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Introduction: Panel Regression Model with Factors

Yit =
K∑

k=1

β0,k Xk,it +
R0∑
r=1

λ0,ir f0,tr + Eit , i = 1 . . .N, t = 1 . . .T ,

where Yit is the dependent variable, Xk,it are regressors, f0,tr are factors,
and λ0,ir are factor loadings.

I λ0,ir and f0,tr are unobserved and are treated as parameters (no
distributional assumptions, interactive fixed effect model).

I R0 is fixed but unknown.

I Object of interest: regression parameters β0.

I Classic Example: Holtz-Eakin, Newey & Rosen (1988).
Study wage-dynamics using PSID data: Yit is hours worked (log),
Xk,it is wage rate, lagged values of hours worked, ft describes
unobserved changes in working conditions, and λi unobserved
earnings ability.

I Other applications: risk factors in asset pricing, controlling for
global shocks in cross-country panels, etc.
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Introduction: Model and Estimation Methods

Yit =
K∑

k=1

β0,k Xk,it +
R0∑
r=1

λ0,ir f0,tr + Eit , i = 1 . . .N, t = 1 . . .T ,

I Quasi-Differencing (R0 = 1): Holtz-Eakin, Newey & Rosen (1988)

Yit −
f0,t
f0,t−1

Yi,t−1 = β′0 Xit −
(

f0,t
f0,t−1

β0

)′
Xi,t−1 +

(
Eit −

f0,t
f0,t−1

Ei,t−1

)
,

then use appropriate IV (e.g. Yi,t−2, etc.) to estimate this equation.

I Common Correlated Effects Estimator: Pesaran (2006)

Use Y t = N−1
∑

i Yit and X k,t = N−1
∑

i Xk,it as a proxys for f0,t ,
estimate β including these proxys for f0,t in a linear regression.

I Least Squares Estimator:
Kiefer (1980), Bai (2009), Moon & Weidner (2015, 2017)

Minimize the sum of squared residuals jointly over β, λ and f .

I Others: Ahn, Lee & Schmidt (2001,2013), Chamberlain & Moreira

(2009), Juodis & Sarafidis (2018), etc
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Introduction: Least Squares Estimator

I Denote Y , Xk : N × T matrices,

λ: N × R,

f : T × R.

Denote ‖A‖22 =
∑N

i=1

∑T
t=1 A2

it .

I Conventional way of writing the LS estimator:

β̂LS = argmin
β

min
λ,f

∥∥∥Y − β · X︸ ︷︷ ︸
:=

∑
k βkXk

−λ f ′
∥∥∥2
2
.

I Equivalently this can be expressed as

β̂LS = argmin
β

min
Γ

∥∥∥Y − β · X − Γ
∥∥∥2
2

s.t. rank(Γ ) ≤ R,

where Γ is an N × T matrix, and the model in terms of Γ reads

Yit =
K∑

k=1

βk Xk,it + Γit + Eit
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Introduction: Non-convexity of LS objective function
Example DGP:

yit = β0 xit +
2∑

r=1

λ0,ir f0,tr + eit , xit = 0.04ex,it + λ0,i1f0,t2 + λx,i fx,t ,

where β0 = 2, λ0,i = (λ0,i1, λ0,i2)
′ ∼ i.i.d. N

((
0
0

)
,

(
1 0.5
0.5 1

))
,

f0,t = (f0,t1, f0,t2)′ ∼ i.i.d. N
((

0
0

)
,

(
1 0.5
0.5 1

))
,

λx,i ∼ i.i.d. 2χ2(1), fx,t ∼ i.i.d. 2χ2(1), ex,it , eit ∼ i.i.d. N (0, 1), all mutually

independent, choose N = T = 200. Plot Q(β) = minλ,f

∥∥∥Y − β · X − λ f ′∥∥∥2
2
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Digression: Matrix Norms used in this paper

I For N ×T matrix Γ , let sr (Γ ) be the r th largest singular value of Γ .

‖Γ‖∞ := s1(Γ ) = sup
u:‖u‖=1

sup
v :‖v‖=1

u′Γ v .

‖Γ‖2 :=

(∑
r

s2r (Γ )

)1/2

= Tr(Γ ′Γ )1/2.

