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Introduction

Goal

§ We develop a CLT for network statistics,

1
n

n
ÿ

i“1

ψpXi ,Xn,W ,Aq,

where
§ Xi is a vector of homophilous attributes of node i ,
§ Xn :“ tX1, ...,Xnu,
§ W is the set of all other node attributes,
§ A “ rAij s is the observed network on n nodes.

§ A simple example is

ψpXi ,Xn,W ,Aq “
ÿ

j‰i

Aij .
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Introduction

Contributions
§ We derive conditions under which

1
?

n

n
ÿ

i“1

pψi ´ Erψi sq
d
ÝÑ N p0, σ2

q.

§ A key high level condition for the large-network CLT for dynamic network
moments is (i) “stabilization” condition (e.g. Penrose (2007), Penrose
and Yukich (2005), and Leung (2018)) and (ii) bounded moments of ψi .

§ We apply our results to

§ nonparametric bounds on the average structural function of
dynamic network formation,

§ network regressions (not today),
§ treatment effects with network spillovers (not today).

§ We provide lower level conditions for “stabilization” in each application.
§ We also propose inference procedures for Erψi s (not today).
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Introduction

Related Literature
§ Leung (2018), Menzel (2016): Law of large numbers for static models

with strategic interactions.
§ Estimation of subgraph and exponential random graph models: Boucher

and Mourifié (2015), Chandrasekhar and Jackson (2015).
§ Estimation of dyadic link formation without strategic network formation:

Dzemski (2014), Graham (2017).
§ Estimation static models of strategic network formation: Leung (2015),

Ridder and Sheng (2016)
§ Bayesian approaches: Christakis et al. (2010), Mele (2017).
§ Large matching models: Agarwal and Diamond (2017), Fox (2017),

Menzel (2016).
§ Dynamic network models: Kuersteiner and Prucha (2018, dynamic spatial

panels), Graham (2016, point identification, parametric)
§ Proof of CLT draws heavily from techniques in Penrose (2003) and

Penrose and Yukich (2001, 2003).
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Outline

Application to Dynamic Model
Setup and Object of Interest
Weak Dependence

Main Result

4 / 41



Application to Dynamic Model Setup and Object of Interest

Dynamic Network Formation Model I
Notations:

§ Nn :“ t1, ..., nu is the set of nodes.
§ Each node i is endowed with a type pXi ,Ziq.
§ Xi P Rd : “position” of node i . It is a latent, continuously distributed,

time invariant characteristic.
§ Zi :“ pZi0, ...,ZiT q: observed, potentially time varying attributes.
§ Each node pair pi , jq are endowed with a random shock ζij .

Network on n nodes evolves from period t ´ 1 to t according to myopic
best-response dynamics: for every i , j P Nn

Aij,t “ 1tV pr´1
n ||Xi ´ Xj ||, pAij,t´1,max

k
Aik,t´1Ajk,t´1q

loooooooooooooooomoooooooooooooooon

Sij,t

,Zit ,Zjt , ζij,tq ą 0u.

Here,
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Application to Dynamic Model Setup and Object of Interest

Dynamic Network Formation Model II
§ V p¨q :

§ V p¨q : is unknown.
§ V p¨q is strictly monotonic in ζij,t .
§ homophily: V is decreasing in r´1

n }Xi ´ Xj}.
§ Homophily:

§ Nodes homophilous p´r´1
n }Xi ´ Xj}q in position.

§ sparsity: rn Ñ 0 at a certain rate.
§ Examples: income, geographic location.
§ Can also interpret more abstractly as positions in latent social

space, following latent space models (Hoff et al., 2002).
§ Aij,t´1 : captures state dependence.
§ maxk Aik,t´1Ajk,t´1 : generates network clustering.
§ Examples in literature include
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Application to Dynamic Model Setup and Object of Interest

Dynamic Network Formation Model III

§ risk-sharing networks in the rural Phillippines (Fafchangps and
Gubert, 2007)

§ research partnerships in the biotechnology industry (Powell et
al, 2005)

§ Graham (2016) discusses the policy implications of distinguishing between
incentives based on assortative matching (homophily) and those based on
strategic interactions.

