Dissecting Spurious Factors with Cross-Sectional Regressions

VALENTINA RAPONI PAOLO ZAFFARONI

Imperial College London Imperial College London

December 30, 2018

Raponi and Zaffaroni (2018)

Dissecting Spurious Factors with Cross-Sect

December 30, 2018

- Motivation and contribution
- Ø Methodology
- Generalizations
- Simulation evidence
- Onclusion

• Two-pass CSR methodology the most popular in empirical finance

- Two-pass CSR methodology the most popular in empirical finance
 - Risk-premia estimation and inference

- Two-pass CSR methodology the most popular in empirical finance
 - Risk-premia estimation and inference
 - Tests of asset-pricing restriction

- Two-pass CSR methodology the most popular in empirical finance
 - Risk-premia estimation and inference
 - Tests of asset-pricing restriction
 - Risk versus characteristics

- Two-pass CSR methodology the most popular in empirical finance
 - Risk-premia estimation and inference
 - Tests of asset-pricing restriction
 - Risk versus characteristics
 - Mutual funds/hedge funds applications

- Two-pass CSR methodology the most popular in empirical finance
 - Risk-premia estimation and inference
 - Tests of asset-pricing restriction
 - Risk versus characteristics
 - Mutual funds/hedge funds applications
 - Corporate finance (cost of capital)

• Let asset returns follow a latent factor structure:

$$R_{it} = ER_{it} + \underbrace{\beta'_i z_t + \epsilon_{it}}_{\text{unobserved innovation}},$$

and assume no-arbitrage and well-diversification of MV frontier.

• Let asset returns follow a latent factor structure:

$$R_{it} = ER_{it} + \underbrace{\beta'_i z_t + \epsilon_{it}}_{\text{unobserved innovation}},$$

and assume no-arbitrage and well-diversification of MV frontier.

• Then exact-pricing:

 $ER_{it} = \gamma_0 + \gamma_1'\beta_i.$

• Let asset returns follow a latent factor structure:

$$R_{it} = ER_{it} + \underbrace{\beta'_i z_t + \epsilon_{it}}_{\text{unobserved innovation}},$$

and assume no-arbitrage and well-diversification of MV frontier.

- Then exact-pricing: $ER_{it} = \gamma_0 + \gamma'_1\beta_i$.
- To estimate the risk-premium $\Gamma = (\gamma_0, \gamma'_1)'$, two-pass methodology:

• Let asset returns follow a latent factor structure:

$$R_{it} = ER_{it} + \underbrace{\beta'_i z_t + \epsilon_{it}}_{\text{unobserved innovation}},$$

and assume no-arbitrage and well-diversification of MV frontier.

- Then exact-pricing: $ER_{it} = \gamma_0 + \gamma'_1\beta_i$.
- To estimate the risk-premium $\Gamma = (\gamma_0, \gamma'_1)'$, two-pass methodology:
- First-pass: run N regressions with OLS, one for every asset i,

$$R_{it} = \alpha_i + \beta'_i f_t + \epsilon_{it}, \ 1 \le t \le T.$$

• Let asset returns follow a latent factor structure:

$$R_{it} = ER_{it} + \underbrace{\beta'_i z_t + \epsilon_{it}}_{\text{unobserved innovation}},$$

and assume no-arbitrage and well-diversification of MV frontier.

- Then exact-pricing: $ER_{it} = \gamma_0 + \gamma'_1 \beta_i$.
- To estimate the risk-premium $\Gamma = (\gamma_0, \gamma_1')'$, two-pass methodology:
- First-pass: run N regressions with OLS, one for every asset i,

$$R_{it} = \alpha_i + \beta'_i f_t + \epsilon_{it}, \ 1 \le t \le T.$$

• Second-pass: run one cross-sectional regression by OLS/GLS

$$\bar{R}_i = \gamma_0 + \gamma_1 \hat{\beta}_i + \eta_i, \ 1 \le i \le N.$$

where $\bar{R}_i = \sum_{t=1}^{T} R_{it} / T$ and $\hat{\beta}_i$ is OLS estimator of β_i from first-pass.

• Let asset returns follow a latent factor structure:

$$R_{it} = ER_{it} + \underbrace{\beta'_i z_t + \epsilon_{it}}_{\text{unobserved innovation}},$$

and assume no-arbitrage and well-diversification of MV frontier.

- Then exact-pricing: $ER_{it} = \gamma_0 + \gamma'_1\beta_i$.
- To estimate the risk-premium $\Gamma = (\gamma_0, \gamma_1')'$, two-pass methodology:
- First-pass: run N regressions with OLS, one for every asset i,

$$R_{it} = \alpha_i + \beta'_i f_t + \epsilon_{it}, \ 1 \le t \le T.$$

Second-pass: run one cross-sectional regression by OLS/GLS

$$\bar{R}_i = \gamma_0 + \gamma_1 \hat{\beta}_i + \eta_i, \ 1 \le i \le N.$$

where $\bar{R}_i = \sum_{t=1}^{T} R_{it} / T$ and $\hat{\beta}_i$ is OLS estimator of β_i from first-pass. • This gives the estimated risk-premium $\hat{\Gamma} = (\hat{\gamma}_0, \hat{\gamma}'_1)'$.

• Two-pass great results: simple, understood and works well (more on this later).

- Two-pass great results: simple, understood and works well (more on this later).
- However...

- Two-pass great results: simple, understood and works well (more on this later).
- However...
- ...one typically assumes that the model is correctly-specified.

- Two-pass great results: simple, understood and works well (more on this later).
- However...
- ...one typically assumes that the model is correctly-specified.
- Several ways in which the exact-pricing restriction could be wrong, that is:

$$ER_{it} = \gamma_0 + \gamma_1' \beta_i + e_i$$

for some pricing-errors e_i .

- Two-pass great results: simple, understood and works well (more on this later).
- However...
- ...one typically assumes that the model is correctly-specified.
- Several ways in which the exact-pricing restriction could be wrong, that is:

$$\textit{ER}_{\textit{it}} = \gamma_0 + \gamma_1' eta_{\textit{i}} + e_{\textit{i}}$$

for some pricing-errors e_i .

• The $e_i \neq 0$ for many reasons:

- Two-pass great results: simple, understood and works well (more on this later).
- However...
- ...one typically assumes that the model is correctly-specified.
- Several ways in which the exact-pricing restriction could be wrong, that is:

$$\textit{ER}_{\textit{it}} = \gamma_0 + \gamma_1' eta_{\textit{i}} + e_{\textit{i}}$$

for some pricing-errors e_i .

- The $e_i \neq 0$ for many reasons:
 - missing (pervasive) factors.

- Two-pass great results: simple, understood and works well (more on this later).
- However...
- ...one typically assumes that the model is correctly-specified.
- Several ways in which the exact-pricing restriction could be wrong, that is:

$$ER_{it} = \gamma_0 + \gamma_1' \beta_i + e_i$$

for some pricing-errors e_i .

- The $e_i \neq 0$ for many reasons:
 - missing (pervasive) factors.
 - mis-measured factors (Roll's critique).

- Two-pass great results: simple, understood and works well (more on this later).
- However...
- ...one typically assumes that the model is correctly-specified.
- Several ways in which the exact-pricing restriction could be wrong, that is:

$$\textit{ER}_{\textit{it}} = \gamma_0 + \gamma_1' \beta_{\textit{i}} + e_{\textit{i}}$$

for some pricing-errors e_i .

- The $e_i \neq 0$ for many reasons:
 - missing (pervasive) factors.
 - mis-measured factors (Roll's critique).
 - deviations unrelated to common factors (sentiment/behavioural).

- Two-pass great results: simple, understood and works well (more on this later).
- However...
- ...one typically assumes that the model is correctly-specified.
- Several ways in which the exact-pricing restriction could be wrong, that is:

$$ER_{it} = \gamma_0 + \gamma_1' \beta_i + e_i$$

for some pricing-errors e_i .

- The $e_i \neq 0$ for many reasons:
 - missing (pervasive) factors.
 - mis-measured factors (Roll's critique).
 - deviations unrelated to common factors (sentiment/behavioural).

• However...it might be that $e_i = 0$ and yet the model is wrong: useless factors.

• Consider special case when presumed beta-pricing models has two factors A and B. Then we think that:

$$ER_{it} = \gamma_0 + \gamma_{1A}\beta_{iA} + \gamma_{1B}\beta_{iB},$$

but in reality only factor A is priced:

$$ER_{it} = \gamma_0 + \gamma_{1A}\beta_{iA} + \gamma_{1B}\beta_{iB} = \gamma_0 + \gamma_{1A}\beta_{iA}.$$

• Consider special case when presumed beta-pricing models has two factors A and B. Then we think that:

$$ER_{it} = \gamma_0 + \gamma_{1A}\beta_{iA} + \gamma_{1B}\beta_{iB},$$

but in reality only factor A is priced:

$$ER_{it} = \gamma_0 + \gamma_{1A}\beta_{iA} + \gamma_{1B}\beta_{iB} = \gamma_0 + \gamma_{1A}\beta_{iA}.$$

• Both equations holds in population!

• Consider special case when presumed beta-pricing models has two factors A and B. Then we think that:

$$ER_{it} = \gamma_0 + \gamma_{1A}\beta_{iA} + \gamma_{1B}\beta_{iB},$$

but in reality only factor A is priced:

$$ER_{it} = \gamma_0 + \gamma_{1A}\beta_{iA} + \gamma_{1B}\beta_{iB} = \gamma_0 + \gamma_{1A}\beta_{iA}.$$

- Both equations holds in population!
- So where is the problem?

• Problems arise when we try to estimate the risk premia, imposing factor f_{Bt} when in fact $\beta_{iB} = 0!$

- Problems arise when we try to estimate the risk premia, imposing factor f_{Bt} when in fact $\beta_{iB} = 0!$
- ...second-pass CSR:

$$\begin{pmatrix} \hat{\gamma}_{0} \\ \hat{\gamma}_{A} \\ \hat{\gamma}_{B} \end{pmatrix} = \hat{\Gamma} = (\hat{X}'\hat{X})^{-1}\hat{X}'\bar{R},$$

where

 $\hat{X} = \left(\mathbbm{1}_N, \hat{eta}_A, \hat{eta}_B
ight) pprox \left(\mathbbm{1}_N, \hat{eta}_A, \mathbbm{0}_N
ight)$ when T large .

- Problems arise when we try to estimate the risk premia, imposing factor f_{Bt} when in fact $\beta_{iB} = 0!$
- ...second-pass CSR:

$$\left(\begin{array}{c} \hat{\gamma}_0 \\ \hat{\gamma}_A \\ \hat{\gamma}_B \end{array} \right) = \hat{\Gamma} = (\hat{X}'\hat{X})^{-1}\hat{X}'\bar{R}, \label{eq:gamma_state}$$

where

$$\hat{X} = ig(1_N, \hat{eta}_A, \hat{eta}_B ig) pprox ig(1_N, \hat{eta}_A, 0_N ig)$$
 when ${\cal T}$ large .

• 'denominator' of $\hat{\Gamma}$ arbitrarily close to "zero" (that is, $(\hat{X}'\hat{X})$ becomes singular)!

- Problems arise when we try to estimate the risk premia, imposing factor f_{Bt} when in fact $\beta_{iB} = 0!$
- ...second-pass CSR:

$$\left(\begin{array}{c} \hat{\gamma}_0 \\ \hat{\gamma}_A \\ \hat{\gamma}_B \end{array} \right) = \hat{\Gamma} = (\hat{X}'\hat{X})^{-1}\hat{X}'\bar{R}, \label{eq:gamma_state}$$

where

$$\hat{X} = ig(1_N, \hat{eta}_A, \hat{eta}_B ig) pprox ig(1_N, \hat{eta}_A, 0_N ig)$$
 when ${\cal T}$ large .

- 'denominator' of $\hat{\Gamma}$ arbitrarily close to "zero" (that is, $(\hat{X}'\hat{X})$ becomes singular)!
- Similar problem when say the $\beta_{iB} \approx$ constant cross-sectionally (documented when *B* is market factor).

Raponi and Zaffaroni (2018)

December 30, 2018

• What happens to $\hat{\Gamma}$ as $\mathcal{T} \to \infty$?

