
High-Frequency Trading, Endogenous Capital

Commitment and Market Quality

Yenan Wang ∗

December 29, 2019

Abstract

I study market quality implications of the competition between traditional

market making and high-frequency trading. A long-run traditional market

maker responds to the competition from high-frequency traders by reducing

both the spread and the amount of capital committed in market making. While

a lower spread level is beneficial, less capital commitment deteriorates market

quality. Specifically, the market’s capacity to satisfy large demand is impaired.

My model integrates price and quantity effects of high-frequency trading to

better characterize its implications for market quality. I argue that focusing

on spread alone is not always effective in measuring market quality. I further

use this framework to analyze market quality implications of different high-

frequency trading regulatory measures.
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1 Introduction

Over the past decade, high-frequency trading has become increasingly prevalent

worldwide. According to O’Hara (2015), high-frequency traders (henceforth HFTs)

contribute more than half of market trading volume. This growing trend of high-

frequency trading has led to a policy debate over proper regulatory measures to

adapt to this change. Clearly, policy makers have yet to reach a consensus over this

issue as different countries are implementing regulations with opposing intended ef-

fects.1 Most European countries have carried out strict rules to reduce high-frequency

trading and “level the playing field” while some Asian countries such as Japan and

Singapore embrace high-frequency trading by providing systematic support including

introducing co-location service and rebating high-frequency trades.

Extant empirical research has documented that the presence of HFTs leads to

lower spreads in the market. Some papers take this as direct evidence that high-

frequency trading improves market quality.2 There are essentially two rationales

behind this claim. First, lower spreads indicate less information asymmetry. Second,

lower spreads enhance market efficiency by facilitating assets moving to agents with

higher valuations.

However, an implicit market clearing assumption lies behind the second rationale.

That is, at each instant, the asset price is determined by a centralized planner, who

receives all market participants’ supply and demand schedules, to clear the market.

This is a very strong assumption for two reasons. First, it is unlikely that all market

participants are submitting their supply and demand schedules in trading. Second,

even if they do, given the high trading speed and the ever-changing market condition,

the realized price may not clear the market. Without this assumption, the one to one

link between price and quantity breaks; i.e., a lower spread level no longer indicates

a larger transaction volume. In this case, liquidity suppliers’ incentives to make

the market need to be carefully considered. Specifically, traditional market makers

would reduce their capacity in absorbing market imbalance since the competition from

1For a comprehensive survey of the global high-frequency trading regulation environment, see
Bell and Searles (2014)

2See Hendershott, Jones, and Menkveld (2011), Boehmer, Fong, and Wu (2018), Brogaard,
Hendershott, and Riordan (2014), Hendershott, Jones, and Menkveld (2011), Boehmer, Fong, and
Wu (2018), Hendershott and Riordan (2013), Hasbrouck and Saar (2013), Brogaard, Hagströmer,
Nordén, and Riordan (2015), Conrad, Wahal, and Xiang (2015) and Conrad and Wahal (2018),
among others.
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HFTs makes market making less profitable. On the other hand, since HFTs usually

do not take inventory, their abilities to provide liquidity are constrained by market

conditions and might be insufficient to fill the gap left by traditional market makers.

The decrease of market makers’ willingness to make the market deteriorates market

quality. Indeed, O’Hara, Yao, and Ye (2014) and Korajczyk and Murphy (2019) show

that the average order size becomes smaller and investors have difficulties executing

large orders.

I consider a model where the market maker and the HFT compete to sell shares

in each period to a potential buyer.3 For clarity, I use female pronouns for the

HFT and male pronouns for the market maker and the buyer. The market maker

contracts with the exchange to provide liquidity and is obliged to post quotes in the

market.4 The market maker has some net worth and can deploy it in two ways. He

can either commit capital in market making, i.e, buying shares for an inter-dealer

market or paying out dividend to investors.5 The amount of capital committed in

market making is endogenously determined by equalizing the marginal value of market

making and the marginal value of paying dividend. When no HFT exists, the market

maker is a monopolist due to the market power he enjoys from advantageous terms

provided by the exchange.6 In this situation, making the market is highly profitable

and the market maker commits the highest amount of capital in market making.

The HFT in my model makes profit by anticipating the arrival of buying orders.

If the HFT detects a buying order, she tries to quickly buy cheaper shares from other

exchanges and sells to the buyer at a slightly higher price. The HFT’s presence and

the amount of shares supplied highly depend on market conditions. To capture this

feature, I assume that the HFT enters the market with an exogenous probability π

and fixed shareholding qh. The competition from the HFT affects the market maker’s

pricing and capital commitment decisions. The market maker may tighten the spread

to compete with the HFT. This reduces buyers’ transaction cost and benefits market

quality. On the other hand, market making becomes less attractive because of the

competition and the market maker would reduce his capital commitment in market

3This model has similarities to Kreps and Scheinkman (1983).
4In practice, the market maker in my model can be considered as a designated market maker in

NYSE or a specialist in NASDAQ.
5Notice that the market maker is also a profit pursuing firm.
6This differs from the competitive market making assumption in Kyle (1985) and the literature

in market micro-structure.
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making. This reduces the market’s capacity to satisfy large demands and effectively

makes the market shallower.7

I first consider the setting where the HFT possesses superior trading technology

relative to the market maker. The superior trading technology enables the HFT to

observe both the market maker’s shareholding and spread before making her pricing

decision. In other words, the market maker and the HFT set spreads sequentially.

The market maker faces a trade-off. If the market maker sets a high spread to achieve

a high expected payoff when the HFT does not enter, upon entering, the HFT would

undercut the market maker and he would only receive the residual demand. If the

market maker sets a low spread, his expected profit is lower when the HFT does not

enter. Yet a low spread protects the market maker from the HFT’s undercut. In the

steady state, the market maker posts a high (low) spread if the HFT’s entry proba-

bility is low (high). In other words, competition from the HFT has a positive price

effect on market quality. On the other hand, competition leads to a lower return

on market making. Thus, the market maker’s steady state capital commitment is

(weakly) decreasing in the HFT’s entry probability. This deteriorates market quality.

I use liquidity, the expected shares sold to the buyer, as a proxy of market quality

to measure the aggregate effect of high-frequency trading. Importantly, under mild

assumptions, liquidity is not changing monotonically with respect to the HFT’s en-

try probability. This lack of monotonicity has two implications. First, using linear

regression to analyze high-frequency trading’s market and welfare effects may lead

to erroneous conclusions. Second, past data on high-frequency trading may not be

sufficient to guide policy making, which would change the market condition faced by

HFTs dramatically.

I further analyze the situation where the market maker and the HFT’s trading

technologies are “head to head”. In this case, the HFT only observes the market

maker’s shareholding before setting her spread. Equivalently, the HFT and the mar-

ket maker submit spreads simultaneously. This corresponds to situations when HFTs

become market makers or regulations set maximum trading speed limit. In the equi-

librium, the market maker and the HFT both use mixed pricing strategies. Impor-

tantly, the market maker’s expected payoffs are the same setting spreads sequentially

7In my model, the buyer leaves the market with partially fulfilled order. In practice, it can be
the case that the buyer turns to other liquidity providers and purchase the remaining shares with
higher price. This is equivalent to a shallower market.
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or simultaneously. However, with low HFT entry probability, the HFT’s expected

payoff is lower when submitting spreads simultaneously.8 Thus, if the market maker

and the HFT have similar treading technologies, the HFT would have incentive to

acquire superior trading technology. However, this is detrimental to market quality

since liquidity is higher when the market maker and the HFT post spreads simulta-

neously.

In both settings, two regimes of equilibrium exist depending on the HFT’s entry

probability. With low HFT entry probability, the market maker sets a high spread

and commits less capital with higher HFT entry probability. Thus, more HFT entry

probability has ambiguous effects on market quality. When the HFT’s entry proba-

bility is high, the market maker sets a low spread and his capital commitment is not

changing in the HFT’s entry probability. Thus, higher HFT entry probability leads

to better market quality in this region. Moreover, when the HFT’s entry probability

is low, equalizing trading technologies of the market maker and the HFT benefits

market quality because when setting prices simultaneously, the HFT cannot easily

undercut the market maker. This reduces the average spread under the same level of

expected share supply.

My model differs from the existing theory in two important ways.9 First, I ex-

plicitly consider the market maker’s capital commitment decision, which has critical

implications for market quality. Second, liquidity suppliers in my model face asym-

metric constraints. Specifically, the market maker has an affirmative obligation to

provide liquidity and faces a trade off between committing capital in market mak-

ing and paying dividend. On the contrary, relying on electronic front-running, the

HFT’s entry and the amount of liquidity supplied (extensive and intensive margin)

depend on exogenous market conditions. Although market making is profitable for

the HFT, these constraints limit the HFT’s ability to fill the gap left by the mar-

ket maker committing less capital. Contrary to conventional wisdom, competition

does not necessarily lead to better markets when there is asymmetry among liquidity

suppliers.

I consider three extensions. In the first extension, the HFT is subject to a fixed

high-frequency trading participation cost. Specifically, the HFT needs to pay the cost

8This is in line with the evidence in Baron, Brogaard, Hagströmer, and Kirilenko (2018) that
faster HFTs achieve higher payoffs.

9For examples, see Goettler, Parlour, and Rajan (2009), Budish, Cramton, and Shim (2015),
Biais, Foucault, and Moinas (2015) and Foucault, Hombert, and Roşu (2016), etc.
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before she knows whether she successfully enters the market or not.10 This endoge-

nizes the HFT’s entry probability. If the cost is high, the exogenous entry probability

is low or the market is competitive, the HFT would rationally not participate in high-

frequency trading. The market maker in this situation enjoys an additional strategic

advantage. When the participation cost is high, the market maker can safely set

a high spread since the HFT’s expected profit from undercutting cannot cover the

participation cost. This participation cost’s effect on market quality depends on its

magnitude. With a low cost, market quality is the same as in the baseline model

since it is still profitable for the HFT to participate. Conversely, when the cost is

high, the HFT may not participate in high-frequency trading and the market maker’s

spread and capital commitment are increasing with the participation cost. As the

cost grows, the market eventually converges to the monopolistic market. The overall

effect of the participation cost on market quality is ambiguous, yet when the cost is

high the effect is certainly negative.

The second extension considers flipping. That is, the HFT can purchase shares

from the market maker and re-supply them at a higher spread. When the HFT’s

entry probability is high, the market maker always sets a low price to induce flipping

since it serves as an insurance for the market maker. When the HFT flips shares,

market quality appears to be good if we only consider the aggregate amount of shares

sold. The expected trading volume is high and the average spread is low. However, it

is not a faithful characterization of market quality for two reasons. First, most of the

cheaper shares are purchased by the HFT rather than the actual buyer. Second, the

trading volume is “double-counted” in the sense that the actual volume sold to the

buyer is much lower, less than the half of the total trading volume. This extension

demonstrates the importance of separating trades between liquidity suppliers and

trades from liquidity suppliers to other investors in the data to avoid over-estimating

market quality.

In the third extension, the market maker can post a supply schedule to sell shares

at different spreads.11 With no HFT, the market maker sells all shares at the monop-

olistic spread. However, facing competition from the HFT, the market maker would

sell shares at a continuum of spreads. I describe conditions that determine the mar-

ket maker’s pricing strategy and capital commitment at the steady state and discuss

10For example, EU’s trading tax on both executed and canceled orders is a cost of this type.
11In the baseline model, the market maker has to sell all shares at one spread.
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implications for market quality. Moreover, this extension illustrates how competition

between the market maker and the HFT determines the shape of limit order book.

My model contributes to the theoretical literature on high-frequency trading by

exploring how high-frequency trading affects market quality via the capital commit-

ment channel. Competition from the HFT leads the market maker to commit less

capital in market making. This effect dampens the price benefit brought by compe-

tition, and, if large enough, the presence of a potential HFT might even deteriorate

market quality. Ait-Sahalia and Sağlam (2017a) and Han, Khapko, and Kyle (2014)

also consider market quality implications with competition between the HFT and

traditional market makers. However, in these papers, the size of orders is fixed. This

assumption constrains these models’ abilities to capture how capital commitment of

the market maker affects market quality.12 In my model, it is possible that a market

with wide spread has better quality than a market with tight spread. The reason

is that in the latter market, the market maker commits much less capital in market

making.

The implications of my model are consistent with the following empirical findings

in the literature: (1) High-frequency trading leads to lower average spreads in the

market; (2) the average trade size becomes smaller; (3) market makers commit less

capital in market making; (4) Large orders might face higher trading costs with the

presence of HFTs. Moreover, my model provides new insights for future empirical

studies. First, the price information alone does not provide a complete character-

ization of market quality. The volume information is equally important. Second,

market quality may not change monotonically with increasing HFT presence. In this

sense, we cannot only rely on linear regression for accurate welfare implications of

high-frequency trading. Third, when the HFT can flip orders, it is important to dif-

ferentiate trades between liquidity providers and trades from liquidity providers to

other investors. Otherwise, the data cannot faithfully reflect market quality since

HFTs would exploit most of the cheaper orders with superior trading technology.

This paper also generates important insights for HFT regulations. The model

suggests that if high-frequency trading is prevalent in the market, encouraging high-

frequency trading benefits liquidity. On the other hand, when high-frequency trading

12In Ait-Sahalia and Sağlam (2017a), the HFT, as a long run market maker, also holds inventory.
However, since the supply is fixed to one, the inventory does not have a quantity effect. Instead, it
has a price effect due to the inventory aversion assumption.
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is less prevalent, more HFT’s presence drives out the market maker’s capital and

has ambiguous effects on market quality. Second, this model predicts that when the

HFT’s entry probability is low, forcing the HFT and the market maker to trade at

the same speed improves market quality. When the HFT’s entry probability is high,

it benefits mid-valuation buyers yet hurts low-valuation buyers. I also consider the

effect of a lump-sum high-frequency trading tax. This model suggests that a low

tax level does not effect the market quality while a high tax level increases market

maker’s capital commitment but also drives up the spread. The aggregate effect is

ambiguous.

Finally, by allowing the market maker to flexibly set spreads in the extension,

my model also illustrates how shape of the limit order book is determined by the

competition between the market maker and the HFT. Specifically, the market maker

is incentivized to sell shares at different spreads to avoid the HFT’s undercutting.

With no HFT, the market maker would sell all shares at the monopolistic spread.

Roşu (2009) also discusses the shape of the limit order book with the competition of

sellers. Differently, my model demonstrates how capital commitment of the market

maker plays a role in shape of the limit order book.

The rest of the paper is organized as follows. Section 2 reviews related literature.

Section 3 presents baseline models. Section 4 analyzes baseline models. Section 5

considers the costly participation extension. Section 6 uses results developed in Sec-

tion 3 and Section 4 to discuss market quality implications of different high-frequency

trading policies. Section 7 considers the flipping extension. Section 8 considers the

extension where the market maker can submit a demand schedule. Section 9 con-

cludes.

2 Related Literature

2.1 HFT Behavior

An existing theory literature analyzes how high-frequency trading effects market

quality from the information perspective.13 Han, Khapko, and Kyle (2014) demon-

strate how adverse selection problem arising from fast order cancellation leads to wide

spreads when the HFT enters the market with probability between 0 and 1. Budish,

13For a comprehensive survey, see Menkveld (2016).
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Cramton, and Shim (2015) show how mechanical arbitrage in high-frequency time

horizon hurts liquidity and propose frequent batch auctions mechanism as a solution.

Biais, Foucault, and Moinas (2015) endogenize investment decisions on fast trading

technology and show that equilibrium investment level on fast trading is higher than

the social optimal level because high-frequency trading has a negative externality.

Foucault, Hombert, and Roşu (2016) analyzes news trading by fast speculators and

its implications for trading volume and asset price. Ait-Sahalia and Sağlam (2017a)

and Ait-Sahalia and Sağlam (2017b) analyze high-frequency market making and show

that the faster market maker provides more liquidity. My model differs from the ex-

isting literature by explicitly considering the market maker’s capital commitment

decision facing competition from HFT and its implications for market quality.

Many empirical papers test whether high-frequency trading’s impact on liquidity.

Research generally documents an increase in liquidity with high-frequency trading.

For instance, Hendershott, Jones, and Menkveld (2011), Hendershott and Riordan

(2013), Hasbrouck and Saar (2013), Conrad, Wahal, and Xiang (2015) and Conrad

and Wahal (2018),14 using spread as a proxy for liquidity, conclude that liquidity is

improved by high-frequency trading. Brogaard, Hendershott, and Riordan (2014),

using order flow data, conclude that HFT is liquidity improving around macroeco-

nomic news since liquidity supply is greater than liquidity demand. Boehmer, Fong,

and Wu (2018) using execution shortfalls as a proxy, reach the similar conclusion.

My model does not contradict these evidences. However, it does suggest that some

important quantity aspects of market quality cannot be captured by these proxies.

Specifically, spread measures might not capture the quantity information related to

the market maker’s capital commitment. The execution shortfall can better capture

the price change facing large demand. Yet even the execution shortfall does not in-

corporate information about unexecuted and canceled orders. Moreover, order flow

as a proxy of liquidity often includes trades between HFTs. This might lead to an

over estimate of market quality. The extension on flipping directly addresses this

concern. Recently, Korajczyk and Murphy (2018) and Korajczyk and Murphy (2019)

document that less high-frequency trading is associated with higher transaction costs

for small trades and lower transaction costs for large trades. This finding is in line

14Hasbrouck and Saar (2013) also examines number of shares displayed on the order book as a
proxy for depth. One concern is that since HFTs can cancel orders with fast speed, this NearDepth
might not able to capture real market depth.
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with predictions of this model.

Some empirical papers focus on characteristics of traditional market makers and

HFTs. Kirilenko, Kyle, Samadi, and Tuzun (2017) document that, different from tra-

ditional market makers, HFTs behaviors during the flash crash are more consistent

with the latency arbitrage theory. Hirschey (2018) shows that HFTs can anticipate

and trade ahead of other investors’ order flow. Baron, Brogaard, Hagströmer, and

Kirilenko (2018) find that faster HFTs gain higher payoffs. This is in line with the

prediction of my model that small HFTs has incentive to upgrade trading technology

to be able to undercut the market maker. Van Kervel and Menkveld (2019) document

that HFTs initially lean against institutional orders but eventually trade along long-

lasting orders since they are likely to be information-motivated.15 Clark-Joseph, Ye,

and Zi (2017) use data of two trading halts to show that designated market makers’

participation has important liquidity implications. This clearly shows that designated

market makers and voluntary liquidity providers (HFTs) operate on different business

models. Bessembinder, Hao, and Zheng (2019) also highlight the importance of des-

ignated market makers by showing that an improving of contract terms for designate

market makers in NYSE improves market quality. This is consistent to the prediction

of my model. If the market maker receives extra rebate on each share, he will commit

more capital in market making and posts a lower spread.16

2.2 Capital Constraint and Capital Commitment

Many models explore the link between capital constraints of intermediaries and liq-

uidity provision. Kyle and Xiong (2001) describe the situation that when convergence

traders lose capital, their liquidation leads to excess volatility and more correlation

among different markets. Gromb and Vayanos (2002) show that constrained arbi-

trageurs might provide too much or too little liquidity compare to the social optimal

level, depending on their initial investment positions. Weill (2007) and Brunnermeier

and Pedersen (2008) both demonstrate that insufficient capital of the market maker

would lead to lower liquidity provision then the optimal level. In Weill (2007), lack

15This finding is consistent with my assumption that the HFT acts as a liquidity provider. How-
ever, my model is silent on the HFT trading alone the information-motivated orders since my model
does not consider informed trading.

