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Abstract

We extend the utility specification in Ballester et al. (2006) to study social interactions

when individuals hold altruistic preferences in social networks. We show that rich network

features can be captured in the best response function derived by maximizing the extended

utility which incorporates altruism, thereby providing microfoundation for studies on how

network features mediate peer effects or other important features in social interactions. We

demonstrate that the often ignored altruism is another serious confounding factor of peer

effects. Our results show that the estimates of peer affects are approximately 36% smaller un-

der social preferences. Furthermore, we could separately identify two different types of effects

caused by peers’ outcomes: the (usually positive) spillover effects and the direct (negative or

positive) externality effects, which is impossible in a conventional social interactions model

based on the self-interest hypothesis.
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1 Introduction

An overwhelming amount of evidence from experimental and field works indicates that, in-

stead of self-interest as assumed in classical economic theory, many people are altruistic and

concerned about the welfare of others.1 Many economists, including Arrow (1981), Becker

(1974), Samuelson (1993), Smith (1759), and Sen (1995), pointed out that when making deci-

sions in many situations, such as among family members and friends, and within organizations,

altruism plays an important role in forming an individual’s utility function. The literature on

social preferences has been firmly established theoretically and empirically.

Recently, the literature on social preferences has started to uncover the connection between

peer effects and social preferences. A few studies have shown that the extent to which people

are willing to sacrifice their self-interest is sensitive to social influences; among these research

are Falk et al. (2013), Fischbacher and Gachter (2010), Krupka and Weber (2009), and Mittone

and Ploner (2011). Through a novel gift-exchange experiment, Thöni and Gächter (2015)

provide strong evidence for peer effects in pro-social behaviors. Other studies on conditional

cooperation, including Chen et al. (2010), Croson and Shang (2008), Frey and Meier (2004),

and Rustagi et al. (2010), show that the observed results in their studies are consistent with

peer influences and social preferences. These studies have indicated that situations in which

social preferences matter are often suitable settings for peer effects.

Surprisingly, the literature on social interactions has mainly focused on the influences

of peers on individual behaviors and decisions, rarely considering the possible formation of

social preferences among peers. Many of these studies have applied the Spatial Autoregres-

sive (SAR) model to study social interactions on various outcomes, such as academic perfor-

mance, club participation, smoking, obesity, sports, and screen activities (see Boucher et al.,

2014; Bramoullé et al., 2009; Calvó-Armengol et al., 2009; Christakis and Fowler, 2007; Hsieh

and Lee, 2016; Lee et al., 2010; Lin, 2010; Liu et al., 2014).2 Similar to most conventional

economic models, the SAR model is based on the standard self-interest hypothesis, assum-

ing that individuals act exclusively on their own self-interest. Ballester et al. (2006) and

Calvó-Armengol et al. (2009) provide game-theoretical microfoundation for the SAR model

1See e.g., Andreoni, 1995; Andreoni and Miller, 2002; Anderson et al., 1998; Brandts and Schram, 2001;

Croson, 2007; Fischbacher et al., 2001; Güth et al., 1982; Keser and Van Winden, 2000; Sonnemans et al.,

1999; Sugden, 1984.
2The advantage of the SAR model over the conventional linear-in-means model in studying social inter-

actions is that the SAR model on network data can solve the “reflection problem” inherited in the linear-

in-means model (Manski, 1993). The spatial weights matrix of the SAR model can be used to represent the

friendship (network) links of individuals in a group. As friendship links are specific to each individual and

could be nontransitive, i.e., my friend’s friend may not be my friend, the SAR model introduces necessary

individual heterogeneity to distinguish between endogenous peer effects and contextual effects.
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by considering a conventional non-cooperative game in which rational and self-interest indi-

viduals maximize their own utilities. The resulting SAR model captures the pure strategy

played by individuals in a unique interior Nash equilibrium.

As social interactions occur on a regular basis and within small groups, altruism is expected

to play an important role since people may intrinsically care about the well-being of their social

contacts and take into account their preferences when making decisions. As shown in a number

of studies, including those by Bourlès et al. (2017), Goeree et al. (2010), Jones and Rachlin

(2006), Leider et al. (2009), and Yamagishi and Mifune (2008), frequent interactions with peers

may have important impact on the formation of individuals’ preferences. Hence, relaxing the

assumption of individual selfishness under the social interaction framework becomes necessary.

It would be interesting to see how an openness to the altruistic preferences leads to new

perspectives on modeling social interactions.

In this paper, we provide the first analysis on social interactions and social preferences in

social networks, building a bridge between the two strands of rapidly growing yet unrelated

literature. We investigate the model specification issues that emerge after we extend the stan-

dard assumption of self-interest to a more evolutionary foundation in which individuals can be

altruistic. In particular, we specify individual utility function by combining a general altruistic

utility with the specific quadratic specification of Ballester et al. (2006) in order to capture

the complementary effect from peers’ behaviors.3 We show that the extended utility frame-

work has important implications for social interactions model specification.4 Several papers

on social interactions have extended the econometric model derived from the classical utility

maximization of rational and selfish individuals to - arbitrarily, in a sense - include some addi-

tional terms for studying how network features mediate peer effects or other important features

in social interactions. For instance, Ballester et al. (2006) examine how network centrality

and individual position in the network affect social interactions and equilibrium outcomes.

Battaglini et al. (2017) investigate the direct externality generated by peers in the self-control

of students. Lin and Weinberg (2014) extend the standard SAR model to capture the peer

effects generated by reciprocated, unreciprocated, and unchosen friends on adolescents’ be-

haviors and outcomes. These studies have provided interesting and important insights into

social interactions, but they do not have a clear microfoundation based on classical theory. We

demonstrate that the interesting features investigated by these papers, such as the in-degree

of the network, can be well captured in the best response function derived by maximizing

3We also extend the model to incorporate more structured forms of altruistic preferences, such as those

specified in Leider et al. (2009) and Levine (1998).
4Blume et al. (2015) illustrate that different specifications of the utility function may give rise to different

econometric models used for empirical studies.
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the extended utility that incorporates altruism, thereby providing microfoundations for these

studies.5

Another important contribution of this paper is that it shows that, although often ignored,

altruism is another serious confounding factor of peer effects. Intuitively, peer effects imply

that people respond to others’ behaviors because they are - often unconsciously - influenced

by others; while altruism means that people might adapt their behavior towards others - con-

sciously - to either help or not hurt them. Therefore, the estimation of peer affects is even more

challenging than previously thought because ignoring altruistic preferences in social networks

will cause bias in peer effect estimation. In our analysis of the National Longitudinal Study of

Adolescent to Adult Health (Add Health) data, we find that significant peer effects exist on

students’ academic achievement, smoking behavior, and extracurricular activities, even after

controlling for altruistic preferences and endogenous network formation. We also find evidence

of upward bias on the estimates of peer effects when omitting the effect of altruism. In partic-

ular, the estimates of peer affects are approximately 36% smaller under altruistic preferences

as compared to the case with the conventional self-interest assumption. Furthermore, we can

separately identify two distinct types of effects generated from peers’ outcomes. Specifically,

in addition to the positive spillover effects from peers, we find significant negative externality

effects directly generated from peers’ outcomes.6 Note that the conventional SAR specification

based on the self-interest hypothesis can only identify the mixture of these two effects from

peers. We employ the procedure in Hsieh and Lee (2016) to address the potential endogeneity

of network formation.

The remainder of this paper is organized as follows. Section 2 briefly reviews related

literatures on altruistic preferences and social interactions. Section 3 describes the social

interactions model with altruistic preferences and endogenous network formation. Section

4 explains the model estimation procedure and provides a simulation study to examine the

performance of the proposed estimation method. The proposed approach is applied to the Add

Health data in Section 5. Section 6 concludes the paper. Details of the estimation method used

in this paper and some additional empirical results are relegated in Supplementary Appendixes

5In the conventional linear-in-means social interaction model (Manski, 1993), peer variables are specified as

group means, therefore network links play no role in the model. In the standard SAR model, peer variables are

captured by the means (or sums) of individuals’ nominated friends, thus one particular network feature, i.e.,

the out-degree of the network, plays an important role in the model and helps resolve the “reflection problem.”

In our social interaction model which incorporates altruism, not only the out-degree of the network, but also

the in-degree of the network, will play important roles in the model, providing another source for separately

identifying various mechanisms underlying the observed correlated outcomes among network members.
6As shown in Equation (8) below, the spillover effect is represented by λ, whereas the externality effect is

captured by η.
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A and B.

2 Literature Review

Overwhelming evidence from experiments and field work that systematically violates the self-

interest hypothesis has fostered several theoretical models in social preferences, which have

clear departures from the standard self-interest hypothesis based model. The first type of

model departs from classical utility theory by assuming that a player’s utility function de-

pends not only on personal payoff, but also on others’ payoffs, including Becker (1976, 1981),

Hori and Kanaya (1989), Hori (1992), Bergstrom (1999), Hori (2001), Andreoni and Miller

(2002), Bolton (1991), Fehr and Schmidt (1999), Bolton and Ockenfels (2000), Charness and

Rabin (2002), Erlei et al. (2004), Cox et al. (2007), Benjamin (2004) and Bénabou and Tirole

(2006). The second class of model focuses on intention-based reciprocity, which assumes that

players care about their opponents’ intentions; these include Rabin (1993), Dufwenberg and

Kirchsteiger (2004), Falk and Fischbacher (2006), Charness and Rabin (2002) and Charness

and Dufwenberg (2006). The third class of model assumes that people are concerned about

the “type” of their opponents, which includes Levine (1998), Rotemberg (2008), and Gul

et al. (2004). In particular, Levine (1998) formulates an altruism model in which a player

interacts with different types (spiteful, selfish and altruistic) of opponents, and has a utility

function which is linear in both her own and her opponents’ payoffs, with the weight on the

opponent’s payoff depending on the opponents’ types. Levine performs several experiments

and shows that the results in the ultimatum game, centipede game, market competition, and

public good game are all consistent with this theory. Through an online field experiment in

large real-world social networks, Leider et al. (2009) demonstrate that agents show baseline

altruism toward randomly selected strangers, whereas they show directed altruism toward

their friends. Furthermore, directed altruism increases an agent’s giving to their friends by

a significant amount compared with giving to random strangers. Note that most models of

social preferences predict either no peer effects or negatively correlated efforts in which agents’

efforts are unrelated and strategic substitutes, respectively.7

Recently, a number of social preference studies have shown that agents’ efforts in various

experiment settings are positively correlated, contradicting standard theories of social prefer-

ences. For instance, Thöni and Gächter (2015) study a novel gift-exchange experiment and

find that the positively correlated efforts among agents are strategic complements instead of

7Only two standard theories in social preferences are generally consistent with positively and negatively

correlated efforts, such as, Charness and Rabin (2002) and Fehr and Schmidt (1999). Detailed discussions on

these models can be found in Gächter et al. (2013).
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substitutes. To provide explanation for the empirically observed positively correlated efforts,

the recent generation of social preference theories introduces additional social motives beyond

conventional distributional concerns as considered in standard social preferences theories. For

instance, Sliwka (2007) considers conformism, López-Pérez (2008) incorporates social norm,

whereas Bénabou and Tirole (2006), and Ellingsen and Johannesson (2008) introduce social

esteem. In a recent study, Gächter et al. (2013) identify the behavioral mechanism underlying

the peer effects observed in their three person gift exchange experiment. They find that both

the standard model of social preferences in Fehr and Schmidt (1999) in which individuals are

inequity aversion and the model of social norm compliance can explain the positive correlation

in agents’ efforts. Several other papers have examined and compared the relative importance

of social norms and social preferences in explaining the observed correlated behaviors. Krupka

and Weber (2013) show that the observed behavior differences in their Dictator game cannot

be explained by most standard social preferences models, whereas social norm compliance can

explain behavior changes in various contexts. Similarly, Krupka et al. (2016) find that elicited

social norms have significant explanatory power for agents’ behaviors in their Dictator and

Bertrand games, whereas social preference models do not.

By contrast, altruistic preferences have seldom played a role in the literature on social

interactions. The majority of studies on social interactions have focused on addressing well-

known identification difficulties including the “reflection problem” and the endogeneity of

network group formation, as well as selection and omitted variable biases. As demonstrated

in numerous studies, such as Lin (2010), Bramoullé et al. (2009), Calvó-Armengol et al. (2009),

and De Giorgi et al. (2010), the SAR model resolves the “reflection problem” by introducing

nonlinearity through individual specific social network links.8 To deal with the other potential

confounding factors, different strategies have been proposed, including group fixed effect (Lin,

2010; Bramoullé et al., 2009), instrument variable (e.g., Evans et al., 1992; Rivkin, 2001), and

experiment type strategies (e.g., Sacerdote, 2001; Zimmerman, 2003). Recently, some papers

such as Goldsmith-Pinkham and Imbens (2013) and Hsieh and Lee (2016) have proposed

a comprehensive simultaneous equation system to model both network formation and peer

effects to capture the influences of unobserved characteristics on friendship formation and/or

social interactions.

