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Overview

In an arbitrage-free setting, the yield at each term can be decomposed into:

1 the P expectation of the time average of future short rates
2 plus a risk premium for that term (AKA term premium), which can

take either sign
3 less a positive convexity effect.

The goal of this talk is to theoretically explain yields at any term and to use
a version of this decomposition at the long end of the yield curve to
empirically explain short term returns from holding long term bonds.

We present a simple alternative to both short-rate models, eg. Hull
White/CIR, and to whole term-structure models, HJM/BGM. Both types of
models have legitimate purposes eg market-making/hedging, but they are
not as well suited to the task of forecasting real-world returns from holding
long-dated bonds.
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Our objective: Analyzing returns on long-dated bonds

How can we forecast changes in a long-dated yield, based on the current
observed shape of the yield curve, while accounting for the risk premium and
for convexity effects?

More importantly, how can we forecast excess returns on long-dated bonds?

Forecasting changes in the 50 year rate using a short rate model requires the
modeler to specify the P dynamics of the short rate for the next 50 years.

When the speed of mean reversion is calibrated to time series or to the short
end of the yield curve, the implied movement in long rates from a short rate
model is much smaller than empirically observed.

Empirically, long rates move randomly, and with substantial volatility.

Can we say something useful about the one year return on a 50-year bond
without making a 50-year projection of short rates?

The divergence of the empirical behavior of long-dated bonds from that
predicted by short-rate models asks for a distinct modeling approach.
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A new modeling approach

We propose a new modeling framework that is particularly well suited for
forecasting long bond returns:

Our new framework links the pricing of long-dated bonds directly to the
attribution of P&L from holding that long-dated bond.

The P&L attribution makes it clear what to bet on and what to hedge.

We determine the arbitrage-free yield for any term based on its own Q
dynamics, not the Q dynamics of the short rate.

This localization to a particular term is less ambitious than trying to
simultaneously forecast changes in rates across all terms, but allows
one to make more confident statements on the particular long rate
whose changes one wishes to forecast.

The model can say something useful about an investment in a 50-yr
bond without making a 50-year projection, especially if one just wants
to hold the bond for the short term (say one year).

We will show empirically that we can explain a sizable fraction of the
variance in long bond returns, even though we will begin by assuming that
the long rate is a P martingale.
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Decomposing yield to maturity

Yield to maturity is a declining, but nonlinear, transformation of the bond
price.

Fundamentally, in any arbitrage-free model, the yield to maturity can always
be decomposed into,

1 Expectation: market’s P expectation of the time average of future
short rates

2 +Risk Premium: sign-indefinite compensation for bearing the risk of
interest rate fluctuations about the P expectation,

3 -Convexity: a negative effect on yield induced by the declining
nonlinear relation between bond price and yield-to-maturity.

We operationalize the decomposition via a driftless diffusion assumption and
then separate the risk premium from the other two components in order to
predict excess returns of long-dated bonds, without resorting to a forecasting
regression.
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Notation and the Classical Setting

Let Bt be the time-t price of a default-free coupon bond (portfolio) with
fixed future cash flows {Cj} at times {t + τj} ≥ t for j = 1, 2, · · · ,N.

The classic valuation of this coupon bond can be represented as

Bt(T ) =
∑
j

CjEP
t

[
Mt,t+τj

]
=
∑
j

CjEP
t

[(
dQ
dP

)
e−

∫ t+τj
t rudu

]
=

∑
j

CjEQ
t

[
e−

∫ T
t

rudu
]
.

Et [·] — expectation under time-t filtration,
Mt,T — the pricing kernel linking value at time t to value at time T
P — the real world probability measure,
Q — the so-called risk-neutral measure,
rt — instantaneous short rate
dQ
dP defines the measure change from P to Q. It is the martingale
component of the pricing kernel that defines the pricing of various risks.

Yield-to-maturity yt of a bond is implicitly defined by this map to price:

Bt(T ) ≡
∑
j

Cje
−ytτj .
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Yield to Maturity of a Zero Coupon Bond

As a special case, let yt(T ) be the continuously-compounded
yield-to-maturity (YTM) at time t ≥ 0 of a default-free zero-coupon bond
(ZCB) paying $1 at T ≥ t.

Bt(T ) ≡ e−yt(T )(T−t).