§ Network formation models are also useful for forecasting the effects of
counterfactual interventions ( Mele, 2017) and as selection models for
social interactions (Badev, 2013).
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Application to Dynamic Model Setup and Object of Interest

Initial Network

§ Simple example: A0 follows dyadic regression model,

Aij,0 “ 1
 

V0pr´1
n ||Xi ´ Xj ||,Zi0,Zj0, ζij,0q ą 0

(

. (1)

§ Interpret as random meeting process prior to creatation of social
connections.

§ More generally, we can allow for strategic interactions similar to
dynamic model, except Sij,0 depends on A0, not a lagged network.
(Not today)
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Application to Dynamic Model Setup and Object of Interest

Application: ATE of Network Formation - I
§ Goal: inference on ASF µps, z, z 1q, where

µps, z, z 1q “
ż

1tV pδ, s, z, z 1, ζq ą 0u dF pδ, ζq,

where F is the joint distribution of pr´1
n }Xi ´ Xj},Wij,tq.

§ For notational simplicity, assume that V does not depend on pZit ,Zjtq.
§ Recall Sij,t “ pAij,t´1,maxk Aik,t´1Ajk,t´1q.
§ Examples of parameters of interests:

(i) pµp1, 0qq ´ µp0, 0qq{µp0, 0q : nonparametric measure of state
dependence.

(ii) pµp0, 1qq ´ µp0, 0qq{µp0, 0q : nonparametric measure of
transitivity.

§ In general, these objects are not point-identified (e.g., Chernozhukov et
al. (2013)).
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Application to Dynamic Model Setup and Object of Interest

Application: ATE of Network Formation - II
§ We follow the idea in Chernozhukov et al. (2013).
§ Stpsq is the set of values of Sij “ pSij,t0 , ...,Sij,T q for which the tth

component first equals s at time t.
§ S̄psq is the set of values of Sij for which s is never reached between t0 and

T .
§ Define

Âijpsq “
T
ÿ

t“t0`1

1tSij P StpsquAij,t , (2)

Pijpsq “ 1tSij P S̄psqu. (3)

§ Chernozhukov et al. (2013) showed that

µ`psq ď µpsq ď µupsq, (4)

for µ`psq “ ErÂijpsqs and µupsq “ µ`psq ` ErPijpsqs.
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Application to Dynamic Model Setup and Object of Interest

Application: ATE of Network Formation - III
§ Using (4), we obtain the following upper and lower bounds on percentage

marginal effects:

µ`ps1q ´ µupsq
µupsq

ď
µps1q ´ µpsq

µpsq ď
µups1q ´ µ`psq

µ`psq
.

§ We estimate the lower and upper bounds on the ASF using their scaled
sample analogs

µ̂`psq “
1
n

n
ÿ

i“1

ÿ

j‰i

Âijpsq and µ̂upsq “ µ̂`psq `
1
n

n
ÿ

i“1

ÿ

j‰i

Pijpsq. (5)

§ Both µ̂`psq and µ̂upsq can be written as averages

1
n

n
ÿ

i“1

ψi .

For example, for µ̂`psq, ψi “
ř

j Âijpsq, a weighted degree of node i .
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Application to Dynamic Model Setup and Object of Interest

Application: ATE of Network Formation - IV

§ We prove a CLT for general averages of node statistics tψiu
n
i“1 of this

type under new restrictions on the model primitives that ensure weak
dependence.

§ ATE of network formation: Fernandez-val and Weidner (2016) and Chen,
Fernandez-val and Weidner (2018) - parametric dense network formation
without network externality.
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Application to Dynamic Model Weak Dependence
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Application to Dynamic Model Weak Dependence

Dependence Structure I

§ For simplicity, we consider a two-period case, where t0 “ 0 and T “ 1,
and the node statistic is the degree in period 1, ψi “

ř

j Aij,1.
§ We consider asymptotics where T is fixed and network size n Ñ8.
§ The key component in establishing asymptotics is understanding and

handling “dependence” between ψi and ψj .
§ An example:
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Application to Dynamic Model Weak Dependence

Dependence Structure II

1

32

4 5

Figure: Dashed lines depict A0, solid lines A1.