At the same time, a number of studies, including Cosmides and Tooby (1989), Goeree

et al. (2010), Jones and Rachlin (2006), Wang (1996), and Yamagishi and Mifune (2008)

have confirmed that social interactions and/or group memberships are complementary de-

terminants of altruistic behavior. Bell and Keeney (2009) analyze altruistic decisions among

8Lee (2007) and Boucher et al. (2014) use the size variation of groups to resolve the reflection problem

when individual specific social network links are not available in data.
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group members by using a group altruistic utility function that incorporates the preferences of

each individual member. They study an additive utility function in which aggregated utility

is the summation of all individual utilities in the group. In a recent paper, Bourlès et al.

(2017) investigate altruism in social networks wherein individuals care about the welfare of

their network neighbors. In their model, agents are altruistic, and an agent’s social utility

consists of several components, namely, personal private utility, as well as others’ private and

social utilities. They examine the Nash equilibrium of the resulting game of private transfers

flow through altruism networks. On the other hand, several studies have extended the stan-

dard SAR model to capture some additional interesting network related effects (e.g., Ballester

et al., 2006; Branas-Garza et al., 2010; Battaglini et al., 2017; and Lin and Weinberg, 2014),

although they fail to realize that these additional effects will show up in the SAR model un-

der altruistic preferences. The incorporation of altruism into social interactions models has

important modeling consequences and can provide microfoundations for these studies.

3 Model

3.1 Conventional Social Interactions Model

We consider an environment in which individuals form network links in well-specified groups

and their activities are subject to interaction (peer and spillover) effects. Examples of such

groups include schools, workplaces, and villages. Suppose there are G groups in total, and

in each Group g ∈ (1, · · · , G), yi,g denotes the activity outcome of individual i and Yg =

(y1,g, · · · , ymg ,g)′ represents a mg×1 activity vector of individuals in Group g, where mg is the

group size. We let xi,g represent a k-dimensional individual’s exogenous characteristics and Xg

denote a mg×k matrix of characteristics. Depending on the context, individuals are connected

in a group due to friendship, supervisor and supervisee, and borrowing and lending, among

others. The social links in Group g are observed by all members and represented by adjacency

matrix (sociomatrix) Wg. The (i, j)th element of Wg, wij,g, equals one if individual i sends a

social link to individual j. Otherwise, wij,g equals zero. All links are directed, and thus they

are not necessarily reciprocal. This asymmetric feature in the adjacency matrix plays a key

role in identifying the proposed model, which we will explain in details later. Furthermore,

the diagonal elements of Wg are set to zero by default.

Corresponding to the nature of interactions in groups, individual i’s payoff vi,g is de-

termined by his/her own activity and those of his/her friends. We adopt the quadratic

specification from Ballester et al. (2006) and Calvó-Armengol et al. (2009) to capture the
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complementary effect from peers’ activity levels:

vi,g(yi,g, Y−i,g,Wg) = µi,gyi,g −
1

2
y2
i,g + λyi,g

mg∑
j=1

wij,gyj,g, (1)

where Y−i,g denotes the (mg − 1) × 1 activity vector excluding yi,g. The first and second

terms of Equation (1) capture the benefit (or cost) of performing the activity and µi,g denotes

individual heterogeneity. The third term captures the complementary effect from nominated

friends’ activities, which provides the source of peer influences.

Rational and self-interest individuals determine their activity levels by maximizing the own

payoff function in Equation (1). The implied pure strategy activity vector in a unique interior

Nash equilibrium is given by9

Yg = (Img − λWg)
−1µg, g = 1, · · · , G. (2)

If we specify µg = Xgβ1 +WgXgβ2 + lgτg + εg in Equation (2), where lg is the mg-dimensional

vector of ones, then Equation (2) implies that we can model individual economic activity by

the standard spatial autoregressive (SAR) model (and henceforth we call it conventional social

interactions model),

Yg = λWgYg +Xgβ1 +WgXgβ2 + lgτg + εg, g = 1, · · · , G. (3)

In Equation (3), coefficient λ captures the endogenous (peer) effect. In this model, only the

outward links of an individual, i.e., friends nominated by individual i as represented by the

row i of the W , play a role in social interactions. By contrast, an individual’s inward links,

i.e., nominations received by individual i as captured in column i of the W , plays no role in

social interactions of outcomes in the group. Therefore, the out-links feature of the social

network provide valuable information for identifying the endogenous peer effect, while the role

of the in-links feature of the social network is missing in this model.10 Coefficients β1 and β2

capture the own and contextual effects from exogenous individual characteristics, respectively.

Term τg represents the group fixed effect, which captures the correlated effects caused by the

environmental variables shared by all individuals in the same group. The group fixed effect

also controls group level unobserved factors which induce individuals to self-select into the

group. Finally, εg = (ε1,g, · · · , εmg ,g)′ represents the vector of individual stochastic errors.

9Following Ballester et al. (2006), the existence and uniqueness of the equilibrium can be guaranteed as

long as |λ| < 1/maxg=1,··· ,G κmax(Wg), where κmax(Wg) denotes the maximum eigenvalue of network matrix

Wg.
10As will be shown in the following subsections, the in-links feature of the network contains valuable infor-

mation for identifying other mechanisms underlying the correlated outcomes among group members such as

altruism.
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3.2 Altruistic Preference

Instead of assuming that individuals only care about their own payoff, we extend the model to

allow altruism, such that individuals care about others’ well-being when choosing an optimal

activity level to maximize utility, Ui,g. The simplest form of the altruistic utility function is

the linear function of individual’s own and others’ payoffs,11

Ui,g = vi,g(yi,g, Y−i,g,Wg) + α1

mg∑
j=1,j 6=i

vj,g(yj,g, Y−j,g,Wg). (4)

In this model, coefficient α1 captures the altruism level, reflecting how much individuals care

about others’ payoffs. We follow Levine (1998) to assume α1 to be bounded by [-1,1]. When

α1 is positive, individuals are altruistic and a higher value of α1 represents a stronger level

of altruism; when α1 equals zero, individuals are selfish and Equation (4) will reduce to

Equation (1); and when α1 is negative, individuals are spiteful. In this model, individuals

show altruism toward every other people in a group, which is the baseline altruism discussed

in Leider et al. (2009).12

Under this altruistic utility function, the implied pure strategy played by individuals in a

unique interior Nash equilibrium will change to13

Yg = (Img − λWg − λIWT
g )−1µg, g = 1, · · · , G, (5)

where λI = α1λ, and WT
g denotes the transpose of Wg. With the same specification of µg as

above, we can obtain an extended SAR model as follows,

Yg = λWgYg + λIWT
g Yg +Xgβ1 +WgXgβ2 + lgτg + εg, g = 1, · · · , G. (6)

This model can be called “altruistic social interactions model.” The difference between Equa-

tions (6) and (3) is the new term, λIWT
g Yg, which is related to the in-links feature of the

network and reflects altruistic preference. We use superscript “I” on the coefficient to indicate

11This simple and intuitive utility function has been employed in several studies, including Bell and Keeney

(2009) and Bourlès et al. (2017). Following Bourlès et al. (2017), except others’ payoffs, one may also directly

incorporate others’ utilities into individual’s utility function like Ui,g = vi,g + a
∑
j vj,g + b

∑
j Uj,g, which

forms a system of equations. Utility Ui is implicitly defined as the solution of the above system of equations.

By assuming that |b| < 1/(mg − 1), we can obtain a unique solution Ui,g = 1
1−bvi,g + a

1−b
∑
j vj , which is

consistent with our Equation (4). It implies that individuals care about others’ payoffs when caring about

others’ utilities.
12We will consider directed altruism in an extended model in Section 3.4.1.
13From the first order condition of the utility maximization,

∂Ui,g
∂yi,g

=
∂vi,g
∂yi,g

+α1

∑mg
j=1,j 6=i

∂vj,g
∂yi,g

= 0, the best-

response function of individual i is given by yi,g = λ
∑mg
j=1 wij,gyj,g + α1

(
λ
∑mg
j=1 wji,gyj,g

)
+ µi,g. Thus, as

long as |λ|+ |α1λ| ≤ 1/maxg=1,··· ,G κmax(Wg), where κmax(Wg) denotes the maximum eigenvalue of network

matrix Wg, then the unique interior Nash equilibrium of Equation (5) exists.
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that it is identified from “inward” friendship links. Therefore, under altruistic preference,

individual outcomes are affected not only by the outcomes of their nominated friends which

are related to the out-links of the network and captured by λ, but also by the outcomes of

those who nominated them as a friend which are related to the in-links of the network, with

the effect of the latter group being the endogenous peer effect, scaled by the altruism level,

α1.14 Note that the in-links feature of the social network only plays a role when individuals

are altruistic. As a matter of fact, if individuals are selfish, i.e., α1 = 0, then coefficient λI is

zero and Equation (6) will be identical to Equation (3). The intuition is that an individual

responds to her nominated friends’ outcomes because of complementarity, i.e., keeping up

with friends enhances her utility through her increased own payoff, and she also responds to

the outcomes of the other individuals who nominated her as friend due to altruism, as their

payoffs are a component in her utility function weighted by her altruism level towards them,

i.e., α1.15 Therefore, different features of the network, such as out-degree and in-degree, con-

tain unique information for identifying various mechanisms occurring inside the black-box of

social interactions. Meanwhile, as can be seen from Equation (6), if the network matrix Wg is

symmetric, then it is not possible to separately identify λ and λI as the out-links and in-links

of the network will be identical. Therefore, having asymmetric network matrix is necessary

for identification of altruism. This additional identification condition is usually satisfied as

most social network links are asymmetric.16, 17

3.3 Externality Effect

The social interactions effects considered in Sections 3.1 and 3.2 are the conventional com-

plementary spillover effects generated by peers, as seen in the last term in Equation (1),

where peers’ outcomes,
∑mg

j=1 wij,gyj,g, are augmented by own outcome, yi,g. However, another

14The latter group of friends include reciprocal and unchosen friends in the model specification in Lin and

Weinberg (2014).
15These two components can be clearly seen from Equation (4).
16In our sample, only 44.10% links in the networks are reciprocal, therefore the resulting network matrix is

certainly asymmetric.
17As the identification of our model hinges on the detailed structure of the network, the estimated parameters

may be contaminated if some of the network links in data are missing. To check the sensitivity of our

estimation to possible measurement errors in W , we perform some Monte Carlo simulations and find that for

the endogenous peer effect λ, the bias caused by the missing link problem in the altruistic social interactions

model is comparable to that in the standard SAR model, and the biases in the altruism effect as well as the

externality effect in Equation (8) are slightly larger than the bias in λ, but the overall magnitudes are not

significant under reasonable missing levels. These results are not reported to save space but are available from

the authors upon request. Systematically address the measurement issues for social interaction models is of

great importance, and will be investigated in a separate future research.
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channel may exist for the direct effect of peers’ activity on individual payoff, that is, the “di-

rect externality” effects, wherein an individual may be directly affected by peers’ activities,

without being augmented by his/her own yi,g, as captured by the last term in Equation (7)

below.18 For instance, an individual may enjoy smoking with his/her friends, but at the same

time, his/her friends’ smoking behaviors could directly have a negative externality effect on

individual’s own payoff due to health concerns.19

vi,g(yi,g, Y−i,g,Wg) = µi,gyi,g −
1

2
y2
i,g + λyi,g

mg∑
j=1

wij,gyj,g + η

mg∑
j=1

wij,gyj,g. (7)

Combining this payoff function with the altruistic preference in Equation (4), we can derive

the pure strategy played by individuals in a unique interior Nash equilibrium as follows

Yg = λWgYg + λIWT
g Yg + ηIWT

g lg +Xgβ1 +WgXgβ2 + lgτg + εg, g = 1, · · · , G. (8)

Compared with Equation (6), ηIWT
g lg is a new term in Equation (8), where ηI = α1η and W T

g lg

is the number of friendship nominations received by an individual, i.e., the in-degree centrality

of an individual. We refer to Equation (8) as the “altruistic social interactions model with

direct externality,” in which we can identify the degree of altruism by coefficient λI from the

term WT
g Yg, i.e., the outcomes of the individuals who nominated individual i as friend and

the direct externality effect from the in-degree of the network members, by coefficient ηI.20

We can see a clear rationale behind Equation (8) using the indegree to capture the externality

effect. Given that individuals are altruistic, they take into account the potential externality

effect on their friends when choosing their activity levels. As a result, the more friendship

nominations received by an individual from others, the stronger the externality effect that

will manipulate individual activity outcome. In this stream of literature, researchers have

explored various network effects on individual outcomes (Echenique and Fryer, 2007; Mihaly,

18Whether including this direct externality term or not in the model based on the self-interest assumption

does not make any difference, as its derivative with respect to yi,g is zero, and therefore the coefficient η won’t

show up in the best response function.
19A few recent papers study externalities in social networks, but in settings different ours. For instance,

Badev (2017) studies a social network model where payoff of an individual depends on own attributes, as well

as two externality terms. The first term captures local externalities, i.e., a person may be influenced strongly

by friends’ behaviors as opposed to casual individuals. The second term captures aggregate externality, i.e.,

a person may be affected by the behavior of the surrounding population, regardless whether they are friends

or not. Mele (2017) considers a network link formation process, where the value of the links formed by other

players are captured as linking externalities.
20In particular, only the in-degree centrality, not the outcomes, is relevant for the identification of the

externality effect. This is so because externality effect captures the direct effect of other individual’s outcome

Yj on individual i, without being augmented through Yi.