‖Γ‖1 :=
∑
r

sr (Γ ) = sup
‖A‖∞=1

Tr(A′Γ ).

I ‖Γ‖1 is called nuclear norm, trace norm, Schatten 1-norm, or Ky
Fan n-norm.

I ‖Γ‖∞ ≤ ‖Γ‖2 ≤ ‖Γ‖1 ≤
√

rank(Γ ) ‖Γ‖2 ≤ rank(Γ ) ‖Γ‖1.
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Introduction: Nuclear norm regularization

I Constraint on unobserved error component Γit :

Γ = λ f ′ ⇔ rank(Γ ) ≤ R ⇔
min(N,T )∑

r=1

1 (sr (Γ ) > 0) ≤ R,

where s1(Γ ) ≥ s2(Γ ) ≥ . . . ≥ smin(N,T )(Γ ) ≥ 0 are the singular
values of Γ .

I Convex relaxation of this constraint:

min(N,T )∑
r=1

sr (Γ ) =: ‖Γ‖1 ≤ const.
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Introduction: Nuclear norm penalization

I For some ψ > 0 we have

β̂ψ = argmin
β

min
Γ

∥∥∥Y − β · X − Γ
∥∥∥2
2

s.t. ‖Γ‖1 ≤ const.

= argmin
β

min
Γ

1

2NT

∥∥∥Y − β · X − Γ
∥∥∥2
2

+
ψ√
NT
‖Γ‖1︸ ︷︷ ︸

=Qψ(β,Γ )

I Nuclear norm penalized estimation used in e.g.

I Machine learning and statistical learning: e.g., Fazel (2002),
Candes & Recht (2009), and for a recent survey see Fazel &

Parrilo (2010).
I High dimensional low rank matrix estimation: e.g., Rohde &

Tsybakov (2011), Negahbab & Wainwright (2011) Negahbab,

Ravikumar, Wainwright & Yu (2012), Athey, Bayati, Doudchenko,

Imbens & Khosravi (2017), and many others.
I Factor models without regressors: Bai & Ng (2017)
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Introduction: Nuclear norm minimization

I Another estimator that we consider is

β̂∗ = argmin
β
‖Y − β · X‖1 .

I One can show that

β̂∗ = lim
ψ→0

β̂ψ,

because lim
ψ→0

Γ̂ψ → Y − β · X
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Introduction: Contributions of this paper

I Study nuclear-norm regularizid estimator β̂ψ and its ψ → 0 limit β̂∗.

I Show consistency of β̂ψ and β̂∗ as N,T →∞ and ψ = ψNT → 0,
under appropriate assumptions.

I Find that generically the convergence rate of β̂ψ and β̂∗ is at most

1/
√

min(N,T ), while the convergence rate of β̂LS is 1/min(N,T )

⇒ Therefore we suggest to use β̂ψ and β̂∗ as preliminary estimators
(initial conditions), and obtain improved estimators that are

asymptotically equivalent to β̂LS in a finite number of simple LS
iteration steps.

I Motivations to consider β̂ψ and β̂∗:

• Computational advantage of a convex objective function, in
particular when dimβ is large.

• Identification of interactive fixed effect models when the true
number of factors R is unknown, and there are
low-rank regressors.
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Introduction: Contributions of this paper (cont.)

I Post-nuclear-norm-regularized Estimation:

I Use β̂ψ and β̂∗ as a preliminary consistent estimator.
I Then iterate estimating β0 and λ0f 0′.
I After two iterations, we have an estimator that is

asympotically equivalent to the LS estimator (QMLE).

I Extensions: Nonlinear single-index models of unbalanced panel.
These include panel probit and quantile regressions.

