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Introduction: Panel Regression Model with Factors

Yie

where Y is the dependent variable, X ;; are regressors, f; ¢ are factors,

K Ro
= BoxXeie+ Y Aoirforr + Ee, i=1..N t=1...T,
k=1 r=1

and Ag ;r are factor loadings.

>

Xo,ir and fy 4 are unobserved and are treated as parameters (no
distributional assumptions, interactive fixed effect model).

Ro is fixed but unknown.
Object of interest: regression parameters .

Classic Example: Holtz-Eakin, Newey & Rosen (1988).

Study wage-dynamics using PSID data: Y is hours worked (log),
Xk,it is wage rate, lagged values of hours worked, f; describes
unobserved changes in working conditions, and \; unobserved
earnings ability.

Other applications: risk factors in asset pricing, controlling for
global shocks in cross-country panels, etc.
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Introduction: Model and Estimation Methods

K Ro
Yie=Y BokXei+ Y Noirfour + B, i=1..N, t=1...T,
= r=1

> Quasi-Differencing (Ry = 1): Holtz-Eakin, Newey & Rosen (1988)
f f ' f
Yie — =21y, Yit—1=0Bp X ( 9.t ﬁo) Xit—1 + (Eit -2t Ei,t1> :

fo,e—1 fo,e—1 fo,t—1

then use appropriate IV (e.g. Yi:—2, etc.) to estimate this equation.
» Common Correlated Effects Estimator: Pesaran (2006)
Use Ye=N"13". Y and Xx = N"1>" Xk e as a proxys for fo,,
estimate 3 including these proxys for fy ; in a linear regression.
» Least Squares Estimator:

Kiefer (1980), Bai (2009), Moon & Weidner (2015, 2017)
Minimize the sum of squared residuals jointly over 5, A and f.

» Others: Ahn, Lee & Schmidt (2001,2013), Chamberlain & Moreira
(2009), Juodis & Sarafidis (2018), etc



Introduction: Least Squares Estimator

» Denote Y, Xix: N x T matrices,

AN xR,

f: TxR.

Denote [|A[3 = 312, 30, A%
» Conventional way of writing the LS estimator:
2

~—— 2

=0 B X

BLS = argmin min HY — B-X =\f
B A f

> Equivalently this can be expressed as
~ 2
BLs = argmin mFin HY - B-X - FH sit. rank(l') <R,
B 2
where " is an N x T matrix, and the model in terms of I" reads
K
Yi = Z Bk Xijie + I'ie + Eie
k=1



Introduction: Non-convexity of LS objective function
Example DGP:
2
Yie = Bo Xit + Z Ao,irfo,er + e€it,

r=1
.. 0 1 05
where “30 =2, )\0’,‘ = (/\0’,'17 /\0’;2), ~iid N (( 0 ) ; < 0.5 1 >>,

_ Y 0 1 05
fo,e = (fo,r1, fo,e2) iid NV (( 0 ) ’ ( 0.5 1 )),

Ax,i ~iid. 2x3(1), fi,e ~ idd. 2x3(1), ex,ir, € ~ 1.i.d. A(0,1), all mutually
independent, choose N = T = 200. Plot Q(3) = min, ¢ HY —B-X—=A\f'

xit = 0.04ey it + No,i1fo,e2 + Ax,ifx,t,

2
2

x10% LS Objective Function
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Digression: Matrix Norms used in this paper

» For N x T matrix I, let s,(I") be the rt/ largest singular value of I".

Mo :==51(') = sup sup u'I'v.

u:llul|]=1 v:||v]]=1

1/2
|12 == (Zf(r)) = Te(I"I)Y2.

7)== _s(I") = sup Tr(AT).

r Al =1

> ||I"]|; is called nuclear norm, trace norm, Schatten 1-norm, or Ky
Fan n-norm.

> oo < WITMl2 < Tl < y/rank(D) || I]l2 < rank(I) [[17]]1.
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Introduction: Nuclear norm regularization

» Constraint on unobserved error component [j:

min(N,T)
r=xf" & rak(IN<R & >  1(s(I)>0)<
r=1

where s1(I") > 55(I") > ... > Smin(n, 7)(I") > 0 are the singular
values of I'.