11



2009; Conti et al., 2013; Alatas et al., 2016). Although most studies have interpreted the effect

of the indegree centrality as a popularity effect, our model provides an alternative justification

that the in-degree centrality reflects the externality effect on individual outcome.

Clearly, Equation (8) reveals (at least) three different underlying channels operating in the

social network system: the first is the (conventional) complementary peer effect, operating

through the out-degrees of the network and outcome activities. The second is the complemen-

tary peer effect scaled by the altruism effect, occurring through the in-degrees of the network

and outcome activities. The third is the externality effect, again, scaled by the altruism effect,

operating solely through the in-degrees of the network. Therefore, the information contained in

the in-degrees of the network is two-dimensional: one operates through the outcome activities

and the other operates independently without being augmented by outcomes. However, under

the conventional self-interest modeling hypothesis, it is not possible to capture the important

role played by the in-degrees of the network in the interaction system.

Regarding the specification of weights matrix in social interactions models, one faces a

choice between raw or row-normalized weights matrix (Liu et al., 2014). When using the raw

weights matrix, the results can be interpreted as a local aggregated effect– the more peers an

individual has, the stronger the effects the individual receives. When using the row-normalized

weights matrix, the results are interpreted as a local average effect – individuals conform with

the social norm reflected by the average peer behaviors and the number of peers does not

matter. In this paper, we choose the local aggregate specification as the number of friendship

nominations is important in identifying the effects of altruism and externality.

3.4 Two Extensions

3.4.1 Extension I: Directed Altruism

We can further extend the utility specification in Equation (4) to accommodate the concept

of directed altruism (Leider et al., 2009),

Ui,g = vi,g(yi,g, Y−i,g,Wg) +

mg∑
j=1,j 6=i

(α1 + α2wij,g)vj,g(yj,g, Y−j,g,Wg). (9)

In this utility specification, coefficient α1 denotes baseline altruism toward all group members,

and α2 represents directed altruism towards friends. Leider et al. (2009) find that altruism

levels are stronger among friends than among randomly selected strangers. Combining the

payoff function of Equation (7) with the utility function of Equation (9), we can obtain an
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outcome equation based on the vector of unique Nash equilibrium strategy as follows,21

Yg = λWgYg + λIWT
g Yg + λRWR

g Yg + ηIWT
g lg + ηRWR

g lg

+Xgβ1 +WgXgβ2 + lgτg + εg, g = 1, · · · , G. (10)

Compared with Equation (6), we can see two new terms in Equation (10), λRWR
g Yg, and

ηRWR
g lg, where WR

g represents the network of reciprocal links, i.e., wR
ij,g = 1 if both wij,g and

wji,g are 1 and 0 otherwise. Coefficients λR = α2λ and ηR = α2η capture the endogenous peer

effect and the direct externality effect from reciprocal friendship links, which are the original

spillover effect and externality effect scaled by the directed altruism coefficient α2, respectively.

We refer to Equation (10) as the “directed altruistic social interactions model.” It provides

microfoundation for the heterogeneous peer effects of chosen, unchosen, and mutual friends in

Lin and Weinberg (2014).

3.4.2 Extension II: Heterogeneous Altruism

In Equations (4) and (9), the altruism level, captured by coefficient α1 (and α2), is assumed

as homogeneous across individuals. It is possible to consider some alternative specifications

which allow altruism levels to be heterogeneous among pairs of individuals. In this paper,

we adopt the utility function proposed in Levine (1998) to extend the utility specification

in Equation (4) to capture heterogeneous altruism based on fairness and reciprocality,22 as

specified below:

Ui,g = vi,g(yi,g, Y−i,g,Wg) +

mg∑
j=1,j 6=i

αi,g + ραj,g
1 + ρ

vj,g(yj,g, Y−j,g,Wg), (11)

where αi,g reflects individual i’s altruism level, which is again assumed to be bounded by [-1,1].

Similar to Equation (4), when αi,g > 0, individual i is altruistic; when αi,g = 0, individual

i is selfish; and when αi,g < 0, individual i is spiteful. We use Ag = (α1,g, · · · , αmg ,g)′ to

denote the mg × 1 vector of altruism levels in Group g. Coefficient 0 ≤ ρ ≤ 1 reflects

the reciprocity. A higher ρ implies that individuals respond more altruistically to someone

21We obtain the best response function from the first order condition similar to footnote 10. A sufficient

condition for the unique Nash equilibrium based on the best response to exist is

|λ|+ |λI|+ |λR| ≤ 1/ max
g=1,··· ,G

(κmax(Wg), κmax(WR
g )).

22Many other theoretical models can also explain heterogeneous altruistic behaviors, including Bolton et al.

(1998), Charness and Rabin (2002), Cox et al. (2007), Fehr and Schmidt (1999), to name a few. Although

these theories are comprehensive, they are too complex and cannot be applied in an empirical study in a

straightforward way.
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altruistic to them. The adjusted utility function in Equation (11) assigns different weights

to others’ payoffs based on how altruistic individuals are and how fairly they feel they are

treated. Therefore, in this model, altruism is a fixed innate individual characteristic; however,

the extent to which individual i cares about individual j′s payoff depends on the interactions

between two individuals’ altruism levels, which vary across individual pairs.

With the use of the utility specification in Equation (11), we can derive the best response

function of individual i as,

yi,g =λ

(
mg∑
j=1

wij,gyj,g +

mg∑
j=1

αi,g + ραj,g
1 + ρ

wji,gyj,g

)
+ η

mg∑
j=1

αi,g + ραj,g
1 + ρ

wji,g

+ xi,gβ1 +

mg∑
j=1

wij,gxj,gβ2 + τg + εi,g. (12)

Under this generalization, each individual j who nominates individual i as friend will generate

effects on i, with the magnitude being the usual peer effect coefficient λ scaled by a factor of
αi,g+ραj,g

1+ρ
, which depends on both individuals’ altruism types and the reciprocity coefficient ρ.

Similarly, the effect of the indegree centrality is η scaled by the same factor. The vector of

Nash equilibrium outcome can be written as

Yg = λ(Wg +Hg(Ag,Wg, ρ))Yg + ηHg(Ag,Wg, ρ)lg +Xgβ1 +WgXgβ2 + lgτg + εg, (13)

whereHg(Ag,Wg, ρ) represents amg×mg matrix with each element hij,g equals to
αi,g+ραj,g

1+ρ
wji,g.

We refer to Equation (13) as “heterogeneous altruistic social interactions model.”

3.5 Endogenous Network Formation

The endogenous formation of friendship networks is a serious identification concern for social

interactions studies (Jackson, 2009; Durlauf and Ioannides, 2010; Goldsmith-Pinkham and

Imbens, 2013; Hsieh and Lee, 2016; Breza et al., 2017).23 When unobserved factors that

simultaneously affect friendship formation and outcomes exist but are uncontrolled for in the

model, the estimated results will be biased. To address endogenous network formation, we

follow Hsieh and Lee (2016) to include individual latent variables in the network formation

23As mentioned in Bramoullé et al. (2009) and Lee et al. (2010), if Wg, W
2
g , W 3

g , etc. are not perfectly

collinear, one can use (W 2
gXg,W

3
gXg, · · · ) as instruments to identify the conventional SAR model. However,

if Wg itself is endogenous, then these instrumental variables are not valid.
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and outcome SAR models. The network formation model is specified in a logistic form,

P (wij,g) =

(
exp(ψij,g)

1 + exp(ψij,g)

)I(wij,g=1)(
1

1 + exp(ψij,g)

)1−I(wij,g=1)

,

ψij,g = γ0g + cij,gγ1 +
d̄∑
d=1

ζd|zid,g − zjd,g|, (14)

where I(·) denotes an indicator function which equals to 1 if the corresponding condition

holds and 0 otherwise. We use a R × 1 vector of dyad-specific regressors cij,g to capture the

effect of homophily on observed characteristics, such as same gender, race, and age. The d̄-

dimensional individual latent variable zi,g = (zi1,g, · · · , zid̄,g) is introduced through a distance

form |zid,g − zjd,g| to take into account the effect of homophily on unobserved characteristics.

Intuitively, the larger the difference in two individuals’ unobserved characteristics, the lower

the chance that friendship will form between them. Therefore, we expect coefficients ζd’s to

be negative. Furthermore, we generalize the constant intercept γ0 specified in Hsieh and Lee

(2016) to group-specific constants γ0g to reflect group heterogeneity. In the network formation

model of Equation (14), each network link is assumed to be independent conditioning on

the variables Cg = {cij,g} and the latent variables Zg = (z′1,g, · · · , z′mg ,g)
′. Therefore, the

probability function of the whole network Wg can be written as

P (Wg|Cg, Zg, γ, ζ) =

mg∏
i

mg∏
j 6=i

P (wij,g|Cg, Zg, γ, ζ), (15)

where γ = ({γ0g}, γ′1)′ and ζ = (ζ1, · · · , ζd̄)′.
When considering heterogenous altruism levels (Ag) in outcome Equation (13), we further

explore the role of Ag in network formation by extending the function ψij,g in Equation (14)

to

ψij,g = γ0g + cij,gγ1 + γ2αi,g + γ3αj,g +
d̄∑
d=1

ζd|zid,g − zjd,g|. (16)

Coefficients γ2 and γ3 reflect the effects of sender’s and receiver’s altruism on the probability

of forming a link, and we expect both to be positive. A higher γ2 means more altruistic

individuals tend to send more friendship links to others, whereas a higher γ3 means more

altruistic individuals tend to receive more friendship nominations. To some extent, αi,g and αj,g

capture the feature of network degree heterogeneity in social networks discussed in Krivitsky

et al. (2009), Graham (2017), and Breza et al. (2017). Note that altruism levels, αi,g and αj,g,

enter the network formation model in plain form instead of difference form in Equation (16).

Otherwise, why two spiteful individuals (whose altruism levels are both -1) may be more likely

to form friendship will be hard to explain. Furthermore, using different forms makes it possible

to distinguish Ag from other unobserved latent variables Zg.
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To address the endogenous network issue, we assume that the error term εg in the activity

outcome of Equations (8) and (10) is linearly correlated with unobserved latent variable Zg,

i.e., εg = Zgδ1 +WgZgδ2 + vg, and the error term in the activity outcome of Equation (13) is

also correlated with altruism level Ag, i.e., εg = Zgδ1 + WgZgδ2 + δ3Ag + δ4WgAg + vg. The

new error term vg is assumed uncorrelated with any other regressors in the model. Following

this assumption, we can rewrite the altruistic social interactions model with direct externality

in Equation (8) into

Yg = λWgYg + λIWT
g Yg + ηIWT

g lg +Xgβ1 +WgXgβ2 + Zgδ1 +WgZgδ2 + lgτg + vg; (17)

the directed altruistic social interactions model in Equation (10) into

Yg = λWgYg + λIWT
g Yg + λRWR

g Yg + ηIWT
g lg + ηRWR

g lg

+Xgβ1 +WgXgβ2 + Zgδ1 +WgZgδ2 + lgτg + vg; (18)

and the heterogeneous altruistic social interactions model in Equation (13) into

Yg = λ(Wg +Hg(Ag,Wg, ρ))Yg + ηHg(Ag,Wg, ρ)`g

+Xgβ1 +WgXgβ2 + Zgδ1 +WgZgδ2 + δ3Ag + δ4WgAg + lgτg + vg. (19)

We regard the activity outcome of Equation (17) or (18) (or [19]) and the network formation

model of Equation (14) (or [16]) as a simultaneous-equations model and estimate the param-

eters in two equations jointly using the likelihood approach. We assume that error term vg

follows a normal distribution with mean zero and variance σ2
vImg .