We show consistency of β̂ψ : New in the literature.
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Outline of the remaining talk

1. Motivation (convex relaxation / unique matrix separation)

2. Consistency and convergence rate results for β̂ψ and β̂∗

3. Post-nuclear-norm regularized estimation

4. Monte Carlo Simulations

5. Extensions: Single Index Models with Unbalanced Panel
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Two Main Motivations
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Non-convex Least-Squares Objective Function

LR(β) = min
λ∈RN×R

min
f∈RT×R

1

2NT

N∑
i=1

T∑
t=1

(Yit − β′Xit − λ′i ft)
2

=
1

2

min(N,T )∑
r=R+1

[
sr

(
Y − β · X√

NT

)]2

=

min(N,T )∑
r=1

`ψ

[
sr

(
Y − β · X√

NT

)]
,

where

`ψ(s) :=

{
1
2 s2, for s < ψ,
0, for s ≥ ψ,

and

sR+1

(
Y − β · X√

NT

)
< ψ(β,R) ≤ sR

(
Y − β · X√

NT

)
.

(one-to-one relationship between R ↔ ψ)
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Motivation 1: Convex Relaxation

Qψ(β) = min
Γ∈RN×T

[
1

2NT
‖Y − β · X − Γ‖22 +

ψ√
NT
‖Γ‖1

]

=

min(N,T )∑
r=1

qψ

[
sr

(
Y − β · X√

NT

)]
,

where

qψ(s) :=

{ 1
2 s2, for s < ψ,

ψs − ψ2

2 , for s ≥ ψ.

s
0 0.5 1 1.5 2

ℓ ψ
(s
)
,
q ψ
(s
)

0

0.5

1

1.5

qψ(s)
ℓψ(s)

Plot of the functions qψ(s) and `ψ(s) for ψ = 1.
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Motivation 1: Convex Relaxation

β
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

P
ro
fi
le

O
b
je
ct
iv
e
F
u
n
ct
io
n

LR(β)

Qψ(β), ψ = ‖e‖ ∗ log(NT )/
√
NT

Plot of LR(β) and Qψ(β) for the example with R = 2 above and β0 = 2.
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Motivation 2: Unknown number of factors

(1) The LS estimator for β requires specifying the number of factors R.

(2) In order to estimate R one requires a preliminary consistent
estimator for β — to apply e.g. Bai & Ng (2002), Onatski (2010),

Ahn & Horenstein (2013) to Y − β̂ · X .

⇒ (1) and (2) can be circular (in particular for low-rank regressors).

⇒ Thus, β̂ψ and β̂∗ can be very useful here. In particular, β̂∗ requires
neither to specify R nor to specify ψ.
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Identification Problem for Low Rank X and R0 Unknown.

I Estimation of treatment effects with interactive fixed effects is a
widely applied “low-rank” regressor example: Xit = viwt , where vi is
a binary treatment dummy and wt is the time indicator of
treatment. (e.g., Kim & Oka (2014), Gobillon & Magnac (2016), Chan

& Kwok (2016), Powell (2017), Gobillon & Wolff (2017), Adams (2017),
Piracha, Tani, & Tchuente (2017), Li (2018)).

I Consider a simple case of rank 1 regressor:

Y = β0 vw ′︸︷︷︸
=X

+λ0f
′
0 + E ,

where rank(λ0f
′
0 ) = R0.

I Then, for any βF,

β0vw
′ + λ0f

′
0 = βFvw ′ + λ0f

′
0 + v(β − βF)w ′ = βFvw ′ + λFf ′F,

where λF = [λ0, v ], and fF = [f0, (β0 − βF)w ].

I Parameter values (β0, λ0f
′
0 ,R0) and (βF, λFf ′F,RF), where

RF = R0 + 1, are observationally equivalent.
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Motivation 2: Unique Matrix Separation Result

Question: How to estimate regression coefficients for low-rank regressors
when R0 is unknown?

We first want to answer this in a simplified setting, where the objective
function is replaced by the expected objective function. Consider

β̄ψ := argmin
β

min
Γ

{
1

2NT
E
[
‖Y − β · X − Γ‖22

∣∣∣X]+
ψ√
NT
‖Γ‖1

}
.

Assumption

(i) E(Eit |X ) = 0 and E(E 2
it |X ) <∞.

(ii) For all α ∈ RK \ {0},

‖Mλ0(α · X )Mf0‖1 > ‖Pλ0(α · X )Pf0‖1.
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Motivation 2: Unique Matrix Separation Result (cont.)

Proposition

‖β̄ψ − β0‖ = O (ψ) as ψ → 0.

I The proposition considers fixed N, T , with only ψ → 0.

I The statement of the proposition implies that limψ→0 β̄ψ = β0.

