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Abstract

Cryptomining gives rise to negative externalities through consumption of scarce
electricity. Thus why do local governments pursue cryptominers and what are the
broader effects of cryptomining on the local economy? Testimonial evidence supports
cryptomining as a source of tax revenues and purported local economy spillovers. We
assemble a novel panel dataset for cities in China and New York State to take these
claims to the data. First, we estimate that in China cryptomining operations lead to
10% higher energy consumption, which is mainly derived from fossil fuels. Second, we
study the local effects of cryptomining on the public, household and business sectors.
We find that cryptomining substantially increases business tax revenues relative to
GDP in Chinese cities, thus providing a strong incentive for local governments to attract
this type of business. However, we also find a negative impact on local wages and value
added taxes (as a fraction of GDP). In New York State, we find that cryptomining
results in substantially higher electricity prices for both households and businesses.
These findings suggest that cryptomining leads to crowding-out of other economic
activities and point to possibly unintended consequences that local governments should
factor in their decisions.
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The functioning of decentralized blockchain-based payment systems, known as cryptocur-

rencies, requires enormous amounts of world energy. De Vries (2018) estimates that to clear

a paltry 81 million transactions in 2018, Bitcoin mining consumed more energy than Ireland.

As of the summer of 2019, the website Digiconomist.com estimates that Bitcoin mining has

the carbon footprint of Denmark, with each transaction consuming the electricity equivalent

of a U.S. househod for 21 days. This energy consumption results from the fully democratized

feature, proof-of-work transaction clearing, wherein no central agent is designated to validate

and secure transactions. Rather, any person or firm can become a cryptominer, choosing to

participate in the solving of increasingly complex computational puzzles in order to verify

the validity of the transactions. Because the payoff from mining remains uncompetititve

due to the organizational structure Cong et al. (2018), an arms race has occurred in mining

resulting in a massive buildup and use of cryptomining processing power to validate transac-

tions. Furthermore, this consumption of computing electricity is not mitigated by drops in

the trading pricings of the cryptocurrencies. Figure 1 shows the estimated consumption of

energy from the beginning of 2017 to July 2019. A sharp increase in electricity consumption

in correspondence with the increase in the price of Bitcoin; however, the decline in the price

of Bitcoin does not usher in a parallel fall in electricity consumption because of the market

and pricing structures in cryptomining.

In this paper, we study implications from cryptomining. We first take up the issue of

energy consumption. If cryptomining is using fossil fuels, then it must be that these fuels

have been diverted from other uses or are being extracted at a higher rate than would have

occurred, giving rise to negative local and global externalities. (Even a use of renewables may

lead to substitution to fossil fuel consumption by other demanders or electricity, a point we

ignore.) Yet, advocates for the future of proof-or-work protocols stress that “the majority [of

mines]... use some share of renewable energy . . . in their energy mix,” (e.g. the University

of Cambridge report by Rauchs et al. (2018), henceforth referred to as Cambridge, 2018).

We test this proposition.

During the last decade, China has been the location of 70-83% of cryptomining (Cam-

bridge, 2018). We manually read local newspapers for each of the 164 non-coastal city-seats

in China, looking for mention of cryptomining facilities (not trading, but physical property).

Using these data mapped to the closest power plants, we find that just short of 60% of

Chinese cryptomining is in locations powered by coal (48.2%) or natural gas (11.1%). This

implies that even if the rest of the world only uses renewals (a false statement), more than
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half of cryptomining electricity consumption is derived from fossil fuels, especially coal.

Our second goal is to study the positive and negative implications of cryptomining for

local economies. Testimonial evidence suggests that because crypomining is a very prof-

itable use of local electricity supply, local governments would favor the tax benefits from

cryptomining. By contrast, however, and taking into account the fact that cryptomining

facilities employ negiligible labor, it may be that other stakeholders in the local economy

fare worse when cryptomining consumes the local energy supply. Anecdotes suggest that

energy crowding out is occurring, whereby local businesses and households face shortages

or heightened costs resulting from local cryptomining industries. For instance, a Missoula,

Montana (a cryptomining city) commissioner states “One-third of the county’s residential

energy used in one factory that employs 19 people to do something that, as of right now, is of

dubious social good...” (CrowdfundInsider, 3/19/2019). We study these economic spillovers

and tax incentives in the political economy of allowing cryptomining.