4 Model Estimation

To jointly model social interactions and network formation through unobserved latent vari-

ables, we follow Hsieh and Lee (2016), Hsieh and Lin (2017), and Hsieh and Van Kippersluis

(2018) to list the necessary identification constraints:24 First, we assume latent variables Zg

follow a known distribution, which in our case is the normal distribution with mean µz,g and

24When latent variables Zg only appear in the network formation model through their distances, a serious

identification problem exists because the likelihood value from the network formation model is invariant to the

reflections, rotations, and translations of Zg (Hoff et al., 2002). By further introducing Zg and WgZg into the

SAR outcome equation, we solve the invariant likelihood value problem with the joint likelihood of network

and activity outcome. However, we still need other identification assumptions for model coefficients due to

the multidimensioanlity and unobservability of Zg. The online appendix of Hsieh and Van Kippersluis (2018)

provides a heuristic argument on how we can use these assumptions to identify the coefficients in the network

formation and outcome equations.
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variance σ2
z . Second, we cannot identify the variance of zi,g, σ

2
z , and therefore we normalize it

to one. Third, we assume that the different dimensions of zi,g are independent of each other.

Lastly, to distinguish the different dimensions of zi,g, we assume that the magnitude of coef-

ficients ζd’s in the network formation model of Equation (14) follows a descending order, i.e.,

|ζ1| ≥ |ζ2| ≥ · · · ≥ |ζd̄|. Note that the dyad-specific variables cij,g only appear in the network

formation model where observations are dyad-specific, but not in a SAR outcome equation in

which observations are individual-specific. Therefore, we have natural exclusion restrictions

to identify this simultaneous equations system. Furthermore, note that when another latent

variables Ag are introduced in Equations (16) and (19), we should assume that ai,g follows a

uniform U [−1, 1] distribution for identification purpose.

4.1 Bayesian Estimation

We use the Bayesian MCMC approach to estimate unknown parameters in our models. Taking

Equations (14) and (17) for example,25 the joint probability function of {Yg,Wg}Gg=1 can be

written as follows,

P ({Yg}, {Wg}|{Xg}, {Cg}, θ, {τg})

=
G∏
g=1

∫
Zg

P (Yg|Wg, Xg, Zg, θ, τg) · P (Wg|Cg, Zg, θ) · f(Zg)dZg, (20)

where θ = (γ′, ζ ′, λ, λI, ηI, β′1, β
′
2, δ
′, σ2

v). The Bayesian approach is used here instead of the

classical approach for two reasons. First, the model involves multi-dimensional individual

latent variables. The resulting high-dimensional integrations in Equation (20) is difficult to

handle under the classical approach. By contrast, the Bayesian MCMC is more effective in

estimating models with latent variables (Zeger and Karim, 1991; Hoff et al., 2002; Handcock

et al., 2007). During the posterior MCMC simulation, latent variables {Zg}Gg=1 are drawn

from the conditional posterior distributions along with other model parameters. Conditional

on these latent variables, the probability function becomes simple to compute. Second, we have

some constraints on the model parameters and latent variables, which generally significantly

complicate the classical numerical optimization. By adopting a Bayesian MCMC rejection

sampling method such as the Metropolis-Hastings algorithm, we can directly reject draws

that violate constraints.

The prior distributions π(·) for θ, latent variables {Zg}, and group effects {τg} are specified

25 We illustrate the estimation algorithm using these two equations as example. The details of the estimation

procedure for other extended equations can be found in Supplementary Appendix A.
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as follows:

zi,g ∼ Nd̄(µz,g, Id̄), i = 1, · · · ,mg; g = 1, · · · , G,

µz,g ∼ Nd̄(0, ξ
2Id̄), g = 1, · · · , G,

ω = (γ′, ζ ′) ∼ NG+R+d̄(ω0,Ω0) on the support O1,

Λ = (λ, λI) ∼ U2(O2),

β = (ηI, β′1, β
′
2) ∼ N2k+1(β0, B0),

σ2
v ∼ I G

(ν0

2
,
ς0
2

)
,

δ = (δ′1, δ
′
2) ∼ N2d̄(δ0,∆0),

τg ∼ N (τ0, T0), g = 1, · · · , G, (21)

where N represents a normal distribution, and I G represents an inverse Gamma distribution.

The coefficients γ and η in the function ψij,g of Equation (14) are grouped into ω with the

support on O1 wherein the identification constraint |ζ1| ≥ |ζ2| ≥ · · · ≥ |ζd̄| is held. For the

endogenous effects λ and λI, we employ a bivariate uniform distribution with a restricted

parameter space O2. The restricted parameter space O2 reflects the stationary condition of

the outcome Equation (17), which is |λ| + |λI| < 1/maxg=1,··· ,G κmax(Wg), where κmax(Wg)

denotes the maximum eigenvalue of network matrix Wg. The other priors are commonly used

conjugate priors in the Bayesian literature. We choose hyperparameters ξ2 = 2, ω0 = 0,

Ω0 = 100IG+R+d̄, η0 = 0, E0 = 100, β0 = 0, B0 = 100I2k+1, ν0 = 2.2, ς0 = 0.1, δ0 = 0,

∆0 = 100I2d̄, τ0 = 0, T0 = 100 to ensure that prior densities are relatively flat (uninformative)

over the range of parameter spaces.

Given the probability function in Equation (20) and the prior distributions in Equa-

tion (21), the posterior distribution can be expressed as follows,

P (θ, {Zg}, {τg}|{Yg}, {Wg}) ∝ π(θ) · π({Zg}) · π({τg}) · P ({Yg}, {Wg}|{Xg}, {Cg}, θ, {Zg}, {τg}).
(22)

The direct simulation of draws from Equation (22) is not straightforward. Therefore we employ

the Gibbs sampling algorithm and work on the conditional posterior densities of parameters.

With conjugate priors, µz,g, η
I, β, σ2

v , δ, and τg’s can be sampled directly from their condi-

tional posterior distributions, which are normal or inverse-gamma distributions. However, a

Metropolis-Hasting (M-H) step within the Gibbs sampling is necessary to sample ω, Λ, and the

latent variables zi,g’s because their conditional posteriors are of unknown forms. We detail the

conditional posterior distributions and MCMC sampling steps in Supplementary Appendix A.
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4.2 Simulation Study

We conduct a Monte Carlo simulation study to evaluate the performance of our proposed esti-

mation approach in finite sample and to investigate the potential bias inherited in misspecified

models when altruistic preference, direct externality, and endogenous network formation are

unaccounted for. We use the altruistic social interactions model of Equation (17) and the

endogenous network formation of Equation (14), as the data generating process (DGP) to

produce the artificial network and outcome data. The generated sample consists of 30 net-

works (G = 30) and each network has 50 individuals (m = 50). Specifically, we first generate

the dyadic exogenous variable {cij,g}mi,j=1 for capturing homophily in Equation (14) by draw-

ing two variables u1 and u2 from the uniform distribution U(0, 1) and then set cij,g = 1 if

both u1 and u2 are greater than 0.7 or less than 0.3; and set cij,g = 0 otherwise. We gener-

ate the individual exogenous variable {xi,g}mi=1 in Equation (17) from the normal distribution

N (0, 2). The group effects {τg}Gg=1 are simulated from N (0, 1), whereas the stochastic error

terms {vi,g}mi=1 are simulated from N (0, σ2
v). We specify latent variable zi,g in one dimension

and simulate it from N (0, 1). The true parameters used in this DGP are shown in the first

column of Table 1. The generated artificial networks have an average out-degrees of 4.82 for

an individual and an average network density of 0.0983, which are quite comparable with the

network samples considered in our empirical study in Section 5 (see Table 2).

The number of Monte Carlo repetitions is set to 100. We apply the estimation approach

outlined in Section 4.1 to five alternative models and report the mean of estimation bias and

the standard deviation across repetitions.26 The simulation results are summarized in Table 1.

Model (I) stands for the true DGP model, i.e., Equations (14) and (17). The results under

Model (I) show that our proposed procedure works well: all the estimated parameters contain

only insignificant sampling biases. Model (II) stands for a misspecified model in which we

omit the direct externality effect, ηI, from Equation (17). The results in Model (II) display

a significant downward bias (29%) on the estimate of inward endogenous effect (λI). Based

on the standard omitted variable bias formula, the direction of bias can be inferred from

sign(ηI) × sign(corr(W ′
gYg,W

′
glg)) = (−) × (+) = −; therefore, the downward bias on λI

is justified. Model (III) is another misspecified model where the inward endogenous effect

in Equation (17) is excluded. The results in Model (III) show a significant upward bias

(more than 150%) on ηI, and this can also be justified by the sign of omitted variable bias,

sign(λI) × sign(corr(W ′
gYg,W

′
glg)) = (+) × (+) = +. In addition, peer effect coefficient λ is

biased upward by 37%. We next take away λI and ηI from Equation (17), which results in

the standard SAR model. In particular, Model (IV) addresses endogenous network formation,

26For each repetition, the point estimate is obtained from 20,000 MCMC draws with the first 2,000 draws

dropped for the burn-in.
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whereas Model (V) simply takes networks as exogenously given. The results show significant

upward biases (48% and 57%) on the estimated endogenous effect λ in Models (IV) and (V).

These findings not only confirm that ignoring network endogeneity would lead to an upward

bias on λ (Goldsmith-Pinkham and Imbens, 2013; Hsieh and Lee, 2016), but more importantly,

they show that existing models in the literature may still contain significant upward bias in

the estimated endogenous peer effect coefficient due to the omitted altruism and externality.

We also consider the DGP based on the heterogeneous altruistic social interactions model

of Equation (19) and the network formation of Equation (16). We follow the previous setting

to generate artificial network and outcome data with the true parameters reported in the first

column of Supplementary Appendix Table A1. The simulation results are summarized in the

other columns of Supplementary Appendix Table A1. Model (I) stands for the true DGP

model, and the results show that our estimation approach can recover all true parameters,

including the new reciprocality coefficient ρ, from the model. In Model (II) we omit the direct

externality effect η from Equation (19) and see a downward bias (39%) on the estimate of

endogenous effect λ and an upward bias (28%) on the estimate of reciprocality coefficient ρ.

In Model (III), we exclude ρ and η from Equation (19) and in Model (IV), we further take

the networks as exogenous. Again, we note that ignoring altruism and externality could lead

to a significant upward bias in estimating λ, as well as in other parameters, even when the

network endogeneity problem is properly controlled for.

5 Empirical Study

The aims of our empirical study are twofold. First, we aim to estimate the proposed altruistic

social interactions model for different outcomes to examine the magnitudes of altruism and

the direct externality effect. Although altruism has been investigated in some studies using

experiments, such as Leider et al. (2009) and Ligon and Schechter (2012), direct externality

effect has never been identified in the social interactions literature. Second, we would like

to investigate the potential biases on the estimated endogenous peer effect inherited in the

conventional social interactions model caused by the omitted altruism and direct externality.

20



5.1 Add Health Data

Our study is based on the Add Health data,27 which is a longitudinal study on a nationally

representative sample covering adolescents in grade 7 through 12 (average age from 12 to

17) from 132 schools. To understand how social environment and behaviors in adolescence

are linked to health and achievement outcomes in young adulthood, the Add Health survey

contains detailed information about respondents’ demographic background, academic perfor-

mance, and health related behaviors. A unique and desirable feature about Add Health is that

each respondent nominates his/her male and female friends, which can be used to construct

students’ friendship networks. Furthermore, the data we use in this study are from the Wave I

survey of Add Health, which was a census in the sampled schools. Therefore, most nominated

friends are likely to be in the sample, making the missing links in the observed friendship

networks less of a concern for our estimation.

We define groups at the school level. To reduce computational burden, we select a sample

of 24 schools, each with size ranging from 15 to 245.28 The sample consists of 2,926 students.

We study four different activity outcomes: academic achievement (measured by GPA); smok-

ing (measured by number of smoking days per month); extracurricular activities (measured

by the number of school clubs attended); and misconducts (measured by frequency of doing

dangerous activity, lying, and school skipping). These outcomes have been extensively studied

in the literature, especially academic achievement and smoking.29 In general, the literature

has shown that there exist significant peer effects for these outcomes. In this paper, we offer

a unique opportunity to examine the sustainability of these findings under a general model

specification which considers altruistic preference, externality effect, and endogenous network

formation.