I Thus, the proposition provides conditions under which the nuclear
norm regularization approach identifies the true parameter β0.

I For a single (K = 1) regressor with Xit = viwt , the condition simply
becomes ‖Mλ0v‖‖Mf0w‖ > ‖Pλ0v‖‖Pf0w‖.

I It is possible to show that the weaker condition Mλ0(α · X )Mf0 6= 0
for any linear combination α 6= 0 is sufficient for local identification
of β in a sufficiently small neighborhood around β0.

However, that weaker condition is not sufficient for global
identification of β0.
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Consistency and Convergence Rates
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Consistency for only low-rank regressors

β̂ψ = argmin
β

min
Γ

1

2NT

∥∥∥Y − β · X − Γ
∥∥∥2
2

+
ψ√
NT
‖Γ‖1︸ ︷︷ ︸

=Qψ(β,Γ )

β̂∗ = lim
ψ→0

β̂ψ = argmin
β
‖Y − β · X‖1

Assume R0 := rank(Γ0) is finite.

Theorem

Assume

min
{α∈RK : ‖α‖=1}

∥∥∥∥Mλ0(α · X )Mf0√
NT

∥∥∥∥
1

−
∥∥∥∥Pλ0(α · X )Pf0√

NT

∥∥∥∥
1

≥ c > 0,

and ‖E‖∞ = OP(
√

max(N,T )), and rank(Xk) = OP(1). Then,

∥∥∥β̂ψ − β0∥∥∥ = OP(ψ) + OP

(
1√

min(N,T )

)
,

∥∥∥β̂∗ − β0∥∥∥ = OP

(
1√

min(N,T )

)
.
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Consistency for more general regressors (and for Γ̂ψ)

I Want to show consistency of (β̂ψ, Γ̂ψ) = argminβ,Γ Qψ(β, Γ ).

I Various equivalent ways to write the model:

yit = x ′itβ0 + γ0,it + eit , γ0,it = λ′0,i f0,t

Y =
K∑

k=1

Xkβ0,k + Γ0 + E , Γ0 = λ0f
′
0 ,

y = xβ0 + γ0 + e, γ0 = (f0 ⊗ λ0)vec(IR),

where y and γ0 are NT -vectors, and x is an NT × K matrix.
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Key Assumption: Restricted Strong Convexity

I Let MA = I− A(A′A)−1A′, θ = γ − γ0, Θ = Γ − Γ0.

Restricted Strong Convexity

Let C =
{
Θ ∈ RN×T : ‖Mλ0ΘMf0‖1 ≤ 3‖Θ −Mλ0ΘMf0‖1

}
. Let there

exists µ > 0, independent from N and T , such that for any θ ∈ RNT

with mat(θ) ∈ C we have θ′Mxθ ≥ µ θ′θ, for all N, T .

I C is a cone of possible values for Θ = Γ − Γ0 that are close to λ0f
′
0 .

I Require that the quadratic term 1
2NT (γ − γ0)′Mx(γ − γ0) of

LS-objective function after profiling out β is bounded below by a
strictly convex function, µ

2NT (γ − γ0)′(γ − γ0), if Γ − Γ0 ∈ C.

I corresponds to the restricted strong convexity condition in Negahbab

& Wainwright (2011) and Negahban, Ravikumar, Wainwright & Yu

(2012), and it plays the same role as the restricted eigenvalue
condition in recent LASSO literature.

I Can show that restricted strong convexity holds under low-level
assumption on Xk , λ and f . (see below)
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First show consistency of Γ̂ψ

Bound on Γ̂ψ − Γ0

Let RSC hold, and assume that

ψ ≥ 2√
NT
‖mat(Mxe)‖∞.

Then we have
1√
NT

∥∥∥Γ̂ψ − Γ0

∥∥∥
2
≤ 3
√

2R0

µ
ψ.

I Proof analogous to arguments in machine learning literature.
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Consistency of Γ̂ψ and β̂ψ

Additional Regularity Conditions

(i) ‖E‖∞ = Op

(
max(N,T )1/2

)
,

(ii) 1√
NT

e′x = Op(1),

(iii) 1
NT x ′x →p Σx > 0,

(iv) ψ = ψNT → 0 such that
√

min(N,T )ψNT →∞.