16Bessembinder, Hao, and Zheng (2019) also document the spillover effect in market quality
improvement because of the strategic complementary effect in market making. My model is silent
on this aspect because I assume a deep inter-dealer market.
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of capital prevents the market maker to absorb enough order imbalance when the

economy is recovering from a negative shock. In Brunnermeier and Pedersen (2008),

traders’ lack of funding and market liquidity deterioration reinforce each other and

let to “liquidity spiral”. My paper contributes to this strand of literature by show-

ing that, even when the market maker is not constrained, his capital commitment

decision plays an important role to market quality when facing competition from

high-frequency trading.

A relatively small empirical literature examines the capital commitment of market

makers. Hameed, Kang, and Viswanathan (2010) show that negative market return

decreases liquidity asymmetrically. The authors attribute the decrease to the mar-

ket maker’s capital constraint. Comerton-Forde, Hendershott, Jones, Moulton, and

Seasholes (2010) find a similar result using data on NYSE specialist positions and rev-

enues. Bessembinder, Jacobsen, Maxwell, and Venkataraman (2018) document that

capital commitments of corporate bond dealers are decreasing overtime, specifically

in markets with more electronically facilitated trades. The authors interpret this as

a result of electronic trading reducing search cost and required capital. This model

suggests an alternative explanation. The decrease of capital commitment might due

to the growing entry of HFTs facilitated by electronic trading.

3 Model Setting

3.1 The Setup

Consider a game with infinite many periods and three (kinds of) players: a long-run

market maker, a short-run HFT and a short-run buyer. The market maker’s discount

rate is δ and has net worth w0 in period 0. In each period, the market maker can

either pay dividend d or acquire shares from a inter-dealer market at the fair price

1 for market making.17 The market maker maximizes E0(
∑∞

t=0 δ
tdt), the expected

dividend payout. A short-run HFT enters market with probability π every period. If

the HFT enters, she holds qh shares and aims at maximizing her expected profit. The

market maker and the HFT are both sellers and compete to provide liquidity for the

short-run buyer. With liquidity or hedging needs, the buyer is willing to pay v > 1

17Another interpretation can be that the market maker deposits the rest of capital into a margin
account to cover the cost of potential short selling.
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MM deter-
mines dt

MM posts
the spread
xm,t

HFT posts
the spread xh

Buyer enters Buyer and
HFT leave

Period t

Figure 1: A Concise Time-line

for each share and demands qb shares; i.e., he is willing to pay a premium v − 1 for

each share within his demand qb.

The sequence of events in a single period, illustrated in Figure 1, can be specified

as follows: Let wt be the market maker’s net worth at the beginning of period t.

The market maker first chooses the dividend level dt. He then commits the remaining

capital wt−dt to purchase qm,t = wt−dt shares from the inter-dealer market at the fair

price 1.18 The market maker then posts a spread xm,t, committing to sell all shares at

the ask price 1+xm,t. After the market maker sets his spread, a short-run HFT enters

the market with probability π and shareholding qh. If the HFT’s trading technology is

superior to the market maker, she observes the market maker’s shareholding qm,t and

spread xm,t before setting her spread xh (the sequential pricing game). Otherwise the

HFT only observes the market maker’s shareholding qm,t (the simultaneous pricing

game). After the market maker and the HFT determine their spreads, the short-run

buyer arrives with demand qb and valuation v > 1. The buyer always buy from the

HFT first under the same spread. After the buyer finishes buying, the market maker

and the HFT (if enters) may sell the remaining shares at the fair price 1 back to the

inter-dealer market. This concludes a period.

I make the following assumptions on the distributions of qb and v: v− 1 follows a

distribution with CDF F supported on [0, x̂]. qb follows a distribution with CDF G

with a positive support. F and G are independent and continuously differentiable. I

further assume that F has non-decreasing hazard rate; i.e., f(x)
1−F (x)

is non-decreasing,

or equivalently, f is log-concave.

Three specific assumptions worth more discussion. First, the buyer’s demand qb is

inelastic when spreads are lower than v−1. In practice, this corresponds to the buyer

posting a limit order with quantity qb at price v. On the other hand, higher spreads

18It is without loss of generality to assume that the market maker commits all remaining net
worth in market making. If he chooses to commit less, he may raise his dividend payout to achieve
a higher payoff.
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reduce the buyer’s purchasing probability. Thus, although the demand curve of each

buyer is inelastic, from the market maker and the HFT’s perspective, the demand

curve is downward sloping. Second, in this model, the HFT is a short-run player

with an exogenous entry probability π and a fixed shareholding qh. This assumption

by no means denies the possibility of the HFT being a long term market participant

in practice. Instead, it means to reflect two features of high-frequency trading: (1)

The HFT’s entry decision and shareholding heavily depend on exogenous market

conditions; (2) the HFT focuses on short term trading and only carries positions for a

short period of time. Third, I only consider a one-sided market; i.e., the market maker

and the HFT only sell shares to other investors. This is without loss of generality given

that the market maker can adjust his position with no cost in the inter-dealer market.

When considering a two-sided market where only one buyer or one seller enters the

market in each period, qualitative predictions on market quality are essentially the

same.

3.2 Liquidity

Liquidity is one of the most important indicators of market quality. In this section,

I define liquidity in this model and discuss implications of this definition. Formally,

define liquidity in period t, Lt, to be the expected number of shares sold to the buyer

in period t. Since I focus on steady state equilibria, where the market maker’s pricing

and capital commitment decisions are time invariant, I drop the time subscript and

define liquidity to be

L = πE(min(qb, qmI{xm≤v−1} + qhI{xh≤v−1})) + (1− π)E(min(qb, qmI{xm≤v−1})) .

To characterize market quality faced by buyers with different valuations, define

L(v) to be the expected number of shares sold to the buyer with valuation v. It

captures the market’s capacity to satisfy demands with valuations higher than v.

Specifically, the fill rate with valuation v can be measured by L(v)/E(qb). It is also

worthwhile to examine the average price of shares in this model. Define the average

spread of the market to be the expected profit of liquidity providers (the market

maker and the HFT) divided by liquidity.

Several features of this liquidity definition worth discussing. First, L incorporates

both price and quantity information of the market. If spreads are high, the buyer’s
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buying probability would be low. Then even with a large supply, liquidity would

be low due to the lack of buyer. Similarly, low spreads alone cannot guarantee high

liquidity. If the market maker only supply a small amount of shares because of the

low profit margin, liquidity would be low since only a small portion of demand can be

satisfied. Second, this measure of liquidity is closely related to welfare. Since the buyer

has a higher valuation for each share than the market maker and the HFT, holding

everything else equal, higher liquidity indicates larger welfare. This measure differs

from the buyer’s surplus, an alternative measure of market quality, by putting equal

weights on each share sold. It is more feasible than the buyer’s surplus as a market

quality measure for two reasons: (1) The expected volume sold is easier to observe in

practice. (2) L does not depend on accurate estimates of the buyer’s valuation. This

make it a more robust measure of welfare. Finally, this liquidity definition does not

take volume traded in the inter-dealer market in to account because only shares sold

to the buyer are welfare improving in this model.

3.3 Equilibrium Definition

Two facts suggest that the market maker’s net worth, w, should be considered as the

state variable. First, net worth constraint is the only constraint faced by the market

maker. Second, given the market maker’s strategy, the HFT has no incentive to relate

her action to the history of the game. Thus, equilibrium can be defined as follows:

Definition 1 Consider a infinite horizon game (w0, qh, π) where the market maker

starts with net worth w0 and the HFT enters the market with probability π and qh

shares.

1. An equilibrium in a sequential pricing game is a triple (qm(w), xm(qm(w)), xh(qm, xm))

such that: (i) Given qm and xm, xh(qm, xm) maximizes the expected payoff of

the HFT. (ii) Given xh(qm, xm), {qm,t = wt − dt}∞t=0 and {xm,t = xm(qm,t)}∞t=0

maximize E0(
∑∞

t=0 δ
tdt).19

2. An equilibrium in a simultaneous pricing game is a triple (qm(w), xm(qm(w)), xh(qm))

such that: (i) Given qm, xh(qm) maximizes the expected payoff of the HFT.

(ii) Given xh(qm), {qm,t = wt − dt}∞t=0 and {xm,t = xm(qm,t)}∞t=0 maximize

E0(
∑∞

t=0 δ
tdt).

19Notice that the distribution of wt+1 can be uniquely determined by wt and the equilibrium
strategies. Given w0, the dynamic of wt is well-defined.
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I focus on the steady state capital commitment and spread to characterize the

long term market quality. The formal definition of a steady state equilibrium is as

follows:

Definition 2 An equilibrium is a steady state equilibrium if there exists qm, xm and

xh such that qm,t = qm, xm,t = xm and xh,t = xh for all t.20

Intuitively, in a steady state equilibrium, the market maker’s capital commitment

qm,t, spread xm,t and the HFT’s spread xh,t are time invariant. Since the focus of

this paper is on capital commitment rather than capital constraint, I assume that the

market maker always starts the game with a sufficiently large net worth w0.

4 Baseline Models

4.1 Benchmark Case with No HFT

First consider the situation with no HFT (or equivalently, π = 0). The market

maker’s value function satisfies the following equation:

V (w) = maxd,xmd+ δF (xm)V (w − d)

+δ(1− F (xm))[

∫ w−d

0

V (w − d+ xmq)g(q)dq

+(1−G(w − d))V ((1 + xm)(w − d))]

(1)

with the budget constraint

0 ≤ d ≤ w . (2)

There exists a steady state capital commitment qm = q̄ and a steady state spread

xm = x∗. In the equilibrium, the market maker pays dividend w0− q̄ in period 0 and

supply q̄ shares to the market at the spread x∗.21 In subsequent periods, the market

maker pays his profit as dividend and maintains the capital commitment level and

the spread. For the ease of notation, let

k(s) = EG(min(qb, s)) .22

20In the simultaneous moving game, xm and xh might be distributions rather than numbers.
21Note that the fair price of each share is 1.
22Here the subscript reflects that the buyer’s quantity demand follows a distribution with CDF

G.
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This function represents the effective share supply with s shares available at prices

lower than the buyer’s valuation. The steady state can be characterized by the

following theorem:

Theorem 1 With no HFT, there exists a unique steady state equilibrium where the

market maker set qm,t = q̄(dt = wt − q̄) and x = x∗ for all t. x∗ satisfies

x∗ = argmaxx(1− F (x))x .

q̄ satisfies
δ

1− δ
(1− F (x∗))x∗(1−G(q̄)) = 1 .23

The market maker’s expected payoff is

V (w0) =
δ

1− δ
(1− F (x∗))x∗k(q̄) + (w0 − q̄) .

Liquidity at the steady state is

L = (1− F (x∗))k(q̄) .

The average spread is x∗.

Proof. See Appendix.

This theorem has a clear economic interpretation. Since the buyer’s demand is

random, each additional share is less likely to be sold at any given spread. Thus, the

market maker’s capital commitment has decreasing marginal value. Conversely, the

marginal value of dividend payout is constant. This implies that in the equilibrium,

the market maker would commit capital up to a unique level where the marginal value

of capital commitment equals the marginal value of dividend payout. Moreover, in

the steady state, the market maker maintains his capital commitment level and pays

out the profit. This makes him act like a short-run monopolist, setting the spread to

maximize the expected profit.

The effective share supply k(s) plays an important role in the analysis. This

function measures expected shares sold when s shares are supplied with prices lower

than the buyer’s valuation. Given any buyer’s (non-degenerate) random demand, this

23If no such q̄ exists, the optimal strategy is to liquidate (d = w0) at t = 0.
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function is strictly concave. This leads to the decreasing marginal value of capital

commitment. To see the role played by the randomness of the buyer’s demand,

consider an alternative situation where the buyer’s demand q is deterministic. Then

when the market maker’s capital commitment is lower than q, under any given spread,

each unit of additional capital committed in market making has the same marginal

value. Then the capital commitment problem become trivial since a patient enough

market maker would fully satisfy the buyer’s demand.

The market with no HFT serves as a benchmark. Specifically, this market has high

capital commitment with a high spread. Indeed, from the pricing perspective, x∗ is

the highest possible spread set by any liquidity supplier. If the spread is higher than

x∗, the loss from selling with lower probability dominates the benefit from selling

at a higher spread. From the capital commitment perspective, the marginal value

of capital commitment is the highest for the market maker facing no competition

from the HFT. Thus, with HFT’s presence, the market maker’s steady state capital

commitment is lower than q̄.

4.2 Sequential Pricing Game (High Tech HFT)

In the sequential pricing game, the HFT observes the market maker’s shareholding

qm and spread xm before posting her spread xh. In practice, this corresponds to the

situation where the HFT has a superior trading technology and can undercut the

market maker before the market maker is able to adjust his spread. As discuss, I

focus on the steady state.

To characterize the steady state, it is helpful to first consider a one-shot game with

fixed capital commitment. The reason is clear: In the steady state, the market maker’s

capital commitment is constant over time and he pay out his profit as dividend. Thus,

the market maker would set spread as if he is a one-shot profit maximizer.

Consider a one-shot game where the market maker holds qm shares and the HFT

enters with probability π holding qh shares. Denote this game by a triple (qm, qh, π).

In this game, the market maker sets spread xm first and the HFT, if enters, sets

spread xh after observing xm. Each player aims for maximizing his/her expected

profit and can sell shares back to the inter-dealer market at the end of the game at

price 1. Equilibrium of this one-shot game can be defined as follows:

Definition 3 An equilibrium of a one-shot sequential pricing game (qm, qh, π) is a
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pair (xm, xh(xm)). Given the market maker’s spread xm, the HFT’s spread xh(xm)

maximizes her expected payoff. Given the HFT posting her spread according to xh(xm),

the market maker’s spread xm maximizes his expected payoff.

To solve for the equilibrium, first consider the HFT’s pricing problem after ob-

serving xm. If the HFT sets her spread xh ≤ xm, her shares would be sold before the

market maker’s but at a lower price. Conversely, if xh > xm, the HFT would earn

higher profit per share sold. Yet She would only receive the residual demand. By

assumption, F , the CDF of the buyer’s valuation, has non-decreasing hazard rate.

Thus, (1 − F (x))x, the expected marginal value of supplying a share at spread x

within the buyer’s demand, is increasing in x for x < x∗. Together with the assump-

tion that the buyer’s valuation and quantity demand are independent, the following

lemma provides a simple characterization of the HFT’s pricing problem.

Lemma 1 Given the market maker’s capital commitment qm and spread xm, the

HFT’s optimal pricing strategy is either xh = xm or xh = x∗.

Proof. See Appendix.

Next consider the market maker’s pricing problem. If the market maker sets a

wide spread such that the HFT chooses xh = xm over xh = x∗, the market maker

would be better off setting the monopolistic spread xm = x∗. Conversely, suppose the

market maker sets a tight spread such that the HFT chooses xh = x∗ over xh = xm.

Since (1 − F (x))x is increasing in x for x < x∗, the market maker would optimally

set xm = x such that the HFT is indifferent between setting xh = x to undercut the

market maker and setting xh = x∗. All other pricing strategies are dominated by

either of the aforementioned two strategies. To simplify the notation, define

a(x) =
(1− F (x))x

(1− F (x∗))x∗
.

Since

x∗ = argmaxx(1− F (x))x ,

a(x) ≤ 1. The market maker’s pricing problem is characterized by the following

lemma:
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Lemma 2 The market maker’s optimal spread is either xm = x∗ or xm = x < x∗. x

can be pinned down by the HFT’s indifference condition

a(x)k(qh) = k(qm + qh)− k(qm) .

Proof. See Appendix.

By Lemma 1 and 2, it is sufficient to compare the market maker’s payoff under

xm = x and xm = x∗ to pin down the equilibrium.

Proposition 1 If k(qm) > πk(qh), the unique equilibrium is xm = xh = x∗. If

k(qm) < πk(qh), the unique equilibrium is xm = x, xh = x∗. When k(qm) = πk(qh),

both equilibria exist.

Proof. See appendix.

By Proposition 1, the market maker has two possible pricing strategies against

the potential HFT. The pricing strategy xm = x∗ is called the wide spread strategy.

This strategy yields a high expected profit when the HFT does not enter the market.

When the HFT enters, however, the market maker will be undercut and only receives

the residual demand. The effectiveness of this strategy depends on the HFT’s entry

probability π and shareholding qh. The pricing strategy xm = x is called the tight

spread strategy. Under this strategy, the market maker receives a lower expected

profit when the HFT does not enter. Yet when the market maker uses the tight

spread strategy, it is unprofitable for the HFT to undercut the market maker upon

entry. Thus, the buyer would always buy shares from the market maker first and the

HFT’s entry does not affect the market maker’s expected profit.

Another observation is that the HFT always sets spread xh = x∗ in the equilibrium.

However, this does not imply that the HFT always sells shares at a higher price. With

the technology advantage, the HFT only needs to reduce her spread by a very small

amount to undercut the market maker. On the other hand, a large price reduction is

needed for the market maker to prevent the HFT’s undercut.

4.2.1 Steady State Characterization

In this section, I solve for the steady state equilibrium of the infinite period game. Let

M(q) be the market maker’s expected profit in the one-shot game with qm = q. Let

x̂m(q) and x̂h(q) correspond to the market maker and the HFT’s equilibrium spreads
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in the one-shot game.24 If the game reaches a steady state in period 0 with capital

commitment q, the market maker’s expected payoff is

δ

1− δ
M(q) + (w0 − q) .

δ
1−δM(q) is the present value of a perpetuity paying out the market maker’s expected

profit starting from period 1. w0− q is the market maker’s dividend payout in period

0 to reach the steady state. An obvious candidate of the market maker’s steady state

capital commitment is

qm = argmaxq∈[0,q̄]
δ

1− δ
M(q) + (w0 − q) .

The following theorem validates that qm is indeed the market maker’s capital com-

mitment in the steady state equilibrium.

Theorem 2 Let qm = argmaxq∈[0,q̄]
δ

1−δM(q) + (w0 − q).