- What happens to $\hat{\Gamma}$ as $\mathcal{T} \to \infty?$
- Non-standard behaviour arises.

- What happens to $\hat{\Gamma}$ as $T \to \infty$?
- Non-standard behaviour arises.
- Complicated: it depends on whether (netting out *f_{tB}*) the model is correctly specified
 (that is, whether β_{iA} describes entirely the cross-section of expected returns).

- What happens to $\hat{\Gamma}$ as $T \to \infty$?
- Non-standard behaviour arises.
- Complicated: it depends on whether (netting out *f*_{tB}) the model is correctly specified (that is, whether β_{iA} describes entirely the cross-section of expected returns).
- Complicated: it depends on the fraction of assets for which $\beta_{iB} = 0$.

• Let' simplify even further and assume true model is zero-factor model but we insist and use f_{tB} .

- Let' simplify even further and assume true model is zero-factor model but we insist and use *f*_{tB}.
- Case I (Kan and Zhang (1999)): $\beta_{iB} = 0$

- Let' simplify even further and assume true model is zero-factor model but we insist and use *f*_{tB}.
- Case I (Kan and Zhang (1999)): $\beta_{iB} = 0$
- when model correctly specified $(E(R_{it}) = \gamma_0)$

$$\hat{\gamma}_B \rightarrow_d \frac{Z_1' M Z_2}{Z_1' M Z_1}$$
 for zero-mean normal r.v.s Z_1 , Z_2 .

- Let' simplify even further and assume true model is zero-factor model but we insist and use *f*_{tB}.
- Case I (Kan and Zhang (1999)): $\beta_{iB} = 0$
- when model correctly specified ($E(R_{it}) = \gamma_0$)

$$\hat{\gamma}_B \rightarrow_d \frac{Z_1' M Z_2}{Z_1' M Z_1}$$
 for zero-mean normal r.v.s Z_1, Z_2 .

• when model is misspecified $(E(R_{it}) = \gamma_0 + e_i \text{ with non-zero } e_i)$

$$\hat{\gamma}_B \rightarrow_p \pm \infty$$
.

9 / 75

- Let' simplify even further and assume true model is zero-factor model but we insist and use *f*_{tB}.
- Case I (Kan and Zhang (1999)): $\beta_{iB} = 0$
- when model correctly specified ($E(R_{it}) = \gamma_0$)

$$\hat{\gamma}_B \rightarrow_d \frac{Z_1' M Z_2}{Z_1' M Z_1}$$
 for zero-mean normal r.v.s Z_1, Z_2 .

• when model is misspecified $(E(R_{it}) = \gamma_0 + e_i \text{ with non-zero } e_i)$

$$\hat{\gamma}_B \to_p \pm \infty$$
.

• In particular $\hat{\gamma}_B \approx \sqrt{T} \frac{Z'_1 M c}{Z'_1 M Z_1}$ where $c = \gamma_0 \mathbf{1}_N + e$.

• Case II (Kleibergen (2009)): $\beta_{iB} = \beta / \sqrt{T}$ for some $\beta \neq 0$.

- Case II (Kleibergen (2009)): $\beta_{iB} = \beta / \sqrt{T}$ for some $\beta \neq 0$.
- when model correctly specified ($E(R_{it}) = \gamma_0$)

 $\hat{\gamma}_B \rightarrow_d \frac{(\beta + Z_1)' M(\beta + Z_1)}{(\beta + Z_1)' M(Z_1 + \beta)}$ for zero-mean normal r.v.s Z_1, Z_2 .

- Case II (Kleibergen (2009)): $\beta_{iB} = \beta / \sqrt{T}$ for some $\beta \neq 0$.
- when model correctly specified ($E(R_{it}) = \gamma_0$)

$$\hat{\gamma}_B \rightarrow_d \frac{(\beta + Z_1)' \mathcal{M}(\beta + Z_1)}{(\beta + Z_1)' \mathcal{M}(Z_1 + \beta)}$$
 for zero-mean normal r.v.s Z_1, Z_2 .

• when model is misspecified $(E(R_{it}) = \gamma_0 + e_i \text{ with non-zero } e_i)$

 $\hat{\gamma}_B \rightarrow_p \pm \infty$.

- Case II (Kleibergen (2009)): $\beta_{iB} = \beta / \sqrt{T}$ for some $\beta \neq 0$.
- when model correctly specified ($E(R_{it}) = \gamma_0$)

$$\hat{\gamma}_B \rightarrow_d \frac{(\beta + Z_1)' \mathcal{M}(\beta + Z_1)}{(\beta + Z_1)' \mathcal{M}(Z_1 + \beta)} \text{ for zero-mean normal r.v.s } Z_1, Z_2.$$

• when model is misspecified ($E(R_{it}) = \gamma_0 + e_i$ with non-zero e_i)

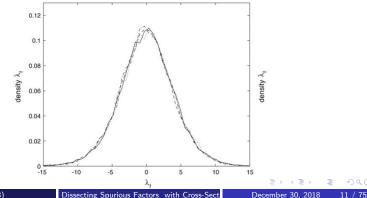
$$\hat{\gamma}_B \to_p \pm \infty$$
.

• In particular $\hat{\gamma}_B \approx \sqrt{T} \frac{(\beta + Z_1)' M c}{(\beta + Z_1)' M (\beta + Z_1)}$.

December 30, 2018

Useless factors (Fig 1.1 from Kleibergen (2009) JOE)

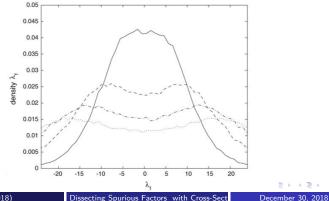
Case $\beta_{iB} = 0$ and correctly specified model



Raponi and Zaffaroni (2018)

Useless factors (Fig 1.2 from Kleibergen (2009) JOE)

Case $\beta_{iB} = 0$ and misspecified model



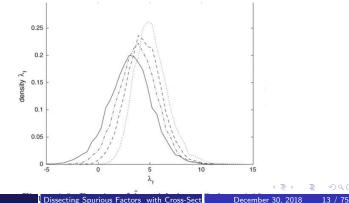
Raponi and Zaffaroni (2018)

Dissecting Spurious Factors with Cross-Sect

12 / 75

Useless factors (Fig 1.3 from Kleibergen (2009) JOE)

Case $\beta_{1B} \neq 0$, $\beta_{iB} = 0$, $2 \leq i \leq N$ and correctly specified model



Raponi and Zaffaroni (2018)

Dissecting Spurious Factors with Cross-Sect

• Some more (peculiar) results.

- Some more (peculiar) results.
- Case I (Kan and Zhang 1999): $\beta_{iB} = 0$.

- Some more (peculiar) results.
- Case I (Kan and Zhang 1999): $\beta_{iB} = 0$.
- when model is misspecified $(E(R_{it}) = \gamma_0 + e_i \text{ with non-zero } e_i)$

$$\begin{array}{ll} R^2 & \to_d \xi \text{ (some random variable),} \\ t_{\beta_B} & \to_p \pm \infty. \end{array}$$

- Some more (peculiar) results.
- Case I (Kan and Zhang 1999): $\beta_{iB} = 0$.
- when model is misspecified $(E(R_{it}) = \gamma_0 + e_i \text{ with non-zero } e_i)$

$$egin{array}{lll} R^2 & o_d \xi \mbox{ (some random variable),} \ t_{eta_B} & o_p \pm \infty. \end{array}$$

• IN SUMMARY: due useless factors inference on beta-pricing models is corrupted using standard CSRs methods valid for large-*T*.

- Some more (peculiar) results.
- Case I (Kan and Zhang 1999): $\beta_{iB} = 0$.
- when model is misspecified $(E(R_{it}) = \gamma_0 + e_i \text{ with non-zero } e_i)$

$$\begin{array}{ll} R^2 & \to_d \xi \text{ (some random variable),} \\ t_{\beta_B} & \to_p \pm \infty. \end{array}$$

- IN SUMMARY: due useless factors inference on beta-pricing models is corrupted using standard CSRs methods valid for large-*T*.
- Gospodinov et al. (2017): GMM-tests of asset pricing restriction on SDF parameters have power equal to size when useless factors.

• Existing methodologies to tackle the effect of useless factors (all designed for large-*T* except double-asymptotics procedure of Anatolyev and Mikusheva (2018)): ingenious yet sophisticated approaches (non-standard).

- Existing methodologies to tackle the effect of useless factors (all designed for large-*T* except double-asymptotics procedure of Anatolyev and Mikusheva (2018)): ingenious yet sophisticated approaches (non-standard).
- Kleibergen (2009): confidence bounds for testing procedures robust to weak identification (near-zero betas) built on the MLE of Gibbons (1982).

- Existing methodologies to tackle the effect of useless factors (all designed for large-*T* except double-asymptotics procedure of Anatolyev and Mikusheva (2018)): ingenious yet sophisticated approaches (non-standard).
- Kleibergen (2009): confidence bounds for testing procedures robust to weak identification (near-zero betas) built on the MLE of Gibbons (1982).
- Burnside (2016): rank-tests on parameters of factor-SDF.

- Existing methodologies to tackle the effect of useless factors (all designed for large-*T* except double-asymptotics procedure of Anatolyev and Mikusheva (2018)): ingenious yet sophisticated approaches (non-standard).
- Kleibergen (2009): confidence bounds for testing procedures robust to weak identification (near-zero betas) built on the MLE of Gibbons (1982).
- Burnside (2016): rank-tests on parameters of factor-SDF.
- Bryzgalova (2016): penalized (LASSO) version of two-pass procedure.

- Existing methodologies to tackle the effect of useless factors (all designed for large-*T* except double-asymptotics procedure of Anatolyev and Mikusheva (2018)): ingenious yet sophisticated approaches (non-standard).
- Kleibergen (2009): confidence bounds for testing procedures robust to weak identification (near-zero betas) built on the MLE of Gibbons (1982).
- Burnside (2016): rank-tests on parameters of factor-SDF.
- Bryzgalova (2016): penalized (LASSO) version of two-pass procedure.
- Anatolyev and Mikusheva (2018): estimation procedure based on sample-splitting instrumental variables regression robust to weak identification (near-zero betas) and omitted weak factors.

• This paper: methodology to test for useless factors valid when T is fixed, possibly very small, and number of assets N large.

- This paper: methodology to test for useless factors valid when T is fixed, possibly very small, and number of assets N large.
- This paper: completely standard as it just uses the plain OLS CSR estimator.

- This paper: methodology to test for useless factors valid when T is fixed, possibly very small, and number of assets N large.
- This paper: completely standard as it just uses the plain OLS CSR estimator.
- This paper: traditional asymptotics (normal and chi-square limiting distributions immune of nuisance-parameters).

- This paper: methodology to test for useless factors valid when T is fixed, possibly very small, and number of assets N large.
- This paper: completely standard as it just uses the plain OLS CSR estimator.
- This paper: traditional asymptotics (normal and chi-square limiting distributions immune of nuisance-parameters).
- This paper: distinction between lack of identification (zero betas) and weak identification (quasi-zero betas) irrelevant.

• Idea: troubles with OLS CSR due to the fact it is a 'good' estimator for large *T* and model correctly specified.

- Idea: troubles with OLS CSR due to the fact it is a 'good' estimator for large *T* and model correctly specified.
-but OLS CSR is not a good estimator when *T* is fixed (first-order bias!).

- Idea: troubles with OLS CSR due to the fact it is a 'good' estimator for large *T* and model correctly specified.
-but OLS CSR is not a good estimator when T is fixed (first-order bias!).
- How does it behave when T is fixed but one only takes N large?

- Idea: troubles with OLS CSR due to the fact it is a 'good' estimator for large *T* and model correctly specified.
-but OLS CSR is not a good estimator when T is fixed (first-order bias!).
- How does it behave when T is fixed but one only takes N large?
- This sampling scheme empirically motivated as tens of thousands of assets traded every day (individual assets) but only short time-series used in practice (for data availability; for structural breaks; for time-variation of parameters, etc.)