In the empirical model, we control an array of explanatory variables, including gender,

race, and family background, whose summary statistics are provided in Table 2. The average

27This is a program project designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris,

and funded by a grant P01-HD31921 from the National Institute of Child Health and Human Development,

with cooperative funding from 17 other agencies. Special acknowledgment is due Ronald R. Rindfuss and

Barbara Entwisle for assistance in the original design. Persons interested in obtaining data files from Add

Health should contact Add Health, Carolina Population Center, 123 W. Franklin Street, Chapel Hill, NC

27516-2524 (addhealth@unc.edu). No direct support was received from grant P01-HD31921 for this analysis.
28The computation cost comes from estimating the network formation model in which the computational

time increases exponentially with network size.
29See Calvó-Armengol et al. (2009), Fruehwirth (2013, 2014), Hanushek et al. (2003), Lin (2010), Zimmerman

(2003), and Hsieh and Lee (2016) for academic achievement; see Clark and Lohéac (2007), Fletcher (2010),

Nakajima (2007), Powell et al. (2005), Hsieh and Lin (2017), and Hsieh and Van Kippersluis (2018) for smoking

behavior; see Bramoullé et al. (2009), Schaefer et al. (2011) for extracurricular and recreational activities. See

Ballester et al. (2010) and Patacchini and Zenou (2012) for misconducts (delinquent behaviors).
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student in our sample has a GPA of 2.902, smokes 4.414 days per month, and has 1.223

misconducts per month during the year. On average, the respondents attend 2.577 school

clubs during the school year. The mean age is 15.553 years, and 48.36% of the sample are

male. Approximately 61.41% of the sample are White, 24.09% are Black, 2.08% are Asian,

6.87% are Hispanic, and 5.54% are of other races. About 73.1% of the sample live with both

parents. For mother’s education, 40.7% of the respondents have a mother with more than

high school education, 34.86% have a mother with high school education, and 10.63% have

mothers who attained less than high school education level. For mother’s occupation, 26.42%

of the sample have a mother working on professional jobs such as teacher, doctor, and lawyer,

23.38% have a mother who is a Homemaker, 34.52% have a mother who works on other jobs,

1.09% have a mother who receives welfare assistance, and the information is missing for 7.38%

of the sample. In our school network samples, the average number of friendship nominations

is 3.5492 and the average network density is 0.0733.

5.2 Estimation Results

5.2.1 Conventional versus Altruistic Social Interactions Models

In this subsection, we compare the parameter estimates in the conventional social interactions

model of Equation (3) with those in the altruistic social interactions models of Equation (6),

and with direct externality from peers’ outcome of Equation (8). For the four outcome vari-

ables, we only find a significant estimate of altruism for GPA and smoking, not for club

participation or misconducts.30 Therefore, we only focus on the cases of GPA and smoking

in the following discussion. The results of club participation and misconducts are reported in

Supplementary Appendix Table A2 for reference.

GPA The estimation results of GPA are presented in Table 3. In the left panel, the results

under Model (I) show that the endogenous peer effect on GPA (0.0700) based on the conven-

tional social interactions model of Equation (3) is significant. When we extend the model to

the altruistic specification of Equation (6), the estimated endogenous effect under Model (II)

decreases to 0.0610 (by 13%). We also observe a significant estimate of λI.31 Model (III) is

similar to the model specification in Mihaly (2009) which introduces an indegree centrality

as a popularity measure. We can see that the estimated endogenous effect is nearly identical

30In Supplementary Appendix Table A2, we can see the estimates of λI and ηI for club participation and

misconducts are insignificant, whereas the estimates of λ are significant. Thus, we can infer that the estimated

altruism level α is insignificant.
31This misspecified model partially corresponds to those models in studies like Lin and Weinberg (2014),

which introduce additional terms to the standard SAR model to capture the effects of different types of friends.
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to the one under Model (I), and the coefficient on the indegree centrality is 0.021 and highly

significant. Mihaly (2009) and other studies regard this as the positive effect of popularity

on individual outcome. However, from our specification, we interpret this coefficient in this

misspecified Model (III) as the mixed effects of altruism and externality. When additionally

incorporating the altruism effect from peers’ outcome, the results under Model (IV) show

that the estimated endogenous effect is further reduced to 0.0450, lower than the conventional

model by 36%. The estimates of λI and ηI are 0.0302 and -0.0701, respectively, and both

are highly significant. Therefore, ignoring either altruism or direct outcome externality could

cause serious upward bias in the estimated endogenous peer effect. To further address net-

work endogeneity, we jointly estimate the altruistic social interactions model of Equation (17)

and the endogenous network formation model of Equation (14). The estimation results are

presented under Model (V) in Table 3.32 We can see that the estimated endogenous effect λ

further decreases from 0.045 to 0.0371 (by 18%), confirming the importance of controlling for

endogenous network formation. The estimated effects of λI and ηI under Model (V) drop to

0.0251 and -0.0557, respectively, and both remain highly significant. Based on the estimates

of λ and λI, we can derive the altruism level α, which equals to 0.6765. Furthermore, we can

uncover the direct externality effect generated by peers’ GPA as -0.0823 based on the derived

altruism level and the estimate of ηI. Therefore, peers’ academic achievement generates not

only a positive complementary spillover effect on a student, but also a negative direct ex-

ternality effect, which could be attributed to competition pressure. The estimated negative

externality effect has revealed an unexplored pattern in existing social interactions studies and

implies that the net effect generated by peers could be positive or negative, depending on the

relative magnitudes of these two opposite mechanisms generated by peers: spillover and direct

externality effects.

Based on our estimation results, an individual not only cares about his/her own payoff,

but also cares about others’ payoffs with a weight of 0.6765. In addition, an individual’s

payoff function consists of two distinct social components: one is the positive complementary

effects generated by peers’ outcomes, with the magnitude being the product of the estimated

32Note that the results under Model (V) in Table 3 are based on the model with unobserved latent variables in

three dimensions chosen as the optimal dimension by the Akaike’s information criterion - Monte Carlo (AICM)

proposed by Raftery et al. (2007), an estimate of the conventional AIC. In particular, we estimate the models

with different dimensions of latent variables and the dimension of three achieves the smallest AICM value

compared with other latent dimensions. Detailed estimation results for the models with other dimensions of

the latent variables are provided in Supplementary Appendix Table A3. Apart from using AICM as a criterion

for dimension selection, we also compare the changes of estimated parameters when adjusting the dimension

of the latent variables. From Table A3, we can see that as we continue to increase the dimension of the latent

variables from three to four, the changes in the estimated peer effect parameters become relatively small.
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coefficient 0.0371 and own outcome yi,g.
33 As shown in Table 2, the mean of GPA in our sample

is 2.902, therefore the average magnitude of the complementary effects generated by peers’

outcomes is 0.108. The other social component is the negative externality effects generated by

peers’ outcomes, with the magnitude estimated to be -0.0823. Relating to the coefficients of

the best response function of Equation (8), we can see that if the sum of person i’s friends’ GPA

increases by 1, his/her GPA will increase by 0.0371, implying a standard deviation increase

in the sum of person i’s friends’ GPA raises own GPA by 0.3228 points, or by 11.12% of its

mean of 2.902.34 Furthermore, if the sum of the GPA of the individuals who nominate person

i as friends increases by 1, person i’s GPA will increase by 0.0251, meaning that a standard

deviation increase in the sum of the GPA of the individuals who nominate person i as friends

raises own GPA by 0.2574 points, or by 8.87% of its mean.35 Finally, if the in-degree centrality

of person i increases by 1, his/her GPA will decrease by 0.0557, implying a standard deviation

increase in an individual’s in-degree centrality decreases own GPA by 0.1820 points, or by

6.27% of its mean.36

For the own effects of exogenous characteristics on GPA from Model (V), we find that

students who are male, older, and whose mothers with lower than high school education tend

to have lower GPA. Students who live with both parents and whose mothers with higher than

high-school education tend to have higher GPA. For contextual effects, we find significant

negative effects from friends who are older, whose mothers with lower than high-school edu-

cation, and significant positive effects from living with both parents. For network formation,

the results show significant homophily effects on individual characteristics for friendship for-

mation. All three dummy variables – same age, same sex, and same race – which capture

the similarity between individual pairs, show positive effects on the probability of forming

friendship. In particular, the effect of same age is strongest, followed by the effects of same

race and then of same sex. We also find supporting evidence of significant homophily effects

on latent variables, that is, individuals who have more distant unobservables are less likely to

become friends.

Smoking The estimation results for smoking are presented in Table 4. Similar to the case

for GPA, as we move from Model (I) to Model (V), the estimated endogenous effect λ steadily

declines. In particular, it significantly decreases from 0.0924 in Model (I) to 0.0592 in Model

33As can be seen from Equation (7), the effect of the third term on own payoff (vi,g) is given by λyi,g.
34The mean and standard deviation for the sum of friends’ GPA, i.e., WgYg, are 10.7467 and 8.7004,

respectively.
35The mean and standard deviation for the sum of the GPA of the individuals who nominate person i as

friends, i.e., WT
g Yg, are 10.6415 and 10.2541, respectively.

36The mean and standard deviation for the in-degree centrality are 3.5492 and 3.2680, respectively.
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(IV), by 36%. In Models (IV) and (V), we can also see that λI is positive and ηI is negative,

and both are highly significant. Although λ and λI are overall similar in Models (IV) and

(V), ηI decreases by 7.8% after endogeneity in network formation is controlled for in Model

(V).37 In addition, although both λI and ηI are significant in the fully specified model, neither

is significant in either Model (II) or (III), where either ηI or λI is omitted. Based on results

from Model (V), we can derive the altruism level as 0.6376 and the direct externality effect as

-0.2771. Therefore, for GPA and smoking behavior, we find that the estimated altruism levels

are relatively stable, providing empirical evidence for social preference theories which assume

altruism as a fixed innate personal attribute, including Levine (1998). By contrast, peers’

smoking behaviors generate a much larger direct negative externality effect as compared with

that of GPA, which could be attributed to the adverse impact of smoking on health and the

environment, among others.

Specifically, the results indicate that an individual assigns a weight of 0.6376 to others’

payoffs, similar to the case of GPA. The direct negative externality effect generated by peers’

smoking behaviors is as high as -0.2771. The estimated coefficients of the best response

function of Equation (8) show that the effects of the sum of person i’s friends’ smoking

behaviors, the sum of the smoking behaviors of the individuals who nominate person i as

friends, the in-degree centrality of person i, are 0.0574, 0.0366, and -0.1767, respectively. In

other words, a standard deviation increase in the sum of person i’s friends’ smoking behaviors,

or a standard deviation increase in the sum of the smoking behaviors of the individuals who

nominate person i as friends, raises own smoking behavior by 1.4716 or 0.9421 times, or by

33.34%, or 21.34% of its mean of 4.4142. On the other hand, a standard deviation increase

in an individual’s in-degree centrality reduces own smoking behavior by 0.5775 times, or by

13.08% of its mean.38

For the own effects of exogenous characteristics on smoking, we can see that students

who are Black, Hispanic or live with both parents tend to smoke less. By contrast, older

students tend to smoke more. For contextual effects, having older friends tend to decrease

an individual’s smoking frequency. For network formation, the results of smoking behaviors

confirm what we find for the GPA sample, that is, individuals who have similar observed

characteristics such as age, race, and sex, in addition to unobservables are more likely to form

friendship links.

37The dimension of the latent variables in this model is also three, which is chosen as the optimal model

based on the AICM criterion. The estimation results with other dimensions of the latent variables are provided

in Supplementary Appendix Table A4.
38The means and standard deviations for the sum of friends’ smoking behaviors, for the sum of the smoking

behaviors of the individuals who nominate person i as friends, and for the in-degree centrality based on the

smoking sample, are 14.0132 and 25.6374, 13.0332 and 25.7416, 3.5492 and 3.2680, respectively.
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5.2.2 Directed Altruistic Social Interactions Model

To empirically examine whether directed altruism is supported, i.e., stronger altruism toward

friends, we apply the directed altruistic social interactions model of Equation (10) to our

sample. The results are presented in Table 5. We consider cases with and without direct

externality. However, in both cases we obtain insignificant estimates of λR and ηR for GPA

and smoking. Therefore, we do not find evidence of directed altruism for these two outcomes

in our sample.

5.2.3 Heterogeneous Altruistic Social Interactions Model

In this subsection, we estimate the heterogeneous altruistic social interactions model of Equa-

tion (19) and the extended network formation model of Equation (16). The GPA results are

shown in the left panel of Table 6, and those for smoking are presented in the right panel of

the same table. Based on the AICM values, we choose the model with three dimensions of

latent variables, i.e., Model (D3) as the desired model for GPA and smoking.

The estimated endogenous effects are 0.0492 and 0.0747 for GPA and smoking, respectively,

both are highly significant. Compared with the results of conventional social interactions

models, i.e., Model (1), in Tables 3 and 4, the estimates drop by 30% and 19%, respectively.

The reduction on estimate can be attributed to the control of altruism and the correction of

network endogeneity bias. The coefficient ρ is estimated to be 0.6187 for GPA and 0.4120 for

smoking, reflecting strong orientation toward fairness. The direct externality effects are still

negative for GPA and smoking: -0.1303 and -0.4344, respectively. The direct externality effect

is found to be stronger for smoking than for GPA.