» Convex relaxation of this constraint:

mln(N,T)
=: ||[I'||; < const.

r=1

R,
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Introduction: Nuclear norm penalization
> For some ¢ > 0 we have

~ 2
By = argmin mFin HY -6 X - FH2 st.  [[I']]; < const.
B

1
2NT

2 q/)
Y — -X—FH +—— ||
Y-8 = I

= argmin min
B r

=Qy(8,1)

> Nuclear norm penalized estimation used in e.g.

» Machine learning and statistical learning: e.g., Fazel (2002),
Candes & Recht (2009), and for a recent survey see Fazel &
Parrilo (2010).

» High dimensional low rank matrix estimation: e.g., Rohde &
Tsybakov (2011), Negahbab & Wainwright (2011) Negahbab,
Ravikumar, Wainwright & Yu (2012), Athey, Bayati, Doudchenko,
Imbens & Khosravi (2017), and many others.

» Factor models without regressors: Bai & Ng (2017)
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Introduction: Nuclear norm minimization

» Another estimator that we consider is

B, = argmin Y —8-X|,.
8

» One can show that
B\* = Iim Bw,

b lim Iy — Y — §- X
ecause wlmo W 8
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Introduction: Contributions of this paper

» Study nuclear-norm regularizid estimator Bw and its ¢» — 0 limit B*

» Show consistency of Bw and B* as N, T — oo and ¢ = ¢y — 0,
under appropriate assumptions.

» Find that generically the convergence rate of Bd, and E* is at most
1/4/min(N, T), while the convergence rate of BLs is 1/ min(N, T)
= Therefore we suggest to use B\w and 3* as preliminary estimators
(initial conditions), and obtain improved estimators that are
asymptotically equivalent to BLS in a finite number of simple LS
iteration steps.

> Motivations to consider B\w and B*:

e Computational advantage of a convex objective function, in
particular when dim (3 is large.

e |dentification of interactive fixed effect models when the true
number of factors R is unknown, and there are
low-rank regressors.
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Introduction: Contributions of this paper (cont.)

» Post-nuclear-norm-regularized Estimation:

> Use Bw and B* as a preliminary consistent estimator.

» Then iterate estimating 8° and \°f.

» After two iterations, we have an estimator that is
asympotically equivalent to the LS estimator (QMLE).

> Extensions: Nonlinear single-index models of unbalanced panel.
These include panel probit and quantile regressions.

We show consistency of Ew : New in the literature.
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Outline of the remaining talk

AR R

Motivation (convex relaxation / unique matrix separation)
Consistency and convergence rate results for 311, and B*
Post-nuclear-norm regularized estimation

Monte Carlo Simulations

Extensions: Single Index Models with Unbalanced Panel
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Two Main Motivations
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Non-convex Least-Squares Objective Function

N T
Lgr(B) = min  min %ZZ(Y“_E ir—/\fft)z

- )\GRNXR fGRTXR ,:1 t:1
L ()
2 r=R+1 NT
min(ZN:,T) Y _3.X
SE ()
r=1 NT
where
152 g
L 5s°, fors< P,
ly(s) = { 0 for s > 1,
and
YﬂoX> <Y5~X)
s — | < SR < sp| ——— | -
R+1 ( \/ﬁ d)(ﬂ ) R \/ﬁ

(one-to-one relationship between R < 1))
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Motivation 1: Convex Relaxation

. 1 2 ’l/}
_ Y =B X—T|P+ -
Q) = min, |5 IY = 8- X =T+ 7,
min(zlv:,T)q {5 (y_/g.x)]
= w ||l —F——11,
| VvVNT
where
(s) 1 for s <),
s) =
T s — %2 for s > 1.
1.5 — q(‘(s)
wur Ly(s)
\?o.s
OU 0.5 1 15

5

Plot of the functions gy (s) and £(s) for ¢ = 1.
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Motivation 1: Convex Relaxation

;LR([;)
||= = Qu(B), ¥ = lell xlog(NT)/VNT

Profile Objective Function

Plot of Lr(8) and Qy () for the example with R = 2 above and 5y = 2.
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Motivation 2: Unknown number of factors

(1) The LS estimator for 8 requires specifying the number of factors R.