§ Denote NAt pi ,Kq is the K -neighborhood of node i in the network At .
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Application to Dynamic Model Weak Dependence

Dependence Structure III

§ Evidently, ψ1 depends directly on NA1p1, 1q “ t2, 3, 4, 5u, but its actual
“dependency neighborhood” is larger due to strategic interactions.

§ For example, consider the link A12,1. By the model specification, its
realization depends only on pX1,Z1q, pX2,Z2q, ζ12,1, and A0, the latter
only through NA0p1, 1q YNA0p2, 1q, which are those in the figure
connected by dotted lines to either node 1 or 2.

§ Furthermore, if we were to remove all nodes from the network other than
those in NA0p1, 1q YNA0p2, 1q, this would not change the set of links
formed by nodes 1 and 2 in A0.

§ It follows that A12,1 is invariant to the removal of
N zpNA0p1, 1q YNA0p2, 1qq from the network. The same reasoning applies
to A1k,1 for k “ 3, 4, 5.
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Application to Dynamic Model Weak Dependence

Dependence Structure IV
§ The realization of ψi is invariant to the removal of all nodes from the

model, other than members of the set

Ji ” NA1pi , 1qY
ď

jPNA1 pi,1q

NA0pj, 1q, (6)

which are all the nodes depicted in the figure.
§ We call Ji the relevant set for ψi .
§ Under a sparsity condition, the sizes of 1-neighborhoods are

asymptotically bounded.
Ñ Hence, for any i , |Ji | “ Opp1q.

§ Since Ji effectively represents a dependency neighborhood, tψiu
n
i“1 ought

to be “weakly dependent” (like a moving average in time series).
§ We will show that ψi does satisfy one such notion, known as

“stabilization,” for which we can prove a CLT.
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Application to Dynamic Model Weak Dependence

Dependence Structure V
§ Two crucial properties used in this argument are that T ă 8 and the

initial conditions model has no strategic interactions.
§ Finiteness of T is important.

§ If T “ 8, then even under sparsity, |Ji | “ 8 a.s.
§ In the general model, we accommodate the “long-run” T “ 8 case

by modeling the initial condition as a draw from a static strategic
network-formation model, which informally represents a draw from
the stationary distribution.

§ Also, T ă 8 is important because it justifies the claim used above
that potential links in A0 do not depend on the states of other
potential links in that network.

§ With strategic interactions, potential links in A0 are now dependent,
so we require an additional weak-dependence condition that
controls the strength of strategic interactions.
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Main Result
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Main Result

General Set up I

§ Recall the general network formation model

Aij,t “ 1
!

V
´

r´1
n ||Xi ´ Xj ||, Sij,t ,Zit ,Zjt , ζij,t

¯

ą 0
)

.

§ ζij :“ pζij,0, . . . , ζij,T q.
§ tpXi ,ZiquiPN and tζijui,jPN are „ i.i.d. and mutually independent.
§ Xn :“ tXiu

n
i“1 and W :“ tpZi ,Zj , ζijq : i , j P Nnu.

§ For a universal constant κ ą 0, define the sparsity parameter
rn :“ pκ{nq1{d , where d is the dimension of Xi .

§ Xi are continuously distributed with density f .
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Main Result

Main Goal I

§ We prove a CLT for statistics of the form

Λpr´1
n Xn,W q ”

ÿ

XPXn

ξpr´1
n X , r´1

n Xn,W q,

where the node statistic ξ has range Rm, specifically

n´1{2`Λpr´1
n Xn,W q ´ ErΛpr´1

n Xn,W qs
˘ d
ÝÑ N p0,Σq

as n Ñ8.
§ In the dynamic model,

§ Zi “ pZi0, . . . ,ZiT q and ζij “ pζij,0, . . . , ζij,T q.
§ Recall that the sample analogs of the ASF bounds are determined

by n´1 řn
i“1 ψi , where ψi ” p

ř

j‰i Âijpsq,
ř

j‰i Pijpsqq.
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Main Result

Main Goal II

§ Write as ψpr´1
n Xi , r´1

n Xn,W ,Aq, where A “ pA0, . . . ,AT q is the full
history of the network time series.
The first argument of ψ functions as the label i , since r´1

n Xi is a.s.
unique to i given that positions are continuously distributed.

