- \Rightarrow (1) and (2) can be circular (in particular for low-rank regressors).
- ⇒ Thus, $\hat{\beta}_{\psi}$ and $\hat{\beta}_{*}$ can be very useful here. In particular, $\hat{\beta}_{*}$ requires neither to specify R nor to specify ψ .

Identification Problem for Low Rank X and R_0 Unknown.

- ▶ Estimation of treatment effects with interactive fixed effects is a widely applied "low-rank" regressor example: $X_{it} = v_i w_t$, where v_i is a binary treatment dummy and w_t is the time indicator of treatment. (e.g., Kim & Oka (2014), Gobillon & Magnac (2016), Chan & Kwok (2016), Powell (2017), Gobillon & Wolff (2017), Adams (2017), Piracha, Tani, & Tchuente (2017), Li (2018)).
- Consider a simple case of rank 1 regressor:

$$Y = \beta_0 \underbrace{vw'}_{=X} + \lambda_0 f_0' + E,$$

where $\operatorname{rank}(\lambda_0 f_0') = R_0$.

• Then, for any β_{\bigstar} ,

 $\beta_0 vw' + \lambda_0 f'_0 = \beta_{\bigstar} vw' + \lambda_0 f'_0 + v(\beta - \beta_{\bigstar})w' = \beta_{\bigstar} vw' + \lambda_{\bigstar} f'_{\bigstar},$ where $\lambda_{\bigstar} = [\lambda_0, v]$, and $f_{\bigstar} = [f_0, (\beta_0 - \beta_{\bigstar})w].$

▶ Parameter values $(\beta_0, \lambda_0 f'_0, R_0)$ and $(\beta_{\bigstar}, \lambda_{\bigstar} f'_{\bigstar}, R_{\bigstar})$, where $R_{\bigstar} = R_0 + 1$, are observationally equivalent.

Motivation 2: Unique Matrix Separation Result

Question: How to estimate regression coefficients for low-rank regressors when R_0 is unknown?

We first want to answer this in a simplified setting, where the objective function is replaced by the expected objective function. Consider

$$\bar{\beta}_{\psi} := \operatorname*{argmin}_{\beta} \min_{\Gamma} \left\{ \frac{1}{2NT} \, \mathbb{E}\left[\|Y - \beta \cdot X - \Gamma\|_{2}^{2} \left| X \right] + \frac{\psi}{\sqrt{NT}} \left\| \Gamma \right\|_{1} \right\}.$$

Assumption

(i)
$$\mathbb{E}(E_{it}|X) = 0$$
 and $\mathbb{E}(E_{it}^2|X) < \infty$.
(ii) For all $\alpha \in \mathbb{R}^K \setminus \{0\}$,

 $\|\mathbf{M}_{\lambda_0}(\alpha \cdot X)\mathbf{M}_{f_0}\|_1 > \|\mathbf{P}_{\lambda_0}(\alpha \cdot X)\mathbf{P}_{f_0}\|_1.$

Motivation 2: Unique Matrix Separation Result (cont.)

Proposition

 $\|\bar{\beta}_{\psi} - \beta_0\| = O(\psi)$ as $\psi \to 0$.

- The proposition considers fixed *N*, *T*, with only $\psi \rightarrow 0$.
- The statement of the proposition implies that $\lim_{\psi \to 0} \bar{\beta}_{\psi} = \beta_0$.
- Thus, the proposition provides conditions under which the nuclear norm regularization approach identifies the true parameter β₀.
- For a single (K = 1) regressor with X_{it} = v_iw_t, the condition simply becomes ||**M**_{λ₀}v|||**M**_{f₀}w|| > ||**P**_{λ₀}v|||**P**_{f₀}w||.
- It is possible to show that the weaker condition $\mathbf{M}_{\lambda_0}(\alpha \cdot X)\mathbf{M}_{f_0} \neq 0$ for any linear combination $\alpha \neq 0$ is sufficient for local identification of β in a sufficiently small neighborhood around β_0 .