We start by providing a stylized modelling framework to understand the role of crytomin-

ers electricity demand in the local economy. We consider two main cases: an economy where

the electricity supply curve is flat, i.e. prices are fixed, as in local energy markets in China;

and an economy where the supply curve is upward-sloping, which implies that prices do ad-

just to changes in demand, as in local energy markets in the US. We discuss the cases when

a potential capacity constraint is binding and also an extension with an additional pollution

externality. The modeling framework clarifies our concern that governments are not likely to

be able to correct the potential negative externality by imposing taxes. The reason is that,

since anyone with computing power can engage in cryptomining and the production reward

is set externally, this is a global industry and therefore a tax will be ineffective unless it is

levied world-wide. Local taxes are likely to only move the problem elsewhere, akin to the

issue of corporate profit shifting to tax-friendly geographies (Tørsløv et al., 2018).

We collect two novel datasets of the local economies in China and New York State to

study the fixed price and floating price regimes, respectively. Our empirical design embeds

the endogenous choice of locations in a difference-in-differences design. From a production

vantage, the key determinants of cryptomining locations are temperature, distance from

power plant and electricity prices. A location model provides us with a production-based

inverse probability weighting (IPW) that we can use to level cities on the desirability of the

location from a cryptomining production viewpoint. The other side of observed location

decisions comes from the vantage of local governments. Intuitively, and as supported by
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testimonies, all else equal on production desirability, the communities which solicit cryp-

tominers most aggressively are those with declining manufacturing bases. Thus, we can sign

any bias in our IPW difference-in-difference design.

We find that cryptomining operations lead to 10% higher energy consumption in local

China (inland) cities. This is not an obvious result ex ante. On the one hand, one would

expect energy consumption to increase due to the nature of cryptomining, all else equal;

on the other, it could be that crypto operations crowd out energy usage by other economic

activities. This effect is larger in magnitude in provinces which rely heavily on coal for energy.

Because of the bias signing, any omitted variable in the IPW-difference in-differences leads us

to conclude our estimates are likely to be conservative. We replicate the result on the effect

of cryptomining on electricity consumption in New York State. We find a strong correlation

of Bitcoin prices and energy consumption at local township levels.

We then study the three stakeholders – the public, household, and business sectors. First,

we find strong evidence that Chinese cities engaging in cryptomining generate more business

tax revenues. Our estimates are again signed to be conservative and reinforced by testimonial

evidence, not only from China, but also from the U.S. states of Washington and Oregon,

the Canadian province of Alberta, the country of Georgia, and regions of Western Australia,

all suggesting that this elasticity should be large. Local authorities in regions with cheap

energy seem to be seeking out and welcoming opportunities to cryptominers. These local

governments are correct in their assessment that cryptomining offers their economies a way

to make more business tax revenues from their coal. Local governments trade this benefit

against the environmental costs.

Second, in the household sector, we find no support for the idea that locals benefit

from cryptomining. Wages appear to decline in cryptomining locations based on fossil fuel

powered plants. Consumption, as proxied by value-add taxes, does not increase. This

evidence is consistent with a story that the local labor conditions worsen because of the use

of electricity by labor-scarce cryptomining rather than in other labor-intensive industries.

However, we caveat this interpretation because, although we use multivariate controls for

the local economy trends in our difference-in-differences setup, the possibility remains for a

bias in the selection decision by declining cities.

Third and likewise, in the business sector, we find evidence that cryptomining leads to

negative externalities in terms of local investment, but only in fossil-fuel-based cities. This

evidence supports anecdotes that Venezuelan homes and businesses have been experiencing
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blackouts while electricity consumption by miners has increased. We again caveat these

results. Nevertheless, we do not find support for positive spillovers, especially in light of the

fact that governments are realizing more tax revenues.

Our final exercise turns to focusing on New York State to understand the local effect of

cryptomining in a scenario with floating electricity prices. We find very large elasticities of

the price of electricity for businesses relative to the price of Bitcoin as well as some spillover

effects on the price of electricity for households. When the price of Bitcoin went from about

$5,000 to more than $15,000 at the end of 2017, electricity prices rose by 16% for business and

6% for households. These crowding out effects constitute an important (possibly unintended)

consequence of hosting cryptomining operations that local governments should weigh against

the benefits in terms of increased tax revenues.