§ Observe that A is a deterministic functional of r´1
n Xn and W , since

positions only enter the model either directly through the
differences r´1

n ||Xi ´ Xj || or indirectly through attributes W .
§ We can then define ξpr´1

n Xi , r´1
n Xn,W q ” ψpr´1

n Xi , r´1
n Xn,W ,Aq

and
Λpr´1

n Xn,W q ”
ÿ

XPXn

ψpr´1
n X , r´1

n Xn,W ,Aq.
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Main Result

Stabilization Conditions I

§ Let X denote a generic element of Xn.
§ Let Qpx , rq be the cube in Rd centered at x with side length r .
§ Also for any H Ď Rd , define

WH “ tpZi ,Zj , ζijq : i , j P Nn, r´1
n Xi , r´1

n Xj P Hu.
§ We define R˚ξ pr´1

n X , r´1
n Xn,W q P R` is a radius of stabilization for the

node statistic ξpr´1
n X , r´1

n Xn,W q if for any
H Ě Qpr´1

n X ,R˚ξ pr´1
n X , r´1

n Xn,W qq,

ξpr´1
n X , r´1

n Xn,W q “ ξpr´1
n X , r´1

n Xn X H,WHq a.s.

§ The radius of stabilization defines a “relevant set” of nodes
r´1
n Xn X Qpr´1

n X ,R˚ξ pr´1
n X , r´1

n Xn,W qq (or more precisely, their
positions) such that the removal of nodes outside of this set does not
affect the value of the statistic ξ.
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Main Result

Stabilization Conditions II
§ Given a radius of stabilization R˚ξ , we say ξ is R˚ξ -exponentially

stabilizing if for some ñ, c, ε ą 0,

sup
nąñ

P
´

R˚ξ pr´1
n X , r´1

n Xn,W q ě r
¯

ď c exp t´cr εu .

This implies R˚ξ pr´1
n X , r´1

n Xn,W q “ Opp1q.
§ We say ξ is R˚ξ -externally stabilizing for radius of stabilization R˚ξ p¨q if for

all n, there exists RnpXq ě 0 such that (a) RnpXq “ Opp1q, and (b) for n
sufficiently large,

Q
´

r´1
n X 1,R˚ξ pr´1

n X 1, r´1
n Xn,W q

¯

Ď Qpr´1
n X ,RnpXqq

for all X 1 P Xn such that r´1
n X P Q

`

r´1
n X 1,R˚ξ pr´1

n X 1, r´1
n Xn,W q

˘

and

ξ
´

r´1
n X 1, r´1

n Xn X Qpr´1
n X 1,RX 1q,WQpr´1

n X 1,RX1 q

¯

‰ ξ
´

r´1
n X 1, r´1

n pXnztXuq X Qpr´1
n X 1,RX 1q,WQpr´1

n X 1,RX1 qztr
´1
n Xu

¯

(7)
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Main Result

Stabilization Conditions III
a.s., where RX 1 “ R˚ξ pX 1, r´1

n Xn,W q.

§ It states that removing the node positioned at X only affects an
asymptotically bounded number of other nodes’ statistics.

§ The “affected” nodes are those positioned at X 1 in part (b);
§ the requirement r´1

n X P Q
`

r´1
n X 1,R˚ξ pX 1, r´1

n Xn,W q
˘

states that
X lies in the relevant set of X 1,

§ (7) states that the node statistic of X 1 is affected by the removal of
X .

§ Whereas exponential stabilization limits the degree to which alters affect
the ego’s statistic, external stabilization limits the degree to which the
ego affects alters’ statistics.

§ A radius of stabilization R˚ξ is increasing if for any n sufficiently large
and H Ď Rd ,

R˚ξ pr´1
n X , r´1

n Xn,W q ě R˚ξ pr´1
n X , r´1

n Xn X H,WHq a.s.
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Main Result

Stabilization Conditions IV

§ This says that removing nodes can only shrink the radius of stabilization,
which will be trivially satisfied in our applications.
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Main Result

High Level Conditions I
The first is our main weak dependence condition.

§ Stabilization - There exists an increasing radius of stabilization R˚ξ such
that ξ is R˚ξ -exponentially and -externally stabilizing.