- Idea: troubles with OLS CSR due to the fact it is a 'good' estimator for large *T* and model correctly specified.
-but OLS CSR is not a good estimator when T is fixed (first-order bias!).
- How does it behave when T is fixed but one only takes N large?
- This sampling scheme empirically motivated as tens of thousands of assets traded every day (individual assets) but only short time-series used in practice (for data availability; for structural breaks; for time-variation of parameters, etc.)
- Our result: OLS CSR is a powerful tool to dissect useless factors in a large-*N* environment!

• From now on g_t denotes $K_g \times 1$ useless factor: $cov(g_t, R_{it}) = 0$ all i.

- From now on g_t denotes $K_g \times 1$ useless factor: $cov(g_t, R_{it}) = 0$ all i.
- Assume correctly-specified zero-factor model:

 $ER_{it} = \gamma_0.$

- From now on g_t denotes $K_g \times 1$ useless factor: $cov(g_t, R_{it}) = 0$ all i.
- Assume correctly-specified zero-factor model:

 $ER_{it} = \gamma_0.$

• ...but we estimate one-factor model:

 $R_{it} = \alpha_i + \beta_{ig}g_t + \epsilon_{it}.$

- From now on g_t denotes $K_g \times 1$ useless factor: $cov(g_t, R_{it}) = 0$ all i.
- Assume correctly-specified zero-factor model:

 $ER_{it} = \gamma_0.$

• ...but we estimate one-factor model:

$$R_{it} = \alpha_i + \beta_{ig}g_t + \epsilon_{it}.$$

• Risk premia OLS CSR estimator:

$$\hat{\Gamma}_g = (\hat{X}'_g \hat{X}_g)^{-1} \hat{X}'_g \bar{R}$$
 with $\hat{X}_g = [1_N, \hat{B}_g]$.

18 / 75

- From now on g_t denotes $K_g \times 1$ useless factor: $cov(g_t, R_{it}) = 0$ all i.
- Assume correctly-specified zero-factor model:

$$ER_{it} = \gamma_0.$$

• ...but we estimate one-factor model:

$$R_{it} = \alpha_i + \beta_{ig}g_t + \epsilon_{it}.$$

• Risk premia OLS CSR estimator:

$$\hat{\Gamma}_g = (\hat{X}'_g \hat{X}_g)^{-1} \hat{X}'_g \bar{R}$$
 with $\hat{X}_g = [1_N, \hat{B}_g]$.

• In particular

$$\hat{eta}_{ig} = 0_{\mathcal{K}_g} + (\tilde{G}'\tilde{G})^{-1}\tilde{G}'\epsilon_i$$
 where $\tilde{G} = G - 1_T \bar{g}'$.

Theorem

Under Assumptions 1-5 and correct specification: (i)

$$\hat{\Sigma}_{g} - \begin{pmatrix} \gamma_{0} \\ 0_{\kappa_{g}} \end{pmatrix} = O_{p} \left(\frac{1}{\sqrt{N}} \right).$$

(ii)

$$\sqrt{N}\left(\hat{\Gamma}_{g}-\begin{pmatrix}\gamma_{0}\\0_{\kappa}\end{pmatrix}\right)\overset{d}{\rightarrow}\mathcal{N}\left(0_{\kappa+1},V\right)$$

where

$$V = \begin{pmatrix} \frac{\sigma^2}{T} & 0'_{\kappa} \\ \\ 0_{\kappa} & \frac{1}{\sigma^4} C' U_{\epsilon} C \end{pmatrix}, \quad \text{with} \qquad C = \left(\frac{1_T}{T} \otimes \tilde{G} \right).$$

• Remark: the risk premia associated with useless factors go to zero.

- Remark: the risk premia associated with useless factors go to zero.
- Remark: consistent estimation of zero-beta rate.

- Remark: the risk premia associated with useless factors go to zero.
- Remark: consistent estimation of zero-beta rate.
- Remark: asymptotic covariance matrix can be consistently estimated.

- Remark: the risk premia associated with useless factors go to zero.
- Remark: consistent estimation of zero-beta rate.
- Remark: asymptotic covariance matrix can be consistently estimated.
- Remark: correctly-sized Wald test for H_0 : $\gamma_g = 0_{K_g}$.

• Let $\hat{e}_g = \bar{R} - \hat{X}_g \hat{\Gamma}_g$ denote the vector of pricing errors (OLS CSR residuals).

- Let $\hat{e}_g = \bar{R} \hat{X}_g \hat{\Gamma}_g$ denote the vector of pricing errors (OLS CSR residuals).
- The *t* statistic for the *k*-th regression coefficient (where $c_{g,kk}$ denotes the (k, k)-th element of the matrix $(\hat{X}'_g \hat{X}_g)^{-1}$) is:

$$t_{g,k} = \frac{\hat{\gamma}_{g,k}}{s_g \cdot \sqrt{c_{g,kk}}}, \qquad 2 \le k \le K+1 \text{ with } s_g^2 = \frac{\hat{e}_g' \hat{e}_g}{N-K-1}.$$
(1)

- Let $\hat{e}_g = \bar{R} \hat{X}_g \hat{\Gamma}_g$ denote the vector of pricing errors (OLS CSR residuals).
- The *t* statistic for the *k*-th regression coefficient (where $c_{g,kk}$ denotes the (k, k)-th element of the matrix $(\hat{X}'_g \hat{X}_g)^{-1}$) is:

$$t_{g,k} = \frac{\hat{\gamma}_{g,k}}{s_g \cdot \sqrt{c_{g,kk}}}, \qquad 2 \le k \le K+1 \text{ with } s_g^2 = \frac{\hat{e}'_g \hat{e}_g}{N-K-1}.$$
(1)

• The R-squared (where we define $\mathcal{M} = I_N - \frac{1_N 1'_N}{N}$) is:

$$R_{CRS_g}^2 = 1 - \frac{\hat{e}'_g \hat{e}_g}{\bar{R}' \mathcal{M} \bar{R}}$$
(2)

21 / 75

- Let $\hat{e}_g = \bar{R} \hat{X}_g \hat{\Gamma}_g$ denote the vector of pricing errors (OLS CSR residuals).
- The *t* statistic for the *k*-th regression coefficient (where $c_{g,kk}$ denotes the (k, k)-th element of the matrix $(\hat{X}'_g \hat{X}_g)^{-1}$) is:

$$t_{g,k} = \frac{\hat{\gamma}_{g,k}}{s_g \cdot \sqrt{c_{g,kk}}}, \qquad 2 \le k \le K+1 \text{ with } s_g^2 = \frac{\hat{e}'_g \hat{e}_g}{N-K-1}.$$
(1)

• The R-squared (where we define $\mathcal{M} = I_N - \frac{1_N 1'_N}{N}$) is:

$$R_{\rm CRS_g}^2 = 1 - \frac{\hat{e}_g' \hat{e}_g}{\bar{R}' \mathcal{M} \bar{R}}$$
(2)

• The *F*-statistic to test whether all the K coefficients except for the intercept are zero is:

$$F_{CSRg} = \frac{R_{CSR}^2 / K}{(1 - R_{CSR}^2) / (N - K - 1)}$$
(3)

Raponi and Zaffaroni (2018)

æ

Under Assumptions 1-5 and correct specification:

0

Under Assumptions 1-5 and correct specification: (i)

$$t_{g,k} \stackrel{d}{\to} \mathcal{N}\left(0, \frac{\frac{1}{T}k_4 + \sigma_4}{\sigma^4}\right)$$

Under Assumptions 1-5 and correct specification: (i)

$$t_{g,k} \stackrel{d}{\to} \mathcal{N}\left(0, \frac{\frac{1}{T}k_4 + \sigma_4}{\sigma^4}\right)$$

(ii)

0

 $R^2_{\rm CRS_g}
ightarrow 0$

Under Assumptions 1-5 and correct specification: (i)

$$t_{g,k} \stackrel{d}{\to} \mathcal{N}\left(0, \frac{\frac{1}{T}k_4 + \sigma_4}{\sigma^4}\right)$$

(ii)

0

$$R_{CRS_g}^2
ightarrow 0$$

(iii)

$$F_{CSR_g} \xrightarrow{d} \chi_{\kappa}^2 \left(\frac{\frac{k_4}{T} + \sigma_4}{\sigma^4} \right) / K$$

Raponi and Zaffaroni (2018)

• Inference can be carried out with t and F tests.

Inference can be carried out with t and F tests.

• When $\sigma_4 = \sigma^4$ and $k_4 = 0$, then $t_{g,k} \xrightarrow{d} \mathcal{N}(0,1)$ and $F_{CSR_g} \xrightarrow{d} \chi_K^2 / K$

- Inference can be carried out with t and F tests.
- When $\sigma_4 = \sigma^4$ and $k_4 = 0$, then $t_{g,k} \xrightarrow{d} \mathcal{N}(0,1)$ and $F_{CSR_g} \xrightarrow{d} \chi_K^2 / K$
- When $\sigma_4 \neq \sigma^4$, limiting distributions not conventional but can be made so by estimating nuisance parameters: there exists $\hat{\sigma}^2$, $\hat{\sigma}_4$ such that

$$\hat{\sigma}_4 \to_p \sigma_4, \hat{\sigma}^2 \to_p \sigma^2.$$

Raponi and Zaffaroni (2018)

- Inference can be carried out with t and F tests.
- When $\sigma_4 = \sigma^4$ and $k_4 = 0$, then $t_{g,k} \xrightarrow{d} \mathcal{N}(0,1)$ and $F_{_{CSR_g}} \xrightarrow{d} \chi^2_{_K}/K$
- When $\sigma_4 \neq \sigma^4$, limiting distributions not conventional but can be made so by estimating nuisance parameters: there exists $\hat{\sigma}^2$, $\hat{\sigma}_4$ such that

$$\hat{\sigma}_4 \rightarrow_p \sigma_4, \hat{\sigma}^2 \rightarrow_p \sigma^2.$$

• R^2 is not inflated (goes to zero, as it should).

• Let $1'_N c/N \to \mu_c$ and $c'M_{1_N}c/N \to \nu_c$ where $ER_{it} = c_i = \gamma_0 + e_i$.

• Let $1'_N c/N \to \mu_c$ and $c'M_{1_N}c/N \to \nu_c$ where $ER_{it} = c_i = \gamma_0 + e_i$.

Theorem

Under Assumptions 1-5 and misspecification:

• Let $1'_N c/N \to \mu_c$ and $c'M_{1_N}c/N \to \nu_c$ where $ER_{it} = c_i = \gamma_0 + e_i$.

Theorem

Under Assumptions 1-5 and misspecification:

(i)

$$\hat{\Gamma} - \begin{pmatrix} \mu_c \\ 0_K \end{pmatrix} = O_p \left(rac{1}{\sqrt{N}}
ight).$$

• Let
$$1'_N c/N \to \mu_c$$
 and $c'M_{1_N}c/N \to \nu_c$ where $ER_{it} = c_i = \gamma_0 + e_i$.

Theorem

Under Assumptions 1-5 and misspecification:

(i)

$$\hat{\Gamma} - \begin{pmatrix} \mu_c \\ 0_{\kappa} \end{pmatrix} = O_p \left(\frac{1}{\sqrt{N}} \right).$$

(ii)

$$\sqrt{N}\left(\hat{\Gamma}_{g}-\begin{pmatrix}\mu_{c}\\0_{\kappa}\end{pmatrix}
ight)
ightarrow\mathcal{N}\left(0_{\kappa+1},\,V+W
ight),$$

where V as for correctly-specified case and $W = \begin{pmatrix} 0 & 0'_K \\ 0_K & \frac{V_C}{\sigma^2} \tilde{G}' \tilde{G} \end{pmatrix}$.

