Labor Reallocation and Wage Growth: Evidence from East Germany

Wolfgang Dauth
U Würzberg and IAB

Sang Yoon (Tim) Lee Queen Mary and CEPR Sebastian Findeisen
U Mannheim and CEPR

Tommaso Porzio UCSD and CEPR

January 2019 IN PROGRESS

Introduction

- Resource misallocation a source of cross-country income gaps
 - 1. Capital across firms, managers across technologies...
 - 2. Possibly due to bad policies, market imperfections...

- Can reallocation of inputs lead to convergence across regions?
 - 1. Theoretical evidence is obvious
 - 2. Empirical evidence is scant

- This Paper: <u>historical evidence</u> from German Reunification
 - * Firm-worker reallocation contributed significantly to wage catchup

Ideal Empirical Setting to Study Labor Reallocation

- Policy change that is
 - 1. Exogenous, or sudden
 - 2. Efficient benchmark to compare the evolution of allocations
 - 3. Related only to the reallocation of a fixed set of firms and workers
 - 4. Data before and after to compare the allocations

- Most existing counterfactuals are artificial:
 - based on hypothetical reforms, and/or against U.S. as a benchmark

German Reunification is Quasi-Ideal

- 1. Quick and largely unexpected
- 2. Comparison against West Germans provides natural benchmark
- Three treatments: change in labor market + firm entry/exit + mobility
 ⇒ follow workers "from" East, decompose each
- Scarce data before, but matched employer-employee data afterward
 ⇒ quasi-experimental variation (exposure) across cohorts
- ⇒ Separate between-firm effects from within-firm effects, for each East cohort, at all ages, relative to West

Main Results

- Decompose initial wage gap and ensuing catchup into:
 - 1. Between-firm: difference in firms East/West workers work
 - 2. Within-firm: difference in worker productivities, "human capital"?

- ~ 8 of the 20 ppt catchup up to 2014 happens between-firms
 - 1. <u>1992-1997</u>: ∼4 ppt due to reallocation of workers across firms in East,
 - 2. 1997-2014: rest due to reallocation of workers to West firms

⇒ Speed and magnitude points to the possibility of labor market efficiency as a potent policy directive

Average Wages, 1992 vs 2014

Average Wages, 1995 vs 2014

Average Wages, 2000 vs 2014

Average Wages, 2007 vs 2014

East Share of Population, 1992 vs 2014

East Share of Population, 1995 vs 2014

East Share of Population, 2000 vs 2014

East Share of Population, 2007 vs 2014

Data

- Source: IAB, research center associated with (un)employment agency
 - universe of work histories civil servants and self-employed (∼85%)
 - \sim 50 million workers followed over their life-cycles 100% sample!
- 2. Sample restriction: average daily wage of working-age German men*
 - Years: $[\underline{t}, \overline{t}] = [1992, 2014]$ (earlier data used to identify origin)
- 3. Divide sample into East/West-"Born"
 - Berlin treated as West (for now)

^{*} i.e., non-Germans are dropped. For women, patterns are more distinct in employment, not wages

E-E Transitions for East/West-Born

E-E Transitions by Cohort (East in black)

Baseline Regression

$$\log w_{isrct} = \log \theta_{j(i,t),t} + \underbrace{\tau_{srt} + \kappa_{src} + \alpha_{srct} + \epsilon_{isrct}}_{\log h_{isrct}}$$

- individual i, skill s, from r, birth year c, working at firm j at time t
- Firm effects θ are not fixed, allowed to vary over time
 - 1. Cannot include individual worker fixed effects
 - 2. Fully stratified by skill, region and cohort
- α_{srct} : skill-origin-cohort-specific age effects

Wage Gap: Firms and Workers

Wage Convergence: Firms and Workers

College cannot explain much

Growth Decomposition of θ

- Extend Olley and Pakes (1996); Melitz and Polanec (2015) to consider worker migration
- X Differences in average firm wage growth (unexplained)

- 1. Change in covariance across firms and workers
- Firm entry/exit
- 3. Migrants and migration