1. qm,t = qm, xm = x̂m(qm), xh = x̂h(qm) consists a steady state equilibrium. The

market maker’s expected payoff in the equilibrium is

V (w0) =
δ

1− δ
M(qm) + (w0 − qm) .

2. If the market maker uses the wide spread strategy in the equilibrium, market

liquidity is

L = (1− F (x∗))[πk(qm + qh) + (1− π)k(qm)] .

The average spread is x∗.

3. If the market maker uses the tight spread strategy in the equilibrium, market

liquidity is

L = (1− F (xm))k(qm) + π(F (x∗)− F (xm))(k(qm + qh)− k(qm)) .

The average spread is lower than x∗.

Proof. See appendix.

We now discuss some important corollaries.

24I suppress the dependency of these functions on qh and π.
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Corollary 1 For π > 0, the market maker’s steady state capital commitment qm < q̄.

The market maker commits less capital in market making facing competition from

the HFT. The competition from the HFT lower the marginal value of the market

maker’s capital commitment at any given level. This is either due to the HFT’s un-

dercut under the wide spread strategy or the lower spread itself with the tight spread

strategy. Lower marginal value leads to less capital commitment in the equilibrium.

Corollary 2 If q̄ > 0, qm > 0. In other words, the market maker never fully exit

the market in the steady state equilibrium. Moreover, qm, the market maker’s steady

state capital commitment, satisfies the following conditions:

1. If the market maker uses the wide spread strategy, qm satisfies

δ

1− δ
(1− F (x∗))x∗[(1− π)(1−G(qm)) + π(1−G(qm + qh))] = 1 .

2. If the market maker uses the tight spread strategy, qm satisfies

δ

1− δ
(1− F (x))x(1−G(qm)) > 1 .

Proof. See appendix.

This corollary, derived from first order conditions of the market maker, is useful for

comparative statics in π. The second part of Corollary 2 implies the market maker’s

tendency to under-commit capital with the tight spread strategy. Specifically, fixing

xm = x and xh, the marginal value of committing capital is larger then the marginal

value of paying dividend. However, the market maker refrains from committing more

capital because the market maker needs to also reduce his spread xm to prevent the

HFT from undercutting him.

4.2.2 Comparative Statics on π

In this section, I analyze how the steady state equilibrium and market quality change

with π, the HFT’s exogenous entry probability. Higher π indicates a more fierce

competition from the HFT. The market maker would adjust his capital commitment

and pricing strategies accordingly and thus changes market quality.
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First, consider the one-shot game. Importantly, the HFT’s pricing decision does

not depend on π. Thus, fixing qm, the tight spread x, does not depend on π. Thus,

regardless of π, the market maker’s candidates for the optimal spread, i.e., x∗ and

x, are the same. Furthermore, with xm = x∗, the market maker’s expected payoff is

decreasing in π due to the HFT’s undercut. Conversely, the market maker’s expected

payoff does not depend on π when xm = x. Consequently, the tight spread strategy

becomes more attractive with higher π. The comparative statics for one-shot games

can be characterized by the following proposition:

Proposition 2 Consider two one-shot games (qm, qh, π1) and (qm, qh, π2) with π2 >

π1.

1. If the market maker adopts the tight spread strategy in the equilibrium in game

(qm, qh, π1), then he would also adopt the tight spread strategy in game (qm, qh, π2).

His expected profits in two games are the same.

2. If the market maker adopts the wide spread strategy in the equilibrium in game

(qm, qh, π2), then he would also adopt the wide spread strategy in game (qm, qh, π1).

His expect payoff is higher in game (qm, qh, π1).

Proof. Since qm and qh are fixed, the equilibrium strategy choices are implied by

proposition 1.

Note that the tight spread x is determined by the equation

k(qh + qm)− k(qm) = a(x)k(qh) ,

which does not depend on π. Thus, the market maker’s expected payoff when adopting

the tight spread strategy, (1− F (x))xk(qm), does not depend on π.

The market maker’s expected net profit of adopting the wide spread strategy is

(1− F (x∗)x∗)[π(k(qh + qm)− k(qh)) + (1− π)k(qm)] .

This quantity is decreasing in π since

k(qh + qm) < k(qh) + k(qm) .
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Now consider the market maker’s capital commitment problem in the infinite

period game. Consider two markets with different HFT entry probabilities. If the

market maker uses the tight spread strategy in both steady states, then the market

maker’s pricing and capital commitment decisions are identical and he enjoys the

same expected payoff. Furthermore, by Corollary 2, if the market maker sticks to

the wide spread strategy when the HFT’s entry probability increases, in the steady

state he commits less capital and achieves lower expected payoff. Combining these

observations leads to the following result:

Theorem 3 There exists π̂ ∈ (0, 1] such that in the steady state equilibrium, xm = x∗

when π < π̂ and xm = x when π > π̂. Denote [0, π̂) to be the wide spread region and

(π̂, 1] to be the tight spread region.

1. In the wide spread region, the market maker’s expected payoff V (w0) and equi-

librium capital commitment qm is decreasing in π; liquidity L’s change in π is

ambiguous.

2. In the tight spread region, the market maker’s expected payoff V (w0) and equi-

librium capital commitment qm remain constants; Liquidity L is increasing in

π.

3. The market maker’s equilibrium capital commitment is smaller in the tight

spread region comparing to any equilibrium capital commitment in the wide

spread region.

4. In the wide spread region, the average spread is x∗. In the tight spread region,

the average spread is lower than x∗ and increasing in π.

Proof. See appendix.

Theorem 3 shows that the steady state equilibrium can be categorized into two

regimes depending on π. In the wide spread region where the HFT’s entry probability

is low, the market maker sets the monopolistic spread xm = x∗ and responds to the

competition by cutting capital commitment. In this region, the competition between

the market maker and the HFT does not benefit low-evaluation buyers since both

the market maker and the HFT set the monopolistic spread. Instead, when the HFT

enters the market, she improves market quality by increasing the market’s capacity

to satisfy high-valuation buyers demands. Conversely, when the HFT does not enter,
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the market’s capacity to satisfy large demand is lower and decreasing in π since the

market maker’s capital commitment is decreasing in π in this region.

In the tight spread region where the HFT’s entry probability is high, low-valuation

buyers benefit from the competition since the market maker’s spread is lower then

the monopolistic spread. However, to deter the HFT from undercutting, the market

maker keeps his capital commitment at a lower level. This impairs the market’s

capacity to satisfy large demands and the market becomes shallower. Indeed, although

shares become cheaper, the supply is limited. When the buyer’s demand is large,

either the price per share would jump to the monopolistic price with the HFT’s

presence or no enough supply exists to fulfill the order.25 Moreover, in this region,

an increase in the HFT’s entry probability improves market quality since the market

maker’s capital commitment and spread are not changing in π. A higher HFT entry

probability increases the market’s capacity to satisfy buyers with large demands.

This theorem also demonstrates why the average spread and the implementation

shortfall may fail to faithfully characterize market quality. Since higher average spread

indicates higher implementation shortfall in this model, I only focus on the average

spread in the following discussion. In the wide spread region, although liquidity (and

thus the buyer’s welfare) is changing with π, the average spread remains the same

since both the market maker and the HFT set the monopolistic spread x∗. In the

tight spread region, higher π leads to better market quality. Yet the average spread

is also increasing because the HFT’s spread is higher. With a higher HFT entry

probability, a larger proportion of shares are sold at the higher spread. This drives

up the average spread.

By Theorem 3, liquidity is increasing in π in the tight spread region yet its the di-

rectional change is ambiguous. With more assumptions, I can obtain a more detailed

characterization of liquidity in the wide spread region. In particular, more competi-

tion from the HFT is not always beneficial to the market. The following proposition

shows that when the wide spread region is large enough, there is always a region

where the liquidity is decreasing with the level of competition.

Proposition 3 Suppose the wide spread region is [0, 1]; i.e., the market maker uses

the wide spread strategy when π = 1. Then either there exists a region where L is

decreasing in π or L is constant over [0, 1].

25In this model, I do not consider other liquidity providers. Yet in reality it can be the case that
the rest of the order are fulfilled by other suppliers at a higher price.
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Proof. See appendix.

The reason behind this result is simple. If the market maker uses the wide spread

strategy at π = 1, then from the first order condition, qm + qh = q̄. In other words,

the market is identical to the monopolistic market. Then by continuity, if L is not

constant in π, there exists a region where L is decreasing in π.

Importantly, when the HFT’s shareholding qh is small enough, the assumption of

this proposition holds. Intuitively, with low qh, the HFT’s undercut is not much of a

concern for the market maker. It is optimal for the market maker to set the monop-

olistic spread regardless of the HFT’s entry probability. Combining this observation

with Proposition 3 shows that when the HFT’s shareholding is low, there is always a

region where the liquidity is decreasing with the level of competition.

Assumptions may also be imposed on the distribution of the buyer’s demand qb.

If G follows the exponential distribution (which has constant hazard rate), liquidity

is not changing in π over the wide spread region. Moreover, if G has increasing

hazard rate (or equivalently, g is log-concave),26 there always exists a region where L

is decreasing in π.

Proposition 4 If G follows an exponential distribution, liquidity is a constant with

respect to π in the wide spread region.

Proof. See appendix.

The discussion above leads to the following theorem regarding the monotonicity

of L over π:

Theorem 4 Under two sets of assumptions, L is non-monotonic with respect to π

on [0, 1]:

1. Suppose G has increasing hazard rate, then for any qh > 0, liquidity is non-

monotonic with respect to π on [0, 1].

2. For small enough qh, if L is not a constant, it is non-monotonic with respect to

π on [0, 1].

Proof. See appendix

26Many distributions satisfy this property including uniform distribution, gamma distribution
with α > 1, truncated normal distribution, etc.
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This theorem, albeit simple, bears important implications for both empirical anal-

ysis and policy debate over high-frequency trading. In many empirical research, when

market quality is taken as the dependent variable in a linear regression, most of the

time there is an independent variable highly correlated to the HFT’s entry prob-

ability. For example, it can be high-frequency trading volume, frequency of order

submission and cancellation, etc. Then if liquidity, as a measure of market quality,

is not changing monotonically with respect to the HFT entry probability, the linear

regression model might be misspecified and cannot deliver accurate prediction over

high-frequency trading’s effects over market quality.

From the policy making perspective, this theorem suggests that policy makers

cannot rely solely on observations of how high-frequency trading changes the market

in the past decade to predict the welfare and market quality effects of high-frequency

trading regulation. The reason is that regulations’ would have huge effects on the

HFT entry probability. Without monotonicity, the welfare and market quality effects

might “flip signs”. A theoretical framework is necessary to achieve a critical stance

over high-frequency trading policy making.

4.3 Simultaneous Pricing Game (Head to Head HFT)

In this section I analyze the situation where the HFT only observes qm (but not xm)

before setting her spread xh. This corresponds to the market maker and the HFT

having similar trading technologies and the HFT cannot undercut the market maker

easily. This is related to two real world scenarios. First, some HFTs may become

designated market makers.27 With a better trading technology, the market maker

can flicker quotes fast enough to avoid the HFT’s detection. Second, the HFT might

be constrained by exchange policies or regulation requirements such that she can no

longer observe the price information ahead of other traders or undercut other traders

easily.

We first analyze a one-shot simultaneous pricing game (qm, qh, π). In this game,

the market maker’s shareholding is qm and the HFT enters the market holding qh

shares with probability π. Similar to the sequential pricing game, the buyer would

purchase shares from the HFT first if the HFT and the market maker post the same

27Actually, two out of four NYSE’s major designated market makers are considered also as high-
frequency trading firms.
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spread.28

Definition 4 An equilibrium of a one-shot simultaneous pricing game (qm, qh, π) is

a pair of cumulative distribution function (Hm, Hh) such that xm has CDF Hm and

xh has CDF Hm. Let the support of xm (xh) be a measurable set Xm (Xh). The

equilibrium satisfies following conditions:

1. Given that the HFT posts spreads according to Hh, the market maker posting

spreads according to Hm maximizes his expected payoff.

2. Given that the market maker posts spreads according to Hm, the HFT posting

spreads according to Hh maximizes her expected payoff.

3. Given Hh, any xm ∈ Xm yields the same expected payoff for the market maker;

this expected payoff is weakly higher than the expected payoff by posting a spread

xm 6∈ Xm.

4. Given Hm, any xh ∈ Xh yields the same expected payoff for the market maker;

this expected payoff is weakly higher than the expected payoff by posting a spread

xh 6∈ Xh.

The following proposition characterizes candidates of equilibrium.

Proposition 5 No pure strategy equilibrium exists. Let the infimum of Xm(Xh) be

xm(xh) and the supremum of Xm(Xh) be x̄m(x̄h). In any mixed strategy equilibrium,

xm = xh = x, x̄m = x̄h = x∗. Xm and Xh are dense in [x, x∗]. There exists no

xm(xh) ∈ [x, x∗) such that xm(xh) is posted with positive probability in the equilibrium.

Proof. See appendix.

By Proposition 5, without loss of generality, I consider equilibrium where Xm and

Xh are intervals. The equilibrium can be pinned down by the market maker and the

HFT’s indifference conditions.

Proposition 6 There exists a unique equilibrium in the one-shot game (qm, qh, π)

satisfying the following conditions:

28The only purpose of this assumption is to make the simultaneous pricing case comparable to
the sequential pricing case. The specific tie-breaking rule does not matter.
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1. If k(qm) ≥ πk(qh), in the equilibrium the market maker posts spread xm = x∗

with positive probability P̄m = 1− πk(qh)
k(qm)

.

x is uniquely determined by

(1− π)k(qm) + π(k(qm + qh)− k(qh)) = a(x)k(qm) . (3)

The market maker’s mixed strategy satisfies

Hm(x) = (1− a(x)

a(x)
) · k(qh)

k(qm) + k(qh)− k(qm + qh)
∀x ∈ [x, x∗) . (4)

Hm satisfies Hm(x) = 0, lim
x→x∗−

Hm(x) = 1− P̄m.

The HFT’s mixed strategy satisfies

Hh(x) =
1

π
(1− a(x)

a(x)
) · k(qm)

k(qm) + k(qh)− k(qm + qh)
∀x ∈ [x, x∗) . (5)

Hh satisfies Hh(x) = 0, lim
x→x∗−

Hh(x) = 1.

2. If k(qm) ≤ πk(qh), in the equilibrium the HFT posts spread xh = x∗ with positive

probability P̄h = 1− k(qm)
πk(qh)

.

x is uniquely determined by

k(qm + qh)− k(qm) = a(x)k(qh) . (6)

Hm satisfies Equation (4). Moreover, Hm(x) = 0, lim
x→x∗−

Hm(x) = 1.

Hh satisfies Equation (5). Moreover, Hh(x) = 0, lim
x→x∗−

Hh(x) = 1− P̄h.

Proof. By Proposition 5, Xm and Xh are dense in [x, x∗]. Thus, in any ”regular”

equilibrium, (x, x∗) ∈ Xm; (x, x∗) ∈ Xh. Then the uniqueness naturally follows from

the equilibrium construction.

I only prove the first part of the theorem here since the calculation for the second

part is similar. The only difference is that x∗ is not in the support of Xm since the

payoff of posting x∗ is strictly lower than posting x∗ − ε for a small ε.
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The HFT’s indifference condition implies

(1− P̄m)(k(qm + qh)− k(qm)) + P̄mk(qh) = a(x)k(qh) . (7)

The market maker’s indifference condition implies

(1− π)k(qm) + π(k(qm + qh)− k(qh)) = a(x)k(qm) . (8)

By equation (7) and (8),

P̄m =
a(x)k(qh) + k(qm)− k(qm + qh)

k(qh) + k(qm)− k(qm + qh)
= 1− πk(qh)

k(qm)
. (9)

Hm can be pinned down by the HFT’s indifference condition:

a(x)[Hm(x)(k(qm+qh)−k(qm))+(1−Hm(x))k(qh)] = a(x)k(qh) ∀x ∈ [x, x∗) . (10)

Hh can be pinned down by the market maker’s indifference condition:

a(x){(1−π)k(qm)+π[Hh(x)(k(qm+qh)−k(qh))+(1−Hh(x))k(qm)]} = a(x)k(qm) ∀x ∈ [x, x∗) .

(11)

Notice that a(x) is increasing with x for x ∈ [0, x∗] and k(qm+qh) < k(qh)+k(qm).

Thus, existence and uniqueness of Hm and Hh is guaranteed by the intermediate

value theorem. For the market maker (HFT), the indifference condition guarantees

any strategy in support Xm (Xh) yields the same expect profit. From the proof of

Proposition 5, no player has incentive to deviate to a spread smaller than x or larger

than x∗.

An important corollary of Proposition 6 is that the market maker’s expected

payoffs are the same in both the sequential pricing game and the simultaneous pricing

game. Since the market maker acts as if a short term payoff maximizer in the steady

state, the same one-shot payoff induces the same capital commitment decision. This

observation simplifies the comparison of market quality under two settings.

Corollary 3 For any one-shot game (qm, qh, π), the market maker’s expected profit

is the same under the sequential pricing setting and the simultaneous pricing setting.

Proof. If k(qm) > πk(qh), the market maker would use the wide spread strategy in
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the sequential pricing game with expected profit

(1− F (x∗))x∗[(1− π)k(qm) + π(k(qm + qh)− k(qh))] .

This equals the expected profit in the simultaneous pricing game when k(qm) >

πk(qh).

If k(qm) < πk(qh), in the sequential pricing game, the market maker would use

the tight spread strategy to achieve the expected payoff (1− F (x))xk(qm) where the

tight spread x is determined by

k(qm + qh)− k(qm) = a(x)k(qh) .

This equals the expected profit in the simultaneous pricing game when k(qm) <

πk(qh).

4.3.1 Steady State Characterization

The following theorem relates equilibria in one-shot games to the steady state equi-

librium of the infinite period game. Moreover, this theorem offers comparison over

the market maker and the HFT’s expected payoffs in the sequential pricing game and

the simultaneous pricing game.

Theorem 5 Let qm = argmaxq∈[0,q̄]
δ

1−δM(q) + (w0 − q).

1. Let xm(qm) and xh(qm) follow the mixed strategy defined in Proposition 6. Then

qm, xm(qm) and xh(qm) determines a steady state equilibrium.29 In this equilib-

rium, the market maker’s expected payoff is

Vm(w0) =
δ

1− δ
M(qm) + (w0 − qm) .

2. The market maker’s expected payoffs and steady state capital commitments are

the same in both sequential pricing and simultaneous pricing games.

3. The HFT is strictly better off in the sequential pricing game if π is in the wide

29This equilibrium can be micro-founded by considering a model where the HFT does not observe
δ and the market makers signals δ with capital commitment. Then there exists a perfect Bayesian
equilibrium that shares the same on path property as this steady state equilibrium.
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spread region. The HFT’s expected payoffs are the same under both settings if

π is in the tight spread region.