Raponi and Zaffaroni (2018)

Raponi and Zaffaroni (2018)

Theorem

Under Assumptions 1-5 and misspecification:

Theorem

0

Under Assumptions 1-5 and misspecification: (i)

$$t_{g,k} \xrightarrow{d} \mathcal{N}\left(0, \frac{\nu_{c} + \frac{\kappa_{4} + T\sigma_{4}}{T^{2}\sigma^{2}}}{\nu_{c} + \frac{\sigma^{2}}{T}}\right)$$

25 / 75

Theorem

Under Assumptions 1-5 and misspecification: (i)

$$t_{g,k} \xrightarrow{d} \mathcal{N}\left(0, \frac{\nu_{c} + \frac{\kappa_{4} + T\sigma_{4}}{T^{2}\sigma^{2}}}{\nu_{c} + \frac{\sigma^{2}}{T}}\right)$$

(ii)

0

 $R_{CRS_g}^2
ightarrow 0$

Raponi and Zaffaroni (2018)

Dissecting Spurious Factors with Cross-Sect

December 30, 2018

25 / 75

Theorem

Under Assumptions 1-5 and misspecification:
(i)

$$t_{g,k} \xrightarrow{d} \mathcal{N}\left(0, \frac{\nu_{c} + \frac{\kappa_{4} + T\sigma_{4}}{T^{2}\sigma^{2}}}{\nu_{c} + \frac{\sigma^{2}}{T}}\right)$$

•

$$R^2_{\rm CRS_g}
ightarrow 0$$

(iii)

$$F_{CSRg} \stackrel{d}{\to} \chi^2_{\kappa} \left(\frac{\nu_c + \frac{\kappa_4 + T\sigma_4}{T^2 \sigma^2}}{\nu_c + \frac{\sigma^2}{T}} \right) / K$$

Raponi and Zaffaroni (2018)

• Correctly-specified case obtained for $\nu_c = 0$.

- Correctly-specified case obtained for $\nu_c = 0$.
- Qualitatively, the results do not differ from correctly-specified case.

- Correctly-specified case obtained for $\nu_c = 0$.
- Qualitatively, the results do not differ from correctly-specified case.
- All quantities can be consistently estimated for $N \to \infty$:

$$\hat{\mu}_{c} = 1_{N}^{\prime} \bar{R} / N, \hat{\nu}_{c} = 1_{N}^{\prime} \bar{R}^{2} / N - \hat{\mu}_{c}^{2}.$$

• How are the traditional FM t-ratios behaving? Before we have seen non-traditional t-ratios.

- How are the traditional FM t-ratios behaving? Before we have seen non-traditional t-ratios.
- Let $Z = (Z_0 \cdots Z_K)' \sim N(0_{K+1}, V + W)$ as defined before.

- How are the traditional FM t-ratios behaving? Before we have seen non-traditional t-ratios.
- Let $Z = (Z_0 \cdots Z_K)' \sim N(0_{K+1}, V + W)$ as defined before.
- Let $\frac{\epsilon' \mathbf{1}_N}{\sqrt{N}} \to_d \xi \sim N(0, \sigma^2 I_T), \quad \frac{(\epsilon' \epsilon N \sigma^2 I_T)}{\sqrt{N}} \to_d \Xi$ with $vec(\Xi) \sim N(0, U_{\epsilon}).$

- How are the traditional FM t-ratios behaving? Before we have seen non-traditional t-ratios.
- Let $Z = (Z_0 \cdots Z_K)' \sim N(0_{K+1}, V + W)$ as defined before.

• Let
$$\frac{\epsilon' \mathbf{1}_N}{\sqrt{N}} \rightarrow_d \xi \sim N(0, \sigma^2 I_T), \quad \frac{(\epsilon' \epsilon - N \sigma^2 I_T)}{\sqrt{N}} \rightarrow_d \Xi$$
 with $vec(\Xi) \sim N(0, U_{\epsilon}).$

Let

$$\Phi_{k} \equiv \frac{1}{(\mathcal{T}-1)^{\frac{1}{2}}} \left(i_{k+1,K+1}^{\prime} (\Sigma_{X} + \Lambda)^{-1} \left(\begin{pmatrix} \xi^{\prime} A \xi & \xi^{\prime} A \Xi \mathcal{P} \\ \mathcal{P}^{\prime} \Xi A \xi & \mathcal{P}^{\prime} \Xi A \Xi \mathcal{P} \end{pmatrix} \right) (\Sigma_{X} + \Lambda)^{-1} \iota_{k+1,K+1} \right)^{\frac{1}{2}}, \ k = 1, \cdots, K.$$

for
$$A = I_T - \frac{1_T 1_T'}{T} - \tilde{G}(\tilde{G}'\tilde{G})^{-1}\tilde{G}'.$$

Raponi and Zaffaroni (2018)

December 30, 2018

27 / 75

- How are the traditional FM t-ratios behaving? Before we have seen non-traditional t-ratios.
- Let $Z = (Z_0 \cdots Z_K)' \sim N(0_{K+1}, V + W)$ as defined before.
- Let $\frac{\epsilon' \mathbf{1}_N}{\sqrt{N}} \rightarrow_d \xi \sim N(0, \sigma^2 I_T)$, $\frac{(\epsilon' \epsilon N \sigma^2 I_T)}{\sqrt{N}} \rightarrow_d \Xi$ with $vec(\Xi) \sim N(0, U_{\epsilon})$.
- Let

$$\Phi_{k} \equiv \frac{1}{(T-1)^{\frac{1}{2}}} \begin{pmatrix} \iota'_{k+1,K+1} (\Sigma_{X} + \Lambda)^{-1} \left(\begin{pmatrix} \xi' A \xi & \xi' A \Xi \mathcal{P} \\ \mathcal{P}' \Xi A \xi & \mathcal{P}' \Xi A \Xi \mathcal{P} \end{pmatrix} \end{pmatrix} (\Sigma_{X} + \Lambda)^{-1} \iota_{k+1,K+1} \end{pmatrix}^{\frac{1}{2}}, \quad k = 1, \cdots, K.$$

for
$$A = I_T - \frac{1_T 1_T'}{T} - \tilde{G}(\tilde{G}'\tilde{G})^{-1}\tilde{G}'.$$

• These non-conventional quantities characterize the FM t-ratios when *N* is large.

Under Assumptions 1-5:

(i) for the ex-ante risk premia

$$t_{FM}(\hat{\gamma}_0)| = \frac{|\hat{\gamma}_0 - \mu_c|}{SE_0^{FM}} \rightarrow_p \frac{Z_0}{\Phi_0} \quad \text{and} \quad \sqrt{N}|t_{FM}(\hat{\gamma}_{1k})| = \sqrt{N} \frac{|\hat{\gamma}_{1k}|}{SE_k^{FM}} \rightarrow_d \frac{Z_k}{\hat{\sigma}_k^2}.$$

(ii) for the ex-post risk premia

$$|t_{FM}(\hat{\gamma}_{0})| = \frac{|\hat{\gamma}_{0} - \mu_{c}|}{SE_{0}^{FM,P}} \to_{d} \frac{Z_{0}}{\Phi_{0}} \quad \text{and} \quad |t_{FM}(\hat{\gamma}_{1k})| = \frac{|\hat{\gamma}_{1k}|}{SE_{k}^{FM,P}} \to_{d} \frac{Z_{k}}{\Phi_{k}}.$$

Raponi and Zaffaroni (2018)

28 / 75

• Non-standard distributions arise for all cases.

- Non-standard distributions arise for all cases.
- Shanken's correction vanishes as *N* diverges. The same applies for correctly-specified models without useless factors.

- Non-standard distributions arise for all cases.
- Shanken's correction vanishes as *N* diverges. The same applies for correctly-specified models without useless factors.
- In fixed-T ex post risk premia Γ^P = Γ + f̄ Ef_t should be considered: however ex ante FM t-ratios goes to zero unlike ex post.

- Non-standard distributions arise for all cases.
- Shanken's correction vanishes as *N* diverges. The same applies for correctly-specified models without useless factors.
- In fixed-T ex post risk premia Γ^P = Γ + f̄ Ef_t should be considered: however ex ante FM t-ratios goes to zero unlike ex post.
- Same results for correctly-specified (except that $\mu_c = \gamma_0$) and misspecified cases.

- Non-standard distributions arise for all cases.
- Shanken's correction vanishes as *N* diverges. The same applies for correctly-specified models without useless factors.
- In fixed-T ex post risk premia Γ^P = Γ + f̄ Ef_t should be considered: however ex ante FM t-ratios goes to zero unlike ex post.
- Same results for correctly-specified (except that $\mu_c = \gamma_0$) and misspecified cases.
- Same results (obviously) for zero-beta rate t-ratios.

• The true model is

$$R_t = \alpha + B_f f_t + 0_{N, K_g} g_t + \epsilon_t = \alpha + B_f f_t + \epsilon_t.$$

э

• The true model is

$$R_t = \alpha + B_f f_t + 0_{N, K_g} g_t + \epsilon_t = \alpha + B_f f_t + \epsilon_t.$$

• Estimated risk premia (setting $\tilde{D} = (\tilde{F}, \tilde{G})$)

$$\hat{\Gamma}_{0 fg} = (\hat{X}'_{fg} \hat{X}_{fg})^{-1} \hat{X}'_{fg} \bar{R} \text{ where } (\hat{B}_f, \hat{B}_g) = R' \tilde{D} (\tilde{D}' \tilde{D})^{-1}.$$

• The true model is

$$R_t = \alpha + B_f f_t + 0_{N, K_g} g_t + \epsilon_t = \alpha + B_f f_t + \epsilon_t.$$

• Estimated risk premia (setting $\tilde{D} = (\tilde{F}, \tilde{G})$)

$$\hat{\Gamma}_{0\mathit{fg}} = (\hat{X}'_{\mathit{fg}}\hat{X}_{\mathit{fg}})^{-1}\hat{X}'_{\mathit{fg}}\bar{R} \text{ where } (\hat{B}_{\mathit{f}},\hat{B}_{\mathit{g}}) = R'\tilde{D}(\tilde{D}'\tilde{D})^{-1}.$$

• Under correct specification

$$ER_{it} = \gamma_0 + \gamma'_{1f}\beta_{if}.$$

• The true model is

$$R_t = \alpha + B_f f_t + 0_{N, K_g} g_t + \epsilon_t = \alpha + B_f f_t + \epsilon_t.$$

• Estimated risk premia (setting $\tilde{D} = (\tilde{F}, \tilde{G})$)

$$\hat{\Gamma}_{0\mathit{fg}} = (\hat{X}'_{\mathit{fg}}\hat{X}_{\mathit{fg}})^{-1}\hat{X}'_{\mathit{fg}}\bar{R} \text{ where } (\hat{B}_{\mathit{f}},\hat{B}_{\mathit{g}}) = R'\tilde{D}(\tilde{D}'\tilde{D})^{-1}.$$

• Under correct specification

$$ER_{it} = \gamma_0 + \gamma'_{1f}\beta_{if}.$$

Under misspecification

$$ER_{it} = \gamma_0 + \gamma'_{1f}\beta_{if} + e_i.$$

Theorem

When
$$\tilde{G}'\tilde{F} = 0$$
 (G and F orthogonal):
(i)

$$\hat{\Gamma}_{fg} - egin{pmatrix} \gamma_0 + d_0 \ \gamma_{1_f}^P + d_1 \ 0_{\mathcal{K}_g} \end{pmatrix} = O_p\left(rac{1}{\sqrt{N}}
ight).$$

$$\begin{pmatrix} \hat{\Gamma}_{fg} - \begin{pmatrix} \gamma_0 + d_0 \\ \gamma_{1_f}^P + d_1 \\ 0_{K_g} \end{pmatrix} \end{pmatrix} \xrightarrow{d} \mathcal{N} \left(0, \left(\Sigma_{X_{fg}} + \Lambda_{fg} \right)^{-1} \left(V_{fg} + W_{fg} \right) \left(\Sigma_{X_{fg}} + \Lambda_{fg} \right)^{-1} \right)$$

Theorem

When
$$\tilde{G}'\tilde{F} = 0$$
 (G and F orthogonal):
(i)
 $t_{g,k_g} \stackrel{d}{\rightarrow} \mathcal{N}\left(0, \frac{d_1'\tilde{\Sigma}_{\beta_f}d_1 + \sigma^{-2}W_{[k_g,k_g]}}{\frac{\sigma^2}{T} + \gamma_{1_f}^{P'}\sigma^2(\tilde{F}'\tilde{F})^{-1}D^{-1}\tilde{\Sigma}_{\beta_f}\gamma_{1_f}^P}\right).$
(ii)
 $R_{CRS_{fg}}^2 = 1 - \frac{\hat{e}'_{fg}\hat{e}_{fg}}{\bar{R}'\mathcal{M}_N\bar{R}} \rightarrow 1 - \frac{\frac{\sigma^2}{T} + \gamma_{1_f}^{P'}\sigma^2(\tilde{F}'\tilde{F})^{-1}D^{-1}\tilde{\Sigma}_{\beta_f}\gamma_{1_f}^P}{\frac{\sigma^2}{T} + \gamma_{1_f}^{P'}\tilde{\Sigma}_{\beta_f}\gamma_{1_f}^P}$

Theorem

When $\tilde{G}'\tilde{F} = 0$ (G and F orthogonal): (iii) Let $F_{CSR_{fg}} = \frac{\left(\hat{e}_{f}^{*'}\hat{e}_{f}^{*} - \hat{e}_{fg}'\hat{e}_{fg}\right)/K_{g}}{\hat{e}_{f\sigma}'\hat{e}_{f\sigma}f_{\sigma}/\left(N - \left(K_{f} + K_{s} + 1\right)\right)}$ (4)be the *F*-statistic to test the null hypotesis $\gamma_{1_r}^P = 0_{\kappa_r}$. Then $F_{CSR_{fg}} \xrightarrow{d} (Z'_1, Z'_2) \frac{\mathcal{W}_{fg}/K_g}{\frac{\sigma^2}{\sigma} - d'\tilde{\Sigma}_g \gamma_f^P} \begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix}$ where $Z_1 \equiv \mathcal{N}(0_{T^2}, U_{\epsilon})$ and $Z_2 \equiv \mathcal{N}(0_T, \sigma^2 d'_1 \tilde{\Sigma}_{\beta,\epsilon} d_1 I_T)$ are two normally distributed vectors of dimension $T^2 \times 1$ and $T \times 1$, respectively, and where \mathcal{W}_{fg} suitable matrix.