Solving for yt(T ) explicitly relates the yield to the bond’s price Bt(T ):

yt(T ) ≡ − lnBt(T )

T − t
, t ∈ [0,T ].

Since bond prices are positive, yields are real-valued and move in the
opposite direction of bond prices.

Substituting the bond pricing formula Bt(T ) = EQ
t e−

∫ T
t

rudu into the above
yield equation reveals the link between the T maturity yield observed at
time t ∈ [0,T ] and future short rates ru realized at times u ∈ [t,T ]:

yt(T ) ≡ − 1

T − t
lnEQ

t e−
∫ T
t

rudu, t ∈ [0,T ].
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Decomposing Yield to Maturity of a Zero Coupon Bond

By adding & subtracting the same term twice, the ZCB yield decomposes as:

yt(T ) = EP
t

∫ T

t
rudu

T − t
+ EP

t

[(
dQ
dP
− 1

) ∫ T

t
rudu

T − t

]
− C ,

where C ≡ 1
T−t

[
lnEQ

t e−
∫ T
t
(ru−EQ

t ru)du
]
≥ 0 is the convexity effect.

The 1st term is the average short rate
∫ T
t

rudu

T−t over times and states. If
future interest rates are sign-indefinite, then this term is also sign-indefinite.

The second term is the risk premium as captured by the covariance under P
of this average short rate with the random variable, dQ

dP − 1, which has zero
mean under P. This covariance can have either sign, so the middle term
cannot be signed either. If interest rates are deterministic, then the
covariance vanishes. If interest rates are stochastic and if bond returns are
thought to have a positive risk premium, then the covariance in the second
term is also positive. The introduction of both risky bond returns and
positive risk aversion raises the yield and hence lowers the bond price.
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Convexity Effect on Yield of a Zero Coupon Bond

Recall yt(T ) = EP
t

∫ T
t

rudu

T−t + EP
t

[(
dQ
dP − 1

) ∫ T
t

rudu

T−t

]
− C , where

C ≡ 1
T−t

[
lnEQ

t e−
∫ T
t
(ru−EQ

t ru)du
]
≥ 0 is the convexity effect.

While the P mean of future rates and the risk premium can in theory have
either sign, the convexity effect C ≥ 0 can only lower yield.

One can interpret C as a nonstandard deviation under Q of the zero mean

random variable −
∫ T

t
(ru − EQ

t ru)du. When compared to the standard
deviation, the nonstandard deviation replaces the quadratic function with an
exponential (which requires that its argument be dimensionless).

The convexity of the exponential function and Jensen’s inequality implies
C ≥ 0.

Intuitively, bond prices are both convex in the time average of future short
rates and declining in yield. As the uncertainty of future rates rise, bond
prices rise and hence yields fall.
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Term Structure Effects

yt(T ) = EP
t

∫ T
t

rudu

T−t + EP
t

[(
dQ
dP − 1

) ∫ T
t

rudu

T−t

]
− 1

T−t

[
lnEQ

t e−
∫ T
t
(ru−EQ

t ru)du
]
.

The relative importance of the three terms in this yield decomposition can
differ across maturities.

As the maturity date T approaches the current time, t, the last two terms
vanish, so that the current yield-to-maturity approaches the short rate:

lim
T↓t

yt(T ) = rt , t ≥ 0.

As we raise the time to maturity, the 2nd and 3rd terms both start affecting
the yield, but at different speeds.

As the maturity date T becomes infinite, the first two terms will in general
asymptote to finite constants, while the last term can either behave the
same way or explode, taking the yield to negative infinity. An example of a
short rate model in which the latter behavior occurs is the well known
Vasicek model.
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Bond P&L Attribution for Yield Diffusion

The previous decomposition applies only to yields on zero coupon bonds.
For coupon bearing bonds, one can similarly decompose yield by assuming
that the yield moves continuously over time (no jumps):

dyt = µP
t,ydt + σt,ydWt

For fixed payment times Tj , define B(y , t) ≡
∑

j Cje
−yτj , where τj ≡ Tj − t.

By Itô: dBt =
∂B

∂t
dt +

∂B

∂y
dyt +

1

2

∂2B

∂y2
(dyt)

2.

The ex ante expected return from the bond investment is

EP
t

[
dBt

Btdt

]
= yt − µP

t,yτ +
1

2
σ2
t,yτ

2

µP
t,y — the time-t level of the drift/direction of the yield.