4. In a simultaneous pricing game, the steady state liquidity is

L =(1− F (x∗))[πk(qm + qh) + (1− π)k(qm)] + π

∫ x∗

x

[Hm(z)Hh(z)k(qm + qh)

+ (1−Hm(z))Hh(z)k(qh) +Hm(z)(1−Hh(z))k(qm)f(z)dz

+ (1− π)

∫ x∗

x

Hm(z)k(qm)f(z)dz] .

Proof. See appendix.

It is informative to compare market qualities under the sequential pricing game

and the simultaneous pricing game. By Theorem 5, the market maker’s equilibrium

capital commitments are the same under two settings. Thus, pricing decisions of the

market maker and the HFT drive the difference in market qualities.

First consider the wide spread region. In the sequential pricing game, all shares

are supplied at the monopolistic spread x∗; in the simultaneous pricing game, spreads

are lower than x∗ with positive probability. Thus, give that the market maker makes

the same capital commitment decisions, in the wide spread region, liquidity is higher

in the simultaneous pricing game. Moreover, since the HFT cannot undercut the

market maker at the spread x∗ in the simultaneous pricing game, the HFT’s expected

payoff is lower. In other words, the HFT in the simultaneous pricing game is willing

to pay a small cost to trade faster than the market maker. On the other hand, since

the market maker’s expected payoff are the same in both settings, in a sequential

pricing game, the market maker has no incentive to upgrade his technology to trade

at the same speed as the HFT. This means the HFT has stronger incentive to upgrade

trading technology than the market maker. Yet as discussed above, this incentive is

detrimental to market quality.

In the tight spread region, liquidity comparison between two settings is ambiguous.

In the sequential pricing game, more shares are supplied at a low spread. This is

because the market maker fixes a tight spread. Yet no share is supplied at a spread

between x and x∗. For buyers with valuations between 1 + x and 1 + x∗, only the

market maker’s supply is available. On the other hand, in a simultaneous pricing

game, a buyer with valuation 1 + x will not buy any share with probability one. Yet
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for a buyer with valuation slightly lower than 1 +x∗, in expectation he would be able

to purchase more shares in a simultaneous pricing game. However, this ambiguity

does not impose much difficulties in liquidity analysis. I show that the liquidity

difference between the sequential pricing game and the simultaneous pricing game is

not changing in π in the tight spread region. Thus, given specific assumptions on

distributions of the buyer’s valuation and quantity demand, a clear comparison over

liquidity under two settings in the tight spread region can be achieved. The following

proposition summarizes liquidity comparison results.

Proposition 7 Denote the steady state liquidity in the sequential pricing game and

the simultaneous pricing game to be Lse and Lsim.

1. Lsim > Lse if π is in the wide spread region.

2. Lsim − Lse is constant for any π in the tight spread region.

3. Lsim and Lse is increasing in π in the tight spread region.

Proof. See Appendix.

4.4 Numerical Examples

In this section, I present numerical examples to visualize results in sections 4.2 and

4.3. In all examples, the buyer’s valuation v follows a uniform distribution. The

difference lies in the distribution of the buyer’s demand qb and the magnitude of

HFT’s shareholding qh.

Figure 2 depicts liquidity and the market maker’s equilibrium capital commitment

under different HFT entry probabilities when the buyer’s demand qb follows a uniform

distribution and the HFT’s shareholding qh is small. With small qh, even when π = 1,

the market maker still sets the monopolistic spread in the equilibrium; i.e., the wide

spread region is [0, 1]. As shown in Figure 2b, with no regime change, the market

maker’s equilibrium capital commitment is decreasing continuously with π.

The blue line in Figure 2a shows how steady state liquidity changes with π in the

sequential pricing game. There exists a region where liquidity is decreasing in π. In

this example, the region is π ∈ [0, 1
2
]. The red line in Figure 2a shows how liquidity

changes with π in the simultaneous pricing game. As predicted by Proposition 7,

liquidity in the simultaneous pricing game is higher.
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(a) Liquidity (b) Capital Commitment

Figure 2: Uniform Demand with Small HFT

(a) Liquidity (b) Capital Commitment

Figure 3: Uniform Demand with Large HFT

Figure 3 shows liquidity and the market maker’s capital commitment when qb

follows a uniform distribution and qh is large. When π is large, the market maker

would use the tight spread strategy in the equilibrium. This leads to the liquidity jump

in Figure 3a and the capital commitment jump in Figure 3b. Since the market maker

secures his payoff against the HFT entry in the tight spread region, the equilibrium

capital commitment is not changing in π.

Another important observation can be made by comparing liquidity with π ∈
[0.5, 0.6] and liquidity with π = 0 under the sequential pricing setting. Obviously, the

average spread is lower in the tight spread region than in the monopolistic market.

However, the liquidity when π ∈ [0.5, 0.6] is lower. The reason is that the market

maker cut capital commitment facing the HFT’s competition. This implies that
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pricing information alone cannot fully reflect market quality.

(a) Liquidity (b) Capital Commitment

Figure 4: Exponential Demand

Figure 4 shows liquidity and the market maker’s capital commitment when the

buyer’s demand follows an exponential distribution. This serves as a robustness check

by demonstrating a similar comparative statics. The only difference is that liquidity

remains constant in the wide spread region in the sequential pricing game. This

follows from the constant hazard rate property of the exponential distribution.

5 Costly High-Frequency Trading Participation

In this section, I consider an extension where the HFT can choose between paying

a fixed cost C to participate in high-frequency trading or opting out. Specifically,

after observing the market maker’s capital commitment qm (and spread xm in the

sequential pricing game), the HFT chooses whether to participate in high-frequency

trading. The HFT’s profit is zero if she does not participate. If the HFT participates,

she successfully enters the market with probability π. The cost C is paid regardless

of the HFT successfully entering the market or not.30 Moreover, since the HFT is not

constrained, paying the cost would not affect the HFT’s shareholding qh. Although the

30Another way to model costly participation is to assume that the HFT only pays the cost C upon
successfully entering the market. Yet assuming the HFT always pays the cost is in line with the
regulatory measures taken in practice. For instance, the German High Frequency Trading Act of
2013 requires exchanges to charge excessive system usage fees, including both order amendments and
order cancellations. France and EU also have similar requirements on charging order cancellation
fee. For examples of exchange policies complying these regulations, see Eurex. (2016) and Eurex.
(2019).
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HFT still faces the exogenous entry probability π, this extension partially endogenizes

the HFT’s entry decision.31 With a large participation cost C, the HFT may not

choose to enter the market at all.

5.1 Sequential Pricing Game

In the sequential pricing game, the HFT observes the market maker’s shareholding qm

and spread xm before making the entry decision. Consider a one-shot game with high

frequency trading cost C. Since the HFT observes the market maker’s shareholding

and spread before posting her spread, I focus on the pure strategy equilibrium.

Definition 5 An equilibrium of a one-shot sequential pricing game (qm, qh, π, C) is

a triple (xm, η, xh); η ∈ {0, 1} indicates the HFT’s participation decision. The HFT’s

participation (non-participation) of high-frequency trading is denoted by η = 1 (η =

0).

1. Given the market maker’s spread xm and shareholding qm, xh maximizes the

HFT’s expected payoff. η = 1 if and only if the HFT’s expected payoff is greater

than C.

2. Given the HFT posts spreads according to xh(xm) and makes entry decisions

according to η, xm maximizes the market maker’s expected payoff.

It is useful to compare a one-shot game with a positive participation cost (C > 0)

with a similar game with no participation cost (C = 0). Condition on the HFT’s

participation, the HFT’s optimal pricing strategies in two games are the same. Thus,

the market maker would use the same pricing strategy condition on the HFT’s par-

ticipation. On the other hand, when the participation cost is positive, the HFT takes

her entry probability π into account. Specifically, the HFT would lose money if she

participates in high-frequency trading but cannot enter the market. This gives the

market maker an additional strategic advantage. If the market maker posts a spread

xa ≤ x∗ such that

π(1− F (xa))xak(qh) = C ,

the HFT would not undercut the market maker because doing so cannot cover the

participation cost. Moreover, from the market maker’s perspective, he would set

31The fully endogenous entry is just a special case of this setting with π = 1.
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spread xa only when it is higher than x. Note that facing the tight spread x, the

HFT is indifferent between setting the wide spread x∗ and undercutting the market

maker with xh = x. Thus, when the market maker optimally sets xm = xa > x, it

must be that participating high-frequency trading and setting xh = x∗ cannot cover

the participation cost for the HFT, either. Thus, when the participation cost is high,

the market maker would deter the HFT from participating.

To differentiate xa and x, let xa satisfying

π(1− F (xa))xak(qh) = C

be the aggressive tight spread and x satisfying

a(x)k(qh) = k(qm + qh)− k(qm)

be the defensive tight spread. Given the equilibrium strategy in a one-shot game

with C = 0, the only additional decision for the market maker to make in the similar

game with C > 0 is whether to post the aggressive tight spread xa to deter the HFT

from entering. As discussed above, this strategy becomes more profitable with higher

participation cost C. Formally, the market maker and the HFT’s pricing decisions in

a one-shot game (qm, qh, π, C) can be characterized as follows:

Proposition 8 Consider a one-shot game (qm, qh, π, C). Let

C̄(π) = π(1− F (x∗))x∗k(qh) .

If C ≥ C̄ the market maker posts xm = x∗ and the HFT does not participate in

high-frequency trading (η = 0). For C < C̄:

1. If (i) k(qm) < πk(qh) and

C > π(1− F (x∗))x∗[k(qm + qh)− k(qm)] ,

or (ii) k(qm) > πk(qh) and

C >
πk(qh)

k(qm)
(1− F (x∗))x∗[π(k(qm + qh)− k(qh)) + (1− π)k(qm)] ,

the market maker posts the aggressive tight spread xa and the HFT does not
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participate in high-frequency trading (η = 0).

2. If k(qm) < πk(qh) and

C ≤ π(1− F (x∗))x∗[k(qm + qh)− k(qm)] ,

the market maker posts the defensive tight spread x and the HFT participates

(η = 1). Upon a successful entry, the HFT sets xh = x∗.

3. If k(qm) > πk(qh) and

C ≤ πk(qh)

k(qm)
(1− F (x∗))x∗[π(k(qm + qh)− k(qh)) + (1− π)k(qm)] ,

the market maker posts the wide spread and the HFT participates (η = 1). Upon

a successful entry, the HFT posts xh = x∗ to undercut the market maker.

Proof. See appendix.

Now consider the steady state in the infinite period game. A similar analysis

guarantees the existence of a steady state equilibrium. The following result considers

the comparative statics on C.

Theorem 6 There exists Ĉ(π, qh) ∈ (0, C̄) such that:

1. For 0 < C ≤ Ĉ, the steady state equilibrium is the same as the steady state

equilibrium with no participation cost (C = 0).

2. For Ĉ < C ≤ C̄, the market maker sets the aggressive tight spread xm = xa and

the equilibrium capital commitment satisfying

δ

1− δ
(1− F (xm))xm(1−G(qm)) = 1 .

The HFT does not participate in high-frequency trading.

3. For C > C̄, the steady state equilibrium is the same as the monopolistic steady

state equilibrium. The HFT does not participate in high-frequency trading.

This result is intuitive. When the participation cost is low, it is unprofitable for

the market maker to deterring the HFT from undercutting with the aggressive tight
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spread strategy.32 In this case, the HFT’s expected payoff is larger than the partici-

pation cost C. Thus, the HFT always participates and the steady state equilibrium

is the same as the equilibrium with no participation cost. If the participation cost is

high enough, the market maker deters the HFT’s undercutting with the aggressive

tight spread strategy. Moreover, the market maker optimally commits capital to the

level such that the marginal value of capital commitment equals 1, the marginal value

of dividend payout. The HFT in this situation does not participate in high-frequency

trading. Finally, with an extremely high participation cost C > C̄, the HFT never

breaks even participating in high-frequency trading regardless of the market maker’s

spread. The market maker becomes a monopolist.

5.2 Simultaneous Pricing Game

In the simultaneous pricing game, the HFT only observes qm, the market maker’s

shareholding, before making the participation decision. Consider a one-shot game

(qm, qh, π, C). Similar to the simultaneous pricing game with no participation cost,

no pure strategy equilibrium exists. A mixed strategy equilibrium can be defined as

follows.

Definition 6 An equilibrium of a one-shot simultaneous pricing game (qm, qh, π, C)

is a triple (Hm, η,Hh). η ∈ [0, 1] is the HFT’s participation probability. xm follows

CDF Hm and xh follows CDF Hh. Let the support of xm(xh) be Xm(Xh). The

equilibrium satisfies the following conditions:

1. Given that the HFT posts spreads according to CDF Hh and tries to enter ac-

cording to η, the market maker posting spreads according to CDF Hm maximizes

his expected payoff.

2. Given that the market maker posts spreads according to CDF Hm, the HFT

posting spreads according to CDF Hh and tries to enter according to η maximizes

her expected payoff.

3. Given Hh and η, any xm ∈ Xm yields the same expected payoff for the market

maker; this expected payoff is weakly higher than the expected payoff by posting

a spread xm 6∈ Xm.

32The market maker may still chooses to deterring the HFT from undercutting with a tight spread
strategy as in the baseline model
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4. Given Hm, any xh ∈ Xh yields the same expected payoff for the market maker;

this expected payoff is weakly higher than the expected payoff by posting a spread

xh 6∈ Xh.

To find out the equilibrium pricing strategy of the one-shot game (qm, qh, π, C),

consider (qm, qh, π, 0), a one-shot game with no participation cost. If the HFT’s ex-

pect profit in the equilibrium of game (qm, qh, π, 0) is greater than C, in the game

(qm, qh, π, C), the HFT participates with probability 1 and both players use the same

pricing strategy as in game (qm, qh, π, 0). Conversely, if the HFT’s expected equi-

librium profit in game (qm, qh, π, 0) is lower than C, she would mix in participation

decision. This mixing has two effects. First, it reduces the expected participation

cost. Second, by entering the market with a lower probability, the HFT improves her

strategic position against the market maker in the pricing game. The participating

probability η can be uniquely determined by the HFT’s indifference condition over

participation.

Proposition 9 Consider a one-shot simultaneous pricing game (qm, qh, π, C). Define

a(x)(π) as in Proposition 6. That is, if k(qm) ≥ πk(qh),

a(x)(π) = 1− π + π
k(qm + qh)− k(qh)

k(qm)
;

if k(qm) < πk(qh),

a(x)(π) =
k(qm + qh)− k(qm)

k(qh)
.

1. If

π(1− F (x∗))x∗a(x)(π)k(qh) ≥ C ,

the HFT chooses η = 1. The equilibrium of game (qm, qh, π, C) coincides with

the equilibrium of game (qm, qh, π, 0) characterized in Proposition 6.

2. If

π(1− F (x∗))x∗a(x)(π)k(qh) < C ,

there exists a unique η ∈ (0, 1) such that

π(1− F (x∗))x∗a(x)(ηπ)k(qh) = C .
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In the equilibrium, the HFT participates with probability η and receives zero

expected payoff if enters. The equilibrium of game (qm, qh, π, C) coincides with

the equilibrium of game (qm, qh, ηπ, 0).

Proof. See appendix.

An important implication of this proposition is as follows:

Corollary 4 For any game (qm, qh, π, C), the market maker’s equilibrium payoffs are

the same under both the sequential pricing and the simultaneous pricing settings.

Proof. See appendix.

Since the market maker receives the same expected payoffs in game (qm, qh, π, C)

in the sequential pricing game and the simultaneous pricing game, the market maker’s

steady state capital commitments is both games are the same:

Proposition 10 In the steady state, the market maker commits the same amount of

capital in both the sequential and the simultaneous pricing game.

5.3 Numerical Examples

Figure 5 presents a numerical example to illustrate how market quality changes with

the HFT’s participation cost. In this example, the HFT’s entry probability π is fixed.

The buyer’s valuation v follows a uniform distribution while his demand qb follows

an exponential distribution. The market maker uses the tight spread strategy in the

steady state when C = 0.

The equilibrium can be divided into three regions. With a low participation

cost, it is profitable for the HFT to participate with probability one. Thus, the

market is the same to a market with no participation cost. As the participation cost

increases, the market maker’s deterring strategy becomes more profitable. Moreover,

the marginal value of capital commitment also increases. Thus, the market maker’s

capital commitment is increasing with participation cost. One observation is that

in the sequential game, the market maker’s spread jumps downward when transiting

into the deterring region. The reason is that when using the defensive tight spread

strategy, the spread is decreasing with the market maker’s capital commitment. On

the other hand, when the market maker is deterring the HFT with an aggressive tight

spread, this effect does not exist. Thus, when the market maker is indifferent between
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(a) Liquidity (b) Capital Commitment

(c) MM’s Spread (Sequential Game)

Figure 5: Comparative Statics on Participation Cost

using the defensive tight spread strategy and the aggressive tight spread strategy, the

aggressive tight spread must be smaller. Finally, with a high participation cost, the

market becomes a monopolistic market since it is never profitable for the HFT to

participate.

6 Policy Implications

In this section, I collect results developed in previous sections to discuss effects on

market quality brought by regulations over high-frequency trading. Taking the base-

line model as a starting point, this paper examines three types of regulations on

high-frequency trading: changing the HFT’s entry probability π, leveling the trad-

ing technology difference between the HFT and the market maker and imposing a

lump-sum high-frequency trading participation tax C.
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6.1 Altering the HFT’s Entry Probability

In practice, the HFT’s entry probability hinges on the HFT’s ability to detect other

investor’s orders and acquire shares in a timely manner. Regulations changing the

HFT’s detecting and purchasing capacities affect the HFT’s entry probability. For

instance, banning co-location and integrating financial markets would decrease the

HFT’s entry probability. Upgrading exchange’s trading system without further re-

stricting high-frequency trading would increase the HFT’s entry probability.

This model predicts that in a market where the HFT’s entry probability is high

(π in the tight spread region), encouraging the HFT entry is beneficial to market

quality. The reason is that the market maker is setting a tight spread facing a fierce

competition and the HFT is fulfilling the residual demand. An increase in HFT’s entry

probability leads to more shares supplied by the HFT without changing the market

maker’s incentive to commit capital. On the other hand, in a market with low HFT

entry probability, the market maker responses to the competition by committing less

capital in market making. Liquidity would increase with the HFT’s entry probability

only if the benefit from higher HFT share supply dominates the market maker’s cut

in capital commitment. Moreover, this model predicts that banning high-frequency

trading does not necessarily deteriorate liquidity. Yet the spread would become higher

due to the lack of competition.

6.2 Leveling the Trading Technology

This type of regulation “levels the playground” by making the market maker’s trading

technology comparable to the HFT’s. For instance, the regulator can encourage HFTs

to become designated market makers or incentivize existing market makers to upgrade

their trading technologies. The batch auction proposed by Budish, Cramton, and

Shim (2015) also achieves this goal since the market maker would have a chance to

revise his order.