From the endogenous network formation model, for GPA and smoking, we find that in-

dividuals with a higher level of altruism are more likely to send out friendship nominations,

and they are also more likely to receive friendship nominations, with the effect on receiving

friendship nominations being stronger. Specifically, for GPA (smoking), the effect of αi,g is

estimated to be 0.1412 (0.1357), whereas the estimated effect of αj,g is 1.4109 (1.3834), all

are highly significant. We find similar homophily pattern on observed variables including

age, race, and sex, as well as unobservables for network formation. The age effect is still the

strongest, followed by the effects of same race then same gender.

5.3 Multiplier Effects

In this section we compare the social multiplier effects implied by the altruistic social in-

teractions model with the conventional social interactions model. In the conventional social

interactions model as in Equation (3), the social multiplier effects in group g are calculated by
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(Img − λWg)
−1`g, for g = 1, · · · , G. The variation of the effects mainly relates to the number

of out-links that each individual has. The more the number of out-links one has, the stronger

the multiplier effect one receives. However, for the altruistic social interactions model as in

Equation (8), in addition to the out-links, the multiplier effects further relate to the in-links

of the networks, calculated by (Img − λWg − λIWT
g )−1`g, for g = 1, · · · , G. Therefore, the

multiplier effects generated from the altruistic social interactions model would be different

from those generated by the conventional SAR model due to two reasons. The first is the

smaller endogenous peer effect (λ) in the altruistic social interactions model owing to the res-

olution of the confounding effects caused by altruism. The second is the heterogeneity of the

in-degrees among the individuals. In general, the social multiplier effects under the altruistic

social interactions model are expected to be more heterogeneous compared to those under the

conventional social interactions model.

To provide a better visualization of the comparison, we plot in Figure 1 the distribution

of multiplier effects (by pooling individuals across groups) based on the estimation results in

Section 5.2.1. Panel (a) presents the multiplier effects with regard to GPA and Panel (b) shows

the multiplier effects with regard to smoking. In both panels we can see that the distribution

of multiplier effects is indeed more dispersed under the altruistic social interactions model.

This pattern is consistent with the theoretical prediction made in Bourlès et al. (2017) that

altruism could contribute to inequality in social networks.

It would also be interesting to see how the differences between the multiplier effects gener-

ated by the two models are related to the features of the social network. In Figure 2, we plot

the distribution of the differences between the multiplier effects generated by the conventional

SAR model and the altruistic social interactions model, as well as how these differences change

with some network features including out-degrees and in-degrees.39 Panel (a) shows the re-

sults for GPA, and panel (b) shows the results for smoking. We can see from both panels that

the differences in the multiplier effects generated by these two models are positively related

to the in-degrees of the network.

6 Conclusion

The classical self-interest hypothesis is essential in conventional economics models, including

those which have been widely employed in social interactions studies. However, more and more

experimental and field studies have provided evidence that people are altruistic. As social

interactions occur regularly within small groups, altruism is expected to play an important

39The differences are calculated as the multiplier effects generated by the altruistic social interactions model

subtract those generated by the conventional SAR model.
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role in individual decision making. Therefore, relaxing the selfish assumption under the social

interactions framework is necessary.

This paper provides the first analysis on social interactions and social preferences in social

networks. We combine a general altruistic utility function with the specific quadratic speci-

fication of Ballester et al. (2006) to study social interactions when individuals hold altruistic

preferences. We demonstrate that rich network features can be captured in the best response

function derived by maximizing the extended utility, thereby providing microfoundation for

studies which investigate how network features mediate peer effects or other important fea-

tures in social interactions. We also show that ignoring altruistic preferences in social networks

will cause serious upward bias in peer effect estimation. Our empirical study of Add Health

data provides strong evidence for peer effects on students’ academic achievement and smoking

behavior, even after controlling for altruistic preferences and endogenous network formation.

Strikingly, the estimate of peer affect coefficient is approximately 36% smaller under altruis-

tic preferences compared with the case with conventional self-interest assumption, for GPA

and smoking. We also find that the estimated altruism levels are similar for GPA and smok-

ing, providing evidence for social preference theories which assume altruism as a fixed innate

personal attribute.

In addition to the usual positive spillover effects generated from peers, we find significant

negative externality effects directly generated from peers’ outcomes. Interestingly, we find

that peers’ smoking behaviors generate a much larger direct negative externality effect com-

pared with peers’ academic achievement. The estimated negative externality effect reveals an

unexplored pattern in existing social interactions studies and implies that the net effect gen-

erated by peers could be positive or negative, depending on the relative magnitudes of these

two opposite mechanisms. The network formation model results show significant homophily

effects not only on observed characteristics, such as same age, sex, and race, but also on latent

variables, for friendship formation. We consider two possible model extensions. In the directed

altruistic social interactions model, we do not find evidence for directed altruism (Leider et al.,

2009). In the second extended model, that is, the heterogeneous altruistic social interactions

model, we show evidence for heterogeneous altruism based on fairness and reciprocity (Levine,

1998). Individual altruism levels also play an important role in friendship network formation.

Our approach can be potentially applied to identify the role of altruism in rural village social

network data in countries like India and Indonesia, as studied in Banerjee et al. (2013) and

Alatas et al. (2016), among others.
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Table 1: Monte Carlo Simulation Result – Altruistic Social Interactions model with Endogenous

networks

Model (I) Model (II) Model (III) Model (IV) Model (V)

Parameters True bias s.d. bias s.d. bias s.d. bias s.d. bias s.d.

λ 0.0500 0.0000 0.0012 0.0009 0.0013 0.0187 0.0076 0.0239 0.0050 0.0287 0.0034

λI 0.0400 -0.0011 0.0019 -0.0116 0.0044

ηI -0.2000 0.0154 0.0217 0.3552 0.0587

β1 0.5000 0.0023 0.0200 0.0148 0.0211 0.0378 0.0323 0.0327 0.0324 0.0364 0.0371

β2 0.2000 0.0013 0.0109 0.0080 0.0127 0.0091 0.0194 0.0007 0.0178 0.0034 0.0269

δ1 0.5000 -0.0177 0.0518 -0.0678 0.1068 -0.1295 0.1507 -0.1126 0.1057

δ2 0.2000 -0.0022 0.0973 0.0387 0.0954 0.0483 0.1227 0.0480 0.0761

γ0 -1.2000 -0.0067 0.0254 -0.0161 0.0298 -0.0239 0.0314 -0.0353 0.0321

γ1 3.0000 -0.0185 0.0354 -0.0327 0.0411 -0.0395 0.0392 -0.0500 0.0390

ζ -3.0000 0.0200 0.0871 -0.0316 0.0924 -5.9567 0.0974 -0.0948 0.0982

σ2
v 1.0000 0.0429 0.1770 0.1834 0.2893 1.4291 2.4645 1.2029 1.2400 2.2971 1.1215

Note: Model (I): True DGP model, which is the altruistic social interactions model with endogenous networks, i.e.,

Equation (14) and Equation (17). Model (II): altruistic social interactions model WITHOUT direct externality effect,

i.e., Equation (14) and Equation (17) without ηI. Model (III): Altruistic social interactions model WITHOUT inward

endogenous effect, i.e., Equation (14) and Equation (17) without λI. Model (IV): conventional social interactions model,

i.e., Equation (14) and Equation (17) without both λI and ηI. Model (V): conventional social interactions model with

networks assumed exogenous, i.e., Equation (3). We conduct a Monte Carlo simulation study with 100 repetitions. For

each repetition, the point estimate is obtained from 20,000 MCMC draws with the first 2,000 draws dropped for the

burn-in. The mean bias and the standard deviation from the point estimates across repetitions are reported in the table.
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Table 2: Descriptive Statistics

Variables Min. Max. Mean S.D.

GPA 1 4 2.9020 0.7379

Smoking 0 30 4.4142 9.8641

Club 0 6 2.5772 1.8540

Misconduct 0 6 1.2230 1.0267

Male 0 1 0.4836 0.4998

Age 11 19 15.5533 1.2383

White 0 1 0.6141 0.4869

Black 0 1 0.2409 0.4277

Asian 0 1 0.0208 0.1429

Hispanic 0 1 0.0687 0.2530

Other race 0 1 0.0554 0.2287

Both parents 0 1 0.7310 0.4435

Less HS 0 1 0.1063 0.3083

HS 0 1 0.3486 0.4766

More HS 0 1 0.4070 0.4914

Edu missing 0 1 0.0660 0.2483

Professional 0 1 0.2642 0.4410

Other job 0 1 0.3452 0.4755

Welfare 0 1 0.0109 0.1040

Job missing 0 1 0.0738 0.2615

Homemaker 0 1 0.2338 0.4233

Group size 15 245 171.9986 66.1802

Out-degree 0 10 3.5492 2.7327

In-degree 0 20 3.5492 3.2680

Network density 0.0036 0.2542 0.0733 0.0575

Number of groups (schools) 24

Observations 2,926

Note: Both parents means living with both parents. Less HS means

student’s mother has a lower than high-school degree. More HS means

student’s mother has a higher than high-school degree. The variables in

italic are the reference categories in our estimation.

30



Table 3: Estimation Results of Conventional and Altruistic Social Interactions Models on GPA

Model (I) Model (II) Model (III) Model (IV) Model (V)

λ 0.0700∗∗∗ 0.0610∗∗∗ 0.0690∗∗∗ 0.0450∗∗∗ 0.0371∗∗∗

(0.0069) (0.0055) (0.0069) (0.0058) (0.0064)

λI 0.0074∗∗∗ 0.0302∗∗∗ 0.0251∗∗∗

(0.0015) (0.0062) (0.0061)

ηI 0.0210∗∗∗ -0.0701∗∗∗ -0.0557∗∗∗

(0.0047) (0.0194) (0.0190)

Own Contextual Own Contextual Own Contextual Own Contextual Own Contextual

Male −0.1280∗∗∗ 0.0078 −0.1155∗∗∗ 0.0052 −0.1189∗∗∗ 0.0058 −0.1109∗∗∗ 0.0038 −0.1073∗∗∗ 0.0026

(0.0275) (0.0167) (0.0276) (0.0168) (0.0275) (0.0166) (0.0272) (0.0168) (0.0273) (0.0162)

Age −0.0076 −0.0126∗∗∗ −0.0111 −0.0119∗∗∗ −0.0057 −0.0133∗∗∗ −0.0158 −0.0091∗∗∗ −0.0205∗ −0.0079∗∗∗

(0.0121) (0.0017) (0.0103) (0.0015) (0.0116) (0.0017) (0.0123) (0.0016) (0.0121) (0.0017)

Black −0.0383 0.0022 −0.0337 0.0055 −0.0351 0.0065 −0.0280 0.0038 −0.0498 0.0051

(0.0526) (0.0144) (0.0512) (0.0144) (0.0526) (0.0144) (0.0528) (0.0144) (0.0519) (0.0146)

Asian 0.1265 0.0346 0.1378 0.0407 0.1332 0.0410 0.1435 0.0365 0.1245 0.0416

(0.0948) (0.0435) (0.0961) (0.0430) (0.0948) (0.0436) (0.0920) (0.0436) (0.0946) (0.0424)

Hispanic −0.0528 0.0065 −0.0493 0.0094 −0.0490 0.0092 −0.0444 0.0089 −0.0436 0.0176

(0.0581) (0.0285) (0.0574) (0.0279) (0.0579) (0.0284) (0.0567) (0.0283) (0.0574) (0.0285)

Other race −0.0452 −0.0055 −0.0311 0.0038 −0.0314 0.0041 −0.0319 −0.0005 −0.0266 −0.0004

(0.0585) (0.0334) (0.0575) (0.0335) (0.0583) (0.0333) (0.0573) (0.0336) (0.0573) (0.0329)

Both parents 0.1023∗∗∗ 0.0288 0.0912∗∗∗ 0.0342∗∗ 0.0947∗∗∗ 0.0335∗∗ 0.0902∗∗∗ 0.0364∗∗ 0.0843∗∗∗ 0.0370∗∗

(0.0309) (0.0173) (0.0310) (0.0169) (0.0309) (0.0172) (0.0305) (0.0172) (0.0304) (0.0167)

Less HS −0.1046∗∗ −0.0660∗∗∗ −0.0955∗∗ −0.0655∗∗∗ −0.0983∗∗ −0.0647∗∗∗ −0.0939∗∗ −0.0637∗∗∗ −0.0926∗∗ −0.0613∗∗∗

(0.0443) (0.0247) (0.0426) (0.0243) (0.0443) (0.0245) (0.0443) (0.0249) (0.0431) (0.0243)

More HS 0.1471∗∗∗ −0.0018 0.1451∗∗∗ −0.0006 0.1469∗∗∗ −0.0021 0.1439∗∗∗ 0.0030 0.1486∗∗∗ 0.0158

(0.0318) (0.0152) (0.0316) (0.0146) (0.0316) (0.0151) (0.0314) (0.0150) (0.0314) (0.0153)

Edu missing 0.0129 −0.0338 0.0198 −0.0279 0.0194 −0.0305 0.0201 −0.0255 0.0153 −0.0309