However, that weaker condition is not sufficient for global identification of β_0 .

Consistency and Convergence Rates

Consistency for only low-rank regressors

$$\widehat{\beta}_{\psi} = \underset{\beta}{\operatorname{argmin}} \min_{\Gamma} \underbrace{\frac{1}{2NT} \left\| Y - \beta \cdot X - \Gamma \right\|_{2}^{2} + \frac{\psi}{\sqrt{NT}} \|\Gamma\|_{1}}_{=Q_{\psi}(\beta,\Gamma)}$$

$$\widehat{\beta}_* = \lim_{\psi \to 0} \widehat{\beta}_{\psi} = \underset{\beta}{\operatorname{argmin}} \|Y - \beta \cdot X\|_1$$
Assume $R_0 := \operatorname{rank}(\Gamma_0)$ is finite.

Theorem

Assume

$$\begin{split} \min_{\{\alpha \in \mathbb{R}^{K} : \|\alpha\|=1\}} \left\| \frac{\mathsf{M}_{\lambda_{0}}(\alpha \cdot X)\mathsf{M}_{f_{0}}}{\sqrt{NT}} \right\|_{1} - \left\| \frac{\mathsf{P}_{\lambda_{0}}(\alpha \cdot X)\mathsf{P}_{f_{0}}}{\sqrt{NT}} \right\|_{1} \geq c > 0,\\ \text{and } \|E\|_{\infty} = O_{P}(\sqrt{\max(N, T)}), \text{ and } \operatorname{rank}(X_{k}) = O_{P}(1). \text{ Then,}\\ \left\| \widehat{\beta}_{\psi} - \beta_{0} \right\| = O_{P}(\psi) + O_{P}\left(\frac{1}{\sqrt{\min(N, T)}}\right), \end{split}$$

$$\left\|\widehat{\beta}_* - \beta_0\right\| = O_P\left(\frac{1}{\sqrt{\min(N, T)}}\right).$$
^{22/45}

Consistency for more general regressors (and for $\widehat{\Gamma}_{\psi}$)

- Want to show consistency of $(\widehat{\beta}_{\psi}, \widehat{\Gamma}_{\psi}) = \operatorname{argmin}_{\beta, \Gamma} Q_{\psi}(\beta, \Gamma).$
- Various equivalent ways to write the model:

$$\begin{aligned} y_{it} &= x_{it}'\beta_0 + \gamma_{0,it} + e_{it}, & \gamma_{0,it} &= \lambda_{0,i}'f_{0,t} \\ Y &= \sum_{k=1}^{K} X_k \beta_{0,k} + \Gamma_0 + E, & \Gamma_0 &= \lambda_0 f_0', \\ y &= x\beta_0 + \gamma_0 + e, & \gamma_0 &= (f_0 \otimes \lambda_0) \operatorname{vec}(\mathbf{I}_R), \end{aligned}$$

where y and γ_0 are *NT*-vectors, and x is an *NT* × K matrix.

Key Assumption: Restricted Strong Convexity

• Let $\mathbf{M}_A = \mathbb{I} - A(A'A)^{-1}A'$, $\theta = \gamma - \gamma_0$, $\Theta = \Gamma - \Gamma_0$.

Restricted Strong Convexity

Let $\mathbb{C} = \{ \Theta \in \mathbb{R}^{N \times T} : \|\mathbf{M}_{\lambda_0} \Theta \mathbf{M}_{f_0}\|_1 \leq 3 \|\Theta - \mathbf{M}_{\lambda_0} \Theta \mathbf{M}_{f_0}\|_1 \}$. Let there exists $\mu > 0$, independent from N and T, such that for any $\theta \in \mathbb{R}^{NT}$ with $\operatorname{mat}(\theta) \in \mathbb{C}$ we have $\theta' \mathbf{M}_{\mathsf{x}} \theta \geq \mu \, \theta' \theta$, for all N, T.