Theorem

Under RSC and above regularity conditions we have, as N,T →∞,

1√
NT

∥∥∥Γ̂ψ − Γ0

∥∥∥
2
≤ Op(ψ).∥∥∥β̂ψ − β0∥∥∥ ≤ Op(ψ).

Regarding proof of (b), note that β̂ψ − β0 = (x ′x)−1x ′[e − (γ̂ψ − γ0)]
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Sufficient Conditions for Restricted Strong Convexity

I For K = 1 with x ′x = 1 (normalized), the SRC condition is satisfied
if

lim inf
N,T

min
θ∈C
‖x − θ‖ ≥ µ > 0.

I A further set of sufficient conditions are as follows.

I For simplicity consider K = 1 (one regressor X only)

Lemma
Let s1 ≥ s2 ≥ s3 ≥ . . . ≥ 0 be the singular values of the N × T matrix
Mλ0XMf0 . Assume that there exists a sequence qNT such that

(i) 1√
NT
‖X‖2 = Op(1).

(ii) 1
NT

∑min(N,T )
r=qNT

s2r ≥ µ > 0 wpa1.

(iii) 1√
NT

∑qNT−1
r=1 (sr − sqNT )→P ∞.

Then the above RSC assumption is satisfied.
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Sufficient Conditions for Restricted Strong Convexity
(cont.)

I This can be verified for explicit DGP’s using random matrix
theory.
e.g.:

I Xit ∼ i.i.d.N (0, σ2)
I X = λx f

′
x + ex , where ex,ij ∼ i.i.d.N (0, σ2), and λx f

′
x describe

a finite number of factors.
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How to choose ψ?

I Choice of ψ essentially equivalent to choosing number of factors R.

I (Cross-validation?)

I For R the recommendation from Moon & Weidner (2015) is to
choose larger R in case of doubt.

I Similarly, here the recommendation is to rather choose a smaller ψ,
in particular since β̂∗ = limψ→0 β̂ψ also has good properties (albeit
under stronger assumptions, and more difficult to prove).
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Nuclear norm minimizing estimator: β̂ψ

I Consider

β̂∗ = argmin
β
‖Y − β · X‖1 .

= argmin
β

min(N,T )∑
r=1

sr (Y − β · X )

I Convex objective function, neither R nor ψ needs to be chosen.
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Nuclear norm minimizing estimator: β̂ψ
For simplicity consider again K = 1.

Theorem

As N,T →∞ with N > T, the following conditions are satisfied;

(i) ‖E‖∞ = Op(
√
N) and 1

T
√
N
‖E‖1 ≤ 1

2cup, wpa1.

(ii) ‖X‖∞ = Op(
√
NT ).

(iii) Let UESEV
′
E be the singular value decomposition of Mλ0EMf0 . We

assume
Tr (X ′UEV

′
E ) = Op(

√
NT ).

(iv) T−1N−1/2‖Mλ0XMf0‖1 ≥ clow > 0,wpa1.

(v) Let UxSxV
′
x = Mλ0XMf0 be the singular value decomposition of the

matrix Mλ0XMf0 . We assume that there exists cx ∈ (0, 1) such that
wpa1

Tr (U ′EUxSxU
′
xUE ) ≤ (1− cx)Tr(Sx).

Then
√
T
(
β̂∗ − β0

)
= Op(1).
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Nuclear norm minimizing estimator: β̂ψ

I We consider a limit with N > T here. Alternatively, we could
consider a limit with T < N, but then we also need to replace N by
T , and X by X ′ in the assumptions.

I Here, we not only need conditions on the singular values of e and
X , but also assumptions involving the singular vectors. Much less
results in random matrix theory on this.

I Condition (iv) rules out “low-rank regressors”, for which we
typically have ‖Mλ0XMf0‖1 = Op(

√
NT ), but is satisfied generically

for “high-rank regressors”, for which Mλ0XMf0 has T singular
values of order

√
N, so that ‖Mλ0XMf0‖1 is of order T

√
N.