(0.0534) (0.0321) (0.0527) (0.0326) (0.0538) (0.0324) (0.0527) (0.0324) (0.0526) (0.0317)

Welfare −0.0561 −0.1249 −0.0526 −0.1254 −0.0504 −0.1269 −0.0509 −0.1128 −0.0391 −0.0913

(0.1244) (0.0943) (0.1243) (0.0938) (0.1235) (0.0931) (0.1215) (0.0943) (0.1227) (0.0929)

Job missing −0.0980 −0.0102 −0.1006∗ −0.0083 −0.1001∗ −0.0090 −0.0972∗ −0.0089 −0.0997∗ −0.0108

(0.0524) (0.0302) (0.0509) (0.0309) (0.0530) (0.0303) (0.0516) (0.0303) (0.0523) (0.0299)

Professional 0.0304 −0.0257 0.0273 −0.0283 0.0269 −0.0300 0.0331 −0.0278 0.0319 −0.0245

(0.0371) (0.0187) (0.0364) (0.0182) (0.0368) (0.0187) (0.0363) (0.0185) (0.0359) (0.0184)

Other job −0.0188 0.0078 −0.0173 0.0085 −0.0177 0.0063 −0.0147 0.0113 −0.0190 0.0101

(0.0327) (0.0170) (0.0319) (0.0169) (0.0326) (0.0181) (0.0324) (0.0170) (0.0316) (0.0168)

Z1 −0.0312 −0.0021

(0.0303) (0.0055)

Z2 0.0904∗∗∗ −0.0115∗∗

(0.0297) (0.0058)

Continued on Next Page
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Z3 −0.0742∗∗∗ −0.0087

(0.0280) (0.0064)

σ2
ε 0.4607∗∗∗ 0.4561∗∗∗ 0.4579∗∗∗ 0.4522∗∗∗ 0.4389∗∗∗

(0.0122) (0.0119) (0.0122) (0.0121) (0.0127)

Network

Age 0.6834∗∗∗

(0.0307)

Sex 0.3324∗∗∗

(0.0265)

Race 0.4700∗∗∗

(0.0390)

|zi1 − zj1| -2.7547∗∗∗

(0.0649)

|zi2 − zj2| -2.6319∗∗∗

(0.0443)

|zi3 − zj3| -2.5459∗∗∗

(0.0549)

Note: Model (I): conventional model. Model (II): altruistic Model. Model (III): conventional model with indegree effect. Model (IV): altruistic

model with direct externality. Model (V): altruistic model with direct externality and endogenous network formation. The parameter estimates

reported in this table are the posterior means and posterior standard deviations (in parentheses) computed on base of 50,000 MCMC draws. We

draw the first 5,000 draws for the burn-in. The asterisks ∗∗∗(∗∗,∗) indicates that its 99% (95%, 90%) highest posterior density range does not cover

zero.
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Table 4: Estimation Results of Conventional and Altruistic Social Interactions Models on smoking

Model (I) Model (II) Model (III) Model (IV) Model (V)

λ 0.0924∗∗∗ 0.0759∗∗∗ 0.0922∗∗∗ 0.0592∗∗∗ 0.0574∗∗∗

(0.0047) (0.0135) (0.0048) (0.0099) (0.0093)

λI 0.0184 0.0367∗∗∗ 0.0366∗∗∗

(0.0127) (0.0097) (0.0090)

ηI -0.0602 -0.1915∗∗∗ -0.1767∗∗∗

(0.0620) (0.0707) (0.0692)

Own Contextual Own Contextual Own Contextual Own Contextual Own Contextual

Male −0.3261 −0.2520 −0.3230 −0.2364 −0.3562 −0.2418 −0.3863 −0.2114 −0.3846 −0.2347

(0.3602) (0.2198) (0.3595) (0.2200) (0.3631) (0.2187) (0.3601) (0.2204) (0.3543) (0.2133)

Age 0.8532∗∗∗ −0.0601∗∗∗ 0.8342∗∗∗ −0.0577∗∗∗ 0.8806∗∗∗ −0.0587∗∗∗ 0.8138∗∗∗ −0.0484∗∗∗ 0.8088∗∗∗ −0.0420∗∗

(0.1314) (0.0166) (0.1237) (0.0167) (0.1313) (0.0167) (0.1316) (0.0170) (0.1365) (0.0165)

Black −3.8458∗∗∗ 0.2138 −3.8009∗∗∗ 0.2002 −3.8424∗∗∗ 0.2011 −3.7804∗∗∗ 0.1463 −3.1854∗∗∗ 0.0142

(0.6841) (0.1867) (0.7017) (0.1891) (0.6896) (0.1886) (0.6744) (0.1863) (0.6840) (0.1980)

Asian 0.0034 −0.5869 0.0329 −0.5301 −0.0145 −0.6163 −0.0009 −0.5458 0.3822 −0.7343

(1.2389) (0.5694) (1.2655) (0.5751) (1.2383) (0.5723) (1.2362) (0.5652) (1.2190) (0.5811)

Hispanic −1.7613∗∗ 0.6692∗ −1.7800∗∗ 0.6425∗ −1.7521∗∗ 0.6694 −1.8192∗∗ 0.5884 −1.6029∗∗ 0.3883

(0.7605) (0.3766) (0.7556) (0.3769) (0.7626) (0.3724) (0.7517) (0.3702) (0.7622) (0.3731)

Other race 0.6733 0.2931 0.7043 0.3660 0.6329 0.2687 0.6097 0.3180 0.6806 0.2382

(0.7689) (0.4376) (0.7447) (0.4360) (0.7645) (0.4377) (0.7604) (0.4276) (0.7494) (0.4367)

Both parents −1.8285∗∗∗ −0.2220 −1.8543∗∗∗ −0.2335 −1.7922∗∗∗ −0.2255 −1.7986∗∗∗ −0.2806 −1.7092∗∗∗ −0.2957

(0.4058) (0.2252) (0.4050) (0.2248) (0.4053) (0.2244) (0.3994) (0.2212) (0.3977) (0.2245)

Less HS 0.6337 0.2125 0.6024 0.2407 0.6167 0.2140 0.5255 0.2777 0.4986 0.2462

(0.5819) (0.3245) (0.5783) (0.3295) (0.5825) (0.3245) (0.5917) (0.3218) (0.5697) (0.3254)

More HS −0.2130 0.3696∗ −0.2180 0.3512 −0.2074 0.3755∗ −0.2171 0.3542∗ −0.2029 0.1879

(0.4162) (0.1987) (0.4131) (0.1951) (0.4161) (0.1975) (0.4128) (0.1996) (0.4084) (0.2020)

Edu missing 0.0660 0.7044∗ 0.0632 0.7475∗ 0.0460 0.6918 0.0087 0.7466∗ 0.0759 0.6576

(0.7009) (0.4217) (0.7050) (0.4269) (0.7076) (0.4276) (0.7004) (0.4338) (0.7033) (0.4161)

Welfare 2.1277 0.0474 2.1189 0.0793 2.1394 0.0731 2.1275 0.1835 2.0555 0.0777

(1.6171) (1.2267) (1.5913) (1.2113) (1.6066) (1.2205) (1.6002) (1.2080) (1.5936) (1.2061)

Job missing 0.7623 0.6897∗ 0.7092 0.6670∗ 0.7882 0.6904∗ 0.6656 0.6351∗ 0.7284 0.7239∗

(0.6893) (0.3967) (0.6883) (0.3963) (0.6982) (0.3985) (0.6980) (0.3878) (0.6836) (0.3985)

Professional 0.6192 0.0995 0.5754 0.0964 0.6438 0.1156 0.5681 0.1250 0.6019 0.2308

(0.4871) (0.2423) (0.4825) (0.2373) (0.4855) (0.2425) (0.4912) (0.2367) (0.4705) (0.2389)

Other job 0.7322∗ 0.0253 0.6902 0.0370 0.7422∗ 0.0340 0.6333 0.0635 0.6323 0.1758

(0.4292) (0.2197) (0.4280) (0.2216) (0.4302) (0.2202) (0.4243) (0.2172) (0.4204) (0.2221)

Z1 −0.0828 0.0825

(0.3098) (0.0744)

Z2 0.2004 0.0581

(0.4410) (0.0923)

Continued on Next Page
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Z3 −1.7947∗∗∗ 0.3508∗∗∗

(0.4237) (0.0812)

σ2
ε 79.8120∗∗∗ 79.3284∗∗∗ 79.7811∗∗∗ 78.6922∗∗∗ 76.3781∗∗∗

(2.1105) (2.0817) (2.1157) (2.0685) (2.1719)

Network

Age 0.6967∗∗∗

(0.0291)

Sex 0.3326∗∗∗

(0.027)

Race 0.4653∗∗∗

(0.041)

|zi1 − zj1| -2.7531∗∗∗

(0.0603)

|zi2 − zj2| -2.6681∗∗∗

(0.0544)

|zi3 − zj3| -2.4849∗∗∗

(0.0605)

Note: Model (I): conventional model. Model (II): altruistic Model. Model (III): conventional model with indegree effect. Model (IV): altruistic

model with direct externality. Model (V): altruistic model with direct externality and endogenous network formation. The parameter estimates

reported in this table are the posterior means and posterior standard deviations (in parentheses) computed on the basis of 50,000 MCMC draws.

We draw the first 5,000 draws for the burn-in. The asterisks ∗∗∗(∗∗,∗) indicates that its 99% (95%, 90%) highest posterior density range does not

cover zero.
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Table 5: Estimation Result: Directed Altruistic Social Interactions Models

Directed Altruistic Model Directed Altruistic Model w/ externality

GPA Smoking GPA Smoking

λ 0.0648∗∗∗ 0.0765∗∗∗ 0.0458∗∗∗ 0.0564∗∗∗

(0.0071) (0.0116) (0.0075) (0.0110)

λI 0.0087∗∗∗ 0.0025 0.0273∗∗∗ 0.0306∗∗∗

(0.0021) (0.0134) (0.0093) (0.0119)

λR -0.0044 0.0260∗ 0.0012 0.0148
(0.0046) (0.0144) (0.0118) (0.0138)

ηI -0.0563∗∗ -0.3007∗∗∗

(0.0287) (0.0945)

ηR -0.0239 0.3792
(0.0388) (0.2085)

Own Contextual Own Contextual Own Contextual Own Contextual

Male −0.1172∗∗∗ 0.0036 −0.3119 −0.2366 −0.1150∗∗∗ 0.0033 −0.3416 −0.1902
(0.0278) (0.0166) (0.3563) (0.2175) (0.0270) (0.0163) (0.3586) (0.2179)

Age −0.0108 −0.0123∗∗∗ 0.8603∗∗∗ −0.0591∗∗∗ −0.0146 −0.0089∗∗∗ 0.8490∗∗∗ −0.0562∗∗∗

(0.0113) (0.0017) (0.1317) (0.0169) (0.0109) (0.0018) (0.1338) (0.0171)
Black −0.0351 0.0059 −3.8138∗∗∗ 0.2154 −0.0305 0.0024 −3.7602∗∗∗ 0.1825

(0.0523) (0.0143) (0.6701) (0.1860) (0.0525) (0.0142) (0.6794) (0.1879)
Asian 0.1347 0.0404 −0.0134 −0.5625 0.1409 0.0389 0.0077 −0.5319

(0.0936) (0.0432) (1.2483) (0.5684) (0.0930) (0.0431) (1.2416) (0.5638)
Hispanic −0.0487 0.0095 −1.7398∗∗ 0.6309∗ −0.0452 0.0096 −1.7856∗∗ 0.5564

(0.0576) (0.0275) (0.7754) (0.3718) (0.0581) (0.0280) (0.7439) (0.3657)
Other race −0.0341 0.0020 0.6989 0.3409 −0.0341 −0.0015 0.6839 0.3454

(0.0583) (0.0331) (0.7740) (0.4323) (0.0566) (0.0330) (0.7525) (0.4382)
Both parents 0.0920∗∗∗ 0.0343∗∗ −1.8452∗∗∗ −0.2218 0.0916∗∗∗ 0.0366∗∗ −1.8053∗∗∗ −0.2794

(0.0309) (0.0170) (0.4029) (0.2231) (0.0307) (0.0174) (0.3968) (0.2199)
Less HS −0.0964∗∗ −0.0647∗∗∗ 0.5902 0.2203 −0.0937∗∗ −0.0641∗∗∗ 0.4603 0.2624

(0.0442) (0.0250) (0.5814) (0.3210) (0.0440) (0.0240) (0.5823) (0.3188)
More HS 0.1459∗∗∗ −0.0012 −0.2242 0.3626 0.1443∗∗∗ 0.0030 −0.2256 0.3496∗