(2) In order to estimate R one requires a preliminary consistent
estimator for 3 — to apply e.g. Bai & Ng (2002), Onatski (2010),
Ahn & Horenstein (2013) to Y — 3 - X.

= (1) and (2) can be circular (in particular for low-rank regressors).

= Thus, Ew and B* can be very useful here. In particular, B* requires
neither to specify R nor to specify 1.
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Identification Problem for Low Rank X and Ry Unknown.

> Estimation of treatment effects with interactive fixed effects is a
widely applied “low-rank” regressor example: X;; = v;w;, where v; is
a binary treatment dummy and w; is the time indicator of
treatment. (e.g., Kim & Oka (2014), Gobillon & Magnac (2016), Chan
& Kwok (2016), Powell (2017), Gobillon & Wolff (2017), Adams (2017),
Piracha, Tani, & Tchuente (2017), Li (2018)).

> Consider a simple case of rank 1 regressor:
Y = foyw! +Xoff + E,
=X
where rank(Aofy) = Ro.
> Then, for any B4,
Bovw' + Xofy = Bavw’ + Xofy 4+ V(B — B )W’ = Bavw’ + Ay fy,
where Ay = [Ao, V], and fx = [fy, (Bo — Bx)w].

> Parameter values (o, Aofy, Ro) and (Bx, Axfy, Rw), where
Ry = Ro + 1, are observationally equivalent.
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Motivation 2: Unique Matrix Separation Result

Question: How to estimate regression coefficients for low-rank regressors
when Ry is unknown?

We first want to answer this in a simplified setting, where the objective
function is replaced by the expected objective function. Consider

By = angminmin { 2B Iy = 8- X~ T x] + i, ).

Assumption

(i) E(Eix|X) =0 and E(E?|X) < oco.
(i) For all o € R\ {0},

[My, (@ - X)Mgl[1 > [Py, (- X)Pg]l1-
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Motivation 2: Unique Matrix Separation Result (cont.)
Proposition
1By — Boll = O () as i — 0.

> The proposition considers fixed N, T, with only ¢» — 0.
> The statement of the proposition implies that limy_.g B¢, = 0p.

» Thus, the proposition provides conditions under which the nuclear
norm regularization approach identifies the true parameter 5.

> For a single (K = 1) regressor with Xi = v;w, the condition simply
becomes My v][[Mgw]| > [Pa,v][[Pswll
> It is possible to show that the weaker condition My (o - X)My # 0

for any linear combination « # 0 is sufficient for local identification
of B in a sufficiently small neighborhood around 5.

However, that weaker condition is not sufficient for global
identification of (g.
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Consistency and Convergence Rates
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Consistency for only low-rank regressors

~

By = argmin min
8 r

1 2
Y - B-X - FH r
2NTH g 2 F” I

=Qy (8.1
B = lim By = argmin Y =28 Xl
Assume Ry := rank([}) is finite.
Theorem

Assume

My, (o - X)My, _HPAO((»X)PfO
VNT ) VNT

and ||E||oc = Op(y/max(N, T)), and rank(Xy) = Op(1). Then,

min
{a€RK : ||al|=1} .

ng - ﬂoH = Op(¢)) + Op (

E

B
min(N, T) )’

_BOH = ( mintN, T)) '

>c>0,
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Consistency for more general regressors (and for 1)

» Want to show consistency of (,73’\1/,, fu) = argming 1 Qy (B3, I).

» Various equivalent ways to write the model:

yie = X80 + Yo,it + €it, Yo,it = Ao,ifo,e
K
Y =Y XeBok+To+E, Io = Xofy,
k=1
y =xBo+ 0 + e, Yo = (fo ® Xo)vec(lg),

where y and 7y are NT-vectors, and x is an NT x K matrix.
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Key Assumption: Restricted Strong Convexity

>

Let My =T — AAA) A, O=~—ny, O=TI—Tp.