Raponi and Zaffaroni (2018)

December 30, 2018

• Risk premia estimates for F (useful) are first-order biased.

- Risk premia estimates for F (useful) are first-order biased.
- Instead, risk premia for G (useless) converges to zero.

- Risk premia estimates for F (useful) are first-order biased.
- Instead, risk premia for G (useless) converges to zero.
- Results more complicated than previous case but similar spirit: all quantities can be consistently estimated and test with correct size and power be derived.

• When G and F not orthogonal:

• When G and F not orthogonal:

$$\hat{\Gamma}_{fg}^{P} \xrightarrow{P} \begin{pmatrix} \gamma_{0} - \mu_{\beta_{f}}^{\prime} (I_{K_{f}} - E^{-1} \Sigma_{\beta_{f}}) \gamma_{1_{f}}^{P} \\ E^{-1} \Sigma_{\beta_{f}} \gamma_{1_{f}}^{P} \\ A E^{-1} \Sigma_{\beta_{f}} \gamma_{1_{f}}^{P} \end{pmatrix}$$

۲

(5)

• When G and F not orthogonal:

$$\hat{\Gamma}_{fg}^{P} \xrightarrow{P} \begin{pmatrix} \gamma_{0} - \mu_{\beta_{f}}^{\prime} (I_{K_{f}} - E^{-1} \Sigma_{\beta_{f}}) \gamma_{1_{f}}^{P} \\ E^{-1} \Sigma_{\beta_{f}} \gamma_{1_{f}}^{P} \\ A E^{-1} \Sigma_{\beta_{f}} \gamma_{1_{f}}^{P} \end{pmatrix}$$
(5)

۲

$$\theta_f = E^{-1} \Sigma_{\beta_f} \gamma_{1_f}^P$$
 and $\theta_g = -\frac{D}{\sigma^2} Q'_{fg} E^{-1} \Sigma_{\beta_f} \gamma_{1_f}^P$.

Raponi and Zaffaroni (2018)

• When G and F not orthogonal:

$$\hat{\Gamma}_{fg}^{P} \xrightarrow{P} \begin{pmatrix} \gamma_{0} - \mu_{\beta_{f}}^{\prime} (I_{K_{f}} - E^{-1}\Sigma_{\beta_{f}})\gamma_{1_{f}}^{P} \\ E^{-1}\Sigma_{\beta_{f}}\gamma_{1_{f}}^{P} \\ AE^{-1}\Sigma_{\beta_{f}}\gamma_{1_{f}}^{P} \end{pmatrix}$$
(5)

Set

f

۲

$$\theta_f = E^{-1} \Sigma_{\beta_f} \gamma_{1_f}^P$$
 and $\theta_g = -\frac{D}{\sigma^2} Q'_{fg} E^{-1} \Sigma_{\beta_f} \gamma_{1_f}^P$.

• Under the null of useless factors, the following linear restriction holds:

$$H_0: \theta_g = A\theta_f.$$

or an observed $A = (\tilde{G}'\tilde{G} - \tilde{G}'\tilde{F}(\tilde{F}'\tilde{F})^{-1}\tilde{F}'\tilde{G})(\tilde{F}'\tilde{F})^{-1}\tilde{F}'\tilde{G}D^{-1}.$

• When G and F not orthogonal:

$$\hat{\Gamma}_{fg}^{P} \xrightarrow{P} \begin{pmatrix} \gamma_{0} - \mu_{\beta_{f}}^{\prime} (I_{K_{f}} - E^{-1}\Sigma_{\beta_{f}})\gamma_{1_{f}}^{P} \\ E^{-1}\Sigma_{\beta_{f}}\gamma_{1_{f}}^{P} \\ AE^{-1}\Sigma_{\beta_{f}}\gamma_{1_{f}}^{P} \end{pmatrix}$$
(5)

Set

۲

$$\theta_f = E^{-1} \Sigma_{\beta_f} \gamma_{1_f}^P$$
 and $\theta_g = -\frac{D}{\sigma^2} Q'_{fg} E^{-1} \Sigma_{\beta_f} \gamma_{1_f}^P$.

• Under the null of useless factors, the following linear restriction holds:

$$H_0: \theta_g = A\theta_f.$$

for an observed $A = (\tilde{G}'\tilde{G} - \tilde{G}'\tilde{F}(\tilde{F}'\tilde{F})^{-1}\tilde{F}'\tilde{G})(\tilde{F}'\tilde{F})^{-1}\tilde{F}'\tilde{G}D^{-1}$.

• Using the distribution of part of our theorem, derive the test.

• When G and F not orthogonal:

$$\hat{\Gamma}_{fg}^{P} \xrightarrow{P} \begin{pmatrix} \gamma_{0} - \mu_{\beta_{f}}^{\prime} (I_{K_{f}} - E^{-1}\Sigma_{\beta_{f}})\gamma_{1_{f}}^{P} \\ E^{-1}\Sigma_{\beta_{f}}\gamma_{1_{f}}^{P} \\ AE^{-1}\Sigma_{\beta_{f}}\gamma_{1_{f}}^{P} \end{pmatrix}$$
(5)

Set

۲

$$\theta_f = E^{-1} \Sigma_{\beta_f} \gamma_{1_f}^P$$
 and $\theta_g = -\frac{D}{\sigma^2} Q'_{fg} E^{-1} \Sigma_{\beta_f} \gamma_{1_f}^P$.

• Under the null of useless factors, the following linear restriction holds:

$$H_0: \theta_g = A\theta_f.$$

for an observed $A = (\tilde{G}'\tilde{G} - \tilde{G}'\tilde{F}(\tilde{F}'\tilde{F})^{-1}\tilde{F}'\tilde{G})(\tilde{F}'\tilde{F})^{-1}\tilde{F}'\tilde{G}D^{-1}.$

- Using the distribution of part of our theorem, derive the test.
- If F and G orthogonal in sample, then $H_0: \theta_g = 0$.

• When G and F not orthogonal:

$$\hat{\Gamma}_{fg}^{P} \xrightarrow{P} \begin{pmatrix} \gamma_{0} - \mu_{\beta_{f}}^{\prime} (I_{K_{f}} - E^{-1}\Sigma_{\beta_{f}})\gamma_{1_{f}}^{P} \\ E^{-1}\Sigma_{\beta_{f}}\gamma_{1_{f}}^{P} \\ AE^{-1}\Sigma_{\beta_{f}}\gamma_{1_{f}}^{P} \end{pmatrix}$$
(5)

Set

۲

$$\theta_f = E^{-1} \Sigma_{\beta_f} \gamma_{1_f}^P$$
 and $\theta_g = -\frac{D}{\sigma^2} Q'_{fg} E^{-1} \Sigma_{\beta_f} \gamma_{1_f}^P$.

• Under the null of useless factors, the following linear restriction holds:

$$H_0: \theta_g = A\theta_f.$$

for an observed $A = (\tilde{G}'\tilde{G} - \tilde{G}'\tilde{F}(\tilde{F}'\tilde{F})^{-1}\tilde{F}'\tilde{G})(\tilde{F}'\tilde{F})^{-1}\tilde{F}'\tilde{G}D^{-1}.$

- Using the distribution of part of our theorem, derive the test.
- If F and G orthogonal in sample, then $H_0: \theta_g = 0$.
- Bias-adjusted estimator for $\gamma_{1\epsilon}^{P}$ can be obtained (not the focus here).

Useless factors: useful with useless under misspecification

• The true model is still

$$R_t = \alpha + B_f f_t + 0_{N, K_{\sigma}} g_t + \epsilon_t = \alpha + B_f f_t + \epsilon_t.$$

but we estimate

 $R_t = \alpha + B_{f_1}f_{1t} + B_gg_t + residual$ setting $F = (F_1, F_2)$ (misspecification:

• The true model is still

$$R_t = \alpha + B_f f_t + 0_{N, K_{\sigma}} g_t + \epsilon_t = \alpha + B_f f_t + \epsilon_t.$$

but we estimate

 $R_t = \alpha + B_{f_1}f_{1t} + B_gg_t + residual$ setting $F = (F_1, F_2)$ (misspecification:

• As a special case, we could miss out F entirely, so estimated model:

 $R_t = \alpha + B_g g_t + residual.$

Theorem (i)

$$\hat{\Gamma}_{f_1g} - egin{pmatrix} \gamma_0 + ilde{d}_0 \ ilde{d}_{11} \gamma_{1_f}^{P[1]} + ilde{d}_{12} \gamma_{1_f}^{P[2]} \ 0_{\mathcal{K}_g} \end{pmatrix} = O_{\mathcal{P}}\left(rac{1}{\sqrt{N}}
ight)$$

Raponi and Zaffaroni (2018)

December 30, 2018

Theorem
[ii]

$$\sqrt{N} \left(\hat{\Gamma}_{f_1g} - \begin{pmatrix} \gamma_0 + \tilde{d}_0 \\ \tilde{d}_{11}\gamma_{1_f}^{P[1]} + \tilde{d}_{12}\gamma_{1_f}^{P[2]} \\ 0_{\mathcal{K}_g} \end{pmatrix} \right)$$

$$\stackrel{d}{\rightarrow} \mathcal{N} \left(0, \left(\Sigma_{X_{fg}}^{[1]} + \Lambda_{fg}^{[1]} \right)^{-1} (V_{fg} + W_{fg}) \left(\Sigma_{X_{fg}}^{[1]} + \Lambda_{fg}^{[1]} \right)^{-1} \right)$$

Problem is that acm is function of both F_1 and F_2 so not feasible!