(0.0318) (0.0151) (0.4184) (0.2010) (0.0314) (0.0150) (0.4072) (0.1994)
Edu missing 0.0218 −0.0295 0.0684 0.7035 0.0209 −0.0250 −0.0118 0.7032

(0.0530) (0.0326) (0.7080) (0.4369) (0.0523) (0.0314) (0.6970) (0.4300)
Welfare −0.0522 −0.1244 2.1423 0.0432 −0.0518 −0.1143 2.1497 0.1281

(0.1247) (0.0942) (1.6259) (1.2217) (0.1236) (0.0931) (1.5948) (1.2103)
Job missing −0.1021∗ −0.0098 0.7210 0.6641∗ −0.1000∗ −0.0085 0.6989 0.6676∗

(0.0525) (0.0301) (0.7014) (0.3997) (0.0530) (0.0305) (0.6913) (0.3973)
Professional 0.0268 −0.0305 0.6203 0.0916 0.0320 −0.0265 0.5920 0.1370

(0.0373) (0.0185) (0.4811) (0.2431) (0.0366) (0.0185) (0.4818) (0.2404)
Other job −0.0189 0.0067 0.7144 0.0307 −0.0154 0.0123 0.6510 0.0717

(0.0322) (0.0170) (0.4282) (0.2190) (0.0327) (0.0166) (0.4238) (0.2164)

σ2
ε 0.4558∗∗∗ 79.2971∗∗∗ 0.4525∗∗∗ 78.5899∗∗∗

(0.0119) (2.1347) (0.0112) (2.1244)

Note: The parameter estimates reported in this table are the posterior means and posterior standard deviations (in
parentheses) computed on the basis of 50,000 MCMC draws. We draw the first 5,000 draws for the burn-in. The asterisks
∗∗∗(∗∗,∗) indicates that its 99% (95%, 90%) highest posterior density range does not cover zero.
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Table 6: Estimation Results: Heterogeneous Altruism Model with Endogenous Friendship

Formation

Activity GPA Smoking

D3 D4 D3 D4

λ 0.0492∗∗∗ 0.0470∗∗∗ 0.0747∗∗∗ 0.0739∗∗∗

(0.0055) (0.0067) (0.0045) (0.0048)

ρ 0.6187∗∗∗ 0.6369∗∗∗ 0.4120∗ 0.3387

(0.2338) (0.2278) (0.2751) (0.2602)

η -0.1303∗∗∗ -0.1085∗∗∗ -0.4344∗∗ -0.4208∗∗

(0.0221) (0.0253) (0.1842) (0.1704)

Own Contextual Own Contextual Own Contextual Own Contextual

Male −0.1209∗∗∗ 0.0101 −0.1186∗∗∗ 0.0072 −0.1871 −0.1917 −0.0634 −0.2615

(0.0271) (0.0165) (0.0266) (0.0162) (0.3551) (0.2112) (0.3448) (0.2126)

Age −0.0320∗∗∗ −0.0097∗∗∗ −0.0436∗∗∗ −0.0084∗∗∗ 0.7580∗∗∗ −0.0576∗∗ 0.7099∗∗∗ −0.0492∗∗∗

(0.0118) (0.0015) (0.0136) (0.0017) (0.1319) (0.0167) (0.1359) (0.0166)

Black −0.0573 −0.0046 −0.0010 0.0060 −3.4775∗∗∗ 0.1567 −2.7953∗∗∗ 0.2163

(0.0534) (0.0146) (0.0524) (0.0144) (0.6741) (0.1833) (0.6843) (0.1834)

Asian 0.1030 −0.0008 0.0901 0.0051 −0.0532 −0.4186 0.0720 −0.5953

(0.0949) (0.0437) (0.0927) (0.0426) (1.1285) (0.5402) (1.1479) (0.5400)

Hispanic −0.0604 0.0133 −0.0265 0.0257 −1.8048∗∗ 0.5007 −1.5848∗∗ 0.4833

(0.0577) (0.0283) (0.0573) (0.0285) (0.7340) (0.3602) (0.7420) (0.3647)

Other Race −0.0399 −0.0106 −0.0227 0.0039 0.4595 0.3171 0.6785 0.4301

(0.0586) (0.0329) (0.0567) (0.0330) (0.7206) (0.4204) (0.7158) (0.4147)

Both parents 0.0944∗∗∗ 0.0388∗∗ 0.0842∗∗∗ 0.0359∗∗ −1.8983∗∗∗ −0.2393 −1.6849∗∗∗ −0.2430

(0.0313) (0.0172) (0.0301) (0.0170) (0.4043) (0.2188) (0.3928) (0.2125)

Less HS −0.0960∗∗ −0.0534∗∗ −0.0869∗∗ −0.0459∗∗ 0.5740 0.1942 0.5574 0.2627

(0.0441) (0.0249) (0.0433) (0.0239) (0.5690) (0.3121) (0.5659) (0.3138)

More HS 0.1444∗∗∗ 0.0069 0.1352∗∗∗ 0.0151 −0.2244 0.3721∗ −0.1183 0.3604∗

(0.0315) (0.0149) (0.0312) (0.0147) (0.4029) (0.1929) (0.3983) (0.1926)

Edu missing 0.0282 −0.0165 0.0215 −0.0178 0.0724 0.6275 0.0274 0.6038

(0.0525) (0.0323) (0.0522) (0.0320) (0.6706) (0.4084) (0.6608) (0.4017)

Welfare −0.0342 −0.1016 −0.0416 −0.0663 1.6425 0.0598 1.4548 0.3179

(0.1234) (0.0933) (0.1221) (0.0940) (1.4234) (1.1079) (1.4249) (1.1175)

Job missing −0.0886 0.0076 −0.0902∗ −0.0096 0.6909 0.7193∗ 0.7761 0.7044∗

(0.0521) (0.0301) (0.0508) (0.0296) (0.6727) (0.3826) (0.6769) (0.3781)

Professional 0.0289 −0.0278 0.0303 −0.0377∗∗ 0.5876 0.1347 0.4279 0.0655

(0.0360) (0.0187) (0.0362) (0.0183) (0.4675) (0.2372) (0.4569) (0.2332)

Other job −0.0169 0.0116 −0.0180 0.0137 0.7338 0.0745 0.6219 0.0029

(0.0326) (0.0167) (0.0314) (0.0167) (0.4140) (0.2109) (0.4036) (0.2133)

Z1 −0.0987∗∗∗ −0.0049 −0.1011∗∗∗ 0.0025 −2.5870∗∗∗ 0.4901∗∗∗ −0.1807 0.0437

(0.0309) (0.0074) (0.0224) (0.0067) (0.3474) (0.0843) (0.3145) (0.0800)

Z2 −0.0119 −0.0110 0.1032∗∗∗ −0.0067 1.0381∗∗∗ −0.2121∗∗ 0.7371 −0.1575

(0.0245) (0.0064) (0.0244) (0.0067) (0.3493) (0.0937) (0.4570) (0.1116)

Z3 −0.0364 −0.0019 −0.0241 0.0001 0.1741 −0.0295 2.1789∗∗∗ −0.2876∗∗

(0.0260) (0.0068) (0.0257) (0.0070) (0.3662) (0.0888) (0.3529) (0.0931)

Z4 − − −0.1451∗∗∗ −0.0097 − − −2.6794∗∗∗ 0.4092∗∗∗

(0.0288) (0.0081) (0.3120) (0.0914)

A 0.0155 −0.0144 0.0571 0.0029 2.4091∗∗∗ 0.0691 2.1153∗∗ 0.1226

(0.0627) (0.0188) (0.0606) (0.0187) (0.9541) (0.2273) (0.9555) (0.2324)

Network

Age 0.6968∗∗∗ 0.7495∗∗∗ 0.6894∗∗∗ 0.7423∗∗∗

(0.0321) (0.0308) (0.0355) (0.0329)

Sex 0.3561∗∗∗ 0.3616∗∗∗ 0.3646∗∗∗ 0.3549∗∗∗

(0.0268) (0.0291) (0.0263) (0.0329)

Race 0.5344∗∗∗ 0.5449∗∗∗ 0.5011∗∗∗ 0.5203∗∗∗

(0.0471) (0.0479) (0.0463) (0.0576)

|zi1 − zj1| -2.7467∗∗∗ -2.6177∗∗∗ -2.7889∗∗∗ -2.6585∗∗∗

(0.0421) (0.0458) (0.0496) (0.0526)

Continued on Next Page
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Table – Continued

|zi2 − zj2| -2.7122∗∗∗ -2.5284∗∗∗ -2.7241∗∗∗ -2.5789∗∗∗

(0.0404) (0.0428) (0.0414) (0.0532)

|zi3 − zj3| -2.6476∗∗∗ -2.4735∗∗∗ -2.6471∗∗∗ -2.4929∗∗∗

(0.0446) (0.0446) (0.0494) (0.0545)

|zi4 − zj4| - -2.4260∗∗∗ - -2.3343∗∗∗

(0.0460) (0.0675)

aig 0.1412∗∗∗ 0.1753∗∗∗ 0.1357∗∗∗ 0.1341∗∗∗

(0.0424) (0.0494) (0.0447) (0.0532)

ajg 1.4109∗∗∗ 1.4019∗∗∗ 1.3834∗∗∗ 1.4246∗∗∗

(0.0448) (0.0498) (0.0436) (0.0541)

σ2
v 0.4446∗∗∗ 0.4175∗∗∗ 72.6769∗∗∗ 69.7159∗∗∗

(0.0125) (0.0121) (2.2695) (2.2621)

AICM 80,505 83,335 89,472 93,697

Note: Di, i = 3, 4 refers to the dimensions of the latent variables Z used in the network formation and outcome equations.

The parameter estimates reported in this table are the posterior means and posterior standard deviations (in parentheses)

computed on basis of 50,000 MCMC draws. We draw the first 5,000 draws for the burn-in. The asterisks ∗∗∗(∗∗,∗)

indicates that its 99% (95%, 90%) highest posterior density range does not cover zero.
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Figure 1: Histogram of Multipler Effects
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Ballester, Coralio, Antoni Calvó-Armengol, and Yves Zenou (2006) “Who’s who in networks.

wanted: the key player,” Econometrica, Vol. 74, pp. 1403–1417.

Ballester, Coralio, Yves Zenou, and Antoni Calvó-Armengol (2010) “Delinquent networks,”
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Clark, Andrew E and Youenn Lohéac (2007) “It wasnt me, it was them! Social influence in

risky behavior by adolescents,” Journal of Health Economics, Vol. 26, pp. 763–784.

Conti, Gabriella, Andrea Galeotti, Gerrit Mueller, and Stephen Pudney (2013) “Popularity,”

Journal of Human Resources, Vol. 48, pp. 1072–1094.

Cosmides, Leda and John Tooby (1989) “Evolutionary psychology and the generation of cul-

ture, part II: Case study: A computational theory of social exchange,” Ethology and socio-

biology, Vol. 10, pp. 51–97.

Cox, James C, Daniel Friedman, and Steven Gjerstad (2007) “A tractable model of reciprocity

and fairness,” Games and Economic Behavior, Vol. 59, pp. 17–45.

Croson, Rachel and Jen Yue Shang (2008) “The impact of downward social information on

contribution decisions,” Experimental Economics, Vol. 11, pp. 221–233.

42



Croson, Rachel TA (2007) “Theories of commitment, altruism and reciprocity: Evidence from

linear public goods games,” Economic Inquiry, Vol. 45, pp. 199–216.

De Giorgi, Giacomo, Michele Pellizzari, and Silvia Redaelli (2010) “Identification of social

interactions through partially overlapping peer groups,” American Economic Journal: Ap-

plied Economics, Vol. 2, pp. 241–75.

Dufwenberg, Martin and Georg Kirchsteiger (2004) “A theory of sequential reciprocity,”

Games and Economic Behavior, Vol. 47, pp. 268–298.

Durlauf, Steven N and Yannis M Ioannides (2010) “Social interactions,” Annual Review of

Economics, Vol. 2, pp. 451–478.

Echenique, Federico and Roland G Fryer (2007) “A measure of segregation based on social

interactions,” The Quarterly Journal of Economics, Vol. 122, pp. 441–485.

Ellingsen, Tore and Magnus Johannesson (2008) “Pride and prejudice: The human side of

incentive theory,” American Economic Review, Vol. 98, pp. 990–1008.

Erlei, Mathias et al. (2004) “Heterogeneous social preferences,” working paper, Abteilung für

Volkswirtschaftslehre, Technische Universität Clausthal (Department of Economics, Techni-

cal University Clausthal).

Evans, William N, Wallace E Oates, and Robert M Schwab (1992) “Measuring peer group

effects: A study of teenage behavior,” Journal of Political Economy, Vol. 100, pp. 966–991.

Falk, Armin and Urs Fischbacher (2006) “A theory of reciprocity,” Games and Economic

Behavior, Vol. 54, pp. 293–315.
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