Restricted Strong Convexity

Let C = {© e RV*T : ||[M,,0OMg|l: <3]|© — M ,OMg |1} . Let there
exists 1 > 0, independent from N and T, such that for any § € RNT
with mat(#) € C we have 0’'M0 > 10’0, for all N, T.

>

>

C is a cone of possible values for © = I — I that are close to Aofj.

Require that the quadratic term 5—(y — 70)' My (7 — 7o) of
LS-objective function after profiling out 3 is bounded below by a
strictly convex function, s5=(v — ) (v — ), if I' =I5 € C.

corresponds to the restricted strong convexity condition in Negahbab
& Wainwright (2011) and Negahban, Ravikumar, Wainwright & Yu
(2012), and it plays the same role as the restricted eigenvalue
condition in recent LASSO literature.

Can show that restricted strong convexity holds under low-level
assumption on Xy, A and f. (see below)
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First show consistency of I,

Bound on fw — I

Let RSC hold, and assume that

2
(U 7/W||mat(Mxe)Hoo-

Then we have

3\/5}?0 "

1 .
L
-,

» Proof analogous to arguments in machine learning literature.
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Consistency of fu and BU

Additional Regularity Conditions
(i) [IElloe = Op (max(N, T)*/2),

(if) \/% e'x = Op(1),
(ii)) 7 x'x =p Zx >0,
(iv) ¥ =Nt — 0 such that y/min(N, T) ¢y — oo.

Theorem
Under RSC and above regularity conditions we have, as N, T — oo,

1 =
- _ < .
vrid Bt (O
Regarding proof of (b), note that B\w — Bo = (Xx)"X[e — (Fy — 0]
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Sufficient Conditions for Restricted Strong Convexity

> For K =1 with x’x =1 (normalized), the SRC condition is satisfied
if
— >
Ilrlv ¥1f meln [Ix =8| > u>0.

» A further set of sufficient conditions are as follows.

» For simplicity consider K =1 (one regressor X only)

Lemma
Let s; > s > s3 > ... > 0 be the singular values of the N x T matrix
M), XM . Assume that there exists a sequence g7 such that

() =Xl = 0p(2).

(ii) NTZ""“NT) s2 > >0 wpal.

rsanT
(iil) 77 2720 (s = Sawr) —p 00

Then the above RSC assumption is satisfied.
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Sufficient Conditions for Restricted Strong Convexity
(cont.)

» This can be verified for explicit DGP’s using random matrix
theory.
e.g.:

> Xjp ~ i.i.d. N(0,02)

> X = \f! + e, where e, jj ~ i.i.d. N(0,02), and \.f, describe
a finite number of factors.
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How to choose )7

» Choice of v essentially equivalent to choosing number of factors R.
> (Cross-validation?)

> For R the recommendation from Moon & Weidner (2015) is to
choose larger R in case of doubt.

> Similarly, here the recommendation is to rather choose a smaller 1,
in particular since ,6’* = limy_0 Bw also has good properties (albeit
under stronger assumptions, and more difficult to prove).
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Nuclear norm minimizing estimator: [,

» Consider

B = argmin Y — 8- X[l

min(N,T)
= argmin Z s (Y —=p-X)
B r=1

» Convex objective function, neither R nor 1) needs to be chosen.
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Nuclear norm minimizing estimator: (3,
For simplicity consider again K = 1.

Theorem
As N, T — oo with N > T, the following conditions are satisfied;
(i) 1Ellso = Op(VN) and 1 [IElly < Leup, wpal.

(i) [IXllo = Op(VNT).

(iii) Let UgSg V(L be the singular value decomposition of My, EMy,. We
assume

Tr (X' U VE) = O,(VNT).
(iv) T7IN=Y2|My, XM¢ |1 > Glow > 0, wpal.