- \mathbb{C} is a cone of possible values for $\Theta = \Gamma \Gamma_0$ that are close to $\lambda_0 f'_0$.
- Require that the quadratic term ¹/_{2NT} (γ − γ₀)'M_x(γ − γ₀) of LS-objective function after profiling out β is bounded below by a strictly convex function, ^μ/_{2NT}(γ − γ₀)'(γ − γ₀), if Γ − Γ₀ ∈ C.
- corresponds to the restricted strong convexity condition in Negahbab & Wainwright (2011) and Negahban, Ravikumar, Wainwright & Yu (2012), and it plays the same role as the restricted eigenvalue condition in recent LASSO literature.
- Can show that restricted strong convexity holds under low-level assumption on X_k, λ and f. (see below)

First show consistency of $\widehat{\Gamma}_{\psi}$

Bound on $\widehat{\Gamma}_{\psi} - \Gamma_0$

Let RSC hold, and assume that

$$\psi \geq \frac{2}{\sqrt{NT}} \| \max(\mathbf{M}_x e) \|_{\infty}.$$

Then we have

$$\frac{1}{\sqrt{NT}} \left\| \widehat{\Gamma}_{\psi} - \Gamma_0 \right\|_2 \le \frac{3\sqrt{2R_0}}{\mu} \ \psi.$$

Proof analogous to arguments in machine learning literature.

Consistency of $\widehat{\Gamma}_{\psi}$ and $\widehat{\beta}_{\psi}$

Additional Regularity Conditions (i) $||E||_{\infty} = \mathcal{O}_{p} (\max(N, T)^{1/2}),$ (ii) $\frac{1}{\sqrt{NT}} e'x = \mathcal{O}_{p}(1),$ (iii) $\frac{1}{NT} x'x \rightarrow_{p} \Sigma_{x} > 0,$ (iv) $\psi = \psi_{NT} \rightarrow 0$ such that $\sqrt{\min(N, T)} \psi_{NT} \rightarrow \infty.$

Theorem

Under RSC and above regularity conditions we have, as $N, T \rightarrow \infty$,

$$\frac{1}{\sqrt{NT}} \left\| \widehat{\Gamma}_{\psi} - \Gamma_0 \right\|_2 \le \mathcal{O}_{\rho}(\psi).$$
$$\left\| \widehat{\beta}_{\psi} - \beta_0 \right\| \le \mathcal{O}_{\rho}(\psi).$$

Regarding proof of (b), note that $\widehat{eta}_\psi - eta_0 = (x'x)^{-1}x'[e - (\widehat{\gamma}_\psi - \gamma_0)]$

Sufficient Conditions for Restricted Strong Convexity

For K = 1 with x'x = 1 (normalized), the SRC condition is satisfied if

$$\liminf_{N,T} \min_{\theta \in \mathbb{C}} \|x - \theta\| \ge \mu > 0.$$

• A further set of sufficient conditions are as follows.

• For simplicity consider K = 1 (one regressor X only)

Lemma

Let $s_1 \geq s_2 \geq s_3 \geq \ldots \geq 0$ be the singular values of the $N \times T$ matrix $\mathbf{M}_{\lambda_0} X \mathbf{M}_{f_0}$. Assume that there exists a sequence q_{NT} such that

(i)
$$\frac{1}{\sqrt{NT}} \|X\|_2 = \mathcal{O}_p(1).$$

(ii) $\frac{1}{NT} \sum_{r=q_{NT}}^{\min(N,T)} s_r^2 \ge \mu > 0$ wpa1.
(iii) $\frac{1}{\sqrt{NT}} \sum_{r=1}^{q_{NT}-1} (s_r - s_{q_{NT}}) \rightarrow_P \infty.$

Then the above RSC assumption is satisfied.

Sufficient Conditions for Restricted Strong Convexity (cont.)

- This can be verified for explicit DGP's using random matrix theory.
 - e.g.:
- $X_{it} \sim \text{i.i.d.} \mathcal{N}(0, \sigma^2)$
- $X = \lambda_x f'_x + e_x$, where $e_{x,ij} \sim \text{i.i.d.} \mathcal{N}(0, \sigma^2)$, and $\lambda_x f'_x$ describe a finite number of factors.

