Consumer Search with Imperfect Vertical-quality Information

Yijuan Chen¹ Xiangting Hu² Sanxi Li³

Harbin Institute of Technology, Shenzhen

January 4, 2019

¹Australian National University
²Harbin Institute of Technology, Shenzhen
³Renmin University of China

Xiangting Hu (HITSZ)

Search with imperfect vertical information

January 4, 2019 1 / 28

- Many previous studies explore the feature that online consumers incur **lower search costs** than in offline markets.
- On the other hand, online consumers can be **uncertain about product quality** because they cannot physically inspect a product before purchase.
- The uncertainty over product quality can be horizontal and / or **vertical**.
 - Horizontal quality is a product's match-value to a consumer, and can be idiosyncratic across consumers.
 - Vertical quality is a product's quality that is largely identical across consumers.
 - Examples: the effectiveness of noise-canceling headphones, materials used in furniture

- In this paper we develop a consumer-search model that incorporates consumer's (ex post) uncertainty over vertical product quality. We examine
 - Firms' pricing strategy and consumers' search behavior in equilibrium.
 - How the change of search cost affects price and consumer welfare.
 - How the change of informativeness affects price and consumer welfare.

- Baseline model:
 - Vertical uncertainty with binary quality signals
- Extended model:
 - Vertical uncertainty with continuous quality signals

- A reduced search cost will result in a lower consumer surplus and higher market prices.
- An increase in informativeness can lead to a higher consumer surplus.
- When the initial quality signal becomes less informative, consumers can still be better off if they increase the search intensity.

- There are a continuum of firms with measure 1 and a continuum of consumers with measure 1.
- Firms produce differentiated products at two quality levels: $v_h > v_l > 0$.
 - Each firm is high-quality with probability μ .
 - The marginal cost of production is zero.
- Each consumer has a unitary demand and conducts sequential random search on the market with perfect recall and without replacement, at a search cost *s* per firm.

- At the beginning of the game, firms observe their qualities and set their prices.
- Upon sampling a store, a consumer observes the price but cannot directly observe the vertical quality. She observes a quality signal $\eta \in \{\eta_l, \eta_h\}$ which follows the conditional distribution

$$\begin{aligned} &\mathsf{Pr}(\eta = \eta_h | \mathbf{v} = \mathbf{v}_h) = \beta_h \quad \mathsf{Pr}(\eta = \eta_I | \mathbf{v} = \mathbf{v}_h) = 1 - \beta_h \\ &\mathsf{Pr}(\eta = \eta_I | \mathbf{v} = \mathbf{v}_I) = \beta_I \quad \mathsf{Pr}(\eta = \eta_h | \mathbf{v} = \mathbf{v}_I) = 1 - \beta_I \end{aligned}$$

with $\beta_l, \beta_h \in (\frac{1}{2}, 1)$.

• We will say that β_l and β_h represent the *informativeness of quality* signals, or, the search quality.

- A firm's pure strategy is a function $P : \{v_l, v_h\} \rightarrow \mathbb{R}_+$.
- The signal space for a consumer is

$$S = \{(\eta, p) \mid \eta \in \{\eta_I, \eta_h\}, p \in \mathbb{R}_+\}.$$

- We will be focused on pure strategies for consumers.
- Following a strategy profile, a consumer expects a reservation utility U by participating in searching on the market.
- The consumer will buy if $E[v|(\eta, p)] p \ge U$.

- Equilibrium concept: Perfect Bayesian Equilibrium
- Three types of equilibrium:
 - An equilibrium is separating if different types of firms charge different prices, i.e., $p_l \neq p_h$.
 - A pooling equilibrium entails $p_l = p_h$.
 - In a partial-pooling / partial-separating equilibrium, each type of firm can randomize over a distribution of prices, with the two distributions partially overlapped.

Proposition

There does not exist a separating equilibrium.

- The existence of a separating equilibrium requires the distributions of quality signals, conditional on different quality levels, to have different supports.
- A key factor that leads to the Proposition is the assumption that $\beta_h < 1$ and $\beta_l < 1$.