Then decompose each explainable component further

Growth Decomposition of θ : Within-Region

Growth Decomposition of θ : Firm Entry/Exit

Growth Decomposition of θ : Migrants

Growth Decomposition of θ : Migration

Sum Up in Numbers

Decomposition		Contribution t First 5 years: 13 ppt	o Catchup All years: 19 ppt
I	w/i firms	0 ppt	1.5 ppt
	b/w firms	13 ppt	17.5 ppt
П	unexplained explained	8 ppt 5 ppt	9.5 ppt 8 ppt
III	w/i region	4 ppt	2 ppt
	entry/exit	0 ppt	1 ppt
	migrants	0.5 ppt	1.5 ppt
	migration	0.5 ppt	3.5 ppt

Within region in first 5 years, then across region

Decomposition by Cohort

Old cohorts are initially allocated worse, catchup faster

Can similarly decompose reallocation effects by cohort

Shuffling effect in first years dominant

Out-migration strong for post-RU cohorts

Lessons Learned So Far

- 1. Firm-worker reallocation effects can be large and quick
 - Explains about a quarter of East-West wage convergence
 - Most within-region reallocation occurs in first 5 years

- Migration plays persistent, growing role
 - Need to understand intensive/extensive margins (in progress)
 - East-West effects are opposite (in progress)

3. Almost no difference/catchup from human capital firm entry/exit

Understanding Shuffling Effects

- Workers moving across firms (gross flows of hiring, firing, job-to-job)
- Changes the size distribution over θ_j 's, but also the θ_j 's: θ_j 's are not fixed but change over time

• Wage growth from change in θ -size correlation (Olley and Pakes, 1996):

$$\begin{split} S_r &\equiv \underbrace{\bar{\theta}'(\mathbf{S}'_r)/\bar{\theta}(\mathbf{S}_r)}_{\text{change in mean }\theta \text{ across workers}} \middle/ \underbrace{\bar{\theta}'(\tilde{\mathbf{S}}_r)/\bar{\theta}(\tilde{\mathbf{S}}_r)}_{\text{change in mean }\theta \text{ across firms}} \\ &= \eta'(\tilde{\mathbf{S}}_r)/\eta(\tilde{\mathbf{S}}_r) \quad \text{where} \\ \eta(\tilde{\mathbf{S}}_r) &\equiv 1 + \text{Corr}\left[\frac{\theta_j}{\bar{\theta}(\tilde{\mathbf{S}}_r)}, \frac{s_j}{\bar{s}(\tilde{\mathbf{S}}_r)}\right] \cdot \text{StD}\left[\frac{\theta_j}{\bar{\theta}(\tilde{\mathbf{S}}_r)}\right] \cdot \text{StD}\left[\frac{s_j}{\bar{s}(\tilde{\mathbf{S}}_r)}\right] \end{split}$$

First verify correlation vs. dispersion effect

Reallocation Comes from Change in Correlation

Size or θ ?

- We can think of the following types of counterfactual correlations:
- Keep θ distribution constant, change size distribution:

$$\operatorname{Corr}\left[\frac{\theta_j}{\bar{\theta}(\mathbf{\tilde{S}}_r)}, \frac{s_j'}{\bar{s}'(\mathbf{\tilde{S}}_r)}\right]$$

• Keep size distribution constant, change θ distribution:

$$\mathsf{Corr}\left[\frac{\theta_j'}{\bar{\theta}'(\tilde{\mathbf{S}}_r)},\frac{s_j}{\bar{s}(\tilde{\mathbf{S}}_r)}\right]$$

Size and θ

$\Delta \text{Rank}(\theta) - \Delta \text{Size Correlation}$

- East in black
- On average, θ -growth firms are shrinking

Understanding Plows and Flows I

- We view a firm as a collection of workers
- Abstract from skill-origin-cohort-age for illustration
- Suppose individual i's wage is determined by

$$w_i = \underbrace{\zeta_{j(i)}\left(\omega_i\right)}_{\text{match quality}} \cdot \underbrace{\psi_{j(i)}\Big(\{\omega_n\}_{n \in \mathcal{I}_{j(i)}}}_{\text{worker complementarities}}; \lambda_j, s_j\Big)$$

where \mathcal{I}_j are the set of workers in firm j and

 ω_i : vector of individual-specific components (partially observable)

