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Abstract
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algorithms to achieve high prediction accuracy. Finally, we apply the method to measure the effect
of an investment grade rating on corporate bond prices by any of the three largest credit ratings
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1 Introduction

Regulators, companies, and institutions regularly make binary decisions affecting several units such as

companies, individuals, and cities. These binary decisions are equivalent to assigning a treatment status

to a chosen set of units. Very often, the treatment decision can be described as based on an underlying

score assigned to all units; those with a score above a threshold receive treatment while those with

a score below it remain untreated. We focus on cases where the score is only known to the decision

maker, while treatment status is known to everyone. Examples include credit rating agencies evaluating

bonds as investment grade or non-investment grade, banks granting loans after performing credit risk

assessments, and prospective students or employees being chosen based on proprietary selection methods.

In this paper, we propose a method to estimate the treatment effect for a unit at the threshold of the

unobservable score.

We propose a two-stage method to estimate the treatment effect when the score is unobservable to

the econometrician while the treatment status is known for all units. We assume that a potentially large

set of observable determinants of the score is available. In the first stage, we use a statistical model to

predict units’ treatment status based on a continuous estimated synthetic score (classification). In the

second stage, we apply a regression discontinuity (RD) design using the synthetic score as the running

variable to estimate the local treatment effect. We call this method synthetic regression discontinuity

(SynRD) design.

SynRD does not require the decision maker to explicitly compute a numerical score as long as

treatment assignment can be described as if it were implicitly based on such a score. This is analogous

to a utility maximization model where it is assumed that individuals rank alternatives according to the

utility derived, even if they do not explicitly compute a utility function. We furthermore argue that

the proposed method may also be applicable when units self-select into treatment based on their own

characteristics.

We show that under continuity and smoothness of both the unobserved and the synthetic score, and
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perfect prediction in the first stage, SynRD identifies the treatment effect for a unit at the threshold

of the unobservable score. This parameter is the same that a standard RD design with known score

would identify. We examine the properties of the estimator when the first stage prediction accuracy is

imperfect using simulations. Not surprisingly, these simulations suggest that the quality of the overall

estimation depends positively on the accuracy of the classification. Therefore we implement flexible

machine learning algorithms to achieve a high first stage prediction accuracy.

We apply SynRD to analyze the effect of an investment grade credit rating on corporate bond prices.

At different points in time, credit rating agencies analyze several characteristics of bonds and their

issuers and determine their rating. We model the agencies’ decision as if it were based on an explicit

or implicit score assigned to each bond. In this application, we focus on a binary classification: bonds

are classified either as investment grade (I) or non-investment grade (N). It is hard to measure the

direct effect of a bond’s grade on its price because the rating reflects information about the quality of

the bond that is likely already available to investors at the time of the rating. SynRD overcomes this

endogeneity by first predicting the score assigned to each bond and then estimating the local treatment

effect based on this synthetic score. We find a 0.8% - 1.1% increase in price as a consequence of receiving

an investment grade rating for bonds at the threshold of the synthetic score.

The remainder of this paper is structured as follows. After a discussion of the related literature in

section 2, section 3 formally introduces the SynRD design. In section 4 we set up the mathematical

framework underlying SynRD and prove identification for the case with perfect prediction in the first

stage. Imperfect prediction is discussed in section 5 where we report simulations evaluating the perfor-

mance of SynRD. Section 6 discusses the application of SynRD to credit ratings, and section 7 concludes

the paper.

2 Related Literature

RD designs have broad applicability in social sciences because they allow for causal identification with

observational data. Thistlethwaite and Campbell (1960) introduced the RD design to study the effect
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of scholarships on career plans where award decisions were based on a test score crossing some threshold.

Since the 1990s there have been several contributions to the RD literature. Imbens and Lemieux (2008)

and Lee and Lemieux (2010) provide surveys of the literature.

Hahn et al. (2001) discuss the sources of identification in the RD design and show that the treat-

ment effect can be non-parametrically identified. Imbens and Kalyanaraman (2012) derive an optimal

bandwidth for local linear regression. Calonico et al. (2014) and Calonico et al. (2018) build on their

work and provide standard errors and confidence intervals for RD designs that are robust to the choice

of bandwidth. Calonico et al. (forthcoming) study how to include covariates in the estimation of RD

designs. We follow Calonico et al. (2014) and Calonico et al. (forthcoming) to implement the second

stage RD for the simulation and application, using the first stage predicted score as the running variable.

None of these previous studies address the case in which the score (also referred to as running

or forcing variable) is not observable to the econometrician. We extend the argument in Hahn et al.

(2001) and prove identification of the treatment effect when the first stage procedure perfectly predicts

treatment status. A related strand of the literature studies RD design with a noisy score, that is, when

the running variable is measured with error. Battistin et al. (2009) assume there is a fraction of units

for which the score is known with zero error. Davezies and Barbanchon (2017) show the treatment effect

is identified when both the noisy and the true score are observed for a subset of all treated units. These

approaches are obviously not feasible in the case we are concerned with here. When the treatment

status is observed (an assumption we maintain throughout), Yu (2012) and Pei and Shen (2017) find

conditions under which the treatment effect is identified, despite the fact that the econometrician only

observes a noisy measure of the true score used for assignment. In work under progress (not yet included

in this version), we analyze whether these or related conditions apply to the second stage RD if the

treatment status prediction is not perfect in the first stage.

Porter and Yu (2015) study RD when the discontinuity point (the threshold for treatment assign-

ment) is unknown. They propose a two stage estimation where, in the first step, the discontinuity is

estimated with a difference kernel estimator. They show that the first stage does not affect the asymp-
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totic efficiency of the treatment effect estimator. The case we analyze in this paper is more general,

since it requires a first stage estimation of not just the discontinuity (only one parameter) but also the

score for every unit in the test sample.

The second area of research this work builds on is machine learning. While not yet known as “machine

learning,” McCulloch and Pitts (1943) was one of the first publications that laid out an estimation

approach reflecting the operation of the human brain, the neural network. Among many others, Hopfield

(1982) and White (1992) further established the foundations that replicate logic using a large number

of simple equivalent components – neurons – for estimation purposes. Sarle (1994) provides an intuitive

translation between previous statistical work and the machine learning literature.

While the method proposed in this work is not limited to any one specific statistical method, a high

prediction accuracy in the first stage is important to obtain unbiased estimates of the treatment effect.

It has been found that artificial neural networks achieve a very high out-of-sample prediction accuracy.

The specific machine learning algorithm we employ in our application is a multilayer perceptron (MLP),

an artificial neural network with multiple hidden layers. MLPs are universal approximators (White

1992). I.e., MLPs are flexible, general-purpose, non-linear models that, given enough data and enough

hidden neurons, can approximate any function to any desired degree of accuracy. Regarding the prac-

tical implementation of the MLP, our work is building on Kour and Saabne (2014a), Kour and Saabne

(2014b), and Hadash et al. (2018). We also utilize the literature of ordinal classification. Cheng et al.