(v) Let UySxV] = My, XMyg, be the singular value decomposition of the
matrix My, XMy,. We assume that there exists cx € (0,1) such that
wpal

Tr (Ug U, Sc UL Ug) < (1 — ) Tr(Sx).

Then /T (B* - 50> = 0,(1).

31/45



Nuclear norm minimizing estimator: (3,

» We consider a limit with NN > T here. Alternatively, we could
consider a limit with T < N, but then we also need to replace N by
T, and X by X’ in the assumptions.

» Here, we not only need conditions on the singular values of e and
X, but also assumptions involving the singular vectors. Much less
results in random matrix theory on this.

» Condition (iv) rules out “low-rank regressors”, for which we
typically have |[My,XMg||1 = O,(v/NT), but is satisfied generically
for “high-rank regressors”, for which My, XMy has T singular
values of order v/N, so that ||[My,XMg||; is of order T+/N.

» Example where all assumptions can be verified:

eir ~ i.i.d. N(0,0?),
X = M\cf] + ey, Where e, ~ i.i.d. N(0, 0?),
and \,f, describe a finite number of factors.
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Post-nuclear-norm regularized estimation
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Post Nuclear Norm Regularized Estimation

Consider the case where R is known.

Updating procedure for 3:

>

Step 1:

Step 2:

For s =0 set B(s) = ,@w or B*

We estimate the factor loadings and the factors of the s—step
residuals Y — ﬁ (s) . X by the principle component method:
—~ 2
G Fsty .= argmin Y — B®) . X = Af
AERNXR fFERTXR 2

We update the s-stage estimator B(S) by

Blst1) *argmlnmlnHY X-B— At g hl?(”l)’ ,
B

1.

= (X/ (Mf(sﬂ) & MX(sﬂ)) X)7 X (Mf(sﬂ) ® MX(sH)) y.

Iterate steps 1,2 a finite number of times.
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Post Nuclear Norm Regularized Estimation

> Define the local LS estimator obtained from optimizing the LS
objective function with R factor Lg(/3) in a shrinking neighborhood
around [y

Slocal .__

LSRR = argmin Lr(5),
{BERK : || B—PBoll<rnt}

where ryt is a sequence of positive numbers such that ryr — 0 and
VNT ryt — 0.

> We consider 3]%°% instead of the original LS estimator Bis g,
because we do not want impose the conditions needed for
consistency of Sis r.
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Post Nuclear Norm Regularized Estimation
Theorem
Assume that N and T grow to infinity at the same rate, and that
(i) plimy 100 (AgAo/N) >0, and plimy 7, (f5fo/T) > 0.
(i) |E]lc = Op (max(N, T)?), and || X|loo = Op ((NT)Y/2).
(iii)) plimpy 7500 77 X (Mg @ My,) x > 0.
(iv) \/% x' (Mg @ My,) e = O,(1).
Then,

VT (Biges — o) = Op(1).

Assume furthermore that that \\3(0) — Boll = Op(cnt), for a sequence
ent > 0 such that eyt — 0. Fors € {1,2,3,...} we then have

1 s
= Op {CNT <C/\/T + mm(/\/"f)) }

o e
B - Bigca
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Post Nuclear Norm Regularized Estimation

Corollary

Let the assumptions of Theorem 4 hold, and assume that
cnt = o((NT)~/%). Fors € {2,3,4,...} we then have

JNT (3@ _ gﬁ%ﬁ%) =op(1), VNT (B(S) - ,Bo) = 0p(1).
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Post Nuclear Norm Regularized Estimation

> EITHER: Apply well-known methods for “pure factor models”
(without regressors) to the matrix ¥ — 39 - X, e.g. Bai & Ng
(2002), Onatski (2010), Ahn & Horenstein (2013).