 ζ_{j} : firm-specific function that depends only on ω_{i}

 ψ_i : firm-specific wage function that depends on all workers' ω_n

 λ_i : firm-specific inputs

Understanding Plows and Flows II

• Our $\log \theta_i$'s are basically mean firm log wages:

$$\epsilon_{i} = \log \zeta_{j(i)}(\omega_{i}) - \overline{\log \zeta_{j}(i)(\omega_{n})}^{n \in \mathcal{I}_{j(i)}}$$

$$\theta_{j} = \exp \left[\overline{\log \zeta_{j}(\omega_{i})}^{i \in \mathcal{I}_{j}}\right] \cdot \psi_{j}\left(\{\omega_{i}\}_{i \in \mathcal{I}_{j}}; \lambda_{j}, s_{j}\right)$$

- Suppose ζ_i , ψ_i are increasing in ω_i 's
- So θ_i 's may rise from swapping ω_i 's due to
 - 1. Rise in average match quality
 - 2. Rise in worker complementarities
- Negative growth correlation can be understood as letting go of low ω_i workers (firms are too large...in progress)

Conclusion

- Use German micro-level employment data to study East German wage convergence from 1992-2014
- Labor market efficiency potentially an important source of income gaps and development
 - Misallocation of workers across firms explains bulk of initial East-West wage gap
 - Evidence that older cohorts were more misallocated due to longer communist exposure
- 3. Firm-Worker reallocation plays major role in catchup
 - More misallocated older East German cohorts reallocate faster
 - Younger cohorts persistently migrate with larger gains

Way Ahead

- Individual firm-worker understanding of size and θ effects
 - 1. Firm wages grow by relieving low-wage movers
 - ⇒ Stayers gain more than movers by staying in high-growth firms
 - 2. High-growth firms are NOT those with initially high wage!
- Cohort effects for migrants
- Control for further observables (industries, unions, etc.)
 - Occupation composition and premia may also be changing
- Tractable model that explains negative growth correlation

Way Ahead

- Individual firm-worker understanding of size and θ effects
 - Firm wages grow by relieving low-wage movers
 - ⇒ Stayers gain more than movers by staying in high-growth firms
 - 2. High-growth firms are NOT those with initially high wage!
- Cohort effects for migrants
- Control for further observables (industries, unions, etc.)
 - Occupation composition and premia may also be changing
- Tractable model that explains negative growth correlation

THANK YOU!

East-West German Wages

Wage Growth by Cohort

Raw Profiles in the Data

Definitions and Level Decomposition

- For any period t, drop time subscripts to ease notation
- Define R_r: set of workers from r
- For any set A of workers, \tilde{A} : set of firms with at least worker in A For any set \tilde{A} of firms, A: set of all workers working in \tilde{A}
- $\bar{x}(\mathbf{A}) \equiv \mathbb{E}\left[x_i | i \in \mathbf{A}\right]$: mean of x over workers in set \mathbf{A} $\bar{x}(\tilde{\mathbf{A}}) \equiv \mathbb{E}\left[x_j | j \in \tilde{\mathbf{A}}\right]$: mean of x over firms in set $\tilde{\mathbf{A}}$
- At any time t, E-W wage gap is

$$\frac{\bar{w}(\mathbf{R}_E)}{\bar{w}(\mathbf{R}_W)} = \underbrace{\frac{\bar{\theta}(\mathbf{R}_E)}{\bar{\theta}(\mathbf{R}_W)}}_{\text{between-firm gap}} \cdot \underbrace{\frac{\bar{h}(\mathbf{R}_E)}{\bar{h}(\mathbf{R}_W)}}_{\text{within-firm gap}} \cdot \underbrace{\frac{\rho(\mathbf{R}_E)}{\rho(\mathbf{R}_W)}}_{\text{type-correlation}}$$