• In particular V_{fg} equal

$$\sigma^{2} \left(\frac{1}{T} + (\tilde{d}_{11}\gamma_{1_{f}}^{P[1]} + \tilde{d}_{12}\gamma_{1_{f}}^{P[2]})'(\tilde{F}'\tilde{F})^{-1}(\tilde{d}_{11}\gamma_{1_{f}}^{P[1]} + \tilde{d}_{12}\gamma_{1_{f}}^{P[2]}) \right) \Sigma_{X_{f}}^{[1]} + \sigma^{2}\Omega_{fg},$$

with $\Omega_{\textit{fg}}$ equal to

$$\begin{pmatrix} 0 & 0'_{K_{f_1}} & 0'_{K_g} \\ \\ 0_{K_{f_1}} & \theta(\bar{F}^{[1]'}\bar{F}^{[1]})^{-1} - \left(\bar{\Sigma}_{\beta_f}^{[1]} \bar{d}_1 - \bar{\Sigma}_{\beta_f}^{[1,2]} \gamma_{1_f}^{P[2]}\right) - \left(\bar{d}'_1 \bar{\Sigma}_{\beta_f}^{[1]} - \gamma_{1_f}^{P[2]'} \bar{\Sigma}_{\beta_f}^{[2,1]}\right) & 0_{K_{f_1} \times K_g} \\ \\ 0_{K_g} & 0_{K_g \times K_{f_1}} & \theta(\bar{G}'\bar{G})^{-1} \end{pmatrix}$$

• W_{f_1g} equal

 $\begin{array}{ccc} 0'_{K_{f_1}} & 0'_{K_g} \\ (Q_f^{[1,2]'} \otimes P_f^{[1]'}) U_{\epsilon}(Q_f^{[1,2]} \otimes P_f^{[1]}) & (Q_f^{[1,2]'} \otimes P_f^{[1]'}) U_{\epsilon}(Q_f^{[1,2]} \otimes P_g) \\ (Q_f^{[1,2]'} \otimes P_g') U_{\epsilon}(Q_f^{[1,2]} \otimes P_f^{[1]}) & (Q_f^{[1,2]'} \otimes P_g') U_{\epsilon}(Q_f^{[1,2]} \otimes P_g) \end{array} \right)$ with

$$Q_f^{[1,2]} = \left(\frac{1_T}{T} - P_f^{[1]} \tilde{d}_{11} \gamma_{1_f}^{P[1]} - P_f^{[1]} \tilde{d}_{12} \gamma_{1_f}^{P[2]}\right).$$

Raponi and Zaffaroni (2018)

۲

$$t_{f_1g,k_g} = \frac{\hat{\gamma}_{1_g,k_g}}{s_{f_1g} \cdot \sqrt{c_{g,k_gk_g}}}$$

is the *t*-statistic for the k_g -th regression coefficient $(k_g = 1, ..., K_g)$ and c_{g,k_gk_g} is the (k_g, k_g) -th element of the matrix $(\hat{X}'_{f_1g}\hat{X}_{f_1g})^{-1}$.

۲

$$t_{f_1g,k_g} = \frac{\hat{\gamma}_{1_g,k_g}}{s_{f_1g} \cdot \sqrt{c_{g,k_gk_g}}}$$

is the *t*-statistic for the k_g -th regression coefficient ($k_g = 1, ..., K_g$) and c_{g,k_gk_g} is the (k_g, k_g)-th element of the matrix $(\hat{X}'_{f_1g}\hat{X}_{f_1g})^{-1}$.

$$\mathcal{R}^2_{\mathcal{CSR}_{f_1g}} = 1 - rac{\hat{e}'_{f_1g}\hat{e}_{f_1g}}{ar{R}'\mathcal{M}_Nar{R}}.$$

۲

٥

$$t_{f_1g,k_g} = \frac{\hat{\gamma}_{1_g,k_g}}{s_{f_1g} \cdot \sqrt{c_{g,k_gk_g}}}$$

is the *t*-statistic for the k_g -th regression coefficient ($k_g = 1, ..., K_g$) and c_{g,k_gk_g} is the (k_g, k_g)-th element of the matrix $(\hat{X}'_{f_1g}\hat{X}_{f_1g})^{-1}$.

$$R^2_{CSR_{f_1g}} = 1 - rac{\hat{e}'_{f_1g}\hat{e}_{f_1g}}{ar{R}'\mathcal{M}_Nar{R}}.$$

$$F_{CSR_{f_1g}} = \frac{(\hat{e}_{f_1}'^* \hat{e}_{f_1}^* - \hat{e}_{f_1g}' \hat{e}_{f_1g}) / K_g}{\hat{e}_{f_1g}' \hat{e}_{f_1g} / (N - K_{f_1} - K_g - 1)},$$

is the F-statistic to test $\gamma_{1_g}^P = 0_{\mathcal{K}_g}$.

December 30, 2018

Theorem

[i]

$$t_{f_1g,k_g} \stackrel{d}{\to} \mathcal{N}\left(0, \frac{\vartheta + \sigma^{-2}W_{[k_g,k_g]}}{rac{\sigma^2}{\overline{T}} + \Gamma_{1_f}^{P'} \tilde{\Sigma}_{X_f} \Gamma_{1_f}^{P'}}
ight),$$

where $W_{[k_g,k_g]}$ denotes the (k_g, k_g) -th element of the matrix $(Q_f^{[1,2]'} \otimes \tilde{G}') U_{\epsilon}(Q_f^{[1,2]} \otimes P_g), \Gamma_{1_f}^P = \left[\gamma_{1_f}^{P[1]'}, \gamma_{1_f}^{P[2]'}\right]'$ and

$$\tilde{\Sigma}_{X_{f}} = \begin{pmatrix} \tilde{\Sigma}_{\beta_{f}}^{[1]} - \tilde{\Sigma}_{\beta_{f}}^{[1]} D^{-1} \tilde{\Sigma}_{\beta_{f}}^{[1]} & \sigma^{2} (\tilde{F}^{[1]'} \tilde{F}^{[1]})^{-1} D^{-1} \tilde{\Sigma}_{\beta_{f}}^{[1,2]} \\ \\ \sigma^{2} \tilde{\Sigma}_{\beta_{f}}^{[1,2]'} D^{-1} (\tilde{F}^{[1]'} \tilde{F}^{[1]})^{-1} & \tilde{\Sigma}_{\beta_{f}}^{[2]} - \tilde{\Sigma}_{\beta_{f}}^{[1,2]'} D^{-1} \tilde{\Sigma}_{\beta_{f}}^{[1,2]} \end{pmatrix}$$

Theorem

[ii]

$$R_{CSR_{f_{1g}}}^{2} \xrightarrow{P} 1 - \frac{\frac{\sigma^{2}}{T} + \Gamma_{1_{f}}^{P'} \tilde{\Sigma}_{X_{f}} \Gamma_{1_{f}}^{P}}{\frac{\sigma^{2}}{T} + \Gamma_{1_{f}}^{P'} \tilde{\Sigma}_{\beta_{f}} \Gamma_{1_{f}}^{P}}$$
where $\Gamma_{1_{f}}^{P} = \left[\gamma_{1_{f}}^{P[1]'}, \gamma_{1_{f}}^{P[2]'}\right]'$ and $\tilde{\Sigma}_{\beta_{f}} = \begin{pmatrix} \tilde{\Sigma}_{\beta_{f}}^{[1]} & \tilde{\Sigma}_{\beta_{f}}^{[1,2]} \\ & \tilde{\Sigma}_{\beta_{f}}^{[2,1]} & \tilde{\Sigma}_{\beta_{f}}^{[2]} \end{pmatrix}$

$$F_{CSR_{f_{1}g}} \xrightarrow{d} (Z'_{1}, Z'_{2}) \frac{\mathcal{W}_{fg}/K_{g}}{\frac{\sigma^{2}}{\overline{T}} + \Gamma_{1_{f}}^{P'} \tilde{\Sigma}_{X_{f}} \Gamma_{1_{f}}^{P'}} \begin{pmatrix} Z_{1} \\ Z_{2} \end{pmatrix}$$

where $Z_1 \equiv \mathcal{N}(0_{T^2}, U_{\epsilon})$ and $Z_2 \equiv \mathcal{N}(0_T, \vartheta \sigma^2 I_T)$ are two normally distributed vectors of dimension $T^2 \times 1$ and $T \times 1$.

iii Results extend to G and F not orthogonal.

- Results extend to G and F not orthogonal.
- Problem: asymptotic distributions depend on *F*₂ which is not observed. Bounds can be derived but inaccurate for large *N*.

- Results extend to G and F not orthogonal.
- Problem: asymptotic distributions depend on *F*₂ which is not observed. Bounds can be derived but inaccurate for large *N*.
- Solution: estimate the useful factors by PCA and derive asymptotics for useless factors based on the PCA distribution (along the idea of Giglio and Xiu (2017)).

• The table reports the percentage bias (Bias) and root mean squared error (RMSE), all in percent, over 10,000 simulated data sets.

• The table reports the percentage bias (Bias) and root mean squared error (RMSE), all in percent, over 10,000 simulated data sets.

DGP

$$R_t = \gamma_0 \mathbf{1}_N + \epsilon_t,$$

where $\epsilon_t \sim \mathcal{N}(0, \Sigma)$ and where we calibrate γ_0 as $\gamma_0 = \frac{1}{NT} \sum_{i=1}^N \sum_{t=1}^T R_{it}$.

• The table reports the percentage bias (Bias) and root mean squared error (RMSE), all in percent, over 10,000 simulated data sets.

DGP

$$R_t = \gamma_0 \mathbb{1}_N + \epsilon_t$$

where $\epsilon_t \sim \mathcal{N}(0, \Sigma)$ and where we calibrate γ_0 as $\gamma_0 = \frac{1}{NT} \sum_{i=1}^N \sum_{t=1}^T R_{it}$.

• Fitted Model is a One-Factor Model $R_{it} = a_i + b'_i g_t + u_{it}$, where g_t is the excess market return (from Kenneth French's website) from January 2008 to December 2010 for T=36, and the excess market return from January 2008 to December 2013 for T=72.

• The table reports the percentage bias (Bias) and root mean squared error (RMSE), all in percent, over 10,000 simulated data sets.

DGP

$$R_t = \gamma_0 \mathbb{1}_N + \epsilon_t$$

where $\epsilon_t \sim \mathcal{N}(0, \Sigma)$ and where we calibrate γ_0 as $\gamma_0 = \frac{1}{NT} \sum_{i=1}^N \sum_{t=1}^T R_{it}$.

- Fitted Model is a One-Factor Model $R_{it} = a_i + b'_i g_t + u_{it}$, where g_t is the excess market return (from Kenneth French's website) from January 2008 to December 2010 for T=36, and the excess market return from January 2008 to December 2013 for T=72.
- The table also reports the *R*-squared (R^2) of the fitted model for different cross-sections of N = 100, 500, 1000, 3000 stocks.

Simulation results: base case (Bias and RMSE) - Scalar Σ

Table I Bias and RMSE of the OLS Estimator in a One-Factor Model with a useless factor (Σ scalar)

Statistics N = 100 N = 500 N = 1000 N = 3000

Panel A: T = 36

$Bias(\hat{\gamma}_{0})$	0.32%	0.18%	0.12%	0.11%
$RMSE(\hat{\gamma}_0)$	0.184	0.083	0.058	0.035
$Bias(\hat{\gamma}_1)$	0.000	0.000	0.000	0.000
$RMSE(\hat{\gamma}_1)$	0.429	0.191	0.134	0.082
R^2	0.006	0.002	0.001	0.000

Simulation results: base case (Bias and RMSE) - Scalar Σ

Table I Bias and RMSE of the OLS Estimator in a One-Factor Model with a useless factor (Σ scalar)

Statistics N = 100 N = 500 N = 1000 N = 3000

Panel B: T = 72

$Bias(\hat{\gamma}_{0})$	0.05%	0.04%	0.03%	0.04%
$RMSE(\hat{\gamma}_0)$	0.146	0.066	0.046	0.028
$Bias(\hat{\gamma}_1)$	0.000	0.000	0.000	0.000
$RMSE(\hat{\gamma}_1)$	0.379	0.166	0.119	0.072
R^2	0.002	0.002	0.001	0.000

December 30, 2018

Simulation results: base case (t-test) - Scalar Σ

• The table presents the size properties of *t*-tests of statistical significance.

- The table presents the size properties of *t*-tests of statistical significance.
- The null hypothesis is that the parameter of interest is equal to its true value.

- The table presents the size properties of *t*-tests of statistical significance.
- The null hypothesis is that the parameter of interest is equal to its true value.
- $t_{FM}(\cdot)$ denotes the *t*-statistic associated with the OLS estimator that uses the traditional Fama-MacBeth standard error.

- The table presents the size properties of *t*-tests of statistical significance.
- The null hypothesis is that the parameter of interest is equal to its true value.
- $t_{FM}(\cdot)$ denotes the *t*-statistic associated with the OLS estimator that uses the traditional Fama-MacBeth standard error.
- $t(\cdot)$ denotes the *t*-statistic associated with the OLS estimator.

- The table presents the size properties of *t*-tests of statistical significance.
- The null hypothesis is that the parameter of interest is equal to its true value.
- $t_{FM}(\cdot)$ denotes the *t*-statistic associated with the OLS estimator that uses the traditional Fama-MacBeth standard error.
- $t(\cdot)$ denotes the *t*-statistic associated with the OLS estimator.
- The *t*-statistics are compared with the critical values from a standard normal distribution.