(2008) and Niu et al. (2016) derive a representation of labels to measure the cross entropy error; a num-

ber of binary classifiers predicting whether a data point is larger than a threshold. Both publications

adapt a traditional neural network to learn ordinal categories.

Finally, the credit rating application presented in this paper is building on a body of literature

in accounting, finance, and information systems. Closely related to the first stage estimation of this

application are publications by Hájek (2011) and Huang et al. (2004). Both use machine learning tools

to predict credit ratings. Hájek (2011) uses neural networks and Huang et al. (2004) compare the

performance of support vector machines and neural networks in predicting credit ratings. Their main

4



focus is prediction rather than causal analysis.

Another strand of the literature in accounting and finance concentrates on the effect of credit ratings.

Sufi (2007) analyzes the effects of the introduction of syndicated loan ratings on firm outcomes. Tang

(2009) uses a credit rating refinement by Moody’s as an exogenous source of variation, to analyze the

effect of ratings on firms’ financing and investing decisions. Almeida et al. (2017) document a sovereign

ceiling policy by the rating agencies, and exploit sovereign downgrades as shocks to corporate ratings

to study their effect on firms’ decisions and bond yields.

Hand et al. (1992) find a -1,27% excess return (net of accrued interest) for all downgrades in their

sample, and a (non-significant) -0.37% excess return for downgrades that were not contaminated by

concurrent news about the issuer. More recently, using data on corporate bonds from TRACE (2002 -

2009), May (2010) report significant abnormal returns of -0.64% for all downgrades in the uncontami-

nated sample, when focusing only on prices of bonds that traded both on the day before and the day

after the change in rating. The effect seems smaller in magnitude for bonds issued by firms rated as

investment grade before the downgrade (-0.45%) than for non-investment grade firms (-0.83%). Both

studies report much smaller and non-significant effects for upgrades.

Although similar in magnitude, these previous estimates differ from ours in several respects. To begin

with, we are not just measuring the price changes associated with upgrades or downgrades, but instead

we are estimating the causal effect on prices of downgrading a bond from investment to non-investment

grade keeping other price-relevant variables constant. By implementing an RD design, our method

provides causal identification at the threshold. Moreover, SynRD does not rely on exogenous shocks

or natural experiments that might constrain the sample and raise concerns about external validity. An

advantage of the approach we propose is that we can consider longer time windows around the rating

event without having to worry about concurrent news about the issuer or other events that might affect

prices directly.
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3 Method

Suppose a decision maker assigns treatment to a set of units based on observable characteristics. We

focus on cases where the treatment assignment is either explicitly or implicitly based on a numerical score

computed for each unit as a function of these characteristics. This is analogous to a utility maximization

model where it is assumed that individuals choose the option that provides the highest utility, even if

they do not explicitly compute a utility function. A unit receives treatment if its score is greater than or

equal to a predetermined threshold. When the score is observable, the traditional RD design identifies

the local average treatment effect for those units with scores equal to the threshold. We propose a two-

stage method to estimate this parameter when the score is unobservable and treatment status is known

for all units. We call it synthetic regression discontinuity (SynRD), because it is based on a predicted

synthetic score recovered from a statistical model designed for predicting treatment assignment.

As an illustration, consider a simple case where the decision maker assigns treatment to all units

based on two characteristics, both measured as real numbers. Each unit can be described as a pair of

characteristics (x1, x2), and the decision maker can be thought of as having preferences over the set

of all units regarding whether they should receive treatment. Such preferences are represented using

a continuous score s(x1, x2) ∈ R. Moreover, there is a threshold τs such that the decision maker is

indifferent between assigning treatment or not to any unit with s(x1, x2) = τs. Figure 1 illustrates

this simple model using level sets of score s, analogous to a standard indifference curve map. All units

with a score greater than or equal to τs = 0.5 receive treatment, otherwise they are assigned to the

control group. We arbitrarily assume that the units right at the threshold where the decision maker

is indifferent are treated. This assumption is innocuous since, the probability of a unit having a score

equal to the threshold is zero under reasonable assumptions.

More generally, let U ∈ U be a vector of unit characteristics available to the decision maker.1 For

now we do not impose any restriction on the set U . In principle, characteristics may be represented

1We follow the convention of denoting random variables with uppercase letters, and the values they take with lowercase
letters.
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Figure 1: Decision maker preferences regarding treatment
assignment over the set of unit characteristics.

by real numbers or discrete variables. Also, let s : U → R be the score used by the decision maker for

treatment assignment. That is, a unit with characteristics u is treated if and only if s(u) ≥ τs.

We are interested in identifying the causal effect of treatment on an observed outcome Y . We follow

the Rubin causal model and define two potential outcomes for each unit. Let Y (0) denote the outcome

in the absence of treatment, and Y (1) the outcome if treated. Both are assumed to be well defined for

each unit, regardless of whether the unit is treated or not, and their values do not depend on treatment

assignment.

If the score, as well as the treatment status, are viewed as a random variables (for the econometrician),

the observed outcome can be expressed as Y = Y (1)T+Y (0)(1−T ), where T is an indicator of treatment

status. Similarly, the treatment effect on Y for units at the threshold can be defined by

γ = E[Y (1)|S = τs]− E[Y (0)|S = τs]

The question we address in this paper is how to estimate γ when the score is unobservable. The
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solution we propose is a two stage estimator. We assume that there is a vector of unit characteristics

W ∈ W available to the econometrician. In principle, W does not necessarily coincide with U , since

the econometrician might not know or be able to observe all determinants of the true score. Still, the

treatment status of all units is known. In the first stage, we propose to estimate (train) a statistical

model (an ML algorithm) to predict treatment assignment. This estimation must be performed on a

subset of all available units, the training sample. The outcome is a continuous function p : W → I ⊆ R

that assigns a predicted score p(w) to any unit with characteristics w in an interval I on the real

line. The predicted score must be defined in a way such that the statistical model predicts a unit with

characteristics w belongs to the treatment group if and only if p(w) ≥ τp for a given threshold τp ∈ I.

For instance, if the statistical model is a logistic regression, then the model predicts T (w) = 1 if and

only if exp(w′β̂)

1+exp(w′β̂)
≥ 0.5, where β̂ is a vector of parameters that minimizes a loss function on the training

sample. The final outcome of the first stage is a predicted score p for all units in the testing sample

(that does not overlaps with the training sample), and its corresponding predicted classification.

In the second stage, we propose to estimate γ on the testing sample under suitable assumptions as

follows:

γSynRD = lim
q↓τp

E[Y |P = q, T = 1]− lim
q↑τp

E[Y |P = q, T = 0] (1)

This is obviously an RD estimate (see, for example, Hahn et al., 2001). The crucial difference is

that we use the predicted score P as the running variable instead of the unobservable S. Notice that we

also condition on the observed treatment status T . Since the statistical model in the first stage might

incorrectly predict the treatment status for some units, the misclassified units must be excluded from

the testing sample in the second stage.