§ This implies that ξpr´1
n Xi , r´1

n Xn,W q will only depend on its arguments
through a “relevant set” of nodes Ji Ď Nn whose size has exponential
tails, uniformly in n.

§ Relevant sets in our applications will consist of unions of the network
components of nodes in the K -neighborhood of i with respect ot a
certain latent network.

The remaining two assumptions are regularity conditions.

§ Bounded Moments - supn Erξ
`

r´1
n X , r´1

n Xn,W
˘8
s ă 8.

§ Polynomial Bound - There exists c ą 0 such that for any n,
|ξpX , r´1

n Xn,W q| ď cnc a.s.
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Main Result

Limit Variance I
§ Let Pκf pxq be a homogeneous Poisson point process on Rd with intensity
κf pxq.

§ Let G P ttx , yu, txu,Hu for x , y P Rd .
§ Let X denote a random, at-most countable subset of Rd .
§ Conditional on X , we draw i.i.d. node-level attributes tZpx 1q : x 1 P X u

and i.i.d. pair-level shocks tζpx 1, y 1q : x 1, y 1 P X u independently of the
attributes.

§ Let W8
pX q “ tpZpx 1q,Zpy 1q, ζpx 1, y 1qq : x 1, y 1 P X u.

§ The asymptotic variance will depend on node statistics of the form
ξpx ,Pκf pxq Y G ,W8

q.
§ Define the “add-one cost”

Ξx “ Λ
`

Pκf pxq Y txu,W8
˘

´ Λ
`

Pκf pxq,W8
˘

. (8)

This measures the change in the network moments due to the addition of
a single node positioned at x .
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Main Result

Limit Variance II

§ Let
α “

ż

ErΞx sf pxq dx ,

§ Define

σ2

“

ż

Rd
E
”

ξpx ,Pκf pxq,W8
q

2
ı

f pxq dx

` κ

ż

Rd

ż

Rd

ˆ

E
“

ξpx ,Pκf pxq Y tx , yu,W8
qξpy ,Pκf pxq Y tx , yu,W8

q
‰

´ E
“

ξpx ,Pκf pxq Y txu,W8
q
‰

E
“

ξpy ,Pκf pxq Y tyu,W8
q
‰

˙

f pxq2 dxdy .
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Main Result

Main Theorem

Theorem (CLT)

n´1{2 `Λpr´1
n Xn,W q ´ E

“

Λpr´1
n Xn,W q

‰˘ d
ÝÑ N

`

0, σ2 ´ α2˘ .

Moreover, if Ξx has a non-degenerate distribution for any
x P supppf q, then σ2 ą α2.
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Main Result

Proof Sketch
§ Proof draws on several techniques for proving limit theorems for

geometric graphs (Penrose 2003, 2005, 2007; Penrose and Yukich,
2003).

§ First prove CLT for “Poissonized” model, where we replace n with
Nn „ Poissonpnq, independent of all other primitives.

§ Poissonized model easier to work with because it possesses a
spatial independence property.

§ Construct a martingale via spatial projections.
§ Under the “stabilization” condition, we verify the regularity

conditions of the martingale CLT and the convergence to the
limit variance.

§ In econometrics, Poissonization used to show convergence of
bootstrap empirical processes (der Vaart and Wellner, 1996).
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Main Result

Proof Sketch

§ Then “de-Poissonize” and prove result for original process.
§ Poissonized model “close to” original model since Nn{n

p
ÝÑ 1.

§ However, Poissonization increases variance since
Varpn´1{2Nnq “ 1.

§ Need to subtract off appropriate term to obtain correct
asymptotic variance.

§ Key high-level conditions for both steps are uniform moment
conditions and stabilization conditions, which formalize weak
dependence in this setting.
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Main Result

CLT for “Poissonized” Model I

Poisson Point Process: XNn .

Step 1: Writing the moments as a martingale difference sequence using the
following spatial projection.