How to choose ψ ?

- Choice of ψ essentially equivalent to choosing number of factors *R*.
- (Cross-validation?)
- ► For R the recommendation from Moon & Weidner (2015) is to choose larger R in case of doubt.
- Similarly, here the recommendation is to rather choose a smaller ψ, in particular since β̂_{*} = lim_{ψ→0} β̂_ψ also has good properties (albeit under stronger assumptions, and more difficult to prove).

Nuclear norm minimizing estimator: $\widehat{\beta}_{\psi}$

Consider

$$\widehat{\beta}_{*} = \underset{\beta}{\operatorname{argmin}} \|Y - \beta \cdot X\|_{1}.$$
$$= \underset{\beta}{\operatorname{argmin}} \sum_{r=1}^{\min(N,T)} s_{r} (Y - \beta \cdot X)$$

• Convex objective function, neither R nor ψ needs to be chosen.

Nuclear norm minimizing estimator: $\widehat{\beta}_{\psi}$

For simplicity consider again K = 1.

Theorem

As N, T $\rightarrow \infty$ with N > T, the following conditions are satisfied;

(i)
$$\|E\|_{\infty} = \mathcal{O}_p(\sqrt{N})$$
 and $\frac{1}{T\sqrt{N}} \|E\|_1 \leq \frac{1}{2}c_{\mathrm{up}}$, wpa1.

(ii) $||X||_{\infty} = \mathcal{O}_{\rho}(\sqrt{NT}).$

(iii) Let $U_E S_E V'_E$ be the singular value decomposition of $\mathbf{M}_{\lambda_0} E \mathbf{M}_{f_0}$. We assume

$$\operatorname{Tr}\left(X'U_{E}V_{E}'\right)=\mathcal{O}_{p}(\sqrt{NT}).$$

(iv) $T^{-1}N^{-1/2} \|\mathbf{M}_{\lambda_0} X \mathbf{M}_{f_0}\|_1 \ge c_{\text{low}} > 0$, wpa1.

(v) Let $U_x S_x V'_x = \mathbf{M}_{\lambda_0} X \mathbf{M}_{f_0}$ be the singular value decomposition of the matrix $\mathbf{M}_{\lambda_0} X \mathbf{M}_{f_0}$. We assume that there exists $c_x \in (0, 1)$ such that wpa1

 $\operatorname{Tr}\left(U'_{E}U_{x}S_{x}U'_{x}U_{E}\right)\leq (1-c_{x})\operatorname{Tr}(S_{x}).$

Then $\sqrt{T}\left(\widehat{\beta}_* - \beta_0\right) = \mathcal{O}_p(1).$

Nuclear norm minimizing estimator: $\hat{\beta}_{\psi}$

- We consider a limit with N > T here. Alternatively, we could consider a limit with T < N, but then we also need to replace N by T, and X by X' in the assumptions.
- Here, we not only need conditions on the singular values of e and X, but also assumptions involving the singular vectors. Much less results in random matrix theory on this.
- Condition (iv) rules out "low-rank regressors", for which we typically have $\|\mathbf{M}_{\lambda_0}X\mathbf{M}_{f_0}\|_1 = \mathcal{O}_p(\sqrt{NT})$, but is satisfied generically for "high-rank regressors", for which $\mathbf{M}_{\lambda_0}X\mathbf{M}_{f_0}$ has T singular values of order \sqrt{N} , so that $\|\mathbf{M}_{\lambda_0}X\mathbf{M}_{f_0}\|_1$ is of order $T\sqrt{N}$.
- Example where all assumptions can be verified:

$$e_{it} \sim \text{i.i.d. } \mathcal{N}(0, \sigma^2),$$

 $X = \lambda_x f'_x + e_x$, where $e_{x,ij} \sim \text{i.i.d. } \mathcal{N}(0, \sigma^2)$,
and $\lambda_x f'_x$ describe a finite number of factors.