We now state an assumption that we will use further in section 4 to derive properties of the estimator

in equation 1. Let W = (X,D), where X takes values in X ⊆ R
n and D in D for some finite set D. X

is a vector of n observable characteristics represented as real numbers, and D is a discrete or categorical

characteristic taking only finitely many values. Since there is only a finite number of variables that

8



the econometrician could include in the model, we assume that there is only one discrete observable

characteristic without loss of generality.

Assumption 3.1 Existence of conditional joint density functions. For each d ∈ D, the random vari-

ables (Y (0), X) and (Y (1), X) have each a continuous probability density function, conditional on D = d.

Let f0
d and f1

d denote these two functions, respectively, for each each d ∈ D.

We introduce further assumptions in section 4, as well as a precise formal definition of the SynRD

estimator and a derivation of some of its properties. In particular, we show that under perfect prediction

γSynRD identifies the average treatment effect for the units right at the threshold of the true score used

by the decision maker.

4 Perfect Prediction

In this section we show that, under suitable conditions, when the procedure in the first stage perfectly

predicts treatment assignment, SynRD identifies the local treatment effect for a unit at the threshold

of the unobservable score, i.e., the same parameter that a standard RD would identify when the score

is known.

Treatment status is based on a continuous score function s that assigns a real number to every unit

given a vector of characteristics x ∈ R
n. We focus first on the case where all unit characteristics are

real numbers. At the end of the section we discuss how to extend the main result to include the case

where some characteristics are discrete (take only finitely many values).

A unit is treated if and only if its corresponding score s(x) is greater or equal than a predefined

threshold τs. Similarly, the statistical model in the first stage assigns a predicted score p(x) to a unit

with observable characteristics x, and predicts the unit belongs to the treatment group if and only if

p(x) ≥ τp. Since this section studies identification with perfect prediction, we only consider here the case

where the statistical model includes all the characteristics of the units used for treatment assignment.

We identify a unit with its vector of characteristics x ∈ X , and state several conditions and results
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in terms of subsets of X constructed as preimages of the functions p and s. Thus, for a given A ⊆ R,

let s−1(A) = {x ∈ X : s(x) ∈ A} and p−1(A) = {x ∈ X : p(x) ∈ A}. We also use the convention

s−1(a) = s−1({a}) and p−1(a) = p−1({a}) for the preimages of points.

In standard RD, the parameter of interest is defined in terms of expectations of the potential out-

comes Y (0) and Y (1), conditional on the score S as it approaches the threshold. An underlying assump-

tion is that the conditional expectations E[Y (i)|S = r] are continuous functions of r at the threshold

for i = 0, 1. It is implicitly assumed that the score S is a random variable, and that the conditional

expectations exist. Under this assumptions, the local treatment effect γ at the threshold τs is

γ = lim
r↓τs

E[Y (1)|S = r]− lim
r↑τs

E[Y (0)|S = r] = E[Y (1)|S = τs]− E[Y (0)|S = τs]

Our goal in this section is to prove that γ can also be computed as

lim
q↓τp

E[Y (1)|P = q]− lim
q↑τp

E[Y (0)|P = q]

However, in contrast to the traditional RD, we cannot simply assume the existence and continuity of

E[Y (i)|P = q] for i ∈ {0, 1}. We must instead derive it from properties of the function p which might

vary depending on the choice of the statistical method used to predict treatment assignment.

Notice that, in our context, the primitive random variable is the vector of characteristics describing

a unit, X ∈ R
n. Both the true score S and the predicted score P are defined as functions of X. Hence,

when conditioning on values of these scores, we are actually conditioning on values of the random

variable X. In particular, E[Y (i)|S = r] = E[Y (i)|X ∈ s−1(r)] and E[Y (i)|P = q] = E[Y (i)|X ∈ p−1(q)].

A difficulty arises because the sets p−1 (q) may be of measure zero. Under assumption 4.3, p−1 (q)

contains no critical points for all q ∈
(

q, q̄
)

. Therefore p−1 (q) is of Lebesgue measure zero. However,

given the existence of a join density f i for X and Y (i), we can define the conditional expectation in
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terms of integrals of the join density over the manifold2 p−1 (q). That is, for all q ∈
(

q, q̄
)

, let

E[Y (i)|P = q] = E
[

Y (i)|X ∈ p−1 (q)
]

=

∫

y(
∫

p−1(q) f
i (x, y) dx)dy

∫

(
∫

p−1(q) f
i (x, y) dx)dy

(2)

We will use this definition to show that under the assumptions introduced in this chapter, the

expectations E[Y (i)|P = q] are continuous at the threshold τp.

We now state a set of assumptions that are sufficient for identification of the local treatment effect.

Assumption 4.1 Perfect prediction. Let X ⊆ R
n be the open and non-empty space of characteristics

used to assign and predict treatment status. For all x ∈ X , s (x) ≥ τs if and only if p (x) ≥ τp

Assumption 4.2 Continuity of s and p. The functions s and p are continuous in X .

Assumption 4.3 Local smoothness of s and p. There are real numbers r, r̄, q and q̄ such that:

1. r < τs < r̄ and q < τp < q̄.

2. The preimages s−1([r, r̄]) and p−1([q, q̄]) are compact.

3. When restricted to s−1((r, r̄)), the score s is smooth and has no critical points, and the same holds

for the predicted score p when restricted to p−1((q, q̄)).

Under these assumptions, the set of units right at the threshold of the true score coincides with those

at the threshold of the predicted score. We state this result formally in lemma 4.4 below. This is a key

step to prove identification, since the parameter that we want to recover is the local average treatment

effect for units right at the threshold of the true score. It is worth noticing that perfect prediction as

defined in assumption 4.1 is not enough. For instance, if the predicted score is constant and equal to

the threshold in an open subset of X where s is always larger than τs, and the scores coincide elsewhere,

then perfect prediction still holds but the level sets at τs and τp are obviously different.

2A manifold is a topological space that locally resembles the Euclidean space near each point. More precisely in our
case, M ⊆ R is called a (smooth) manifold if it is locally diffeomorphic to R

n for some fixed n ∈ N.
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Lemma 4.4 Under Assumptions 4.1, 4.2, and 4.3, s−1 (τs) = p−1 (τp).