•
$$\beta_h = 1$$
 and $\beta_l = 1$: A Diamond Paradox
• $\beta_h = 1$ and $\beta_l < 1$: Wolinsky (1983)

The partial-pooling equilibrium

The partial-pooling equilibrium

- The high-quality firm sets its price at p_h,
- The low-quality firm's price will be p_h with probability σ and p_l with probability 1σ .
- On the equilibrium path, the consumer will buy upon seeing (η_h, p_h) , (η_l, p_l) or (η_h, p_l) , and will continue searching upon seeing (p_h, η_l) .
- Off the equilibrium path, consumers holds the belief that $Pr(v = v_l | p \neq p_h, p \neq p_l) = 1$, and will buy if $p \leq v_l U$, and continue searching if $p > v_l U$.
- As $\sigma \rightarrow 1$, the partial-pooling equilibrium becomes a pooling equilibrium.

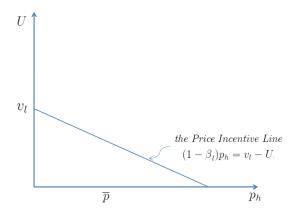
• From the indifference condition of the low-quality firm we can derive a relationship between p_h and U, which we call the *Price Incentive Line*.

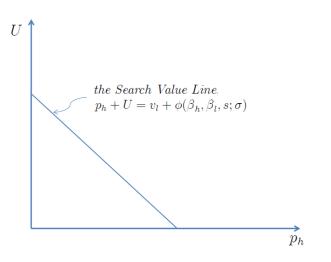
$$(1 - \beta_l)p_h = p_l$$

$$p_l = v_l - U$$

$$\implies (1 - \beta_l)p_h = v_l - U$$

- The Price Incentive Line characterizes the low-quality firm's pricing strategy in equilibrium, and implies a negative relationship between the price and consumer's reservation utility:
 - As consumer's reservation utility decreases by one unit, the sure-sell price $v_l U$ will increase by one unit;
 - hence the price of mimicing should increase by $\frac{1}{1-\beta_l}$ unit to keep the indifference condition.




Figure 1a: The Price Incentive Line

Xiangting Hu (HITSZ)

• We can derive another relationship between *p_h* and *U*, from the consumer's searching problem, which we call *the Search Value Line*:

$$p_h + U = v_l + \phi(\beta_h, \beta_l, s; \sigma),$$

- The Search Value Line characterizes consumer's searching behavior.
- Given the value of search, the Search Value Line implies a negative relationship between *p_h* and consumer's reservation utility:
 - When *p_h* increases by one unit, consumer's reservation utility will decrease by one unit.

Figure 1b: The Search Value Line

Xiangting Hu (HITSZ)

Search with imperfect vertical information

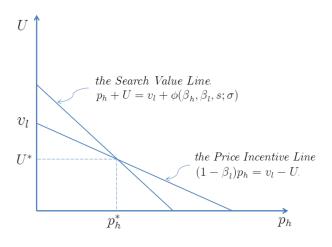
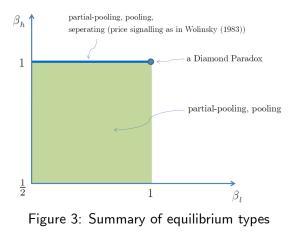



Figure 2: The partial-pooling equilibrium

16 / 28

Equilibrium types

17 / 28

• s decrease \implies U decreases, p_h increases.