Post-nuclear-norm regularized estimation

Post Nuclear Norm Regularized Estimation

Consider the case where R is known.

Updating procedure for β :

• For
$$s = 0$$
 set $\widehat{\beta}^{(s)} := \widehat{\beta}_{\psi}$ or $\widehat{\beta}_{*}$.

Step 1: We estimate the factor loadings and the factors of the *s*-step residuals $Y - \hat{\beta}^{(s)} \cdot X$ by the principle component method:

$$(\widehat{\lambda}^{(s+1)}, \widehat{f}^{(s+1)}) := \operatorname*{argmin}_{\lambda \in \mathbb{R}^{N \times R}, f \in \mathbb{R}^{T \times R}} \left\| \mathbf{Y} - \widehat{\beta}^{(s)} \cdot \mathbf{X} - \lambda f' \right\|_{2}^{2}$$

Step 2: We update the *s*-stage estimator $\widehat{\beta}^{(s)}$ by

$$\begin{split} \widehat{\beta}^{(s+1)} &:= \operatorname*{argmin}_{\beta} \min_{g,h} \left\| Y - X \cdot \beta - \widehat{\lambda}^{(s+1)} g' - h \, \widehat{f}^{(s+1)'} \right\|_{2}^{2} \\ &= \left(x' \left(\mathsf{M}_{\widehat{f}^{(s+1)}} \otimes \mathsf{M}_{\widehat{\lambda}^{(s+1)}} \right) x \right)^{-1} x' \left(\mathsf{M}_{\widehat{f}^{(s+1)}} \otimes \mathsf{M}_{\widehat{\lambda}^{(s+1)}} \right) y \end{split}$$

Iterate steps 1,2 a finite number of times.

Post Nuclear Norm Regularized Estimation

Define the local LS estimator obtained from optimizing the LS objective function with *R* factor L_R(β) in a shrinking neighborhood around β₀

$$\widehat{\beta}_{\mathrm{LS},R}^{\mathrm{local}} := \operatorname*{argmin}_{\{\beta \in \mathbb{R}^{K} : \|\beta - \beta_{0}\| \leq r_{NT}\}} L_{R}(\beta),$$

where r_{NT} is a sequence of positive numbers such that $r_{NT} \rightarrow 0$ and $\sqrt{NT} r_{NT} \rightarrow \infty$.

► We consider $\widehat{\beta}_{\text{LS},R}^{\text{local}}$ instead of the original LS estimator $\widehat{\beta}_{\text{LS},R}$, because we do not want impose the conditions needed for consistency of $\widehat{\beta}_{\text{LS},R}$.

Post Nuclear Norm Regularized Estimation

Theorem

Assume that N and T grow to infinity at the same rate, and that

(i)
$$\operatorname{plim}_{N,T\to\infty}(\lambda'_0\lambda_0/N) > 0$$
, and $\operatorname{plim}_{N,T\to\infty}(f'_0f_0/T) > 0$.

(ii)
$$||E||_{\infty} = \mathcal{O}_p(\max(N, T)^{1/2})$$
, and $||X_k||_{\infty} = \mathcal{O}_p((NT)^{1/2})$.

(iii)
$$\operatorname{plim}_{N,T\to\infty} \frac{1}{NT} x' (\mathbf{M}_{f_0} \otimes \mathbf{M}_{\lambda_0}) x > 0.$$

(iv)
$$\frac{1}{\sqrt{NT}} x' \left(\mathsf{M}_{f_0} \otimes \mathsf{M}_{\lambda_0} \right) e = \mathcal{O}_p(1).$$

Then,

$$\sqrt{NT}\left(\widehat{eta}_{\mathrm{LS},\boldsymbol{R}_{0}}^{\mathrm{local}}-eta_{0}
ight)=\mathcal{O}_{p}(1).$$