σ2
t,y — the time-t level of its variance rate.

τ and τ 2 — value-weighted maturity (duration) and maturity squared:

τ =
∑
j

Cje
−ytτj

Bt
τj , τ 2 =

∑
j

Cje
−ytτj

Bt
τ 2j .

Carr and Wu (NYU & Baruch) Predicting Long-Dated Bond Returns Jan. 6, 2019 11 / 1



Decomposing expected return on bond investments

EP
t

[
dBt

Btdt

]
= yt − µP

t,yτ +
1

2
σ2
t,yτ

2

Decomposes expected bond return into three sources:

1 Carry: Bonds with a higher yield have higher returns due to carry.

2 Prediction: Expections of rate hikes reduce expected return.

3 Convexity: Since a bond’s price is convex in yield, random vibrations of
the yield (without trend) leads to a positive return.

A duration neutral portfolio that is long longer-term bonds is analogous
to a delta-neutral long options position.

Implications

If one has no view on the expected change in future rates, form a
duration-neutral portfolio (to neutralize out the second term).

Go long/short convexity based on your view of future realized volatility
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Decomposing Yield of a Coupon Bond

Recall: EP
t

[
dBt

Btdt

]
= yt − µP

t,yτ + 1
2σ

2
t,yτ

2

Assume that the bond market is free of arbitrage, so that there exists a
risk-neutral probability measure Q equivalent to P.

Replacing P with Q and further replacing EQ
t

[
dBt

Btdt

]
with rt implies:

rt = yt − µQ
t,yτ +

1

2
σ2
t,yτ

2

Solving for the yield yt gives another 3 term decomposition:

yt = rt + µQ
t,yτ −

1

2
σ2
t,yτ

2

The sum of the first 2 terms correspond to the sum of mean future rates
and the risk premium. The third term is the usual convexity effect.
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Bond pricing based on local, near-term dynamics

yt = rt + µQ
t,yτ −

1

2
σ2
t,yτ

2 (1)

Local: The fair valuation of the bond investment in (??) does not depend
on short-rate dynamics, but only depend on the behavior of its own yield.

Near-term: The pricing of the yield does not even depend on its own full
dynamics, but only depends on the current level of the P drift and volatility.

The drift rate µQ
t,y and volatility σt,y can each follow some stochastic

process, and/or depend on other rates/economic state variables ...

Unlike short rate models with stochastic drift or diffusion of short rates,
the dynamics of the drift and diffusion of the yield do NOT enter into
the pricing relation.

Views, not (much) dynamics: One can bring in forecasts/estimates/opinions
on volatility, risk premium, & rate prediction, and examine their implications
on the yield (curve).

The estimates can come from any (other) model assumptions,
algorithms, or information sources.

Carr and Wu (NYU & Baruch) Predicting Long-Dated Bond Returns Jan. 6, 2019 14 / 1



Different frameworks serve different purposes

Classical Short Rate Models

Full short rate dynamics prices
bond of all maturities.

Maintain cross-sectional
consistency across the whole
curve.

Hard to reconcile the empirical
long rate behavior with the
actual short rate dynamics.

Better suited to construct
smooth curves with
cross-sectional consistency.

New framework

Each yield is priced according
to its own near-term
predictions.

Ask for the most relevant
predictions for the pricing.

Hard to maintain
cross-sectional consistency
across all bonds.

Better suited to analyze
specific bond (portfolios) and
connect to (views on) their
own, current behaviors.
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Decomposing long-bond returns via driftless diffusion

It is difficult to predict long rate movements. So we start by assuming a
driftless diffusion on the floating (constant time to maturity) long rate:

dyt(τ) = σt(τ)dW P
t .

A risk-neutral drift in yields is induced when bond price risk (−dWt) is
priced:

dyt(τ) = λtσtdt + σt(τ)dW Q
t .

Empirically, the market price of interest rate risk tends to be negative,
which leads to a positive market price λt of bond price risk.

The risk-neutral drift of a fixed-τ rate is further adjusted by the local shape
of the yield curve (“sliding”):

µQ
t = λtσt − y ′t (τ).