This model predicts that this policy is beneficial when the HFT’s entry probability

is low (π in the wide spread region). Without a superior technology, the HFT mixes in

posting spreads rather than undercuts the market maker at the monopolistic spread.

This drives down the average share price and improves market quality. When the

HFT’s entry probability is high, this model predicts that leveling the trading tech-

nology leads to less shares for low valuation buyers (because the market maker now
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mixes rather than stick to the tight spread) and more shares for high evaluation buy-

ers (because the HFT now mixes rather than stick to the monopolistic spread). The

overall effect can be ambiguous.

6.3 Imposing High-frequency Trading Participation Tax

The third type of regulation imposes a lump-sum participation cost over high-frequency

trading. For example, regulations in France and Germany require a fee to be charged

based on both executed and canceled orders. Regulation in Germany further requires

all traders to tag algorithm generated orders. These regulations essentially induce a

participation cost on high-frequency trading.

In this model, a low participation tax would not change the market quality. If the

tax is high, the HFT would (at least partially) exit the market. The market maker’s

spread increases with the tax and converges to the monopolistic spread. Moreover, the

market maker also commits more capital in market making. The directional change

of liquidity depends on which effect dominates. Yet it is certain that extremely high

participation cost always hurts the market.

7 Extension: Flipping

In this section, I consider the situation where the HFT can flip orders by first pur-

chasing shares from the market maker and then resupplying them at a higher spread.

There are two implicit assumptions. First, the HFT is not constrained in capital.33

Second, the market maker does not have enough time to buy additional shares from

the inter-dealer market after the HFT purchases shares from him. In this extension,

the HFT observes the market maker’s capital commitment qm and spread xm before

making flipping and pricing decisions. For the ease of notation, in this section, I

assume that G has an unbounded support. When G has a bounded support, the

qualitative results are essentially the same.

I first consider the HFT’s flipping and pricing decisions in a one-shot game (qm, qh, π).

Notice that if the HFT flips shares from the market maker, her spread must be higher

than the market maker’s spread. In this case, her optimal spread is xh = x∗. If the

market maker holds qm shares and his spread is xm < x∗, the HFT’s expected payoff

33Remember that the HFT’s shareholding qh only reflects the exogenous market condition
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when buying qf shares from the market maker is

r(qf ) = (1− F (x∗))x∗[k(qm + qh)− k(qm − qf )]− xmqf . (12)

The first term of the right hand side is the expected gain from selling qh+qf shares at

spread x∗ when the market maker is left with qm−qf shares at a lower spread xm. The

second term of the right hand side is the premium paid by the HFT. The HFT pays

1+xm for each flipped share. If the buyer does not purchase these shares at the price

1 + x∗, the HFT only receives 1 by selling each share left to the inter-dealer market.

Notice that by purchasing shares from the market maker, the HFT reduces the market

maker’s supply and thus the competition. Since the market maker is selling at a lower

spread, the more the HFT purchases from the market maker, the easier it is for the

HFT to sell shares. In other words, the marginal benefit of purchasing shares is

increasing in qf . This implies the HFT would follow an “all or nothing” strategy.

Proposition 11 The HFT either purchases the market maker’s entire shareholding

qm or nothing. In other words, qf = qm or 0.

Proof. Notice that

r
′
(qf ) = (1− F (x∗))x∗(1−G(qm − qf ))− xm ,

r
′′
(qf ) = (1− F (x∗))x∗g(qm − qf ) > 0 .

This implies the maximum is achieved at the boundary qf = 0 or qf = qm.

Consider the market maker’s pricing problem. When his spread is low enough, by

Proposition 11, the HFT would purchase all shares from him upon entry. Thus, com-

paring to the baseline case, the market maker has an additional option to strategically

lower his spread to induce flipping. The highest possible spread that induces flipping,

xfm, can be pinned down by the HFT’s indifference conditions: Buying all shares from

the market maker should be more profitable than either buying nothing and setting

the monopolistic spread or buying nothing and undercutting the market maker at

the spread xfm. On the other hand, from the market maker’s perspective, any spread

lower than xfm cannot be optimal. This can be summarized by the following lemma:

Lemma 3 xfm satisfies

(1− F (x∗))x∗k(qm) ≥ xfmqm (13)
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and

(1− F (x∗))x∗k(qm + qh) ≥ xfmqm + (1− F (xfm))xfmk(qh) . (14)

At least one inequality is binding. Moreover, if Inequality (14) binds, the flipping

strategy dominates the tight spread strategy.

Proof. Inequality (13) guarantees that the HFT is better off with qf = qm than with

qf = 0 when setting xh = x∗. Inequality (14) guarantees that the HFT is better off

with w = qm than undercutting the market maker. Since the market maker is better

off choosing the highest possible spread given the HFT is flipping orders, one of the

inequalities must be binding.

Moreover, if inequality (13) binds,

xfm =
(1− F (x∗))x∗k(qm)

qm
.

Otherwise, since (1− F (x))x is increasing in [0, x∗], there exists a unique

xfm ∈ (0,
(1− F (x∗))x∗k(qm)

qm
)

such that

(1− F (x∗))x∗k(qm + qh) = xfmqm + (1− F (xfm))xfmk(qh) .

If inequality (14) binds,

(1− F (x∗))x∗k(qm) > xfmqm (15)

and

(1− F (x∗))x∗k(qm + qh) = xfmqm + (1− F (xfm))xfmk(qh) . (16)

Then,

(1− F (x∗))x∗[k(qm + qh)− k(qm)] < (1− F (xfm))xfmk(qh) . (17)

Thus,

xfm > x . (18)

In this case, the tight spread strategy is never optimal because the market maker can

raise the spread to xfm to achieve higher expected payoff.

45



The wide and tight spread strategies are still available to the market maker. Specif-

ically, if the market maker uses a wide spread, his expected payoff is

(1− F (x∗))x∗[π(k(qm + qh)− k(qh)) + (1− π)k(qm)] .

If x > xfm, the market maker’s expected payoff from the tight spread strategy is

(1− F (x))xk(qm) .

If the market maker posts xfm, his expected payoff is

πxfmqm + (1− π)(1− F (xfm))xfmk(qm) .

An important observation is that, if the market maker expects the HFT to flip shares,

the market maker’s expected payoff is increasing in π. This is because with flipping,

the HFT is providing insurance for the market makers. When π is large enough, the

market maker would always induce flipping.

Proposition 12 Under any qm and qh, if π is high enough, the market maker sets

spread xfm in the equilibrium.

Proof. Consider the situation when π = 1. If inequality (13) is binding, the market

maker’s expected payoff with flipping is

xfmqm = (1− F (x∗))x∗k(qm) .

This is the highest possible payoff. If inequality (14) is binding, by Lemma 3, the

tight spread strategy is dominated. Moreover,

xfmqm = (1−F (x∗))x∗k(qm+qh)−(1−F (xfm))xfmk(qh) > (1−F (x∗))x∗(k(qm+qh)−k(qh)) .

Thus, setting xm = xfm is better than setting xm = x∗. By continuity, for π large

enough, it is always optimal to induce flipping.

Now consider the infinite period game. Although the market maker can be in-

sured by the HFT, he does not have the inventive to increase capital commitment

indefinitely. This is because the expected payoff by committing qm is upper-bounded

by (1− F (x∗))x∗k(qm), the monopolistic payoff. For qm →∞, xfm → 0. This implies
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an upper-bound exists for the market maker’s capital commitment in the steady state

equilibrium. The existence of a steady state equilibrium (when the market maker has

a large initial net worth) can be proved in a similar manner.

Proposition 13 For large enough w0, a steady state equilibrium exists.

Proof. The proof is omitted since it is similar to the existence result proved in

previous sections.

(a) Liquidity v.s. Volume (b) Buyers’ v.s. Average Spread

Figure 6: Equilibrium Volume and Price with Flipping

Figure 6 presents a numerical example showing the equilibrium liquidity and av-

erage spread when the HFT is able to flip orders. When the HFT’s entry probability

is low, whether the HFT can flip orders or not does not make a difference in the

equilibrium. Since the benefit of inducing flipping cannot cover the cost of setting

low spread, the market maker sticks to the equilibrium strategy inducing no flipping.

When the HFT’s entry probability becomes large, the equilibrium enters the flip-

ping region where the market maker sets a low spread to induce flipping. In this

region, a large portion of transactions happens between the market maker and the

HFT. With the trading technology advantage, the HFT purchases all low price shares

when entering the market. The buyer only benefits from the market maker’s low

spread when the HFT fails to enter the market. This suggests that it is important

to separate trades between liquidity suppliers (the market maker and the HFT) and

trades from liquidity suppliers to the buyer. Otherwise, as shown in Figure 6a, the

expected trading volume and the average spread do not accurately reflect the market

quality. In Figure 6a, the expected shares sold to the buyer only increase modestly in
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π comparing to the expected trading volume. Moreover, the average spread remains

low in the flipping region while the buyer is facing a much higher spread increasing

in π. This is because the majority of low price shares are purchased by the HFT.

When the HFT becomes more likely to enter the market, the buyer becomes less

likely to purchase cheap shares. This implies that if the HFT has far superior trading

technology than the market maker, the entry of HFT only has limited benefits for

the buyer. Furthermore, if we look at the overall trading data, the welfare effect of

high-frequency trading will be overestimated.

8 Extension: Supply Schedule and Induced Limit

Order Book

One assumption in the baseline model is that the market maker sells all shares at

one spread. In this section, I analyze an extension where the market maker can

submit a supply schedule to sell shares at different spreads. To keep the problem

tractable, I maintain the assumption that the HFT sells all her shares at one spread.

Moreover, the HFT determines her spread after observing the market maker’s capital

commitment qm and supply schedule.

Formally, given the market maker’s capital commitment qm, his pricing strategy

can be represented by a supply schedule Ψ. qmΨ(x) is the amount of shares supplied

by the market maker with spreads less or equal to x. In the steady state, the market

maker posts the supply schedule to maximize his expected profit in each period.

Thus, it is suffice to first solve for the optimal Ψ in a one-shot game under any qm

and then consider the marginal value of capital commitment to determine the steady

state capital commitment.

8.1 No HFT

Consider a one-shot game where the market maker holding qm shares maximizes

expected profit in a single period.34 Under this circumstance, the market maker opti-

mally sells all shares at the monopolistic spread x∗. Formally, we have the following

proposition:

34As in the baseline model, the market maker can sell all shares at price one back to the inter-dealer
market at the end of the period.
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Proposition 14 Given any qm, in a one-shot game, the market maker would op-

timally set the supply schedule to be Ψ(x) = I{x≥x∗}. This coincides to the pricing

strategy when the market maker has to sell all shares at one spread.

Proof. See appendix

A direct implication of Proposition 14 is that, in a infinite period game with no

HFT, the steady state equilibrium is the same as the equilibrium in the baseline

model. In other words, with no potential competition from the HFT, the market

maker has no incentive to submit a non-degenerate supply schedule.

Corollary 5 When no HFT exists, the steady state equilibrium is the same as the

baseline model. Moreover, the market maker does not pay dividend when his net worth

is smaller than the steady state capital commitment w̄.

Proof. The first statement is a straightforward result from Proposition 14. For the

second statement, if the dividend payout is non-zero, the market maker can always

achieve a higher payoff by refraining from paying dividend and supply the extra

amount of shares at the spread x∗ and payout the total return from the extra shares

in the next period.

8.2 With HFT

When the HFT may enter the market, the market maker’s pricing strategy is non-

degenerate. Specifically, it is never optimal for the market maker to sell all shares

at one spread. The intuition behind this result is simple. Given any single spread

pricing strategy, the market maker can always sell a small amount of shares at another

spread without changing the HFT’s pricing strategy. In this way, the market maker

can either improve the tight spread strategy by selling some shares at a higher spread

or improve the wide spread strategy by selling some shares at a lower spread then the

HFT’s spread. Formally, we have the following proposition:

Proposition 15 For any qh and π > 0, supplying all shares at any spread x is not

the optimal pricing strategy for the market maker in the steady state equilibrium.

Proof. See appendix

Moreover, with the ability to flexibly sell shares, an immediate lower bound q

exists for the market maker’s capital commitment in the steady state. If the capital
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commitment level is below q, the market maker can always improve his expected

payoff by committing more capital and sell additional shares at the spread x∗.

Corollary 6 The market maker would commit at least q > 0 unit of capital, as long

as his capital commitment with no HFT is non-zero. Specifically, q is the solution of

δ

1− δ
(1− F (x∗))x∗[π(1−G(q + qh)) + (1− π)(1−G(q))] = 1 .

Notice that q is also the market maker’s equilibrium capital commitment level in

the wide spread region of the baseline model. Thus, allowing the market maker to sub-

mit a supply schedule improves liquidity in the wide spread region. Liquidity change

in the tight spread region when the market maker can submit a supply schedule is

ambiguous. However, the following proposition guarantees that given any specific set

of parameters, the market maker’s supply schedule can be easily computed. Then the

change in spreads and liquidity can be characterized through numerical calculation.

Proposition 16 The market maker’s equilibrium pricing strategy Ψ(x) satisfies three

conditions:

1. Ψ(x∗) = 1.

2. Ψ(·) has no mass point for x < x∗.

3. The HFT achieves the same expected payoff by setting any xh ∈ [x, x∗] where

Ψ(x) = 0.35

Proof. See appendix

With this result, the market maker’s equilibrium capital commitment qm and

pricing strategy Ψ(x) can be numerically computed with the following algorithm: (i)

Fix a qml, the amount of shares sold by the market maker with spreads lower than x∗.

(ii) If qml ≤ q, q = q; i.e., the market maker sells q − qml shares at the monopolistic

spread x∗. Otherwise, q = qml. (iii) Given qml and q, Ψ(x) is pinned down by

(1− F (x))x[k(Ψ(x)q + qh)− k(Ψ(x)q)] = (1− F (x∗))x∗[k(qml + qh)− k(qml)]

35Notice that the second result is implied by the third result. If there is a mass point at a spread
x < x∗, the indifference condition cannot hold everywhere.
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for x ∈ [x, x∗) and Ψ(x∗) = 1. (iv) As in the baseline case, let M(q) be the expected

per-period payoff of the market maker with capital commitment q. If q = q, define

M(q) to be the maximum expected payoff for qml ∈ [0, q]. (v) The market maker’s

equilibrium capital commitment is

qm = maxq∈[q,q̄]
δ

1− δ
M(q) + (w0 − q) .

The market maker’s pricing strategy is then pinned down by the procedure above.

Figure 7: Supply Schedule of the Market Maker

When the buyer’s demand qb follows an exponential distribution, the market

maker’s supply schedule can be explicitly characterized. Specifically, let ψ(x) = Ψ
′
(x).

Then for x ∈ [x, x∗), ψ(x) ∝ 1
x
− f(x)

1−F (x)
. Figure 7 provides a visual illustration of the

market maker’s supply schedule under a further assumption that the buyer’s spread

tolerance v− 1 follows a uniform distribution. The x-axis represents the spread while

the y-axis represents the density of the market maker’s supply schedule. The den-

sity of the market maker’s supply is decreasing to zero approaching the monopolistic

spread x∗. Moreover, the line at rightmost of Figure 7 demonstrates that the market

maker is supplying a positive number of shares at the spread x∗.

8.3 Discussion

This extension demonstrates the change in market quality when the market maker

can sell shares at different spreads. With no HFT, the limit order book is degenerate

in the sense that all shares are still supplied at the monopolistic spread x∗ as in

the baseline model. Conversely, when the HFT might enter the market, the market
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maker would supply shares at continuum of spreads. This improves liquidity in the

wide spread region. The liquidity change in the tight spread region is ambiguous but

can be computed numerically.

More importantly, this extension illustrates how competition determines the shape

of the limit order book.36 Intuitively, fixing the HFT’s pricing strategy, the market

maker has incentive to increase spreads of some shares for higher expected profit. Yet

to prevent the HFT from undercutting, the market maker needs to supply enough

amount of shares at low spreads. This trade-off determines the shape of the limit

order book. In any steady state equilibrium, the market maker would choose a supply

schedule such that the HFT is indifferent between undercutting the market maker at

any spread in the schedule and posting the monopolistic spread x∗.

9 Conclusion

My paper studies how high-frequency trading changes market quality through af-

fecting the traditional market maker’s capital commitment and pricing decisions.

I consider a long-run market maker facing competition from the possibly entering

short-run HFT in providing liquidity. In the steady state, the long-run market maker

responses to the competition by reducing his spread and committing less capital in

market making. The latter effect impairs market quality. Thus, when taking the

market maker’s capital commitment channel into consideration, high-frequency trad-

ing does not necessarily improves market quality though it always (weakly) reduces

the average spread. Moreover, in my model, the difference in trading technologies

between the HFT and the market maker affects market quality. When the HFT’s

entry probability is low, “leveling the playground” by making the market maker and

the HFT trade at the same speed improves market quality.

I further consider three extensions. The first extension introduces a high-frequency

trading participation cost and endogenizes the HFT’s participation choice. When the

HFT trades faster than the market maker and the participation cost is low, market

quality remains the same. On the other hand, when the participation cost is high, the

market maker optimally sets a spread to deter the HFT from entering the market.

36Viswanathan and Wang (2002) address this issue under a different setting. Roşu (2009) analyzes
a similar problem under the assumption that each market participant supplies one unit of share to
the market.
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Moreover, although the HFT does not participate in high-frequency trading after

the participation cost passes a certain threshold, the cost level still affects the market

quality. The reason is that the market maker’s deterring strategy depends on the cost.

When the HFT and the market maker trade at the same speed, the model’s prediction

is similar except that the HFT mixes in participation facing a high participation cost.

In the second extension, the HFT can “flip shares” by purchasing shares from

the market maker and resupplying them at a higher spread. With high HFT entry

probability, the market maker would induce flipping by posting a low spread since

flipping effectively serves as an insurance for the market maker. Yet the buyer does

not benefit from the low spread since most of the cheaper shares are acquired by the

HFT. This extension demonstrates the importance to exclude the trading between

liquidity supplier when evaluating market quality. Otherwise, market quality would

be overestimated with an overestimation of the expected trading volume and an

underestimation of the average spread.

The third extension investigates implications on the shape of the limit order book

when the market maker can sell shares at different spreads. Specifically, with no

HFT, the market maker would still sell all shares at the monopolistic spread. How-

ever, facing the competition from the HFT, the market maker would sell shares at

a continuum of spreads. This extension demonstrates how competition between the

market maker and the HFT determines the shape of the limit order book.