» OR: In the paper we consider:

min(N,T) ~
~ Y — 0. x
R’Lﬁ* = E ]]_ {Sr ( Z d}* ’
] VvVNT
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MC Simulation (very simple illustration)

> Consider the linear model with one regressor and two factors:

=" Xt + Z Ao + eir,

Xie =1+ Xie + Z()‘?r + Xir)(ft? + f1:0—1,r)7
r=1

where £2 ~ iidN(0,1) and X9, x;, ~ iidN(1,1), and
X,t, eir ~ iidN(0,1), and mutually independent.
> (N, T) = (50,50), (200, 200).

max(N, T
> Y = (log(N)/2V2AT)
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MC Simulation Result

B\Ebl) 35[}2) 35[}3)

(N,T)  POLS  Bis By
(50,50)
bias 0229 -0.007 0.135 0014 -0.006 -0.007
s.d. (0.017) (0.011) (0.015) (0.011) (0.011) (0.011)
(200,200)
bias 0229 -0.0017 0.099  0.008 -0.0015 -0.0017
(0.007) (0.003) (0.003) (0.003)

s.d. (0.008)  (0.003)
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Extensions to Some Nonlinear and/or Unbalanced Panel

» The model is a single index model.

> Let mj(z) := m(W, z) be a known convex function of the single index
z € R, which also depends on the observed variables W;. The single
index is X783 + .

> In the linear model, Wi = Y; and m;(z) = %(Y;t - z)z.

» The estimator is

(Ew’fw)G argmin  Qu (B, I),

BERK, MeRNXT

R , 0
Qu(B, 1) = NT ;; mie (Xief + ) + JNT 1, -

> We assume

(i) Wi is independently distributed across i and over t,
conditional on X.
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Extensions to Some Nonlinear and/or Unbalanced Panel
(cont.)

(i) m(w,z) is convex in z, once continuously differentiable in z
almost everywhere in W x Z. For any function
zip = zix(X) € Z the first derivative 9,m;(z;;) exists almost
surely, and satisfies max; ; n, 7 E { [azm,-t(z,-t)]4 ‘ X} < 0.

(iii) ‘m;(z) is twice continuously differentiable in Z, with
derivatives bounded uniformly over i, t, N, T, Z. There exists
b > 0 such that min; ; y 7 minzcz 0,2 (z) > b.

(iv) 9;mi(22) =0, for all i,t.
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Examples
Let z,-? = BoXic + I%,ie be the true single index.
(a) Maximum likelihood: Let p(y|z2) is the conditional density function of
Y on X.
> Wi =Y.

> mit(z) = —log p(Yit|2).
» Assume that m;(z) is strictly convex in z and three times

continuously differentiable.
> A concrete example is a binary choice probit model, where

p(y|z) = 1(y = 1)@(z) + 1(y = 0)[1 — &(2)], and &(.) is the
cdf of A(0,1).
(b) Weighted Least Squares: Let Yi; = zo 4 E;x with E(Ei| X, Si) = 0.

> m,-t(z) = %Sit(yit - 2)2-

> Wy = (Yit75it)-

» S;; > 0 are observed weights for each observation. A special
case is S € {0,1}, where S;; is an indicator of a missing
outcome Y.

(c) Quantile Regression: Let Y = 22 + E; with E[L(Ei < 0)|Xie] = 7.
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Examples (cont.)

» mi(z) = p(Yie — z), where p.(v) =u- [T — L(u < 0)].

> it = Yit.
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Assumptions for Nonlinear Extensions

For simplicity, consider K = 1 (single regressor).

Assumptions

We assume the following.
(i) Assume ¢ — 0 as VNT — oc.
(i) Assume that ||Io|ls = O(VNT).

(iii) The regressor X can be decomposed as X = XM + X® such that
IXP 1 = 0p(VNT 71/2), and [|X? oo = 0p(VNT 4/2).

(iv) W= &N ST (XP)? satisfies W —p Wee > 0.
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Consistency

Theorem

Under the above assumptions,

By — Bo = Op(4*7?).
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Conclusion

» Nuclear norm penalized / minimized estimation of an interactive
fixed effect regressions.

» Computational advantage: objective function is a convex function of
the parameters.

» ldentification: unique matrix separation through regularization.

> Extensions to single index models - probit, quantile, unbalanced
panel.
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