Wage Growth Decomposition

Change in E-W wage gap (≡ growth rate gap)

$$\begin{split} \Delta \log \frac{\bar{w}(\mathbf{R}_E)}{\bar{w}(\mathbf{R}_W)} \approx & \Delta \log \frac{\bar{\theta}(\tilde{\mathbf{S}}_E \cap \tilde{\mathbf{R}}_E)}{\bar{\theta}(\tilde{\mathbf{S}}_W \cap \tilde{\mathbf{R}}_W)} \quad \text{: unexplained firm wage growth} \\ & + \Delta \log \frac{\bar{\theta}(\mathbf{R}_E)/\bar{\theta}(\tilde{\mathbf{S}}_E \cap \tilde{\mathbf{R}}_E)}{\bar{\theta}(\mathbf{R}_W)/\bar{\theta}(\tilde{\mathbf{S}}_W \cap \tilde{\mathbf{R}}_W)} + \Delta \log \frac{\bar{h}(\mathbf{R}_E)}{\bar{h}(\mathbf{R}_W)} \end{split}$$

where $\tilde{\mathbf{S}}_{\mathbf{r}}$: set of surviving firms in $r \in E$, W

- Cannot explain why East firms grow faster (∼"TFP shocks")
- But can extract allocative gain

Firm Survival

College Attainment by Year

Cohort Share of College by Year

Growth Decomposition Formula

- For any time t, define the sets
 - 1. $\tilde{\mathbf{T}}_r$: all firms in $r \in \{\text{East}, \text{West}\}$
 - 2. \mathbf{M}_r : set of workers who migrate out, or only appear in t+1
- Decompose firm component as:

$$\frac{\bar{\theta}'(\mathbf{R}'_r)}{\bar{\theta}(\mathbf{R}_r)} = \underbrace{\frac{\bar{\theta}'(\tilde{\mathbf{S}}_r)}{\bar{\theta}(\tilde{\mathbf{S}}_r)}}_{Y_r: \, \text{year effect}} \cdot \underbrace{\frac{\bar{\theta}'(\tilde{\mathbf{R}}'_r \cap \tilde{\mathbf{S}}_r)}{\bar{\theta}(\tilde{\mathbf{S}}_r)}}_{\text{extensive}} \underbrace{\frac{\bar{\theta}'(\mathbf{S}'_r)/\bar{\theta}'(\tilde{\mathbf{S}}_r)}{\bar{\theta}(\mathbf{S}_r)/\bar{\theta}(\tilde{\mathbf{S}}_r)}}_{\text{regional shuffling}} \cdot \underbrace{\frac{\bar{\theta}'(\mathbf{S}'_r)/\bar{\theta}'(\tilde{\mathbf{S}}_r)}{\bar{\theta}(\mathbf{S}_r)/\bar{\theta}(\tilde{\mathbf{S}}_r)}}_{\underline{\bar{\theta}'(\mathbf{S}'_r)/\bar{\theta}'(\tilde{\mathbf{S}}_r)}} \underbrace{\frac{\bar{\theta}'(\mathbf{S}'_r)/\bar{\theta}'(\tilde{\mathbf{S}}_r)}{\bar{\theta}(\mathbf{S}_r)/\bar{\theta}(\tilde{\mathbf{S}}_r)}}_{S_r: \text{domestic shuffling}} \\ \times \underbrace{\frac{\bar{\theta}'(\mathbf{R}'_r \cap \mathbf{T}'_r)}{\bar{\theta}(\mathbf{R}_r \cap \mathbf{T}_r)}}_{\underline{\bar{\theta}'(\mathbf{R}'_r \cap \mathbf{T}'_r)}} \underbrace{\frac{\bar{\theta}'(\mathbf{R}'_r \setminus \mathbf{M}_r)}{\bar{\theta}(\mathbf{R}_r \cap \mathbf{T}_r)}}_{\bar{\theta}'(\mathbf{R}'_r \cap \mathbf{T}'_r)} \underbrace{\frac{\bar{\theta}'(\mathbf{R}'_r \setminus \mathbf{M}_r)}{\bar{\theta}(\mathbf{R}_r \cap \mathbf{T}_r)}}_{\underline{\bar{\theta}'(\mathbf{R}'_r \setminus \mathbf{M}_r)}} \underbrace{\frac{\bar{\theta}'(\mathbf{R}'_r \setminus \mathbf{M}_r)}{\bar{\theta}(\mathbf{R}_r \setminus \mathbf{M}_r)}}_{\bar{\theta}'(\mathbf{R}'_r \setminus \mathbf{M}_r)}$$