Proof: Let x ∈ s−1 (τs), then s (x) = τs, then p (x) ≥ τp. Suppose p (x) > τp, then, since p is

continuous, there is an ǫ > 0 such that for all x′ ∈ Bǫ (x), p (x′) > τp. By assumption (no critical

points), x is not a critical point of s. It follows that for some x′ ∈ Bǫ (x), s (x
′) < τs, which contradicts

perfect prediction. Then, p (x) = τp. Therefore, s−1(τs) ⊆ p−1(τp). A similar argument shows that

p−1(τp) ⊆ s−1(τs). �

If lemma 4.4 did not hold, s(x) might not converge to τs as p(x) approaches τp. Hence, we need the

level sets to be equal for identification. Moreover, given how we define conditional expectations, we also

need:
∫

p−1(q)
f i(x, y)dx →

∫

p−1(τp)
f i(x, y)dx

as q approaches τp. As illustrated in figure 2, for a well-behaved function p, the level sets p−1(τp − t)

should get arbitrarily close to p−1(τp) as t goes to zero. Consequently, the integrals should converge to

the desired limit. To prove this result formally, we apply methods from differential topology, specifically

from Morse theory. Intuitively, we use a change of variables formula to rewrite the integral over the

manifold p−1(τp−t) as an integral over p−1(τp), for all t close enough to zero. This allows us to transform

sequences of the form {
∫

p−1(qt)
f i(x, y)dx}t into sequences of the form {

∫

p−1(q) f
i
t (x, y)dx}t. Finally, we

show that the sequence {f i
t} converges to f (i) point-wise, and that the dominated convergence theorem

holds once we express each integral over the compact manifold p−1(τp) as the sum of integrals over open

sets in R
n−1.

Lemma 4.5 Let f : Rn → R be continuous, positive and bounded from above. Under assumptions 4.2,

and 4.3, the function H (t) =
∫

p−1(τp−t) f (x) dx is continuous at t = 0.

Proof: We will prove first that H is right-continuous at t = 0.
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Figure 2: Schematic layout of the idea for the proof under
perfect prediction, assumption 4.1.

Let M be the manifold defined by M = p−1
((

q, q̄
))

, and V : M → R
n be a smooth vector field with

V (x) =
∇p (x)

|∇p (x)|2

for all x in p−1
([

q + ǫ, τp
])

, for some ǫ > 0 with q + ǫ < τp, and zero outside a compact neighborhood

of this set. V generates a unique 1-parameter group of diffeomorphisms of M onto itself (see lemma

2.4 in Milnor’s Morse Theory). Let ϕ : R × M → M denote the group, and ϕt : M → M any of its

elements. By construction, ϕ is C∞ thus it is continuous as a function of t for all x ∈ M . Moreover, for

any x ∈ M , if ϕt (x) ∈ p−1
([

q + ǫ, τp
])

, then dϕt(x)
dt

= V (x), hence

dp (ϕt (x))

dt
=

〈

dϕt (x)

dt
,∇p (x)

〉

= 〈V (x) ,∇p (x)〉 = 1

where 〈·, ·〉 denotes the scalar product in R
n. Then p (ϕt (x)) is linear with derivative 1, as a function

of t, for any fixed x ∈ M , as long as ϕt (x) ∈ p−1
([

q + ǫ, τp
])

.

Let q + ǫ ≤ q < τp and lets fix an x such that p (x) = q. Then p (ϕt (x)) = t+ k, for some constant

k, if ϕt (x) ∈ p−1
([

q + ǫ, τp
])

. Since ϕ0 is the identity function on M , k = p (ϕ0 (x)) = p (x) = q. It
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follows that, p (ϕt (x)) = t+ q, for all 0 ≤ t ≤ τp − q. Therefore, for all x ∈ p−1 (q) , p
(

ϕτp−q (x)
)

= τp,

thus ϕτp−q carries p−1 (q) diffeomorphically onto p−1 (τp).

We can now apply the change of variables formula to obtain

∫

p−1(τp−t)
f (x) dx =

∫

p−1(τp)
f (ϕt (x)) |det (Dϕt (x))| dx

where Dϕt is the Jacobian of ϕt.

We need to show now that
∫

p−1(τp)
f (ϕt (x)) |det (Dϕt (x))| dx is right-continuous at t = 0. Let

ft(x) = f (ϕt (x)) |det (Dϕt (x))|. f is continuous and for any given x ∈ p−1 (τp), ϕt (x) is smooth as

a function of t. Hence, for each x ∈ p−1(τp), as t approaches 0 from above, ϕt (x) → ϕ0 (x) = x and

ft(x) → f (x). That is, limt↓0 ft(x) = f(x). Let f0(x) = f(x). We will show now that the integral and

the limit can be switched.

Since p−1(τp) is a compact manifold of dimension n− 1, there is a finite partition of unity φ1, ..., φl

subordinated to a covering of p−1(τp) by coordinate patches {(Uα, ̺α)} such that:

∫

p−1(τp)
ft(x)dx =

l
∑

i=1

(

∫

Uαi

φi(̺αi
(x))ft(̺αi

(x)) |det(D̺αi
(x))| dx

)

for t ≥ 0, where Uαi
⊂ R

n−1, for all i = 1, .., l.(see Munkres, 1991, chap. 5)

For all t ≥ 0 close enough to 0, the integrand on the right hand side of the equation above is

continuous as a function of x, positive, and uniformly bounded from above. The integral is taken with

respect to the Lebesgue measure over a non-empty open subset of Rn−1, thus the dominated convergence

theorem implies that:

lim
t↓0

∫

p−1(τp)
ft(x)dx =

∫

p−1(τp)
lim
t↓0

ft(x)dx =

∫

p−1(τp)
f(x)dx

It follows that H (t) =
∫

p−1(τp−t) f (x) dx is right-continuous at t = 0. In order to prove that H is also

left-continuous at t = 0, the proof above needs to be modified slightly in order to build a 1-parameter
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group of diffeomorphisms whose elements carry the level sets of the form p−1(τp − t) diffeomorphically

onto p−1(τp), for t close enough to zero from below. The rest of the proof follows straightforwardly. �

Theorem 4.6 Under assumptions 4.1, 4.2, and 4.3,

E[Y (1)|S = τs]− E[Y (0)|S = τs] = lim
q↓τp

E[Y (1)|P = q]− lim
q↑τp

E[Y (0)|P = q]

Proof: Lemma 4.5, and the dominated convergence theorem imply that limq↓τp E[Y (1)|P = q] =

E[Y (1)|X ∈ p−1(τp)] and limq↑τp E[Y (0)|P = q] = E[Y (0)|X ∈ p−1(τp)]. Lemma 4.4 implies that

E[Y (i)|X ∈ p−1(τp)] = E[Y (i)|X ∈ s−1(τs)] = E[Y (i)|S = τs], for i = 1, 2. �

So far we have assumed that the space of characteristics is a subset of Rn. However, some charac-

teristics cannot be defined meaningfully without including finite sets in many potential applications of

SynRD. Since the true score assigned to a unit is determined by finitely many characteristics, we can

assume without loss of generality that there is only one discrete characteristic besides the real-valued

ones. Correspondingly, let D be a non-empty finite set and D a discrete random variable taking values

in D. We extend the space of all characteristics to X ×D. We present conditions under which the result

of theorem 4.6 holds when both the true and predicted scores also depend on D. Briefly, as long as the

projection over D of the level sets of the functions s : X ×D → R and p : X ×D → R remain constant

in open sets around τs and τp respectively, and lemma 4.5 holds for every fixed d in the projection, the

result in theorem 4.6 also holds after performing one additional finite sum over the values of d in the

projection. We state this idea formally below.