Table II	
Empirical size of t-tests in a One-Factor Model	
with a useless factor (Σ Scalar)	

Panel A: T = 36

N	0.10	0.05	0.01	0.10	0.05	0.01
		$t_{FM}(\hat{\gamma}_0)$			$t_{FM}(\hat{\gamma}_1)$	
100	0.105	0.053	0.010	0.105	0.053	0.013
500	0.108	0.053	0.011	0.108	0.054	0.011
1000	0.105	0.051	0.011	0.103	0.053	0.011
3000	0.101	0.050	0.010	0.101	0.053	0.011
		$t(\hat{\gamma}_0)$			$t(\hat{\gamma}_1)$	
100	0.105	0.053	0.010	0.105	0.055	0.013
500	0.107	0.052	0.011	0.108	0.054	0.011
1000	0.106	0.051	0.011	0.103	0.053	0.011
3000	0.102	0.050	0.010	0.102	0.052	0.011

Simulation results: base case (t-test) - Scalar Σ

Table II Empirical size of *t*-tests in a One-Factor Model with a useless factor (Σ Scalar)

Panel A: T = 72

N	0.10	0.05	0.01	0.10	0.05	0.01
		$t_{FM}(\hat{\gamma}_0)$			$t_{FM}(\hat{\gamma}_1)$	
100	0.105	0.054	0.011	0.101	0.052	0.011
500	0.105	0.052	0.011	0.0.98	0.049	0.009
1000	0.102	0.052	0.009	0.097	0.051	0.010
3000	0.102	0.051	0.010	0.099	0.050	0.009
		.(0)			.(0)	
		$t(\hat{\gamma}_0)$			$t(\hat{\gamma}_1)$	
100	0.103	0.053	0.009	0.098	0.055	0.011
500	0.103	0.051	0.010	0.098	0.046	0.009
1000	0.101	0.051	0.009	0.096	0.051	0.010
3000	0.101	0.051	0.010	0.099	0.050	0.009

э

∃ ► < ∃ ►</p>

Simulation results: base case (F-test) - Scalar Σ

Table III Empirical size of *F*-tests in a One-Factor Model with a useless factor (Σ scalar)

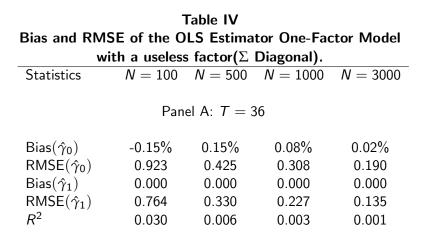
The table presents the size properties of *F*-tests of statistical significance. The *F*-statistics are compared with the critical values from a $\chi^2_K \left(\frac{\sigma_4}{\sigma^4} / K \right)$.

	Panel	A: <i>T</i> =	Panel	Panel A: $T = 72$			
<u> </u>	0.10	0.05	0.01	0.10	0.05	0.01	
100 500 1000	0.107 0.101 0.101	0.056 0.052 0.051	0.012 0.011 0.011	0.108 0.104 0.101	0.056 0.053 0.052	0.012 0.011 0.010	
3000	0.100	0.049	0.010	0.101	0.051	0.010	1
d Zaffaroni (2018)		Dissecting Sp	ourious Factors	with Cross-Sect	Decei	mber 30, 2018	

51 / 75

Raponi and

Simulation results: base case (Bias and RMSE) - Diagonal $\boldsymbol{\Sigma}$



Simulation results: base case (Bias and RMSE) - Diagonal $\boldsymbol{\Sigma}$

Table IV Bias and RMSE of the OLS Estimator One-Factor Model								
V	vith a useless	s factor(Σ	Diagonal).					
Statistics	N = 100	<i>N</i> = 500	N = 1000	<i>N</i> = 3000				
	Panel B: $T = 72$							
$Bias(\hat{\gamma}_{0})$	0.07%	0.03%	0.03%	0.02%				
$RMSE(\hat{\gamma}_0)$	0.400	0.160	0.127	0.075				
$Bias(\hat{\gamma}_1)$	0.000	0.000	0.000	0.000				
$RMSE(\hat{\gamma}_1)$	1.070	0.521	0.332	0.208				
R^2	0.069	0.018	0.008	0.003				

December 30, 2018

Table V

Empirical size of *t*-tests in a One-Factor Model with a useless factor (Σ Diagonal)

Ν	0.10	0.05	0.01	0.10	0.05	0.01
		. (^)			. (^)	
		$t_{FM}(\hat{\gamma}_0)$			$t_{FM}(\hat{\gamma}_1)$	
100	0.103	0.052	0.010	0.113	-0.060	0.015
500	0.101	0.050	0.010	0.101	0.053	0.011
1000	0.101	0.050	0.011	0.103	0.054	0.011
3000	0.100	0.050	0.009	0.102	0.050	0.011
		$t(\hat{\gamma}_0)$			$t(\hat{\gamma}_1)$	
100	0.095	0.048	0.010	0.113	0.059	0.014
500	0.098	0.048	0.009	0.102	0.050	0.011
1000	-0.099	0.050	0.011	0.103	0.052	0.011
3000	0.102	0.050	0.009	0.100	0.050	0.012

Panel A: T = 36

Table V

Empirical size of *t*-tests in a One-Factor Model with a useless factor (Σ Diagonal)

		Par	nel B: $T = 72$			
N	0.10	0.05	0.01	0.10	0.05	0.01
		$t_{FM}(\hat{\gamma}_0)$			$t_{FM}(\hat{\gamma}_1)$	
100	0.101	0.047	0.007	0.134	0.077	0.022
500	0.100	0.050	0.010	0.108	0.057	0.013
1000	0.098	0.049	0.010	0.103	0.053	0.011
3000	0.099	0.051	0.010	0.101	0.052	0.011
		$t(\hat{\gamma}_0)$			$t(\hat{\gamma}_1)$	
100	0.087	0.041	0.006	0.122	0.072	0.023
500	0.096	0.050	0.009	0.104	0.057	0.012
1000	0.097	0.047	0.010	0.108	0.053	0.013
3000	0.099	0.051	0.010	0.101	0.051	0.010

Simulation results: base case (F-test) - Diagonal Σ

Table VI Empirical size of *F*-tests in a One-Factor Model with a useless factor (Σ Diagonal)

The table presents the size properties of *F*-tests of statistical significance. The *F*-s the critical values from a $\chi^2_K \left(\frac{\sigma_4}{\sigma^4} / K \right)$.

	Panel	A: <i>T</i> =	36	Panel	A: T =	72	
N	0.10	0.05	0.01	0.10	0.05	0.01	
100	0.113	0.060	0.015	0.134	0.077	0.022	
500	0.101	0.053	0.011	0.108	0.057	0.013	
1000	0.102	0.052	0.011	0.106	0.053	0.011	
3000	0.102	0.050	0.011	0.101	0.052	0.011	E
d Zaffaroni (2018)		Dissecting Sp	ourious Factors	with Cross-Sect	Decer	mber 30, 2018	56 / 75

Raponi and

Simulation results: base case (Bias and RMSE) - Full Σ ($\delta = 0.5$)

Table VII Bias and RMSE of the OLS Estimator in a One-Factor Model with a useless factor(Σ Full - $\delta = 0.5$).

Statistics N = 100 N = 500 N = 1000 N = 3000

Panel A: T = 36

$Bias(\hat{\gamma}_{0})$	-0.16%	0.13%	0.06%	0.05%
$RMSE(\hat{\gamma}_0)$	0.923	0.425	0.305	0.189
$Bias(\hat{\gamma}_1)$	0.000	0.000	0.000	0.000
$RMSE(\hat{\gamma}_1)$	1.253	0.474	0.349	0.196
R^2	0.031	0.006	0.003	0.001

Simulation results: base case (Bias and RMSE) - Full Σ ($\delta = 0.5$)

Table VII Bias and RMSE of the OLS Estimator in a One-Factor Model with a useless factor (Σ Full - $\delta = 0.5$). Statistics N = 100N = 500N = 1000N = 3000Panel B: T = 72 $\text{Bias}(\hat{\gamma}_0)$ -0.03% 0.02% 0.05% 0.03% $RMSE(\hat{\gamma}_0)$ 0.353 0.1780.118 0.078 $Bias(\hat{\gamma}_1)$ 0.000 0.000 0.000 0.000 $RMSE(\hat{\gamma}_1)$ 0.764 0.329 0.2300.138 R^2 0.090 0.015 0.009 0.003

Simulation results: base case (t-test) - Full Σ (δ = 0.5)

Table VIII

Empirical size of *t*-tests in a One-Factor Model with a useless factor(Σ Full - $\delta = 0.5$)

N	0.10	0.05	0.01	0.10	0.05	0.01
		$t_{FM}(\hat{\gamma}_0)$			$t_{FM}(\hat{\gamma}_1)$	
100	0.103	0.053	0.010	0.113	0.060	0.015
500	0.102	0.050	0.010	0.101	0.053	0.011
1000	0.102	0.049	0.010	0.103	0.053	0.011
3000	0.099	0.050	0.010	0.101	0.052	0.011
		$t(\hat{\gamma}_0)$			$t(\hat{\gamma}_1)$	
100	0.096	0.048	0.010	0.113	0.059	0.014
500	0.097	0.048	0.010	0.101	0.051	0.011
1000	0.102	0.048	0.010	0.104	0.052	0.011
3000	0.099	0.050	0.010	0.103	0.051	0.010

Panel A: T = 36

December 30, 2018

Table VIII

Empirical size of *t*-tests in a One-Factor Model with a useless factor(Σ Full - $\delta = 0.5$)

Ν	0.10	0.05	0.01	0.10	0.05	0.01
		$t_{FM}(\hat{\gamma}_0)$			$t_{FM}(\hat{\gamma}_1)$	
100	0.102	0.046	0.005	0.138	0.080	0.030
500	0.107	0.053	0.009	0.106	0.055	0.011
1000	0.099	0.045	0.009	0.101	0.052	0.014
3000	0.101	0.049	0.011	0.097	0.049	0.012
		$t(\hat{\gamma}_0)$			$t(\hat{\gamma}_1)$	
100	0.087	0.044	0.008	0.129	0.073	0.022
500	0.102	0.050	0.009	0.105	0.052	0.011
1000	0.096	0.047	0.009	0.100	0.050	0.013
3000	0.100	0.049	0.010	0.097	0.049	0.011

Panel B: T = 72

Simulation results: base case (F-test) - Full Σ ($\delta = 0.5$)

Table IX Empirical size of *F*-tests in a One-Factor Model with a useless factor (Σ Full - $\delta = 0.5$)

	Panel	A: <i>T</i> =	36		Panel A: $T = 72$				
N	0.10	0.05	0.01	-	0.10	0.05	0.01		
100	0.113	0.060	0.014		0.138	0.080	0.030		
500	0.101	0.053	0.011		0.106	0.055	0.011		
1000	0.103	0.053	0.011		0.101	0.052	0.014		
3000	0.101	0.051	0.011		0.097	0.049	0.012		

DGP is

$$R_t = \gamma_0 \mathbf{1}_N + B_f(\gamma_1 + f_t - E[f]) + \epsilon_t,$$

where $\epsilon_t \sim \mathcal{N}(0, \sigma^2 I_T)$ and where we calibrate γ_0 and γ_1 as the OLS estimates from the one factor model (CAPM).

• Fitted Model is a Two-Factor Model"

$$R_t = \alpha + B_f f_t + B_g g_t + \epsilon_t,$$

where g_t is an orthogonal (useless) factor to f_t .