§ Let Qpx , rq be the cube centered at x with side length r .
§ Suppose that we partition the support of f into

Qpx1, rnq, ...,Qpxkn , rnq.
§ Observe that the number of the cubes, kn, is proportional to n.
§ Let Fl be the sigma field generated by elements of XNn that belong

in the set Qpx1, rnq Y ¨ ¨ ¨ Y Qpxl , rnq, where l “ 1, ..., kn.
§ Let F0 be the trivial sigma field.
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Main Result

CLT for “Poissonized” Model II

§ Then by construction, we can represent the centered moments as a
telescoping sum

Λpr´1
n XNn ,W pXNnqq ´ EpΛpr´1

n XNn ,W pXNnqqq “

kn
ÿ

l“1

δl ,

where

δl :“ EpΛpr´1
n XNn ,W pXNnqq |Flq ´ EpΛpr´1

n XNn ,W pXNnqq |Fl´1q.

By definition of δl , Epδl |Fl´1q “ 0 for all l “ 1, ..., kn.
§ Therefore, pδl ,Flql“1,...,kl is a martingale difference sequence with

respect to the filtration tFlu
kn
l“0.
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Main Result

CLT for “Poissonized” Model III

Step 2: To establish the CLT of the Poissonized Model, we apply the martingale
difference CLT by verifying the following conditions:

sup
n

E
ˆ

1
n max

1ďlďkn
δ2

l

˙

ă 8 (9)

n´1{2 max
1ďlďkn

|δl | “ opp1q, (10)

1
n

kn
ÿ

l“1

δ2
l

p
ÝÑ σ2, (11)

§ Let X 1
Nn be an independent copy of XNn and Ql “ Qpxl , rnq.
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Main Result

CLT for “Poissonized” Model IV

§ Define the resampling cost

∆xl “ Λpr´1
n XNn ,W pXNnqq (12)

´ Λ
´

r´1
n

`

pXNnzQlq X pX 1
Nn X Qlq

˘

,W 1
pXNnq

¯

,

where
W 1
pXNnq “ tpZpxq,Zpyq, ζpx , yqq : x , y P pXNnzQlq X pX 1

Nn X Qlqu.
§ This is the change in network moments from redrawing the

positions of nodes in the cube Ql . It is quite similar to the add-one
cost Ξx defined in (8).

§ Since X 1
Nn is an independent copy of XNn , we have

δl “ Ep∆xl |Flq l “ 1, ..., kn.
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Main Result

CLT for “Poissonized” Model V
§ To prove (9) and (10),

sup
n

E
ˆ

1
n max

1ďlďkn
δ2

l

˙

ď sup
n

1
n

kn
ÿ

l“1

Epδ2
l q ď sup

n

kn

n max
1ďlďkn

Er∆2
xl s,

P
ˆ

n´1{2 max
1ďlďkn

|δl | ě ε

˙

ď

kn
ÿ

l“1

1
n2ε4 Erδ4

l s ď
kn

n2ε4 max
1ďlďkn

Er∆4
xl s.

We use the stabilization and boundedness assumptions to establish
uniform bounds on Er∆2

xl s and Er∆4
xl s.

§ To verify (11), we first approximate δl by δl,R “ Er∆xl ,R |Fl s, where

∆xl ,R “ Λpr´1
n pXNn X Ql,Rq,WQl,R q

´ Λ
´

r´1
n

`

pXNn X Ql,RzQlq X pX 1
Nn X Qlq

˘

,W 1
Ql,R

¯

,

where Ql,R :“ Qpxl ,Rrnq and
W 1

Ql,R “ tpZpxq,Zpyq, ζpx , yqq : x , y P pX 1
NnXQlqYpXNnXQl,RzQlqu.
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Main Result

CLT for “Poissonized” Model VI
§ Note that ∆xl ,R is the resampling cost under the locally restricted

Poisson process, XNn X Ql,R . Since

1
n

kn
ÿ

l“1

δ2
l ´ σ

2
“

1
n

kn
ÿ

l“1

pδ2
l ´ δ

2
l,Rq `

1
n

kn
ÿ

l“1

δ2
l,R ´ σ

2,

the required result (11) by showing

lim
RÑ8

lim
nÑ8

E 1
n

kn
ÿ

l“1

ˇ

ˇδ2
l ´ δ

2
l,R
ˇ

ˇ “ 0, (13)

1
n

kn
ÿ

l“1

δ2
l,R ´ σ

2 p
ÝÑ 0. (14)

§ For (13) these we use the stabilization and boundedness
assumptions.
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Main Result