Assume furthermore that that $\|\widehat{\beta}^{(0)} - \beta_0\| = \mathcal{O}_p(c_{NT})$, for a sequence $c_{NT} > 0$ such that $c_{NT} \to 0$. For $s \in \{1, 2, 3, ...\}$ we then have

$$\left\|\widehat{\beta}^{(s)} - \widehat{\beta}_{\mathrm{LS},R_0}^{\mathrm{local}}\right\| = \mathcal{O}_p\left\{c_{NT}\left(c_{NT} + \frac{1}{\sqrt{\min(N,T)}}\right)^s\right\}$$

Post Nuclear Norm Regularized Estimation

Corollary

Let the assumptions of Theorem 4 hold, and assume that $c_{NT} = o((NT)^{-1/6})$. For $s \in \{2, 3, 4, ...\}$ we then have

$$\sqrt{NT}\left(\widehat{\beta}^{(s)} - \widehat{\beta}^{\mathrm{local}}_{\mathrm{LS}, \mathcal{R}_{0}}\right) = o_{\mathcal{P}}(1), \qquad \sqrt{NT}\left(\widehat{\beta}^{(s)} - \beta_{0}\right) = \mathcal{O}_{\mathcal{P}}(1).$$

Post Nuclear Norm Regularized Estimation

- ► EITHER: Apply well-known methods for "pure factor models" (without regressors) to the matrix Y − β⁽⁰⁾ · X, e.g. Bai & Ng (2002), Onatski (2010), Ahn & Horenstein (2013).
- OR: In the paper we consider:

$$\widehat{R}_{\psi^*} := \sum_{r=1}^{\min(N,T)} \mathbb{1}\left\{ s_r\left(\frac{Y - \widehat{\beta}^{(0)} \cdot X}{\sqrt{NT}}\right) \geq \psi^* \right\},\$$

example

MC Simulation (very simple illustration)

Consider the linear model with one regressor and two factors:

$$Y_{it} = \beta^0 X_{it} + \sum_{r=1}^2 \lambda_{ir}^0 f_{ir}^0 + e_{it},$$

$$X_{it} = 1 + \tilde{X}_{it} + \sum_{r=1}^2 (\lambda_{ir}^0 + \chi_{ir}) (f_{tr}^0 + f_{t-1,r}^0),$$

where $f_{tr}^0 \sim iidN(0,1)$ and $\lambda_{ir}^0, \chi_{ir} \sim iidN(1,1)$, and $\tilde{X}_{it}, e_{it} \sim iidN(0,1)$, and mutually independent.

•
$$(N, T) = (50, 50), (200, 200).$$

• $\psi_{NT} = (\log(N)^{1/2} \frac{\sqrt{\max(N, T)}}{NT}$

MC Simulation Result

(N, T)	POLS	$\widehat{\beta}_{LS}$	\widehat{eta}_ψ	$\widehat{\beta}_{\psi}^{(1)}$	$\widehat{\beta}_{\psi}^{(2)}$	$\widehat{eta}^{(3)}_\psi$
(50,50)						
bias	0.229	-0.007	0.135	0.014	-0.006	-0.007
s.d.	(0.017)	(0.011)	(0.015)	(0.011)	(0.011)	(0.011)
(200,200)						
bias	0.229	-0.0017	0.099	0.008	-0.0015	-0.0017
s.d.	(0.008)	(0.003)	(0.007)	(0.003)	(0.003)	(0.003)

Extensions to Some Nonlinear and/or Unbalanced Panel

- The model is a single index model.
- Let m_{it}(z) := m(W_{it}, z) be a known convex function of the single index z ∈ ℝ, which also depends on the observed variables W_{it}. The single index is X'_{it}β + Γ_{it}.
- In the linear model, $W_{it} = Y_{it}$ and $m_{it}(z) = \frac{1}{2}(Y_{it} z)^2$.
- The estimator is

$$\begin{pmatrix} \widehat{\beta}_{\psi}, \widehat{\Gamma}_{\psi} \end{pmatrix} \in \underset{\beta \in \mathbb{R}^{K}, \ \Gamma \in \mathbb{R}^{N \times T}}{\operatorname{argmin}} \ Q_{\psi}(\beta, \Gamma), \\ Q_{\psi}(\beta, \Gamma) := \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} \ m_{it} \left(X_{it}'\beta + \Gamma_{it} \right) + \frac{\psi}{\sqrt{NT}} \left\| \Gamma \right\|_{1}.$$

We assume

 (i) W_{it} is independently distributed across i and over t, conditional on X.