$$\underbrace{\frac{\bar{\theta}'(\mathbf{R}'_r \cap \mathbf{S}'_r)}{\bar{\theta}(\mathbf{R}_r \cap \mathbf{S}_r)}}_{\text{firm entry/exit}} \underbrace{\frac{\bar{\theta}'(\mathbf{R}'_r \cap \mathbf{T}'_r)}{\bar{\theta}(\mathbf{R}_r \cap \mathbf{T}_r)}}_{\text{migrants}} \underbrace{\frac{\bar{\theta}'(\mathbf{R}'_r \setminus \mathbf{M}_r)}{\bar{\theta}'(\mathbf{R}_r \setminus \mathbf{M}_r)}}_{\underline{\theta'(\mathbf{R}_r \setminus \mathbf{M}_r)}}$$

Component Decomposition

For shuffling, note that for any set of workers A,

$$\frac{\bar{\theta}'(\mathbf{A}')/\bar{\theta}'(\tilde{\mathbf{A}}')}{\bar{\theta}(\mathbf{A})/\bar{\theta}(\tilde{\mathbf{A}})} = \frac{\eta'(\mathbf{A}')}{\eta(\mathbf{A})}$$

captures θ -size correlation

 Each component can be split into firm extensive and sub-shuffling gains, since for sets A ⊂ B:

$$\frac{\frac{\overline{\theta'}(\mathbf{B'})}{\overline{\theta}(\mathbf{B})}}{\frac{\overline{\theta'}(\mathbf{A'})}{\overline{\theta}(\mathbf{A})}} = \underbrace{\frac{\overline{\theta'}(\mathbf{\tilde{B'}})/\overline{\theta}(\mathbf{\tilde{B}})}{\overline{\theta'}(\mathbf{\tilde{A'}})/\overline{\theta}(\mathbf{\tilde{A}})}}_{\text{extensive gain}} \cdot \underbrace{\frac{\frac{\overline{\theta'}(\mathbf{B'})/\overline{\theta'}(\mathbf{\tilde{B}})}{\overline{\theta}(\mathbf{B})/\overline{\theta}(\mathbf{\tilde{B}})}}{\frac{\overline{\theta'}(\mathbf{A})/\overline{\theta}(\mathbf{\tilde{A}})}{\overline{\theta}(\mathbf{A})/\overline{\theta}(\mathbf{\tilde{A}})}}}_{\text{shuffling gain}} = \frac{\overline{\theta'}(\mathbf{\tilde{B'}})/\overline{\theta}(\mathbf{\tilde{B}})}{\overline{\theta'}(\mathbf{\tilde{A'}})/\overline{\theta}(\mathbf{\tilde{A}})} \cdot \frac{\eta'(\mathbf{B'})/\eta(\mathbf{B})}{\eta'(\mathbf{A'})/\eta(\mathbf{A})}$$

- Shuffling: domestic, firm entry/exit, foreign
- Not considered across borders: all soaked into migration

▶ Back

41

Growth Decomposition of θ

Growth Decomposition of θ : Levels

Intensive and Extensive Margins

• Migrants move to high θ firms, but shuffling effect is negative

Cohort Shuffling

Cohort Seeding N' Weeding

Migrants by Cohort

Migration by Cohort

Size and θ moments

$\Delta\theta$ -Relative Gross Flows Correlation

- East in black
- No θ (firm wage) change for firms with no flows

- **Melitz, Marc J. and Sašo Polanec**, "Dynamic Olley-Pakes productivity decomposition with entry and exit," *RAND Journal of Economics*, June 2015, *46* (2), 362–375.
- Olley, G. Steven and Ariel Pakes, "The Dynamics of Productivity in the Telecommunications Equipment Industry," *Econometrica*, 1996, *64* (6), 1263–1297.