CLT for “Poissonized” Model VII
§ For (14) we show

lim
nÑ8

Var
˜

1
n

kn
ÿ

l“1

δ2
l,R

¸

“ 0 for any R, (15)

lim
nÑ8

lim
RÑ8

1
n

kn
ÿ

l“1

Erδ2
l,R s Ñ σ2. (16)

§ For (15), we use the spatial independence property that disjoint
subsets of a Poisson process are independent; that is, for A,B Ď Rd

with AX B “ H,

E

»

–

ÿ

XPXNn

1tX P AY Bu

fi

fl

“ E

»

–

ÿ

XPXNn

1tX P Au

fi

flE

»

–

ÿ

XPXNn

1tX P Bu

fi

fl .
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Main Result

De-Poissonization I

§ It can be shown that under an appropriate coupling that

n´1{2`Λpr´1
n XNn ,W pXNnqq ´ ErΛpr´1

n XNn ,W pXNnqqs
˘

“ n´1{2`Λpr´1
n Xn,W q ´ ErΛpr´1

n Xn,W qs
˘

` n´1{2
pNn ´ nqα` opp1q.

(17)

§ The left-hand side is asymptotically N p0, σ2
q, as previously discussed.

§ The second term of the right-hand side is asymptotically N p0, α2
q by the

well-known normal approximation of a Poisson random variable.
§ Since Nn K Xn (under the right coupling), we have the required result.
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Main Result

CLT of ATE of Dynamic Network Formation I

§ Since Sij,t is finitely supported, there exist s̄, z̄, z̄ 1 such that
V pδ, s̄, z̄, z̄ 1, ζq ě V pδ,Sij,t ,Zit ,Zjt , ζq a.s. for any δ, ζ.

§ Moreover, since V is strictly increasing in its last component, we can
define Ṽ´1

pδ, ¨q as the inverse of V pδ, s̄, z̄, z̄ 1, ¨q.
§ Let Φ̃ζ denote the complementary CDF of ζij,t .

The key assumptions are
§ Tail Condition: There exists a constant c ą 0 such that for δ sufficiently

large,
Φ̃ζ

´

Ṽ´1
pδ, 0q

¯

ď e´cδ.

§ For the other regularity conditions, let Φp¨ | xq be the conditional
distribution of Zi given Xi “ x and Φtp¨ | xq the conditional distribution of
Zit given Xi “ x .
Assume that
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Main Result

CLT of ATE of Dynamic Network Formation
II

(a) Φpz | xq is continuous in x for any z .
(b) For all t, there exists a distribution Φ˚t that stochastically

dominates Φtp¨ | xq for all x .
(c) The density f of X1 is continuous and bounded away from zero

and infinity.
(d) V is continuous in its arguments, and ζij,t is continuously

distributed.
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Conclusion

§ We develop general CLT for network moments.
§ Primitive conditions for stabilization in dynamic model:

sparsity and weakly dependent initial network.
§ Other applications: network regression.
§ Work in progress: inference procedures.
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Sparsity - I

rn “
`

κ
n
˘1{d and the tail condition of the distribution of ζij,t imply

Gt is “sparse”” for any t.

§ Due to finite support of Sij,t and ρij , we can define s̄ and ρ̄
such that V ps̄, ρ̄, δij , ζij,tq ě V pSij,t , ρij , δij , ζij,tq a.s.

§ Since V is strictly increasing in its last component, we can
define Ṽ´1pδij , ¨q as the inverse of V ps̄, ρ̄, δij , ¨q, that is,
v “ V ps̄, ρ̄, δij , Ṽ´1pδij , vqq.

§ Let Φ̄ζ denote the complementary CDF of ζij,t .
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Sparsity - II
Assumption (Tail Condition)
There exist constants c1, c2, ε ą 0 such that

Φ̄ζ

`

Ṽ´1pδ, 0q
˘

ď c1e´c2δε .

Then,

1
n
ÿ

i ,j
ErGij,ts ď

1
n
ÿ

i ,j
Ppζij,t ą Ṽ´1pδij , 0qq

Ñ

ż

Rd

ż

Rd
Φ̄ζpṼ´1p}x ´ x 1}, 0qqκf pxq2 dx 1 dx

Back
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