We first modify assumptions 4.1, 4.2 and 4.3 to allow for discrete variables. Correspondingly, we

introduce some additional notation. For any (x, d) ∈ X × D and A ⊆ X × D, let pjd(x, d) = d and

pjd(A) = {d ∈ D : (x, d) ∈ A for some x ∈ X}. Also let the functions sd : X → R and pd : X → R be

defined by sd(x) = s(x, d) and pd(x) = p(x, d) for each d ∈ D.
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Assumption 4.1′ Perfect prediction. For all (x, d) ∈ X ×D, s(x, d) ≥ τs if and only if p(x, d) ≥ τp.

Assumption 4.2′ Continuity of s and p. The functions sd and pd are continuous in X , for each fixed

d ∈ D.

Assumption 4.3′ Local smoothness of sd and pd. There are real numbers r, r̄, q, and q̄ such that:

1. r < τs < r̄ and q < τp < q̄.

2. The sets s−1
d ([r, r̄]) and p−1

d ([q, q̄]) are compact in R
n.

3. For each fixed d ∈ pjd(s
−1((r, r̄))) the score sd is smooth and has no critical points when restricted

to s−1
d ((r, r̄)). Similarly, for each fixed d ∈ pjd(p

−1((q, q̄))) the score pd is smooth and has no

critical points when restricted to p−1
d ((q, q̄)).

4. For any two r and r′ in (r, r̄), pjd(s
−1(r)) = pjd(s

−1(r′)). Similarly, for any two q and q′ in (r, r̄)

pjd(p
−1(q)) = pjd(s

−1(q′)).

For all q ∈ (q, q̄), we redefine the conditional expectations in equation 2 to allow for discrete charac-

teristics as follows:

E
[

Y (i)|(X,D) ∈ p−1 (q)
]

=

∑

d∈pjd(p
−1(τp))

Pr[D = d] Pr[X ∈ p−1
d (q)|D = d]

( ∫
y(
∫
p
−1
d

(q)
f i
d
(x,y)dx)dy

∫
(
∫
p
−1
d

(q)
f i
d
(x,y)dx)dy

)

∑

d∈pjd(p
−1(τp))

Pr[D = d] Pr[X ∈ p−1
d (q)|D = d]

where f i
d is the joint density of Y (i) and X conditional on D = d. Notice that assumption 4.3′ allows

us to sum over pjd(p
−1(τp)) regardless of the value of q.

Under assumptions 4.1′, 4.2′, and 4.3′, lemma 4.5 implies that
∫

p−1
d

(q) f
i
d(x, y)dx converges to

∫

p−1
d

(τp)
f i
d(x, y)dx

as q → τp for all d ∈ pjd(p
−1(τp)). It can be shown similarly that Pr[X ∈ p−1

d (q)|D = d] converges

to Pr[X ∈ p−1
d (τp)|D = d]. Therefore, the result of theorem 4.6 naturally extends to combinations of

continuous and discrete variables.
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5 Imperfect Prediction / Simulations

In this section, we extend the rigorous mathematical analysis to the case of imperfect prediction, i.e.,

without requiring assumption 4.1 (assumption 4.1′). For the moment we explore the case of imperfect

prediction by means of simulations. Our overall findings indicate that the performance of our treatment

effect estimator relies on the accuracy of the first stage estimation.

Monte Carlo Simulation

We generate data that fits our model and then apply SynRD to estimate the local average treatment

effect. More precisely, we generate 20,000 observations (units), and use 10,000 of them to train a ML

algorithm for treatment assignment prediction. We then predict treatment assignment and compute a

synthetic score for the other 10,000 observations (testing sample). Finally, we estimate the treatment

effect on the testing sample using RD with the synthetic score as the running variable. We repeat this

process T times and report summary statistics of the corresponding estimates.

Each generated dataset contains 250 variables. 125 of them follow a multivariate standard normal

distribution. We denote them X = (X1, ..., XK), with K = 125. The other 125 are indicator variables,

correlated with each other and the continuous variables, denoted by D = (D1, ..., DK).

We assign a score s(x, d) to each observation (x, d) following

w(x, d) =

K
∑

k=1

αk log (xk) + d′iδ +

K
∑

k=1

γkdk log (xk)

S(x, d) =
exp(w(x, d) + σǫ)

1 + exp(w(x, d) + σǫ)

(3)

where α, δ, γ, and σ are constants, and ǫ is normally distributed and correlated with X and D.

We use a capital letter for the score S(x, d) to make explicit that it is a random variable since it also

depends on ǫ. By definition, 0 < S(x, d) < 1. Crucially, we do not include ǫ at any stage in the

estimation. Hence, it allows us to assess the properties of SynRD when some of the determinants of the
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true score are unobservable to the econometrician. In such case, the statistical model in the first stage

does not achieve perfect prediction. The error scaling factor σ allows to control the relative weight of

unobservables as determinants of the score.

Based on the score, we create κ categories and assign one of them to each observation. When κ = 4,

C(x, d) =























































1 0 < S(x, d) < 0.25

2 0.25 ≤ S(x, d) < 0.5

3 0.5 ≤ S(x, d) < 0.75

4 0.75 ≤ S(x, d) < 1

and similarly for other values of κ by partitioning the unit interval accordingly.

We also use the score to assign treatment, T (x, d) = 1 (S(x, d) ≥ 0.5). When κ is even, our treatment

group is comprised of the upper half categories.

The outcome of interest is

Y (x, d) = g(S(x, d)) + η(x, d)T (x, d) + βz + ξ (4)

where η(x, d) is the treatment effect for observation (x,d), z is unobservable and correlated with x and

d, ξ is independent noise, and g(·) is a non-linear function.

We consider first a simple case with g(s) = sθ, and η(x, d) = 2 for all observations (homogeneous

treatment effects). A randomly chosen simulated outcome with θ = 2 is shown in figure 3.
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Figure 3: The simulated outcome as a function of the true
score. The outcome is computed as Y (x, d) =
g(S(x, d)) + η(x, d)T (x, d) + βz + ξ. ξ is inde-
pendent mean zero noise. The line represents
E[Y (x, d)|S].

Machine Learning Algorithm

In the first stage we use a feed-forward neural network (multilayer perceptron) to predict the K-way

classification, using as input the variables x and d, but crucially excluding ǫ. We train the algorithm

on 10,000 observations, and test it on the remaining 10,000.

The neural network is comprised of four layers arranged sequentially. The input layer has a rectified

linear unit (ReLU)3 activation function and 64 units. The two hidden layers have the same activation

and number of units as the input layer. The output layer uses a logistic activation function and only

one unit.