I Example where all assumptions can be verified:

eit ∼ i.i.d.N (0, σ2),
X = λx f

′
x + ex , where ex,ij ∼ i.i.d.N (0, σ2),

and λx f
′
x describe a finite number of factors.
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Post-nuclear-norm regularized estimation
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Post Nuclear Norm Regularized Estimation
Consider the case where R is known.

Updating procedure for β:

I For s = 0 set β̂(s) := β̂ψ or β̂∗.

Step 1: We estimate the factor loadings and the factors of the s−step
residuals Y − β̂(s) · X by the principle component method:

(λ̂(s+1), f̂ (s+1)) := argmin
λ∈RN×R ,f∈RT×R

∥∥∥Y − β̂(s) · X − λf ′
∥∥∥2
2
.

Step 2: We update the s-stage estimator β̂(s) by

β̂(s+1) := argmin
β

min
g ,h

∥∥∥Y − X · β − λ̂(s+1) g ′ − h f̂ (s+1)′
∥∥∥2
2

=
(
x ′
(
Mf̂ (s+1) ⊗Mλ̂(s+1)

)
x
)−1

x ′
(
Mf̂ (s+1) ⊗Mλ̂(s+1)

)
y .

I Iterate steps 1,2 a finite number of times.
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Post Nuclear Norm Regularized Estimation

I Define the local LS estimator obtained from optimizing the LS
objective function with R factor LR(β) in a shrinking neighborhood
around β0

β̂ local
LS,R := argmin

{β∈RK : ‖β−β0‖≤rNT}
LR(β),

where rNT is a sequence of positive numbers such that rNT → 0 and√
NT rNT →∞.

I We consider β̂ local
LS,R instead of the original LS estimator β̂LS,R ,

because we do not want impose the conditions needed for
consistency of β̂LS,R .

35 / 45



Post Nuclear Norm Regularized Estimation

Theorem

Assume that N and T grow to infinity at the same rate, and that

(i) plimN,T→∞ (λ′0λ0/N) > 0, and plimN,T→∞ (f ′0 f0/T ) > 0.

(ii) ‖E‖∞ = Op

(
max(N,T )1/2

)
, and ‖Xk‖∞ = Op

(
(NT )1/2

)
.

(iii) plimN,T→∞
1

NT x ′ (Mf0 ⊗Mλ0) x > 0.

(iv) 1√
NT

x ′ (Mf0 ⊗Mλ0) e = Op(1).

Then,

√
NT

(
β̂ local
LS,R0

− β0
)

= Op(1).

Assume furthermore that that ‖β̂(0) − β0‖ = Op(cNT ), for a sequence
cNT > 0 such that cNT → 0. For s ∈ {1, 2, 3, . . .} we then have

∥∥∥β̂(s) − β̂ local
LS,R0

∥∥∥ = Op

{
cNT

(
cNT +

1√
min(N,T )

)s }
.
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Post Nuclear Norm Regularized Estimation

Corollary

Let the assumptions of Theorem 4 hold, and assume that
cNT = o((NT )−1/6). For s ∈ {2, 3, 4, . . .} we then have

√
NT

(
β̂(s) − β̂ local

LS,R0

)
= oP(1),

√
NT

(
β̂(s) − β0

)
= Op(1).
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Post Nuclear Norm Regularized Estimation

I EITHER: Apply well-known methods for “pure factor models”
(without regressors) to the matrix Y − β̂(0) · X , e.g. Bai & Ng

(2002), Onatski (2010), Ahn & Horenstein (2013).

I OR: In the paper we consider:

R̂ψ∗ :=

min(N,T )∑
r=1

1

{
sr

(
Y − β̂(0) · X√

NT

)
≥ ψ∗

}
,

example
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MC Simulation (very simple illustration)

I Consider the linear model with one regressor and two factors:

Yit = β0 Xit +
2∑

r=1

λ0ir f
0
ir + eit ,

Xit = 1 + X̃it +
2∑

r=1

(λ0ir + χir )(f 0tr + f 0t−1,r ),

where f 0tr ∼ iidN(0, 1) and λ0ir , χir ∼ iidN(1, 1), and

X̃it , eit ∼ iidN(0, 1), and mutually independent.

I (N,T ) = (50, 50), (200, 200).