Our previous pricing relation was based on the yield dynamics of a fixed
maturity date coupon bond, but it is easier to model/estimate floating
rate dynamics (e.g., 30-yr rate).
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Decomposing long-bond returns

Plugging the driftless diffusion assumption into the pricing relation leads to

∂ [ytτ ]

∂τ
= r + λtσt(τ)τ − 1

2
σ2
t (τ)τ 2 .

For zeros, ∂[ytτ ]
∂τ = f (τ) is the instantaneous forward rate.

Define instantaneous volatility weighted duration and convexity as

dt = σt(τ)τ, ct = σ2
t (τ)τ 2.

Integrate

yt = r + λtDt −
1

2
Ct ,

with D and C denoting the integrated duration and convexity:

Dt ≡
[

1

τ

∫ τ

0

dt(s)ds

]
, Ct ≡

[
1

τ

∫ τ

0

ct(s)ds

]
What matters is not just sensitivity (τ), but also volatility.

In the absence of any P drift of yields, a positive risk premium drives long
rates up, while the convexity effect drives long rates down.
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Extract bond risk premium from long rates

We can extract a long-dated bond’s risk premium from its yield and its yield
volatility:

λt =
yt − rt + 1

2 Ct

Dt

The long-dated rate (yt) and the financing cost (rt) are directly
observed.

Variance term structure σt(τ) can be estimated using recent history
(e.g., via GARCH, from options, curve)

We can then examine whether the ex-ante risk premium predicts ex post
bond excess return, without ever the need to fit a predictive regression.
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Empirical analysis: Data

Data: US and UK swap rates 1995.1.3-2016.5.11, 5378 business days

Based on 6-month LIBOR Maturity, 2,3,4,5,7,10,15,20,30

Extended maturity since
US: 2004/11/12 for 40 & 50 years
UK: 1999/1/19 for 20 & 30 years, 2003/08/08 for 40 & 50 years
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Stripped Treasury zero rates for robustness check
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Swap rate variance term structure estimators

Estimate variance σ2
t on each floating swap rate series with a 1y rolling window.

US UK

Long rates vary as much as, if not more than, short rates.
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Market price of bond risk

US UK
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The market price of bond risk extracted from different rates are similar in
magnitude and move together:

Over the common sample, the cross-correlation estimates among the
different λt series average 99.67% for US, and 98.76% for UK.
The evidence supports a one-factor structure for the bond risk
premium, as in Cochrane & Piazessi.

In the US, market price of risk approached zero in late 1998, 2000, and
2007, but tended to be high during recessions.

In the UK, the market price became quite negative during 1998 and
2007-2008.
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Predicting ex post excess returns with ex ante risk premium

Correlation between ex ante risk premium (γtσ
m
t ) and ex post excess returns on

each par bond, with the average denoting the correlation between the average risk
premium and the average bond excess return over the common sample period

Maturity 10 15 20 30 40 50 Average
Horizon: 6-month

US 0.31 0.28 0.26 0.24 0.27 0.26 0.29
UK 0.18 0.22 0.22 0.18 0.19 0.22 0.23

Horizon: One year
US 0.36 0.36 0.34 0.31 0.31 0.30 0.34
UK 0.36 0.42 0.40 0.32 0.33 0.37 0.39

The assumption of no prediction on long-dated swap rates leads to
significant prediction on bond excess returns.

The predictors (risk premium) are generated based purely on a variance
estimator and the current slope of the yield curve, without estimating
predictive regressions.

Carr and Wu (NYU & Baruch) Predicting Long-Dated Bond Returns Jan. 6, 2019 22 / 1



Concluding remarks

We proposed a new modeling framework that is particularly well suited for
analyzing returns on a particular bond or bond portfolio.

The framework does not try to model the full dynamics of an instantaneous
short rate, but focus squarely on the behavior of the bond yield in question.

It does not even ask for the full dynamical specification of this bond yield,
but only needs estimates of its current expectation, risk premium, and
volatility.

This new modeling framework can readily accommodate findings from
other models, algorithms, information sources.

The new modelling framework operationalizes a decomposition of yield into
three components: expectation, risk premium, and convexity.

One can estimate the yield volatility from historical time series, or infer
it from the curvature of the yield curve, or from caps/floors/swaptions.
Separating the risk premium from expectations of future rates can be a
very challenging, but very fruitful endeavor.

We showed that we can predict bond excess returns, without running
predictive regressions, even by assuming a driftless diffusion on interest rates.
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