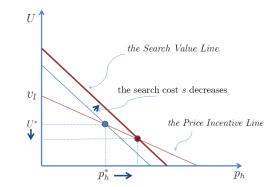
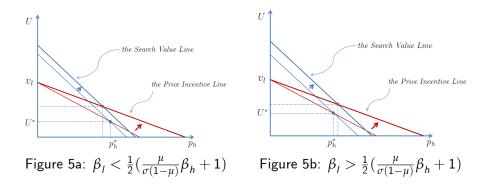



Figure 4: The impacts of a lower search cost on equilibrium

18 / 28

• β_1 increases $\implies U$ increases, p_h : ambiguous

Simultaneous change of search cost and search quality

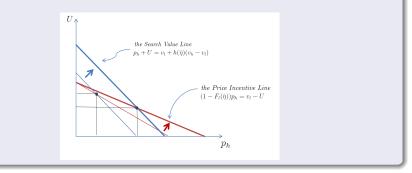
- Let $\beta_h = \beta_I = \beta$.
- Suppose there is a function $s = g(\beta)$, with $g'(\beta) > 0$, that characterizes the path of the change in (β, s) .
- Results:
 - U^* decreases, and thus p_l^* increases, given any path.
 - The impacts on p_h^* depends on the primitives and the path.

- In the baseline model, the probability of buying from the high / low product is independent of search cost.
- However, as search costs are lower, consumers may search more intensively and will endogenously choose their purchase probability.
- We incorporate this feature into the extended model.

- Conditional on quality v_h , the distribution of η : CDF $F_h(\eta)$ and PDF $f_h(\eta)$ on $(-\infty, \infty)$.
- Conditional on quality v_l , the distribution of η : CDF $F_l(\eta)$ and PDF $f_l(\eta)$ on $(-\infty, \infty)$.
- MLRP: i.e., $\frac{f_h(\eta)}{f_i(\eta)}$ is increasing in η .
- Other settings replicate those in the benchmark model.

The extended model: continuous quality signals The partial-pooling equilibrium

- On the equilibrium path:
 - The high-quality firm will charge p_h with probability 1, while the low-quality firm will charge p_h with probability σ and p_l with probability 1σ .
 - Consumer:
 - The consumer will buy upon seeing p_l .
 - Upon seeing p_h , there exists a cutoff value of η , $\hat{\eta}$, such that on the equilibrium path, the consumer will buy if $\eta > \hat{\eta}$.

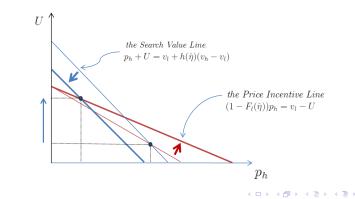

- The cutoff $\hat{\eta}$ represents the purchase probability in equilibrium.
- $\hat{\eta}$ also represents the informativeness upon purchase.
- We show that $\hat{\eta}$ increases as s decreases.
- The consumer will endogenously adjust the search intensity and thus the ability to identify the high-quality product upon purchase.
- As the distributions of F_h and F_l denote the *exogenous* informativeness, $\hat{\eta}$ represents the *endogenous* informativeness of search.

The extended model: continuous quality signals

Comparative statics: search costs

Corollary

When search costs are lower, p_h^* will increase and U^* will decrease if the quality signals are sufficiently informative.


Suppose there are a family of distributions of f_h^{α} associated with the index α , which satisfy MLRP, i.e., for $\alpha > \alpha'$, $\frac{f_h^{\alpha}(\eta)}{f_h^{\alpha'}(\eta)}$ is increasing in η .

The extended model: continuous quality signals

Comparative statics: informativeness

Corollary

When the exogenous informativeness decreases, p_h^* will decrease while U^* will increase if $\frac{d\hat{\eta}(\alpha)}{d\alpha} < 0$.

Conclusion

- We incorporate consumer's uncertainty over vertical product quality into a consumer search model, and show that:
 - A separating perfect Bayesian equilibrium does not exist if the conditional distribution of the quality signal has full support;
 - A partial-pooling equilibrium can be characterized by the intersection of the search value line and the price incentive line;
 - Due to the search-value effect, the decrease in search costs can hurt consumers while benefit firms.
 - Due to the price-incentive effect, the increase in informativeness can benefit consumers while may lead to either higher or lower prices.
 - When the exogenous informativeness decreases, consumers can be better off if they respond by increasing the search intensity.
- A more comprehensive model with both horizontal and vertical uncertainty is working in progress.