I ψNT = (log(N)1/2
√

max(N,T )

NT
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MC Simulation Result

(N,T ) POLS β̂LS β̂ψ β̂
(1)
ψ β̂

(2)
ψ β̂

(3)
ψ

(50,50)
bias 0.229 -0.007 0.135 0.014 -0.006 -0.007
s.d. (0.017) (0.011) (0.015) (0.011) (0.011) (0.011)

(200,200)
bias 0.229 -0.0017 0.099 0.008 -0.0015 -0.0017
s.d. (0.008) (0.003) (0.007) (0.003) (0.003) (0.003)
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Extensions to Some Nonlinear and/or Unbalanced Panel

I The model is a single index model.

I Let mit(z) := m(Wit , z) be a known convex function of the single index
z ∈ R, which also depends on the observed variables Wit . The single
index is X ′itβ + Γit .

I In the linear model, Wit = Yit and mit(z) = 1
2
(Yit − z)2.

I The estimator is(
β̂ψ, Γ̂ψ

)
∈ argmin
β∈RK , Γ∈RN×T

Qψ(β, Γ ),

Qψ(β, Γ ) :=
1

NT

N∑
i=1

T∑
t=1

mit

(
X ′itβ + Γit

)
+

ψ√
NT
‖Γ‖1 .

I We assume

(i) Wit is independently distributed across i and over t,
conditional on X .
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Extensions to Some Nonlinear and/or Unbalanced Panel
(cont.)

(ii) m(w , z) is convex in z , once continuously differentiable in z
almost everywhere in W ×Z. For any function
zit = zit(X ) ∈ Z the first derivative ∂zmit(zit) exists almost

surely, and satisfies maxi,t,N,T E
{

[∂zmit(zit)]4
∣∣∣ X} <∞.

(iii) mit(z) is twice continuously differentiable in Z, with
derivatives bounded uniformly over i , t,N,T , Z. There exists
b > 0 such that mini,t,N,T minz∈Z ∂z2mit(z) ≥ b.

(iv) ∂zmit(z
0
it) = 0, for all i , t.
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Examples
Let z0it = β′0Xit + Γ0,it be the true single index.

(a) Maximum likelihood: Let p(y |z0it) is the conditional density function of

Yit on X .

I Wit = Yit .
I mit(z) = − log p(Yit |z).
I Assume that mit(z) is strictly convex in z and three times

continuously differentiable.
I A concrete example is a binary choice probit model, where

p(y |z) = 1(y = 1)Φ(z) + 1(y = 0)[1− Φ(z)], and Φ(.) is the
cdf of N (0, 1).

(b) Weighted Least Squares: Let Yit = z0it + Eit with E(Eit |Xit ,Sit) = 0.

I mit(z) = 1
2Sit(Yit − z)2.

I Wit = (Yit ,Sit).
I Sit ≥ 0 are observed weights for each observation. A special

case is Sit ∈ {0, 1}, where Sit is an indicator of a missing
outcome Yit .

(c) Quantile Regression: Let Yit = z0it + Eit with E[1(Eit ≤ 0)|Xit ] = τ .
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Examples (cont.)

I mit(z) = ρτ (Yit − z), where ρτ (u) = u · [τ − 1(u < 0)].
I Wit = Yit .
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Assumptions for Nonlinear Extensions

For simplicity, consider K = 1 (single regressor).

Assumptions

We assume the following.

(i) Assume ψ → 0 as
√
NTψ →∞.

(ii) Assume that ‖Γ0‖1 = O(
√
NT ).

(iii) The regressor X can be decomposed as X = X (1) + X (2) such that
‖X (1)‖1 = oP(

√
NT ψ−1/2), and ‖X (2)‖∞ = oP(

√
NT ψ1/2).

(iv) W := 1
NT

∑N
i=1

∑T
t=1(X

(2)
it )2 satisfies W →P W∞ > 0.
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Consistency

Theorem

Under the above assumptions,

β̂ψ − β0 = OP(ψ1/2).
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Conclusion

I Nuclear norm penalized / minimized estimation of an interactive
fixed effect regressions.

I Computational advantage: objective function is a convex function of
the parameters.

I Identification: unique matrix separation through regularization.

I Extensions to single index models - probit, quantile, unbalanced
panel.
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