Finally, I want to emphasize several important insights of this model. First, the

price information alone cannot capture all important aspects of market quality; the

volume information is equally important. Second, more high-frequency trading does

not necessarily improves market quality since it reduces the market maker’s willing-

ness to commit capital in market making. Third, the relative trading speed between

the market maker and the HFT affects market quality. When the HFT’s entry prob-

ability is low, letting the market maker and the HFT trade at same speed improves

market quality. Fourth, it is important to separate the trades among liquidity sup-

pliers to avoid overestimations on market quality and the high-frequency trading’s

welfare effect.
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A Base Case Proofs and Claims

A.1 Useful Results

Lemma 4 (1− F (x))x is unimodal.

Proof.
((1− F (x))x)

′
= 1− F (x)− xf(x)

= (
1− F (x)

f(x)
− x)f(x)

(19)

for f(x) 6= 0. Notice that f(x) = 0 is not a problem. Since the hazard rate is non-

decreasing, if f(xx̃) = 0, then f(x) = 0 for all x ∈ [0, x̃). Thus, ((1−F (x))x) cannot

achieve maximum at x = x̃. Moreover, 1−F (x)
f(x)

− x is continuous and decreasing.

Thus, there exists a unique x∗ such that 1 − F (x∗) − x∗f(x∗) = 0. Easy to see that

for x > x∗, ((1− F (x))x)
′
< 0; for x < x∗, ((1− F (x))x)

′
> 0.

A.2 No HFT

A.2.1 Proof of Theorem 1

Proof. First consider a relaxed problem with d ∈ [−q̄, w]. Conjecture that the

optimal policy is dt = wt − q̄ and xt = x∗ where x∗ = argmax(1 − F (x))x, ∀t. If

this policy is indeed the optimal policy for this relax problem, then for w0 ≥ q̄, this

optimal policy is applicable and thus also optimal for the more constrained original

problem. This proposition also implies that the market maker’s payoff is linear in w0

with w0 ≥ q̄.

We use a method similar to one-shot deviation principle to establish the optimality

of proposed policy. Notice that although the market maker discounts future dividends,

the per-period dividend does not necessarily have a uniform bound. Thus, I directly

check that this problem is continuous at infinity.

Consider two dividend and pricing policies {dt, xt}∞t=0 and {d̃t, x̃t}∞t=0. dt, xt, d̃t, x̃t

are functions of ht, the history of the first t−1 periods.37 We suppress the dependence

for the ease of notation. Consider the case when dt = d̃t and xt = x̃t for t ≤ T . Define

the absolute value of the difference in expected payoffs between two policies to be DT .

37We define h0 = ∅.
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We have

DT = |E0(
∞∑

i=T+1

δi(di − d̃i))|

≤ |E0(
∞∑

i=T+1

δici)|+ δT+1 1

1− δ
q̄

≤ δT+1E0(wT+1) +
∞∑

i=T+1

δix̄EG(q) + δT+1 1

1− δ
q̄

= δT+1E0(wT+1) + δT+1 1

1− δ
x̄EG(q) + δT+1 1

1− δ
q̄ .

The first inequality is because the worst dividend plan after period T is to pay −q̄
for all periods. The second inequality is because for any period t, the expect profit

is (1− F (xt))xtEG(min(q, wt − dt)).38 This is uniformly bounded by x̄EG(q). Thus,

in each period, the expected dividend is bounded by x̄EG(q) plus part of the market

maker’s net worth in period T + 1. Notice that commit more shares cannot improve

the expected dividend bound since EG(min(q, w)) ≤ EG(q). Thus, the expected

discounted dividend payout is bounded by the case when the market maker pays

dividend equal to the entire net worth in period t = T + 1 and pays the upper bound

of expected profit in each period.

Notice that δT+1 1
1−δ x̄EG(q) → 0 and δT+1 1

1−δ q̄ → 0 as T → ∞. Moreover,

Et(wt+1) ≤ wt + x̄EG(q) + q̄. This implies that

δT+1E0(wT+1) ≤ δT+1[w0 + (T + 1)(x̄EG(q) + q̄)] . (20)

Thus, δT+1E0(wT+1) → 0 as T → ∞. Thus, for any two policies that different only

after period T , as T →∞, DT → 0.

Since this game is continuous at infinity, if there exists a profitable deviation, then

there exists a profitable deviation such that the deviating policy is different from the

candidate policy for finite periods. Consider a deviation where the the deviating

policy is different from the candidate policy for n periods. For t ≥ n, the deviating

policy switches back to the candidate policy d̂t = wt − q̄ and x̂t = x∗. Consider

the market maker in period t = n with net worth wn. Suppose the deviating policy

specifics d̂n = wn−ŵ and xn = x̂n. Then in period n, the difference between expected

38EG means q follows distribution G, I suppress the time notation because demands are i.i.d.
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payoffs of two policies is

En(dn − d̂n + δdn+1 − δd̂n+1) = ŵ − q̄ + δ(1− F (x∗))x∗EG(min(q, q̄))

− δ(1− F (x̂n))x̂nEG(min(q, ŵ))− δ(ŵ − q̄)

≥ (1− δ)(ŵ − q̄) + δ(1− F (x∗))x∗[EG(min(q, q̄))− EG(min(q, ŵ))] .

The inequality follows from (1− F (x̂n))x̂n ≤ (1− F (x∗))x∗.

Define

A(y) = (1− δ)(y − q̄) + δ(1− F (x∗))x∗[EG(min(q, q̄))− EG(min(q, y))] .

Then

A
′
(y) = 1− δ − δ(1− F (x∗))x∗(1−G(y)) ,

A
′′
(y) = g(y) > 0 .

Since A
′
(y) is monotone, A

′
(y) = 0 has at most one solution and upon which A(y)

achieves minimum. Note that A
′
(y) = 0 implies

δ

1− δ
(1− F (x∗))x∗(1−G(y)) = 1 .

Thus, A(y) achieves minimum at y = q̄ and A(q̄) = 0. Thus,

En(dn − d̂n + δdn+1 − δd̂n+1) ≥ 0 . (21)

This implies that if there exists a profitable deviation such that the deviating

policy differs from the candidate policy for n periods, then in period n, the market

maker should adopt the candidate policy. Same reasoning then shows that the market

maker should adpot the candidate policy in period n − 1. The backward induction

goes back to period 1. Since n is arbitrary and this problem is continuous at infinity,

no profitable deviation exists and the candidate policy is optimal.
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A.2.2 Existence of Value Function

Proposition 17 There’s a unique V such that it is continuous and strictly increasing

in w.

Proof. We focus on V (w) for w ∈ [0, ŵ]. Moreover, since V (w) = w − q̄ + V (q̄)

Define operator T to be

(T l)(w) =supd,xd+ δ{F (x)l(w − d)

+ (1− F (x))[

∫ w−d

0

(l(min(q̄, w − d+ xq)) +max(0, w − c+ xq − q̄)g(q)dq+

(1−G(w − d))(l(min(q̄, (1 + x)(w − d))) +max(0, (1 + x)(w − d)− q̄))]}
(22)

satisfying c ∈ [0, w].

First check that for large enough K̄, l(w) ≤ K̄ =⇒ T l(w) ≤ K̄. Thus, the value

function is bounded and Blackwell condition is applicable. Easy to check T satisfies

monotonicity and discounting.

By contract mapping theorem, operator T has a unique fixed point V . Easy to

see T maps increasing functions to strictly increasing functions. This implies V must

be increasing.

A.3 Sequential Pricing

A.3.1 Proof of Lemma 1

Proof. If xm > x∗, easy to see the HFT’s optimal strategy is to set xh = x∗. Consider

the situation when xm ≤ x∗. For xh ≤ xm, the HFT’s expected net profit is

(1− F (xh))xhk(qh) ,

which attains maximum at xh = xm by lemma A.1. For xh > xm, the HFT’s expected

net profit is

(1− F (xh))xh[k(qh + qm)− k(qm)] ,

which attains maximum at xh = x∗.
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A.3.2 Proof of Lemma 2

Proof. First notice that xm > x∗ cannot be optimal. If xm > x∗, the HFT’s best

response is to set xh = x∗ and the market maker’s expected net profit is

(1−F (xm))xm[π(k(qh+qm)−k(qh))+(1−π)k(qm)] < (1−F (x∗))x∗[π(k(qh+qm)−k(qh))+(1−π)k(qm)] .

This implies the market maker will be better off by setting xm = x∗.

Next, there is a unique x < x∗ such that if xm = x, the HFT is indifferent between

xh = x∗ and xh = xm. For any xm < x∗, the HFT’s expected net profit with xh = x∗

is

(1− F (x∗))x∗[k(qh + qm)− k(qm)] ;

the HFT’s expected net profit with xh = xm is

(1− F (xm))xmk(qh) .

Since (1− F (x))x is increasing for x ∈ [0, x∗] and k(qh + qm)− k(qm) < k(qh), there

exists a unique x ∈ (0, x∗) such that

(1− F (x∗))x∗[k(qh + qm)− k(qm)] = (1− F (x))xk(qh) ,

or equivalently,

a(x)k(qh) = k(qm + qh)− k(qm) .

Finally, check that any other pricing strategy of the market maker is dominated

either by xm = x∗ or xm = x. If xm ∈ (x, x∗), the HFT would set xh = xm. The

market maker’s expected net profit is

(1−F (xm))xm[π(k(qh+qm)−k(qh))+(1−π)k(qm)] < (1−F (x∗))x∗[π(k(qh+qm)−k(qh))+(1−π)k(qm)] .

Thus, he would be better off switch to xm = x∗. For xm ∈ (0, x), the HFT would

set xh = x∗. The market maker’s expected net profit is (1 − F (xm))xmk(qm) <

(1− F (x))xk(qm).This suggests that he would be better off to set xm = x.
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A.3.3 Proof of Proposition 1

Proof. For any qm, the tight spread can be determined by the equation

a(x(qm)) =
k(qm + qh)− k(qm)

k(qh)
. (23)

The tight spread strategy strategy is optimal if

a(x(qm))k(qm) ≥ [k(qm + qh)− k(qh)]π + (1− π)k(qm) . (24)

Subtract k(qm) from both sides,

k(qm + qh)− k(qh)− k(qm)

k(qh)
k(qm) ≥ π[k(qm + qh)− k(qh)− k(qm)] . (25)

Since k(qm + qh)− k(qh)− k(qm) < 0 for qm > 0, qh > 0,

k(qm)

k(qh)
≤ π . (26)

A.3.4 Proof of Theorem 2

Proof. Consider a relaxed problem where dt ∈ [−q̄, wt]. Given HFT’s best response

, this problem can be reduced to a decision problem of the market maker. Suppose

the policy proposed in this theorem is not optimal. Using the same argument as in

the proof of theorem 1, this game is continuous at infinity. Thus, I can focus on

considering a finite period deviation. Consider a better policy with deviation for at

most n periods. In period n, I only need to consider the difference of consumptions

in period n and n+ 1. If cn 6= wn− qm, by Proposition 1, the market maker’s optimal

strategy is to set xm = x̂m(qm) and get expected net profit M(qm). This is exactly the

original policy. Suppose dn = wn − ŵ. Since the market maker’s maximum expected

profit in period n is M(ŵ),

wn − ŵ + δ[M(ŵ) + (ŵ − qm)] > wn − qm + δM(qm) .
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This implies
δ

1− δ
M(ŵ)− ŵ >

δ

1− δ
M(qm)− qm .

Since qm = argmaxw∈[0,q̄]
δ

1−δM(w)+(w0−w), if such ŵ exists, it must be ŵ > q̄. Since

M(w) = max((1−F (x∗))x∗[k(w+qh)−k(qh)], (1−F (x(w))x(w))k(w)) is continuous

and differentiable almost everywhere. Easy to see that δ
1−δM

′
(w) ≤ 1 for w ≥ q̄.

Thus, if ŵ > q̄,
δ

1− δ
M(q̄)− q̄ ≥ δ

1− δ
M(ŵ)− ŵ .

This is because

δ

1− δ
M(ŵ) =

δ

1− δ
M(q̄) +

∫ ŵ

q̄

δ

1− δ
M
′
(x)dx .

This implies that any n period deviation can be dominated by a n−1 period deviation

for all n. Repeating this argument implies that no finite period deviation exists and

establishes the optimality of the proposed policy. Since w0 > q̄, the proposed policy

is implementable in the original problem and is thus optimal. The HFT’s optimality

condition is satisfied since the HFT always plays the best response.

A.3.5 Proof of Corollary 2

Proof. Two conditions are derived from the first order condition ofmaxw∈[0,q̄]
δ

1−δM(w)+

(w0 − w). To see the market maker never fully exit the market, notice that x → x∗

when xm → 0. Since q̄ > 0, δ
1−δ (1−F (x∗))x∗ > 1. Then there always exists a qm > 0

such that δ
1−δ (1− F (x∗))x∗(1−G(qm)) = 1.

A.3.6 Proof of Theorem 3

Proof. For the ease of notation, let qπm be the equilibrium capital commitment of the

market maker when the HFT’s entry probability is π. Let x(q) be the tight spread

when the market maker’s shareholding is q. Notice that x does not depend on π.

Consider a sequential pricing game with π = 1. If in the steady state equilibrium, the

market maker uses the wide spread strategy with shareholding q1
m, then by Theorem

2, for any q ∈ [0, q̄],

(1−F (x∗))x∗(k(q1
m+qh)−k(qh))+(w0−q1

m) ≥ (1−F (x(q)))x(q)k(q)+(w0−q1
m) . (27)

63



That is, adopting the wide spread strategy with shareholding q1
m is better than using

the tight spread strategy at any level of shareholding. By Proposition 2, the single

period payoff for the tight spread strategy is constant regardless of π and the single

period payoff for the wide spread strategy is decreasing with π. Thus, for π < 1,

the market maker’s equilibrium strategy must still be the wide spread strategy. This

corresponds to the case where π̂ = 1.

If the market maker is using the tight spread strategy at a π1 < 1, then for

π2 > π1, by a similar argument with Proposition 2, the market maker would still

use the tight spread strategy. Moreover, qπ1
m = qπ2

m and thus x(qπ1
m ) = x(qπ2

m ) and

the market maker has the same equilibrium payoff. Denote this equilibrium payoff

when the market maker is using a tight spread strategy by V tight. Define V wide
π =

(1 − F (x∗))x∗[π(k(q + qh) − k(qh)) + (1 − π)k(q)] + (w0 − q) where q satisfies (1 −
F (x∗))x∗[1 − πG(q + qh) − (1 − π)G(q)] = 1. V wide

π is the equilibrium payoff for

the market maker if the wide spread strategy is adopted in the equilibrium. V wide
π is

continuous and decreasing with respect to π. Moreover, V wide
0 goes to the monopolistic

payoff. Since V tight > V wide
1 and V tight is bounded away from the monopolistic payoff,

there exist π̂ ∈ (0, 1) such that V wide
π̂ = V tight. By previous argument, the market

maker adopts the wide spread strategy if π < π̂ and tight spread strategy if π > π̂.

In the tight spread region, L = (1 − F (xm))k(qm) + π(F (x∗) − F (xm))(k(qm +

qh) − k(qm)). Since in the tight spread region, qm and xm = x(qm) is not changing

with respect to π, L is increasing in π.

For the third statement, consider a game at π = π̂ < 1. Two equilibrium share-

holdings for market maker, wtightm and wwidem both exist. If the market maker chooses

shareholding qtightm (qwidem ), he will play the tight (wide) spread strategy in the equi-

librium. By Proposition 1, k(qwidem ) ≥ π̂k(qh) ≥ k(qtightm ). This implies qwidem ≥ qtightm .

For π < π̂, qm > qwidem ≥ qtightm . This establishes that the market maker always have

a higher equilibrium shareholding in the wide spread region.

A.3.7 Proof of Proposition 3

Proof. Notice that in the wide spread region, L is continuous in π. Moreover, if

the wide spread region is [0, 1], liquidity is the same at π = 0 and π = 1. These two

observations imply the proposition.
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A.3.8 Proof of Proposition 4

Proof. For any w ≥ 0, givenG is an exponential distribution, k(s) = EG(min(q, s)) =

EG(q)G(s). By theorem 1, when no HFT exists, the market maker’s capital commit-

ment q̄ satisfies δ
1−δ (1 − F (x∗))x∗(1 − G(q̄)) = 1. By corollary 2, when the mar-

ket maker posts a wide spread in the equilibrium, his capital commitment satisfies
δ

1−δ (1 − F (x∗))x∗[(1 − π)(1 − G(qm)) + π(1 − G(qm + qh))] = 1. Thus, G(q̄) =

πG(qm + qh) + (1− π)G(qm).

Then,

k(q̄) = EG(q)G(q̄)

= EG(q)(πG(qm + qh) + (1− π)G(qm))

= πk(qm + qh) + (1− π)k(qm) .

(28)

This implies that liquidity does not depend on π in the wide spread region and is

equal to the liquidity in a monopolistic market.

A.3.9 Proof of Theorem 4

Proof. Let’s consider the first statement. Since I take other parameter as fixed and

only change π, in the proof, I represent liquidity by L(π) and the market maker’s cap-

ital commitment by qm(π) to make their dependences on π explicit while suppressing

all other dependences.

As π → 0, the market maker’s payoff by posting the wide spread converges to the

monopolistic payoff. By continuity of the market maker’s payoff, for π small enough,

the market maker would post a wide spread in the steady state equilibrium. In the

wide spread region, the market maker’s capital commitment qm(π) satisfies

δ

1− δ
(1− F (x∗))x∗[(1− π)(1−G(qm(π))) + π(1−G(qm(π) + qh))] = 1 . (29)

Take derivative with respect to π,

G(qm(π))−G(qm(π) + qh)−πg(qm(π) + qh)q
′

m(π)− (1−π)g(qm(π))q
′

m(π) = 0 . (30)

Collecting terms to get

q
′

m(π) =
G(qm(π))−G(qm(π) + qh)

πg(qm(π) + qh) + (1− π)g(qm(π))
. (31)
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In the wide spread region, L(π) = (1 − F (x∗))[(1 − π)k(qm(π)) + πk(qm(π) + qh)].

Then

1

1− F (x∗)
L
′
(π) =k(qm(π) + qh)− k(qm(π)) + π(1−G(qm(π) + qh))q

′

m(π)

+ (1− π)(1−G(qm(π)))q
′

m(π) .

(32)

Easy to see this function is continuous in π. Consider L
′
(π) at π = 0. Since

qm(0) = q̄,

1

1− F (x∗)
L
′
(0) = k(q̄ + qh)− k(q̄) + (1−G(q̄))

G(q̄)−G(q̄ + qh)

g(q̄)
. (33)

L
′
(0) < 0 if and only if

G(q̄ + qh)−G(q̄)

k(q̄ + qh)− k(q̄)
>

g(q̄)

1−G(q̄)
. (34)

Use integration by parts,

k(s) = s(1−G(s)) +

∫ s

0

qg(q)dq

= s(1−G(s)) + sG(s)−
∫ s

0

G(q)dq

= s−
∫ s

0

G(q)dq

=

∫ s

0

(1−G(q))dq .