The choice of this specific network architecture is somewhat arbitrary, except for the output layer.

We use a logistic function with only one unit (output) because we want the algorithm to produce a

single predicted score for each observation. Moreover, we encode the category of each observation as the

midpoint of the corresponding interval in the score-axis. That is, if κ = 4 we encode all observations in

category 1 as 0.125, all observations in category 2 as 0.375, and so forth. Hence, the encoding preserves

3ReLU is a standard activation function defined as f(x) = max(x, 0).
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the order of the categories which is, by construction, a non-decreasing function of the simulated score.

For training, we use mean square error as the loss function. We implement the neural network in Keras

(Chollet et al., 2015).4

The neural network produces a synthetic score p(x, d) between 0 and 1 for every observation (x, d)

in the testing sample. We then obtain the predicted categories using the following criteria, for the case

with κ = 4:

Cpred(x, d) =























































1 0 < p(x, d) < 0.25

2 0.25 ≤ p(x, d) < 0.5

3 0.5 ≤ p(x, d) < 0.75

4 0.75 ≤ p(x, d) < 1

and similarly for any other number of categories. It is worth noticing that the thresholds used for

predicting classification depend on how categories are encoded and on the choice of a loss function, but

not on the actual thresholds used to simulate categories. If the numbers coincide here is only because

we want to put the true and synthetic scores on the same scale for comparison, but our method does

not requires knowledge of the true thresholds.

Simulation Results

We explore the sensitivity of the estimation to changes in features of the data by conducting separate

Monte Carlo simulations for different combinations of parameters in the data generating process (DGP).

We run a simulation for each combination of parameters κ ∈ {2, 8, 20}, σ ∈ {0.5, 5, 50}, β ∈ {0.5, 2},

and θ ∈ {0.5, 2}. All other parameters are kept constant. Crucially, the treatment effect η is 2 for all

units, across all simulations.

For each combination of parameters, we randomly generate 1,000 datasets. Then, for each dataset,

the neural network predicts treatment status and computes the synthetic score for all 10,000 observations

4We have also used other ML algorithms to predict classification, such as random forests (Breiman, 2001), but so far
we have achieved the highest prediction accuracy with neural networks.
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in the testing sample. In the second stage, we drop all misclassified observations, and estimate the

treatment effect using RD with the synthetic score as the running variable.

We measure prediction accuracy as the fraction of units in the testing sample for which the algorithm

in the first stage correctly predicts their treatment status. In the second stage, we obtain an estimate of

the treatment effect, η̂, and we define estimation bias as E [|η̂ − η| |Θ], where the mean is taken over all

simulations with fixed values for some parameters of the DGP. Figure 4 depicts the relationship between

prediction accuracy and estimation bias. The correlation between the two is -0.94. The shape of the

marker indicate the number of classes. The color of the marker indicates the error scaling coefficient σ.

The number of classes and the scaling factor are interdependent: a large error scaling factor is associated

with lower prediction accuracy and larger estimation bias. The number of classes plays a more dominant

role for smaller error scaling factors. Larger number of classes help overcome some of the decline in

prediction accuracy. For low error scaling factors, the effect of the number of classes dominates the

effect of the error scale σ on prediction accuracy and estimation bias.

Table 3 presents the results for 36 different combinations of parameters. As a benchmark, we include

two columns with the estimated coefficient (E(ηtrue)) and the corresponding standard error (SD(ηtrue))

from a standard RD regression using the true (generated) score as the running variable. Besides the

results on estimation bias already reported, 3 shows a loss of efficiency when using SynRD (SD(ηsim)),

due to additional variance from the first stage estimation of the synthetic score.

Figure 5 depicts the relationship between the true and predicted score. The scatter plots depict all

(true-score, predicted-score)-pairs for the 10 simulations with prediction accuracy closest to the mean

prediction accuracy. The top-left plot represents 2 classes with an error scale of σ = 50. The top-right

plot represents 8 classes with an error scale of σ = 50. The bottom-left plot represents 8 classes with

an error scale of σ = 5. The bottom-right plot represents 20 classes with an error scale of σ = 0.5. In

the case of perfect prediction, we expect the point clouds of the upper-right quadrant and lower-left

quadrant to connect precisely through the intersection of the dashed horizontal and vertical red lines.

Given the noise levels in our simulations, this level of accuracy cannot be achieved. However, the fewer
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Figure 4: Simulation Results – Relationship between the prediction accuracy and the
estimation bias. The correlation between the two is -0.94. The shape of the
marker indicate the number of classes. The color of the marker indicates the
error scaling coefficient σ. The number of classes and the scaling factor are
interdependent: a large error scaling factor is associated with lower prediction
accuracy and larger estimation bias. The number of classes plays a more
dominant role for smaller error scaling factors. Larger number of classes help
overcome some of the decline in prediction accuracy. For low error scaling
factors, the effect of the number of classes dominate the effect of the error
scale σ on prediction accuracy and estimation bias.

points lie in the top-left and bottom-right quadrants, the better the second stage RD results will be.

Figure 5 confirms our intuition that a larger number of classes and lower noise level result in a more

defined transition of the point cloud through the intersection of the red lines. Moreover, table 3 shows

the mean effect sizes and prediction accuracies based on various parameter configurations.

6 Application: Price Effects of Investment Grade Credit Ratings

As an application of SynRD, we consider the effect of credit ratings on corporate bond prices. More

precisely, we are interested in measuring the effect on its price of a bond being rated investment grade as
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Figure 5: Score Comparison – Relationship between the true and predicted score. The scatter plots depict
all (true-score,predicted-score)-pairs for the 10 simulations with prediction accuracy closest to
the mean prediction accuracy. The top-left plot represents 2 classes with an error scale of σ = 50.
The top-right plot represents 8 classes with an error scale of σ = 50. The bottom-left plot
represents 8 classes with an error scale of σ = 5. The bottom-right plot represents 20 classes
with an error scale of σ = 0.5. We can see that a larger number of classes and lower noise level
result in a more defined transition of the point cloud through the intersection of the red lines.

opposed to non-investment grade by any of the three major credit rating agencies (Fitch, Moody’s, and

Standard & Poor’s). In an ideal experiment, we would like to compare two bonds that are identical in

all price-relevant characteristics, and that receive simultaneous but different credit ratings, for arbitrary

reasons, with only one qualifying as investment grade. This would address the endogeneity arising from

the fact that credit rating agencies use information that is very likely to directly affect prices and to

be at least partially known by bond market participants. Obviously, such an experiment is not feasible.