• All factors are orthogonalized to each other such that $\tilde{F}'\tilde{G} = 0_{K_f \times K_g}$

Simulation results: useful plus useless (Bias and RMSE) - scalar $\boldsymbol{\Sigma}$

Table XIIIBias and RMSE of the OLS Estimator in a correctly specified model
with useful and useless factors (Σ scalar).StatisticsN = 100N = 500N = 1000N = 3000

Panel A: T = 36

$Bias(\hat{\gamma}_{0})$	0.78%	0.06%	-0.15%	0.10%
$RMSE(\hat{\gamma}_0)$	0.291	0.132	0.071	0.047
$Bias(\hat{\gamma}_{1_f})$	0.43%	0.07%	0.08%	-0.03%
$RMSE(\hat{\gamma}_{1_f})$	0.211	0.102	0.053	0.039
$Bias(\hat{\gamma}_{1_{\mathbf{g}}})$	0.000	0.000	0.000	0.000
$RMSE(\check{\hat{\gamma}}_{1_g})$	1.769	0.766	0.543	0.326
$Bias(R^2)$	4.66%	1.62%	0.38%	0.22%

Raponi and Zaffaroni (2018)

Simulation results: useful plus useless (Bias and RMSE) - scalar $\boldsymbol{\Sigma}$

Table XIII Bias and RMSE of the OLS Estimator in a correctly specified model with useful and useless factors (Σ scalar). Statistics N = 500N = 100N = 1000N = 3000Panel B: T = 72 $Bias(\hat{\gamma}_0)$ 0.10% 0.05% 0.06% 0.07% $RMSE(\hat{\gamma}_0)$ 0.582 0.1950.079 0.055 $Bias(\hat{\gamma}_{1_{\ell}})$ 0.08% 0.27% 0.11% 0.03% $\mathsf{RMSE}(\hat{\gamma}_{1_f})$ 0.278 0.125 0.052 0.033 $Bias(\hat{\gamma}_{1_{\sigma}})$ 0.000 0.000 0.000 0.000

Raponi and Zaffaroni (2018)

 $\mathsf{RMSE}(\hat{\gamma}_{1_{\sigma}})$

 $Bias(R^2)$

Dissecting Spurious Factors with Cross-Sect

0.540

1.57%

0.376

0.65%

1.215

4.00%

December 30, 2018 6

0.227

0.39%

Simulation results: useful plus useless (t-test) - scalar Σ

Table XIV

Empirical Size of *t*-tests in a correctly specified model with useful and useless factors (Σ Scalar)

Panel A: T = 36

N	0.10	0.05	0.01	0.10	0.05	0.01	0.10	0.05	0.01
		$t(\hat{\gamma}_0)$			$t(\hat{\gamma}_{1_f})$			$t(\hat{\gamma}_{1g})$	
100	0.102	0.049	0.011	0.099	0.053	0.009	0.100	0.053	0.012
500	0.102	0.052	0.009	0.098	0.048	0.008	0.099	0.051	0.012
1000	0.100	0.051	0.011	0.098	0.048	0.009	0.100	0.051	0.010
3000	0.099	0.050	0.010	0.101	0.052	0.010	0.099	0.049	0.010
500 1000	0.102 0.100	0.049 0.052 0.051	0.009 0.011	0.098 0.098	0.053 0.048 0.048	0.008 0.009	0.099 0.100	0.053 0.051 0.051	0.012 0.010

December 30, 2018

Simulation results: useful plus useless (t-test) - scalar Σ

Table XIV

Empirical Size of *t*-tests in a correctly specified model with useful and useless factors (Σ Scalar)

Panel B: T = 72

N	0.10	0.05	0.01	0.	L0	0.05	0.01	-	0.10	0.05	0.01
		$t(\hat{\gamma}_0)$				$t(\hat{\gamma}_{1_f})$				$t(\hat{\gamma}_{1g})$	
100	0.097	0.049	0.009	0.1	01	0.048	0.010		0.110	0.054	0.012
500	0.103	0.051	0.013	0.0	96	0.048	0.009		0.098	0.048	0.010
1000	0.099	0.052	0.010	0.0	95	0.049	0.010		0.098	0.048	0.011
3000	0.101	0.052	0.010	0.1	02	0.052	0.010		0.100	0.049	0.009

December 30, 2018

Simulation results: useful plus useless (Bias and RMSE) - diagonal $\boldsymbol{\Sigma}$

Table XVBias and RMSE of the OLS Estimator in a correctly specified model with useful and useless factors (Σ Diagonal).												
Statistics	N = 100	N = 500	N = 1000	<i>N</i> = 3000								
	Pane	el A: $T = 3$	6									
$Bias(\hat{\gamma}_{0})$	0.09%	0.06%	0.02%	0.04%								
$RMSE(\hat{\gamma}_0)$	0.052	0.034	0.029	0.021								
$Bias(\hat{\gamma}_{1_f})$	0.11%	0.05%	0.03%	0.02%								
$RMSE(\hat{\gamma}_{1_f})$	0.038	0.029	0.025	0.017								
$Bias(\hat{\gamma}_{1_{g}})$	0.000	0.000	0.000	0.000								
$RMSE(\mathring{\hat{\gamma}}_{1_{g}})$	1.820	1.203	0.958	0.543								
$Bias(R^2)$	2.30%	0.90%	0.23%	0.18%								

December 30, 2018

Simulation results: useful plus useless (Bias and RMSE) - diagonal $\boldsymbol{\Sigma}$

Table XV Bias and RMSE of the OLS Estimator in a correctly specified model												
with useful and useless factors (Σ Diagonal).												
_	Statistics	N = 100	<i>N</i> = 500	N = 1000	<i>N</i> = 3000							
		Pane	el B: $T = 7$	2								
	$Bias(\hat{\gamma}_0)$	0.09%	0.03%	0.02%	0.02%							
	$RMSE(\hat{\gamma}_0)$	0.036	0.032	0.029	0.023							
	$Bias(\hat{\gamma}_{1_f})$	0.13%	0.03%	0.03%	0.03%							
	$RMSE(\hat{\gamma}_{1_f})$	0.032	0.023	0.019	0.017							
	$Bias(\hat{\gamma}_{1_g})$	0.001	0.001	0.000	0.000							
	$RMSE(\hat{\gamma}_{1_{\sigma}})$	1.807	0.922	0.653	0.392							
_	$Bias(R^2)$	3.13%	1.07%	0.19%	0.17%							

December 30, 2018

Table XVI

Empirical Size of *t*-tests in a correctly specified model with useful and useless factors (Σ Diagonal)

Panel A: T = 36

N	0.10	0.05	0.01	0.10	0.05	0.01	0.10	0.05	0.01
		$t(\hat{\gamma}_0)$			$t(\hat{\gamma}_{1_f})$			$t(\hat{\gamma}_{1g})$	
100	0.101	0.051	0.011	0.109	0.068	0.016	0.112	0.056	0.016
500	0.101	0.051	0.011	0.084	0.045	0.009	0.106	0.049	0.009
1000	0.102	0.052	0.010	0.099	0.051	0.010	0.103	0.054	0.011
3000	0.099	0.049	0.010	0.099	0.051	0.010	0.099	0.049	0.009

December 30, 2018

Simulation results: useful plus useless (t-test) - diagonal Σ

Table XVI

Empirical Size of *t*-tests in a correctly specified model with useful and useless factors (Σ Diagonal)

Panel B: T = 72

N	0.10	0.05	0.01	0.10	0.05	0.01	0.10	0.05	0.01
		$t(\hat{\gamma}_0)$			$t(\hat{\gamma}_{1f})$			$t(\hat{\gamma}_{1g})$	
100	0.079	0.045	0.007	0.073	0.042	0.003	0.106	0.056	0.014
500	0.105	0.054	0.010	0.089	0.045	0.008	0.098	0.053	0.010
1000	0.097	0.049	0.009	0.097	0.048	0.010	0.098	0.049	0.010
3000	0.099	0.049	0.010	0.098	0.049	0.010	0.100	0.049	0.010

December 30, 2018

Simulation results: useful plus useless (Bias and RMSE) - Full Σ (δ = 0.5)

Table XVII Bias and RMSE of the OLS Estimator in a correctly specified model with useful and useless factors (Σ Full, $\delta = 0.5$). N = 500 N = 1000**Statistics** N = 100N = 3000**Panel A:** T = 360.38% $Bias(\hat{\gamma}_0)$ 0.42% 0.09% 0.06% $\mathbf{RMSE}(\hat{\gamma}_0)$ 0.086 0.042 0.035 0.021 $Bias(\hat{\gamma}_{1\epsilon})$ 0.06% 0.03% 0.04% 0.01% $\mathsf{RMSE}(\hat{\gamma}_{1_f})$ 0.066 0.023 0.020 0.0170.0000.0000.000 $\hat{\gamma}_{1_g}$ 0.000 $\mathsf{RMSE}(\hat{\gamma}_{1_{\sigma}})$ 1.211 0.916 0.903 0.543

Raponi and Zaffaroni (2018)

 R^2

1.42%

2.90%

December 30, 2018

0.38%

0.49%

Simulation results: useful plus useless (Bias and RMSE) - Full Σ (δ = 0.5)

Table XVII Bias and RMSE of the OLS Estimator in a correctly specified model with useful and useless factors (Σ Full, $\delta = 0.5$). N = 500 N = 1000**Statistics** N = 100N = 3000Panel B: T = 720.02% 0.04% 0.01% 0.02% $Bias(\hat{\gamma}_0)$ $\mathbf{RMSE}(\hat{\gamma}_0)$ 0.052 0.0440.030 0.023 $Bias(\hat{\gamma}_{1\epsilon})$ 0.04% 0.07% 0.02% 0.02% $\mathsf{RMSE}(\hat{\gamma}_{1_f})$ 0.056 0.036 0.028 0.0210.0000.0000.000 $\hat{\gamma}_{1_g}$ 0.000 $\mathsf{RMSE}(\hat{\gamma}_{1_{\sigma}})$ 0.393 1.872 0.864 0.653 R^2 2.19% 1.29% 0.46% 0.29%

Raponi and 2	Zaffaroni (2018)
--------------	-------------	------	---

December 30, 2018

Simulation results: useful plus useless (t-test) - Full Σ ($\delta = 0.5$)

Table XVIII

Empirical Size of *t*-tests in a correctly specified model with useful and useless factors (Σ Full - $\delta = 0.5$)

Panel A: T = 36

N	0.10	0.05	0.01	0.10	0.05	0.01	_	0.10	0.05	0.01
		$t(\hat{\gamma}_0)$			$t(\hat{\gamma}_{1_f})$				$t(\hat{\gamma}_{1g})$	
100	0.127	0.069	0.016	0.126	0.072	0.019	-	0.102	0.053	0.010
500	0.107	0.055	0.014	0.110	0.054	0.013		0.102	0.052	0.009
1000	0.104	0.052	0.012	0.103	0.049	0.008		0.100	0.050	0.010
3000	0.099	0.048	0.010	0.099	0.051	0.010		0.100	0.050	0.010
				Panel B:	T = 72					
		$t(\hat{\gamma}_0)$			$t(\hat{\gamma}_{1_f})$				$t(\hat{\gamma}_{1g})$	
100	0.076	0.035	0.007	0.065	0.036	0.006	-	0.104	0.056	0.013
500	0.088	0.040	0.009	0.088	0.044	0.009		0.102	0.051	0.010
1000	0.095	0.047	0.009	0.096	0.046	0.008		0.102	0.051	0.010

0.099

3000

0.099

0.048

0.010

0.049

0.010

December 30, 2018

0.048

0.010

0.099

• Framework for testing useless factors within the context of beta-pricing models.

- Framework for testing useless factors within the context of beta-pricing models.
- Designed for when N is large and T is fixed, possibly very small (T > K is enough).

- Framework for testing useless factors within the context of beta-pricing models.
- Designed for when N is large and T is fixed, possibly very small (T > K is enough).
- Unlike the large-T methods, our approach is simple (based simply on the OLS CSR).

- Framework for testing useless factors within the context of beta-pricing models.
- Designed for when N is large and T is fixed, possibly very small (T > K is enough).
- Unlike the large-*T* methods, our approach is simple (based simply on the OLS CSR).
- Unlike the large-*T* methods, our results do NOT depend on degree of misspecification.

- Framework for testing useless factors within the context of beta-pricing models.
- Designed for when N is large and T is fixed, possibly very small (T > K is enough).
- Unlike the large-*T* methods, our approach is simple (based simply on the OLS CSR).
- Unlike the large-*T* methods, our results do NOT depend on degree of misspecification.
- Our results lead to conventional asymptotic distributions of OLS CSR estimator and test statistics.

THANKS

< 🗇 🕨

2