(35)

Thus, L
′
(0) < 0 if and only if∫ q̄+qh

q̄
g(q)dq∫ q̄+qh

q̄
(1−G(q))dq

>
g(q̄)

1−G(q̄)
. (36)

Let

I(x) =

∫ q̄+x

q̄

g(q)dq − g(q̄)

1−G(q̄)

∫ q̄+x

q̄

(1−G(q))dq .
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Inequality (36) holds if and only if I(qh) > 0. Notice that I(0) = 0. Moreover,

I
′
(x) = g(q̄ + x)− g(q̄)

1−G(q̄)
(1−G(q̄ + x)) .

Since g(x)
1−G(x)

is increasing, for x > 0, I
′
(x) > 0. Thus, I(qh) > 0 and L

′
(0) < 0.

Then by continuity of L
′
(π), there exists a small region around 0 such that liquidity

is decreasing in π.

Notice that the calculation above works for the situation when q̄ + qh is in the

support of G. If q̄+qh is not in the support of G, replace q̄+qh with the upper-bound

of G’s support yields the same result.

For the increasing part, it is suffice to consider the situation where π = 1 is in the

tight spread region. Since liquidity is increasing with π in the tight spread region,

there exists π̃ such that liquidity is increasing for π ∈ [π̃, 1]. This finish the proof of

the first statement.

Now I consider the second statement. Fix π = 1. Notice that for any fixed qm > 0,

a(x) =
k(qm + qh)− k(qm)

k(qh)
→ 1−G(qm) < 1 as qh → 0 .

This implies that the market maker’s payoff by using the tight spread strategy is

bounded away from the monopolistic payoff as qh → 0. On the other hand, if the

market maker uses the wide spread strategy, easy to see as qh → 0, the expected

payoff converges to the monopolistic payoff. Thus, for small enough qh, the market

maker would use the wide spread strategy at the steady state even when π = 1. This

finish the proof of the second statement.

A.4 Simultaneous Pricing

A.4.1 Proof of Proposition 5

Proposition 5 can be divided into following claims.

Claim 1 Players never propose a spread greater than x∗

Proof. If a player propose a spread greater than x∗, regardless of the other player’s

strategy, switching to proposing x∗ yields a strictly larger payoff.
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Claim 2 Neither players would use pure strategies in an equilibrium.

Proof. Suppose the market maker posts spread xm = x in a equilibrium. The HFT’s

optimal strategy would be posting xh = x∗, xh = x or a mix between these two price.

Then the market maker would achieve higher payoff by undercutting the HFT’s lowest

possible price for a small enough ε. Contradiction

Suppose the HFT post spread xh = x in an equilibrium. Then in an equilibrium

the market maker can only post x∗. (Undercutting will lead to no equilibrium because

the payoff of the market maker is not continuous at x.) This implies xh 6= x∗ in the

equilibrium. However, if xh < x, given the market maker is posting xm = x∗, the

HFT would be better off posting xh = x∗. Contradiction.

Suppose there exists a mixed strategy equilibrium. Denote the infimum and supre-

mum of the spread posted by the market maker (HFT) by xm(xh) and x̄m(x̄h).

Claim 3 xm = xh and neither the market maker nor the HFT would post this spread

with positive probability in an equilibrium.

Proof. If not, the player with smaller spread lower-bound could raise the lower-

bound by a small enough amount to achieve higher payoff. Denote this common

lower-bound by x. If the HFT posts this spread with positive probability, rather than

posting x, the market maker would be strictly better off undercutting the HFT for a

small amount.

Suppose the market maker posts x with positive probability. Let B(x, r) be a

open ball centered at x with radius r. First note that ∀ε > 0, ∃xh ∈ B(x, ε) such

that xh is in HFT’s mixed strategy’s support. If not, since x is posted by the HFT

with zero probability, the market maker can increase xm by ε to achieve higher profit.

Then for small enough ε, HFT’s profit of posting x+ ε is strictly smaller than posting

x. Contradiction.

Claim 4 (No Holes) 6 ∃a, b ∈ (x, x̄m), a < b such that (a, b)
⋂
Xm = ∅. A similar

claim holds for Xh.

Proof. Suppose this claim is false. Without loss of generality, let (a, b) be a maximum

interval satisfying the claimed property. That is, (a, b)
⋂
Xm = ∅ and for any a

′
< a

and b
′
> b, (a

′
, b)

⋂
Xm 6= ∅; (a, b

′
)
⋂
Xm 6= ∅.
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By claim 1, x̄m, x̄h ≤ x∗. Notice that if (a, b) 6∈ Xm, then (a, b) 6∈ Xh. This is

because if x ∈ (a, b) and x ∈ Xh, the HFT may increase x by a small amount to

increase her payoff.

Then notice that a 6∈ Xm. This is because posting xm ∈ (a, b) will achieve a higher

payoff given (a, b) 6∈ Xh. Moreover, a 6∈ Xh by a similar argument.

Given that spread a is not posted by the HFT and the market maker with positive

probability, when xm → a from below, the payoff goes to the payoff of posting xm = a

by continuity, which is smaller than posting xm ∈ (a, b). Since (a, b) is a maximum

interval satisfying (a, b)
⋂
Xm = ∅, ∀ε > 0, B(a, ε)

⋂
Xm 6= ∅. This contradicts the

equilibrium definition that xm ∈ Xm is a best response to the HFT’s pricing strategy.

Claim 5 x̄m = x̄h = x∗.

Proof. Suppose that x̄m < x̄h. Then (x̄m, x̄h)
⋂
Xh = ∅ since posting xh = x̄h yields

a higher payoff. This contradicts Claim 4. Similarly, it is impossible that x̄m > x̄h. If

x̄m = x̄h < x∗, x̄m 6∈ Xm since xm = x∗ would yield higher payoff. Since x̄m 6∈ Xm, by

the same argument, x̄h 6∈ Xh. However, then by the continuity argument, for small

enough ε, xm ∈ B(x̄m, ε) will be dominated by posting xm = x∗. Contradiction.

Claim 6 ∀x ∈ (x, x∗)
⋂
Xm((x, x∗)

⋂
Xh), x is not proposed by the market maker

(HFT) with positive probability in an equilibrium.

Proof. We prove by contradiction. Suppose that the market maker posts spread x

with positive probability. Then by claim 4, ∀ε > 0, B(x+ε, ε)
⋂
Xh 6= ∅. However, by

continuity, when ε is small, the payoff posting that spread is dominated by posting x.

Contradiction. If the HFT posts spread x, note that the market maker’s profit when

posting a spread approaching x from the left is larger than the profit when posting a

spread approaching x from the right. This leads to a contradiction.

A.4.2 Proof of theorem 5

Proof. The proof of the first part is the same as the proof of Theorem 2. For the

second and the third statement, note that expected payoffs of the market maker are

the same in all one-shot games. Thus, in the equilibrium the market maker commits

the same amount of capital to the market. The HFT’s payoffs can be calculated from

the corresponding one-shot game.
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A.4.3 Proof of proposition 7

Proof. For the first statement, notice that Lse = (1 − F (x∗))[πk(qm + qh) + (1 −
π)k(qm)]. Compare this to Lsim in Theorem 5 to reach the conclusion.

Notice that I have shown that Lse is increasing in π. Thus, the third statement

is merely a corollary of the second statement. If π is in the tight spread region,

in equilibrium, k(qm) ≤ πk(qh) and a(x) is not changing with π. Moreover, qm

also remains constant with respect to π. Then by the market maker’s indifference

condition, for all x ∈ (x, x∗),

a(x){(1− π)k(qm) + π[Hh(x)(k(qm + qh)− k(qh)) + (1−Hh(x))k(qm)]} (37)

is constant for all π in the defensive region. This implies for any given x, πHh(x) is

constant for all π in the tight spread region. This together with Theorem 5 implies

that Lsim − Lse is constant. It also implies that in the tight spread region, increase

in π only benefits buyers with valuations higher than 1 + x∗.

B Extension: Costly Entry

B.1 Sequential Pricing

B.1.1 Proof of Proposition 8

Proof. If C ≥ C̄ = π(1 − F (x∗))x∗k(qh), the expected return of the HFT cannot

cover the cost even when the HFT undercuts the market maker at spread x∗. Thus,

the HFT will not enter the market regardless of the market maker’s spread. In

equilibrium, the market maker would choose xm = x∗.

Now consider the situation where C < C̄. In this case, if the market maker

posts the wide spread x∗, the HFT would attempt to enter the market and undercut

the market maker upon entry. Moreover, the HFT would not choose to enter and

undercut the market maker if the market maker posts the aggressive tight spread x

satisfying π(1−F (x))xk(qh) = C. If the market maker posts a spread higher than the

aggressive tight spread x, the HFT will always enter since she can always undercut

the market maker and earn a expected payoff higher than C.

If k(qm) < πk(qh), given the HFT chooses to enter the market, the market

maker’s optimal spread is the defensive tight spread satisfying (1 − F (x))xk(qh) =
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(1 − F (x∗))x∗[k(qm + qh) − k(qm)]. Moreover, as long as the HFT does not under-

cut the market maker, the market maker always prefers to set the spread xm higher

(given xm ≤ x∗). Thus, in equilibrium, the market maker will compare the defensive

tight spread and the aggressive tight spread and pick the greater one. Specifically, if

C > π(1− F (x∗))x∗[k(qm + qh)− k(qm)], posting the aggressive tight spread is more

profitable. Otherwise, posting the defensive spread is more profitable. Furthermore,

when facing the defensive tight spread, the HFT is indifferent between posting the

monopolistic spread and undercutting the market maker. Then when the market

maker posts the aggressive tight spread, upon entering, the HFT is better off un-

dercutting the market maker. This implies that when the market maker posts the

aggressive tight spread, the HFT will choose not to try to enter the market. The

discussion for k(qm) > πk(qh) follows the similar logic and is thus omitted.

B.1.2 Proof of Theorem 6

Proof. Let xa satisfies π(1 − F (xa))xak(qh) = C for C ∈ [0, C̄]. Let qam satisfies
δ

1−δ (1− F (xa))xa(1−G(qam)) = 1. This is the equilibrium capital commitment if the

market maker uses a deterring entry strategy. The equilibrium payoff is VC(w0) =
δ

1−δ (1 − F (xa))xak(qam) + (w0 − qam). Easy to see that this quantity is increasing in

C. Easy to see that when C ≥ C̄, this quantity becomes monopolistic payoff. Let

the market maker’s equilibrium payoff when C = 0 be V0(w0). There exist a unique

Ĉ such that VĈ(w0) = V0(w0). Thus, for C > Ĉ, the market maker is using the

deterring strategy in the equilibrium.

When the market maker is using a deterring strategy, suppose the HFT chooses

to participate, then she optimally set xh = x∗. Since (1) the HFT is not undercutting

the market maker, and (2) when the HFT participates, her optimal pricing strategy

does not depend on C, when C = 0, the market maker can use the same equilibrium

strategy to achieve a higher expected payoff. Contradiction. Thus, the HFT does not

choose to participate.

B.2 Simultaneous Pricing

B.2.1 Proof of Proposition 9

Proof. First consider the case where C > C̄. In this case, the HFT’s expect profit

can never cover the cost regardless of the market maker’s pricing strategy. Thus,
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η = 0 and the market maker sets xm = x∗.

Now consider the situation when C ∈ [0, C̄]. Suppose the HFT chooses η = 1 and

plays a mixed pricing strategy as in a game (qm, qh, π, 0). By Proposition 6, the HFT’s

expected profit is π(1 − F (x∗))x∗a(x)(π)k(qh). If π(1 − F (x∗))x∗a(x)(π)k(qh) ≥ C,

since C is paid at the end of the period, the equilibrium characterized by Proposition

6 still holds.

If π(1 − F (x∗))x∗a(x)(π)k(qh) < C < C̄, note that η 6= 0 in the equilibrium.

This is because if η = 0, the market maker would post xm = x∗. The HFT has

incentive to deviate to η = 1. Thus, I need to consider an equilibrium where the HFT

mixes between participating. In other words, η ∈ (0, 1). η can be pinned down by

the indifference condition that the HFT earns zero profit when trying to enter the

market.

First consider the situation k(qm) ≥ πk(qh). By Proposition 6, if the HFT tries

to enter with probability η, x is determined by

(1− ηπ)k(qm) + ηπ(k(qm + qh)− k(qh)) = a(x)k(qm) . (38)

Notice that x is decreasing in η and x→ x∗ as η → 0. Thus, there exist a unique η ∈
(0, 1) such that ηπ(1−F (x∗))x∗a(x)(ηπ)k(qh) = ηC where x is the lower-bound of the

mixed strategy in the game (qm, qh, ηπ, 0). If the HFT participates with probability η

and posts spread according to Hh in the game (qm, qh, ηπ, 0), the market maker has no

incentive to deviate from posting spread according to Hm in the game (qm, qh, ηπ, 0).

If the market maker sets price according to Hm, upon entering, the HFT has no

incentive to deviate from posting spread according to Hh. Moreover, the HFT earns

zero expected profit for trying to enter. Thus, the HFT has no incentive to deviate

from η.

Next consider the situation k(qm) < πk(qh). Notice that x remains constant in

this region. Let η̄ satisfies k(qm) = η̄πk(qh). By the same argument, there exists a

unique η ∈ (0, η̄) such that k(qm) > πηk(qh) and π(1 − F (x∗))x∗a(x)(π)k(qh) = C

where x is the lower-bound of the mixed strategy in the game (qm, qh, ηπ, 0). The rest

of the verification is the same.
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B.2.2 Proof of Corollary 4

Proof. This proof essentially involves only comparing the market maker’s payoffs

under two settings with different parameter values. Fix a game (qm, qh, π, C). First

consider the case when k(qm) ≥ πk(qh). In the one-shot simultaneous pricing game,

a(x)(π) = 1− π +
k(qm + qh)− k(qh)

k(qm)
π .

If π(1 − F (x∗))x∗a(x)(π)k(qh) ≥ C, by Proposition 9, in the simultaneous pric-

ing game, the HFT participates in high-frequency with probability 1. The market

maker enjoys the same expected payoff as in the simultaneous pricing one-shot game

(qm, qh, π, 0), which equals to (1−π)k(qm) +π(k(qm + qh)−k(qh)). By Proposition 8,

the market maker receives the same expected payoff in the sequential pricing one-shot

game . For π(1 − F (x∗))x∗a(x)(π)k(qh) < C, in the simultaneous pricing game, the

market maker receives payoff (1−F (x∗))x∗a(x)(ηπ)k(qm) by the indifference condition

where

a(x)(ηπ) =
C

π(1− F (x∗))x∗k(qh)
.

Thus, the market maker’s expected payoff is C
πk(qh)

k(qm), which equals to the expected

payoff in a one-shot sequential pricing game by Proposition 8..

Next consider the case when k(qm) < πk(qh). In a one-shot simultaneous pricing

game,

a(x)(π) =
k(qm + qh)− k(qm)

k(qh)
.

If π(1−F (x∗))x∗a(x)(π)k(qh) = π(1−F (x∗))x∗(k(qm + qh)− k(qm)) ≥ C, in a simul-

taneous pricing game, the market maker’s expected payoff is (1−F (x∗)x∗)a(x)k(qm).

This is the same as the expected payoff in a sequential pricing game. If π(1 −
F (x∗))x∗a(x)(π)k(qh) < C, in a simultaneous pricing game, the market maker re-

ceives payoff (1− F (x∗))x∗a(x)(ηπ)k(qm) where

a(x)(ηπ) =
C

π(1− F (x∗))x∗k(qh)
.

Thus, the market maker’s expected payoff is C
πk(qh)

k(qm), which equals to the expected

payoff in the sequential pricing game.
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C Multiple Markets Extension

In this extension, consider the case where n markets coexist. Each market has a

market maker with net worth w0 at the beginning of period 0. In each period, n

market makers determine shareholdings and spreads simultaneously. A short-run

HFT then arrives with net worth qh. She observes all market maker’s shareholdings

and spreads and chooses to enter a market. We assume in this extension that π = 1

and C = 0. To simplify the model, I further assume that the buyer in each market

is homogeneous and G follows an exponential distribution with mean 1
λ
. We also

assume that a market maker never observes the entry of the HFT or other market

makers’ shareholdings and spreads.39

Theorem 7 Suppose B = δ
1−δ (1 − F (x∗))x∗ > 1. Let q̄h satisfy Be−λq̄h + λq̄h =

B+12+
√
B2+8B

16
+ ln(B+

√
B2 + 8B)−2ln2 . If qh < q̄h, there exists a symmetric steady

state equilibrium where all market makers hold qm = lnB
λ
− qh. They use the same

mixed strategy to post spreads in [x, x∗]. x satisfies (1−F (x))x = e−λqh(1−F (x∗))x∗.

No spread is posted with positive probability. The HFT undercuts the market maker

with the highest spread on the equilibrium path.

C.1 Proof of Theorem 7

C.1.1 One Market with π = 1 and Exponential Demand

In the following calculation, suppose a buyer’s demand follows an exponential distri-

bution with mean 1
λ
. To simplify notation, define B = δ

1−δ (1−F (x∗))x∗. We assume

B > 1. If not, the market maker will liquidate in period 0 even if no HFT exists.

To see this, notice that when no HFT exists, the market maker’s steady state capital

commitment satisfies B(1−G(q̄)) = 1. This implies q̄ = lnB
λ

.

First determine the market maker’s tight spread when his shareholding is qm. The

indifference condition for the HFT is:

(1− F (x))xk(qh) = (1− F (x∗))x∗[k(qm + qh)− k(qm)] . (39)

39These assumptions aim at avoiding lengthy off equilibrium path discussions. If market makers
can observe all realizations and have passive beliefs, the result still holds.
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Thus,

a(x(qm)) =
k(qm + qh)− k(qm)

k(qh)
= e−λqm . (40)

This shows a very special property of the game when G is an exponential distribution:

The market maker’s tight spread only depends on the market maker’s shareholding.

If the market maker holds qm shares, his tight spread can be uniquely pinned down

by the equation (1− F (xm))xm = e−λqm(1− F (x∗))x∗.

Now consider a sequential pricing game with π = 1. In this game, if the market

maker adopts the wide spread strategy in the equilibrium, his capital commitment

satisfies

B(1−G(qm + qh)) = 1 . (41)

Thus, qm = lnB
λ
− qh and the equilibrium payoff for the market maker given he posts

the wide spread is

Va =B(k(qm + qh)− k(qm)) + (w0 − qm)

=
1

λ
B(G(qm + qh)−G(qm)) + (w0 − qm)

=
1

λ
B(e−λqh − 1

B
) + (w0 − qm)

=
1

λ
(Be−λqh − 1) + w0 − (

lnB

λ
− qh) .