Instead, we propose to use SynRD to estimate the price effect of an investment grade rating for bonds
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Num Classes Scale (σ) β θ E(ηtrue) SD(ηtrue) E(ηsim) SD(ηsim) Test Acc Num Sims

2 0.5 0.5 0.5 2 0.05 2.06 0.44 0.96 914

2 0.5 0.5 2 2 0.05 2.08 0.48 0.96 914

2 0.5 2 0.5 2 0.14 2.04 1.27 0.96 913

2 0.5 2 2 2 0.14 2.08 1.2 0.96 913

2 5 0.5 0.5 2 0.05 2.04 0.65 0.96 913

2 5 0.5 2 2 0.05 2.07 0.5 0.96 913

2 5 2 0.5 1.99 0.14 2.11 1.31 0.96 913

2 5 2 2 2.01 0.14 2.03 1.29 0.96 913

2 50 0.5 0.5 2 0.05 2.14 0.3 0.93 913

2 50 0.5 2 2 0.06 2.18 0.34 0.93 913

2 50 2 0.5 2 0.17 2.15 0.92 0.93 913

2 50 2 2 1.99 0.16 2.16 0.89 0.93 913

8 0.5 0.5 0.5 2 0.05 2.02 0.11 0.97 913

8 0.5 0.5 2 2 0.05 2.04 0.11 0.97 913

8 0.5 2 0.5 2 0.15 2.02 0.33 0.97 913

8 0.5 2 2 2 0.14 2.03 0.33 0.97 913

8 5 0.5 0.5 2 0.05 2.03 0.11 0.97 913

8 5 0.5 2 2 0.05 2.04 0.11 0.97 913

8 5 2 0.5 2 0.15 2.04 0.33 0.97 913

8 5 2 2 2 0.15 2.03 0.32 0.97 913

8 50 0.5 0.5 2 0.06 2.11 0.11 0.94 913

8 50 0.5 2 2 0.06 2.14 0.11 0.94 913

8 50 2 0.5 2 0.16 2.11 0.32 0.94 913

8 50 2 2 2 0.16 2.15 0.33 0.94 913

20 0.5 0.5 0.5 2 0.05 2.02 0.11 0.98 913

20 0.5 0.5 2 2 0.05 2.01 0.1 0.98 913

20 0.5 2 0.5 2 0.15 2 0.32 0.98 913

20 0.5 2 2 2 0.14 2.01 0.29 0.98 913

20 5 0.5 0.5 2 0.05 2.02 0.1 0.98 913

20 5 0.5 2 2 0.05 2.02 0.1 0.98 913

20 5 2 0.5 2 0.14 2.02 0.3 0.98 913

20 5 2 2 2 0.14 2.03 0.28 0.98 913

20 50 0.5 0.5 2 0.06 2.1 0.11 0.95 913

20 50 0.5 2 2 0.06 2.14 0.11 0.95 913

20 50 2 0.5 2 0.17 2.11 0.32 0.95 913

20 50 2 2 2 0.15 2.13 0.33 0.95 913

Table 1: Simulation Results – Mean effect sizes and prediction accuracies

based on various configurations.

at the threshold between investment and non-investment grade.

We assume the rating agencies decision making process can be described as follows. First, they

analyze information on the bond and its issuer and synthesize it into a single continuous credit score.

Then they compare this score to a set of predetermined ordered thresholds to decide the rating they

assign to the bond. It is worth emphasizing that this assumption does not require rating agencies to

explicitly compute such a score, only that they behave as if they do. We think of it as analogous to

a utility maximization model where it is assumed that individuals choose from a set of alternatives

according to the utility they derive from them, even if they do not explicitly compute a utility function.

Estimation of the treatment effect follows the method described in section 3. In the first step, we
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use abundant information that was available to the rating agencies when they rated the bonds to train

a machine learning algorithm to predict credit ratings. The training sample is comprised of tens of

thousands of rating events. We treat every instance in which a bond receives a new rating by any of

the three major credit rating agencies as a different rating event. The algorithm is tailored to produce

a score for each rating event, such that all bonds with a score below a given threshold are classified by

the algorithm as investment grade (and only those). Then, we compute this score for all rating events

in the validation sample and keep only those that are correctly classified by the algorithm.

In the second stage, we estimate the local treatment effect on bond prices using a sharp RD. The

outcome of interest is the change in the price of a bond right after a rating event. Crucially, the

running variable is the score predicted in the first stage. We drop the misclassified observations. Hence,

the sample contains only those rating events in the validation sample that are correctly classified as

investment grade or non-investment grade using the predicted score.5

Intuitively, the higher the prediction accuracy on the validation sample in the first stage, the more

likely is the algorithm to assign a score close to the threshold precisely to those rating events where

the respective rating agency was indifferent or close to indifferent between an investment and a non-

investment grade rating. As we prove in section 4, with perfect prediction SynRD identifies the treatment

effect for those units right at the threshold of the true underlying score.

Data Description

We compile an extensive dataset from several sources covering rating events from January 2001 to

June 2018. All information about rating events comes from Mergent Fixed Income Securities Database

(FISD). This includes the issue (a bond identified with a 9 digit CUSIP), the issuer (6 digit CUSIP),

the rating date when the event is made public, the bond rating, and the corresponding rating agency.

FISD also provides bond characteristics such as maturity, coupon rate, seniority and covenants.

5We follow a key common practice in machine learning of not using the test sample until the predictive model is fully
tuned. Hence, in this preliminary draft we only report the results of the second stage estimation on the validation sample.
We have not used the test sample so far as we want to retain the possibility to adjust our first stage algorithm without
knowledge of the final outcome.
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We match a subset of issuers (only publicly traded corporations listed in the US and Canada)

to Standard & Poor’s Compustat by CUSIP, and collect data from their last four quarterly financial

statements filed prior to the rating event.

RavenPack provides news analytics covering publicly traded companies in the US and Canada. It

classifies news according to sentiment, relevance, topic, novelty, and market impact. RavenPack uses

news from many sources for its analysis including the financial press, newswires, announcements by

governments and regulators, and press releases. It computes an Event Sentiment Score (ESS) for each

news item. We use the ESS to compute an average sentiment score for both old and novel news about

the issuer. The average scores are computed for the last week, month, quarter, and two quarters prior

to the rating event.

Average bond prices and yields are computed using daily data from FINRA’s TRACE. At the

predicting stage, we include average prices and yields for the two quarters prior to the rating event. We

also obtain issuers’ stock prices, shares outstanding, and earnings per share from CRSP, and we use

monthly averages for the last 6 months prior to the rating event for prediction.

The dataset contains 145,850 observations (rating events) and 2,524 variables. Various indicators

for categorical variables and for missing values contribute to the large number of variables. The data

was split randomly (by sampling at the rating event level) into a training sample containing 46,837

observations, a validation sample containing 46,740 observations, and a test sample containing the

remaining 52,273 observations. To reduce bond heterogeneity, we only include ratings for debentures

(137,478) and medium term notes (8,372) issued by corporations trading in the US and Canada and

denominated in the issuer’s domestic currency. The distribution of credit ratings in our sample can

be seen in figure 6. We use the same letter designations as S&P’s and Fitch (AAA, AA+, AA, AA-,

etc.), and apply a standard conversion table to Moody’s designations. Every bond rated BBB- (Baa3)

or above is considered investment grade.
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Figure 6: Distribution of credit ratings. We use the letter desig-
nations of S&P’s and Fitch (AAA, AA+, AA, AA-, etc.).
We apply a standard conversion table to Moody’s designa-
tions. Every bond rated BBB- (Baa3) or above is consid-
ered investment grade.