Extensions to Some Nonlinear and/or Unbalanced Panel (cont.)

(ii) m(w, z) is convex in z, once continuously differentiable in z almost everywhere in W × Z. For any function z_{it} = z_{it}(X) ∈ Z the first derivative ∂_zm_{it}(z_{it}) exists almost surely, and satisfies max_{i,t,N,T} E { [∂_zm_{it}(z_{it})]⁴ | X} < ∞.
(iii) m_{it}(z) is twice continuously differentiable in Z, with derivatives bounded uniformly over i, t, N, T, Z. There exists b > 0 such that min_{i,t,N,T} min_{z∈Z} ∂_{z²}m_{it}(z) ≥ b.
(iv) ∂_zm_{it}(z⁰₀) = 0, for all i, t.

Examples

Let $z_{it}^0 = \beta'_0 X_{it} + \Gamma_{0,it}$ be the true single index.

- (a) Maximum likelihood: Let $p(y|z_{it}^0)$ is the conditional density function of Y_{it} on X.
 - $W_{it} = Y_{it}$.
 - $m_{it}(z) = -\log p(Y_{it}|z).$
 - ► Assume that m_{it}(z) is strictly convex in z and three times continuously differentiable.
 - A concrete example is a binary choice probit model, where p(y|z) = 1(y = 1)Φ(z) + 1(y = 0)[1 − Φ(z)], and Φ(.) is the cdf of N(0, 1).

(b) Weighted Least Squares: Let $Y_{it} = z_{it}^0 + E_{it}$ with $\mathbb{E}(E_{it}|X_{it}, S_{it}) = 0$.

•
$$m_{it}(z) = \frac{1}{2}S_{it}(Y_{it} - z)^2$$
.
• $W_{it} = (Y_{it}, S_{it})$.

S_{it} ≥ 0 are observed weights for each observation. A special case is S_{it} ∈ {0,1}, where S_{it} is an indicator of a missing outcome Y_{it}.

(c) Quantile Regression: Let $Y_{it} = z_{it}^0 + E_{it}$ with $\mathbb{E}[\mathbb{1}(E_{it} \le 0)|X_{it}] = \tau$.

Examples (cont.)

•
$$m_{it}(z) = \rho_{\tau}(Y_{it} - z)$$
, where $\rho_{\tau}(u) = u \cdot [\tau - \mathbb{1}(u < 0)]$.
• $W_{it} = Y_{it}$.

Assumptions for Nonlinear Extensions

For simplicity, consider K = 1 (single regressor).

Assumptions

We assume the following.

(i) Assume $\psi \to 0$ as $\sqrt{NT}\psi \to \infty$.

(ii) Assume that $\|\Gamma_0\|_1 = O(\sqrt{NT})$.

(iii) The regressor X can be decomposed as $X = X^{(1)} + X^{(2)}$ such that $\|X^{(1)}\|_1 = o_P(\sqrt{NT} \psi^{-1/2})$, and $\|X^{(2)}\|_{\infty} = o_P(\sqrt{NT} \psi^{1/2})$.

(iv) $W := \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} (X_{it}^{(2)})^2$ satisfies $W \to_P W_{\infty} > 0$.

Consistency

Theorem

Under the above assumptions,

$$\widehat{\beta}_{\psi} - \beta_0 = O_P(\psi^{1/2}).$$

Conclusion

- Nuclear norm penalized / minimized estimation of an interactive fixed effect regressions.
- Computational advantage: objective function is a convex function of the parameters.
- Identification: unique matrix separation through regularization.
- Extensions to single index models probit, quantile, unbalanced panel.