(42)

Since qm ≥ 0 implies e−λqh ≥ 1
B

, this payoff is decreasing in qh.

If the market maker is adopting the tight spread strategy in the equilibrium, he

chooses qm to maximize

Vd(qm) = Be−λqm · k(qm) + (w0 − qm) . (43)

Take derivative to get

V
′

d (qm) = B(2e−2λqm − e−λqm)− 1 (44)

Let y = e−λqm ∈ (0, 1]. Since B > 1, 2y2 − y − 1
B

cross zero only once for y ∈ (0, 1].

Moreover, 2y2 − y − 1
B
> 0 when y = 1. Thus, Vd(qm) has a unique maximizer when
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e−λqm = y =
1+
√

1+ 8
B

4
. We get

qm =
1

λ
(ln(
√
B2 + 8B −B)− ln2)

and

Vd =
1

λ
· B − 4 +

√
B2 + 8B

16
+ w0 −

1

λ
(ln(
√
B2 + 8B −B)− ln2) .

Since Vd is independent of qh and Va is decreasing in qh, there exists a q̄h such that

for qh > q̄h, the market maker adopts the tight spread strategy and for qh < q̄h, the

market maker posts a wide spread. Specifically, q̄h satisfies

Be−λq̄h + λq̄h =
B + 12 +

√
B2 + 8B

16
+ ln(B +

√
B2 + 8B)− 2ln2 . (45)

C.1.2 n-market game

Notice that x satisfies

(1− F (x))xk(qm) = (1− F (x∗))x∗[k(qm + qh)− k(qh)]. (46)

That is, the market maker is indifferent between selling at spread x with no HFT

and selling at spread x∗ with the presence of the HFT of probability 1. Let H be a

cdf with support [e−λqh , 1]. H(a(x)) is the probability that a market maker posts a

spread smaller or equal to x such that a(x) = 1−F (x))x
(1−F (x∗))x∗

. By lemma A.1, there is a

bijection between a and x. Market makers’ pricing strategy is characterized by the

indifference condition:

a(x)B(H(a(x)))n−1[k(qm+qh)−k(qh)]+a(x)B[1−(H(a(x)))n−1]k(qm) = B[k(qm+qh)−k(qh)] .

(47)

Easy to see that at any level of shareholding, no market maker has incentive to

post a spread smaller than x. Thus, I only need to check that a market maker has no

incentive to deviate by choosing a different qm and then post a spread (or spreads)

between x and x∗. Since the HFT acts after market makers and market makers

cannot observe deviation, a market maker has no incentive to play a mixed strategy

in deviation. First, a market maker has no incentive to decrease qm and post a spread

in [x, x∗] such that the HFT never choose to undercut him. This is because a market
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maker’s equilibrium payoff is equal to the equilibrium payoff in a one market game

with π = 1 in the wide spread region. Since qh < q̄h, this dominates all possible

payoffs a market maker can obtain from the tight spread strategy.

We also need to consider a potential type of deviation that a market maker deviates

by fixing a spread in [x, x∗] and chooses a different level of capital commitment. This

possibility can be rule out by showing that the marginal benefit of capital commitment

is 1 under any spread in equilibrium. Since qm = lnB
λ
−qh, B(1−G(qm+qh)) = 1. This

means the marginal benefit of capital commitment at spread x∗ is 1 in the equilibrium.

x ∈ [x, x∗], the marginal benefit of capital commitment is

a(x)BQ(x)[1−G(qm + qh)] + a(x)B[1−Q(x)][1−G(qm)] , (48)

where Q(x) = H(a(x))n−1. To show this also equals to 1, notice that from the

indifference condition on spread,

a(x)Q(x) + a(x)[1−Q(x)]eλqh = 1 . (49)

Then,
a(x)BQ(x)[1−G(qm + qh)] + a(x)B[1−Q(x)][1−G(qm)]

B(1−G(qm + qh))

=aQ(x) +
a(x)[1−Q(x)][1−G(qm)]

1−G(qm + qh)

=a(x)Q(x) + a(x)[1−Q(x)]eλqh

=1 .

(50)

This shows that the marginal benefit of capital commitment over any spread within

[x, x∗] is one and a market maker has no incentive to deviate.

D Capital Commitment when G has Non-decreasing

Hazard Rate

This section provides a more detailed analysis of the market maker’s capital com-

mitment strategy when the buyer’s demand G follows a distribution with increasing

hazard rate. Particularly, under any fixed HFT shareholding qh, the market maker

has a unique optimal steady state tight spread strategy.
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Proposition 18 If G has non-decreasing hazard rate, maxyB
k(y+qh)−k(y)

k(qh)
k(y)+(w0−

y) has a unique solution qm ∈ [0, q̄]. B = δ
1−δ (1− F (x∗))x∗.

Notice that a(x) = k(qm+qh)−k(qm)
k(qh)

. By posting spread xm satisfying (1−F (xm))xm =

(1− F (x∗))x∗a(x), a short-run HFT with qh shares has no incentive to undercut the

market maker.

Proof. The first order condition is

W
′
(y) =

B

k(qh)
[(1−G(y))(k(y+ qh)−k(y))− (G(y+ qh)−G(y))k(y)]− 1 = 0 . (51)

When y = 0, W
′
(0) = B − 1 > 0. When y ≥ q̄, W

′
(y) < B(1−G(q̄))k(y+qh)−k(y)

k(qh)
− 1.

Since B(1−G(q̄)) = 1, W
′
(y) < 0. By continuity, W

′
(y) cross zero at least once for

y ∈ [0, q̄]. If I can show that W
′

only cross zero once, then a unique maximizer exists.

Consider any qm such that W
′
(qm) = 0. We have

(1−G(qm))[k(qm + qh)−k(qm)]− (G(qm + qh)−G(qm))k(qm) = k(qh)(1−G(q̄)) > 0 .

(52)

Thus,
k(qm + qh)− k(qm)

k(qm)
>
G(qm + qh)−G(qm)

1−G(qm)
. (53)

Next I show that W
′′
(qm) < 0. W

′′
(qm) < 0 is equivalent to

g(qm)[k(qm+qh)−k(qm)]+k(qm)[g(qm+qh)−g(qm)]+2(1−G(qm))[G(qm+qh)−G(qm)] > 0 .

(54)

Since G(qm + qh)−G(qm) > 0, a sufficient condition for inequality (54) is

g(qm)[k(qm + qh)− k(qm)] > k(qm)[g(qm)− g(qm + qh)] . (55)

Since G has non-decreasing hazard rate, g(qm+qh)
1−G(qm+qh)

≥ g(qm)
1−G(qm)

. Thus, g(qm)− g(qm +

qh) ≤ G(qm+qh)−G(qm)
1−G(qm)

g(qm). This implies inequality (53) is sufficient for inequality

(55).

In sum, there exists a qm ∈ [0, q̄] such that W
′
(qm) = 0. Moreover, for any qm

such that W
′
(qm) = 0, W

′′
(qm) < 0. This implies that W (y) has a unique maximum.

Proposition 19 Suppose G has non-decreasing hazard rate. Consider two simulta-
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neous pricing games where the market maker has discount rate δ1 in the first game

and discount rate δ2 in the second game. Suppose δ1 > δ2 and all other parameters

are the same. Let q1
m (q2

m) be the market maker’s steady state capital commitment in

the first game (the second game). Then q1
m > q2

m.

Proof. Let B1 = δ1
1−δ1 (1−F (x∗))x∗; B2 = δ2

1−δ2 (1−F (x∗))x∗. If the market maker is

using the wide spread strategy in both games, then q1
m > q2

m directly follows from the

first order condition. If the market maker is using the tight spread strategy in both

games, then by the first order condition,

B1

k(qh)
[(1−G(q1

m))(k(q1
m + qh)− k(q1

m))− (G(q1
m + qh)−G(q1

m))k(q1
m)]− 1 = 0 .

Since B1 > B2, we have

B2

k(qh)
[(1−G(q1

m))(k(q1
m + qh)− k(q1

m))− (G(q1
m + qh)−G(q1

m))k(q1
m)]− 1 < 0 .

Then by Proposition 18, there exists a unique q2
m < q1

m such that

B2

k(qh)
[(1−G(q2

m))(k(q2
m + qh)− k(q2

m))− (G(q2
m + qh)−G(q2

m))k(q2
m)]− 1 = 0 ,

and q2
m maximize the market maker’s expected payoff given he is using a tight spread

strategy in the steady state. If the market maker is using the wide spread strategy in

the first game and the tight spread strategy in the second game, combine the result

about with Theorem 3 yield the result that q1
m > q2

m. This covers all situations when

the market maker is using the wide spread strategy in the first game.

Now consider the situation where the market maker is using the tight spread strat-

egy in the first game. Let q1
t and q1

w (q2
t and q2

w) be the market maker’s shareholding

under the optimal tight and wide spread strategy in the first (second) game. Since

the market maker is using the tight spread strategy in the first game, q1
m = q1

t . By

the discussion above, q1
t > q2

t ; q
1
w > q2

w. If q1
t > q2

w, the claim is true. Thus, we only

consider the case when q1
t ≤ q2

w.

From the optimality condition,

δ1

1− δ1

M(q1
t )+(w0−q1

t ) ≥
δ1

1− δ1

M(q1
w)+(w0−q1

w) >
δ1

1− δ1

M(q2
w)+(w0−q2

w) , (56)
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where M(·) is the expected profit of the market maker in a one-shot game. If M(q1
t ) >

M(q2
w), since q1

t ≤ q2
w, we have

δ2

1− δ2

M(q2
t ) + (w0 − q2

t ) >
δ2

1− δ1

M(q1
t ) + (w0 − q2

t ) >
δ2

1− δ2

M(q2
w) + (w0 − q2

w) .

Thus, the market maker would use the tight spread strategy in the second game and

q1
m > q2

m = q2
t .

If M(q1
t ) ≤M(q2

w), from equation 56 and δ1
1−δ1 >

δ2
1−δ2 , we also have

δ2

1− δ2

M(q2
t ) + (w0 − q2

t ) >
δ1

1− δ2

M(q1
t ) + (w0 − q2

t ) >
δ2

1− δ2

M(q2
w) + (w0 − q2

w) .

This implies q1
m > q2

m = q2
t and concludes the proof.

This result is important for an extension of the simultaneous pricing game. Notice

that the equilibrium I construct in the simultaneous pricing game might not be sub-

game perfect. In the sub-game where the market maker commits less capital than

the steady state level, it might not be optimal for the market maker to stick to

the strategy specified in the equilibrium since cumulating capital can provide him

additional benefit. However, this is not a problem since I can embed the result into

game where the HFT is uncertainty about the market maker’s discount rate and

try to infer it from the market maker’s capital commitment. This result guarantees

a separating equilibrium where the market maker’s discount rate can be uniquely

determined by the HFT through observing the market maker’s capital commitment.40

In this sense, the equilibrium I propose is a perfect Bayesian equilibrium.

Proposition 20 Suppose G has non-decreasing hazard rate. If qh ≥ q̄
2
, argmaxyW (y) ∈

[0, q̄
2
].

Proof. By Proposition 18, if W
′
( q̄

2
) ≤ 0, then argmaxyW (y) ∈ [0, q̄

2
]. Thus, it is

sufficient to show that for all qh ≥ q̄
2
, W

′
( q̄

2
) ≤ 0.

This is equivalent to

k(qh)(1−G(q̄)) + (G(
q̄

2
+ qh)−G(

q̄

2
))k(

q̄

2
)− [1−G(

q̄

2
)][k(

q̄

2
+ qh)− k(

q̄

2
)] ≥ 0 . (57)

40When the market maker’s capital commitment cannot be mapped to any δ, I specify that the
HFT assumes that the market maker sticks to maximizing the short term profit.
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When qh = q̄
2
, the LHS of inequality (57) becomes

(1−G(
q̄

2
))[2k(

q̄

2
)− k(q̄)] . (58)

This quantity is greater than zero since 2k( q̄
2
) > k(q̄). Denote the LHS of inequality

(57) by J(qh). If J(qh) is increasing in qh, the lemma is proved.

J
′
(qh) = (1−G(qh))(1−G(q̄)) + g(

q̄

2
)k(

q̄

2
)− [1−G(

q̄

2
)](1−G(

q̄

2
+ qh)) . (59)

A sufficient condition of J
′
(qh) ≥ 0 is 1−G(q̄)

1−G( q̄
2

)
≥ 1−G( q̄

2
+qh)

1−G(qh)
. Since qh ≥ q̄

2
, it is sufficient

to have 1−G(q̄+z)

1−G( q̄
2

+z)
decreasing in z. Take derivative to get

− g(q̄ + z)(1−G(
q̄

2
+ z)) + g(

q̄

2
+ z)(1−G(q̄ + z)) ≤ 0 . (60)

This condition is satisfied due to the increasing hazard rate of G.

E Extension: Supply Schedule and Induced Limit

Order Book

E.1 Proof of Proposition 14

Proof. Obviously, it is not optimal for the market maker to sell any share at a

spread higher than x∗. Then without loss of generality, I only consider the situation

where the market maker set spreads lower than x∗. The proof consists of two steps.

I first show that if the market maker can supply shares with n spreads x1, ..., xn with∑n
i=1 qi = qm, then he should optimally set x1 = ... = xn = x∗. Then I show that

the market maker’s payoff under any supply schedule Ψ(x) can be approximated with

arbitrary precision by a n-spreads supply plan with a large enough n.

Consider the situation when n = N . Without loss of generality, suppose x1 ≤
x2 ≤ ... ≤ xN ≤ x∗. Define q0 = 0. The market maker’s expected payoff is

N∑
i=1

(1− F (xi))xi[k(
i∑

j=0

qj)− k(
i−1∑
r=0

qr)] .
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Note that the market maker can increase his expected payoff by setting x1 = x2 since

(1 − F (x))x is increasing in x ∈ [0, x∗]. This reduce the problem to n = N − 1

situation. By induction, for arbitrary n, x1 = ... = xn = x∗ is the optimal supply

schedule.

Next consider the approximation procedure under arbitrarily fixed qm. For ar-

bitrary Ψ(x), divide its support into n intervals {I1, ..., In}. The Ii interval is from
i−1
n
th quantile to i

n
th quantile. Consider a new supply schedule that supply shares

at n spreads. Specifically, in the new schedule, the market maker supplies qi shares

at spread xi for i = 1, ..., n. Let xi = EΨ(x|x ∈ Ii); qi = qm
n

for all i. Under any

buyer’s demand and valuation, realized profits of this new schedule and schedule Ψ

differ by at most a factor of qm
n

, which goes to 0 as n → ∞. Thus, expected profit

from any supply schedule Ψ can be approximated to an arbitrarily close level by a

schedule with n spreads when n is large enough. This establish the fact that the

optimal supply schedule is to sell all shares at the spread x∗.

E.2 Proof of Corollary 5

Proof. The first statement is a straightforward result from Proposition 14. For the

second statement, if the dividend payout is non-zero, the market maker can always

achieve a higher payoff by refraining from paying dividend and supply the extra

amount of shares at the spread x∗ and payout the total return from the extra shares

in the next period.

E.3 Proof of Proposition 15

Proof. From the analysis of the baseline model, any single spread pricing strategy

is dominated either by the wide spread strategy or the tight spread strategy. Thus,

I only need to show that, when the market maker can submit a supply curve, using

the wide spread strategy or the tight spread strategy is not optimal.

Suppose for some π and qh there exists a steady state equilibrium with capital

commitment qm and supply schedule Ψ(x) = I{x≥x∗}. Then upon entering the market,

the HFT would set spread xh = x∗. The market maker’s expected dividend payout

each period would be

π(1− F (x∗))x∗[k(qm + qh)− k(qh)] + (1− π)(1− F (x∗))x∗k(qm) .
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Consider a deviation of the market maker by selling ε shares at the spread xε satisfying

(1− F (x∗))x∗(k(ε+ qh)− k(ε)) = (1− F (xε))xεk(qh)

and qm− ε shares at the spread x∗. Then the HFT would still set spread xh = x∗ and

the market maker’s expected dividend payout would be

div(ε) = (1−F (xε))xεk(ε)+π(1−F (x∗))x∗[k(qm+qh)−k(qh+ε)]+(1−π)(1−F (x∗))x∗[k(qm)−k(ε)] .

Easy to check

div
′
(0) = (1− F (x∗))x∗πG(qh) > 0 .

Thus, the market maker can deviate in pricing to achieve a higher expected payoff.

Contradiction.

For the tight spread strategy, a similar argument can show that the market maker

can achieve higher expected payoff by increasing the spread of a small amount of

shares. This completes the proof.

E.4 Proof of Proposition 16

Lemma 5 In any steady state equilibrium, the HFT set xh = x∗.

Proof. Suppose not, then lim
x→x−h

Ψ(x) < 1. The market maker would achieve a higher

expected payoff by sell qm( lim
x→x∗−

Ψ(x)− lim
x→x−h

Ψ(x)) shares at the spread x∗.

Proof. Proposition 16 First note that if Ψ(x∗) < 1, the market maker can become

better off by selling all shares with spreads higher than x∗ at spread x∗.

Suppose Ψ(x) has a mass point at x < x∗. If the HFT is strictly prefers posting

xh = x∗, then there exists an ε such that the market maker can sell these shares at the

spread x+ ε to achieve higher payoff. If the HFT is indifferent, then there must exist

an ε such that the HFT is strictly prefer setting xh = x∗ than setting xh = x + ε. If

the HFT is indifferent between posting x and x∗, since x is a mass point, there exists

a ε > 0 such that the HFT strictly prefers setting xh = x∗ to setting xh ∈ (x, x + ε).

The market maker can then improve his pricing by selling all shares within the spread

range (x, x+ ε) and some shares at the spread x to the spread x+ ε.

The next step is to show that for any Ψ violating the indifference condition of the

HFT, the market maker can always find a better pricing plan. Specifically, I consider
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this problem holding qmΨ(x∗−) and qm constant. First notice that x can be uniquely

pinned down by

(1− F (x∗)x∗)k(qh + qmΨ(x∗−))− k(qmΨ(x∗−)) = (1− F (x)x)k(qh) .

Denote the pricing distribution satisfying the HFT’s indifference condition by Ψ(x).

Then for all x ∈ [x, x∗], Ψ(x) ≥ Ψ(x). Otherwise the HFT will not set xh = x∗ and

the pricing distribution cannot be optimal at the steady state. Suppose Ψ 6= Ψ, let

x́ = infx{Ψ(x) > Ψ(x)}. Since Ψ(x) does not have mass point, there exists ξ > 0

such that Ψ(x) > Ψ(x) for x ∈ (x́, x́ + ξ] and Ψ(x́ + ξ) > Ψ(x́). Then by the same

approximation and moving mass argument, the market maker is better off selling

shares in the spread interval (x́, x́+ ξ) at the spread x́+ ξ.
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