Stage 1: Prediction

In the first stage, we train a machine learning algorithm on the training sample. The objective is to

correctly predict ratings based on a set of bond and issuer characteristics, akin to the estimation of a

statistical model for a discrete outcome. The model is subsequently validated by its prediction accuracy,

defined as the fraction of correctly classified ratings. For each rating event in the validation sample we

predict the rating and evaluate the out-of-sample performance of the model.

For the first stage predictions, we use an artificial neural network similar to that used in the simula-

tions (see section 5). The choice of a specific network architecture is somewhat arbitrary and could be

modified to increase prediction accuracy in the validation sample. Crucially, though, the output layer

has a single unit and a logistic (sigmoid) activation function. That way, the algorithm assigns a single

number from zero to one to each observation –its predicted score.

Table 2 presents an overview of the first stage prediction results for the validation sample, comparing
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the true and predicted ratings. The overall prediction accuracy is 81.7%. However, for the estimation

of the treatment effect, we are only interested in the investment vs non-investment grade classification,

where the algorithm achieves a 97.9% prediction accuracy. Notice that when a bond is misclassified, the

predicted rating tends to be close to the true one. For instance, out of a total 852 BBB- ratings that

are incorrectly classified, 680 (79.8%) are predicted as BBB or BB+.

Table 2: First stage prediction accuracy. Investment grade bonds that have been incorrectly classified
as non-investment grade, and vice versa, are shown in red.

Stage Two: Treatment Effect Estimation

The ML algorithm in the first stage produces an estimate of the continuous score underlying a bond’s

rating. By design, any bond with a predicted score below 0.5 is classified as invest grade (I), otherwise

its predicted rating is non-investment grade (N). Following the method proposed in section 3, we use

the predicted score as the running variable in an RD design with 0.5 as the I-N threshold (the same

threshold used for prediction). Since we observe the rating of all bonds in the validation sample, we

condition on treatment status as in equation 1. Hence, we drop the misclassified rating events which

guarantees there is a discontinuity in the probability of treatment assignment at the threshold. The
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fraction of dropped observations goes to zero as prediction accuracy increases.

Table 3 shows the local treatment effect estimates, using the bias-corrected RD estimator of Calonico et al.

(2014) and Calonico et al. (forthcoming). The former propose a method to perform inference that is

robust to the choice of bandwidth for the estimation of the local polynomials near the threshold. The

latter allows for the inclusion of additional controls. The estimated coefficients represent the percentage

change in quantity-weighted average bond prices one and four weeks after the rating event, compared

to a period of the same duration before it. According to our estimates, an investment grade rating

causes close to a 0.8% - 1.1% increase in price, on average, across a wide variety of corporate bonds

in the U.S. and Canada. To address further concerns about bond heterogeneity, we also present the

results for a restricted sample that excludes medium term notes, floating rate notes, convertibles, asset

backed securities, exchangeable bonds, payment-in-kind bonds, originally issued discount issues, secured

lease obligation issues, bonds with refund protection, and private placements. The estimated effects are

slightly smaller on the restricted sample, when we focus on price changes within one week of the rat-

ing event, and almost identical across both samples when we extend the time window to four weeks.

Adding controls for maturity, coupon rate and previous rating has virtually no effect on the size of the

coefficients and their standard errors. Besides conventional standard errors for RD, we report robust

standard errors following Calonico et al. (2014). It is worth noticing that in this preliminary draft

reported standard errors do not account yet for variation in the first stage prediction outcomes.

Previous studies have found significant effects of rating changes in bond returns. As described in

section 2, Hand et al. (1992) find excess returns for downgrades raging from a non-significant -0.37% to

a significant -1,27%, depending on the sample considered. Similarly, using data on corporate bonds from

TRACE (2002 - 2009), May (2010) report significant abnormal returns of -0.64% for downgrades not

contaminated by concurrent news, when focusing only on prices of bonds that traded both on the day

before and the day after the change in rating. An advantage of the approach we propose is that we can

consider longer time windows around the rating event without having to worry about concurrent news

about the issuer or other events that might affect prices directly. The application of SynRD allows for

causal identification of the effect on prices of downgrading a bond from investment to non-investment
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Change in price (%) One week Four weeks

Sample 1a Sample 2b Sample 1 Sample 2

Treatment effect 0.011*** 0.011*** 0.008*** 0.009*** 0.008* 0.008* 0.008** 0.009**

Std. errorc (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Std. error (robust)d (0.003) (0.003) (0.002) (0.002) (0.003) (0.004) (0.003) (0.003)

Maturity Yes Yes Yes Yes

Coupon Yes Yes Yes Yes

Previous Rating Yes Yes Yes Yes

Observations 25368 24991 23088 22774 28562 28175 25711 25395

Notes: Treatment effects represent the change in average prices one and four weeks after the rating event compared
to a period of the same duration before it. A coefficient of 0.01 reflects a 1% increase in price. The standard errors
reported in this preliminary version do not account yet for variation in the first stage prediction outcome.

a Sample 1 is comprised of rating events for debentures and medium term notes issued by corporations trading in
the US and Canada and denominated in the issuer’s domestic currency.

b Sample 2 excludes medium term notes, floating rate notes, convertibles, asset backed securities, exchangeable bonds,
payment-in-kind bonds, originally issued discount issues, secured lease obligation issues, bonds with refund protection,
and private placements.

c Conventional RD standard errors.

d Standard errors that are robust to the bandwidth choice (see Calonico et al., 2014).

*p < 0.05, **p < 0.01, ***p < 0.001

Table 3: Effect of an investment grade rating vs a non-investment grade credit rating.

grade, keeping other price-relevant variables constant.

7 Conclusion

This paper introduces synthetic regression discontinuity design, a two-stage method for estimating the

local treatment effect using machine learning when the score used by the decision maker is unobservable.

We establish conditions under which the method identifies the local treatment effect for a unit at the

threshold of the unobservable score, the same parameter that a standard RD design with known score

would identify. We examine the properties of the estimator when the first stage prediction accuracy is

lower than 100% using simulations. The method requires a high first stage prediction accuracy when

predicting the observable treatment assignment. Finally, we apply SynRD to measure the effect of an

investment grade rating on corporate bond prices by any of the three largest credit ratings agencies. We

find a 0.8% - 1.1% increase in the price of bonds rated as investment grade as opposed to non-investment
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grade, across a wide variety of corporate bonds.
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