Related literature. Our paper contributes to a growing literature on the functioning

of the proof-of-work model of the Nakamoto-blockchain innovation, most closely tied to the

bitcoin cyptocurrency (Nakamoto, 2008; Harvey, 2016). However, the economics literature

has focused most proof-of-work attention to the features and stability of the proof-of-work

protocol itself (Kroll et al., 2013; Carlsten et al., 2016; Budish, 2018; Pagnotta and Buraschi,

2018; Chiu and Koeppl, 2019). We instead focus on the implications of proof-of-work for

local economies. We build off the literature that models how the mining equilibrium evolves

with the bitcoin-blockchain supply structure (Ma et al., 2018; Dimitri, 2017). Others have

studied other aspects of the bitcoin-blockchain supply model including the role of transaction

fees (Easley et al., 2018; Ciamac and Moallemi, 2017). The important model of Alsabah and

Capponi (2018) of firm decision-making allows for heterogeneity across miners to study how

much investment in R&D emerges for cost reduction. Important for an overlay to our work,

these authors then relate how efficiencies gained from R&D investment may increase the total

computational power devoted to mining by lowering mining costs. The model also captures

the trend towards more concentration in the mining industry that has been observed recently,

which is the focus of Cong et al. (2018). Cong et al. (2018) show that the rise in mining

pools tends to exacerbate the arms race between miners, thus resulting in even higher energy

consumption relative to the case of solo mining.

Our work also complements the work by energy engineers and scientists on the energy

consumption more directly (Li et al., 2019; Truby, 2018; De Vries, 2018) and the work that

discusses costs, limitations and alternatives to proof-of-work (Prat and Walter, 2018; Kugler,

2018; Saleh, 2019) Finally, the Cambridge report (Cambridge, 2018) referred to a number
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of times in this paper has excellent statistics on the energy measurement as well as on all

aspects of the supply of cyptomining and is generally an excellent read.

Overview. The paper is organized as follows. In Section 1, we outline the conceptual

framework. Section 2 describes the novel data sets we collected from China. Section 3

describes the empirical methodology. Section 4 contains the empirical results for China.

Section 5 discusses the data and results for NY State. Section 6 concludes.

1 Conceptual Framework

Our key goal is to quantify the effect of cryptomining on local energy markets. To

motivate our empirical strategy, here we depict a simple model of energy demand and supply.

In Panel A of Figure 2, we start with the fine dashed (blue) line representing the aggre-

gate local demand (households and businesses) prior to the entry of cryptominers. We refer

to this demand as “community demand.” The solid (black) line is the supply curve, which

is flat, implying that the local utility companies are willing to provide any amount of energy

below the capacity Qmax at a fixed price. This depiction, which is relaxed in the next figure,

reflects the realities of many localities where electricity prices are fixed by governments or

utilities at least in the medium run. The initial equilibrium is given by the point E0, where

the community demand intersects the supply curve. Cryptominers enter the locality with

the wide dashed (red) demand curve. Note that this curve is flatter than the community

demand indicating that cryptominers are more price elastic than the local community. This

reflects the fact that one of the key factors driving the cryptominers’ location decisions is

electricity prices (something we will document empirically in Section 3.2) and that, con-

versely, community demand includes local consumption for necessities such as heating and

lighting. The horizontal sum of community demand and cryptomining demand (the lighter

(green) solid line) is total local demand for electricity, and its intersection with the supply

curve (denoted E1) represents the equilibrium after the entry of cryptominers. The new

price P1 is the same as the pre-cryptomining price P0.

In this setting, although the local community is not affected by cryptomining in prices or

quantity consumed, local welfare can be impacted through a few channels. First, to the extent

that electricity production involves convex costs, the local utility companies incur increased

costs. Second, although we do not model it explicitly, in most locations, each unit of added

electricity production leads to a pollution externality. On the other hand, local welfare
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might increase due to the possibility of added tax revenues. Given that most cryptomining

requires minimal human intervention and is carried out by a few large companies, we abstract

away from the possibility that cryptomining creates new jobs or that cryptominer profits are

reinvested in the local economy.

In Panel B, we model the setting in which the sum of community and cryptominer demand

exceeds the supply capacity at the fixed price. Some of the total demand remains unfulfilled

corresponding to the difference Qunconstrained − Q1. While the model is silent about who

will be left out, the anecdotes in the Appendix suggest that it is often local businesses or

even households that bear the brunt. This is consistent with the fact that cryptomining is

a highly profitable business and is thus likely to be prioritized by tax revenues-maximizing

local governments. The resulting blackouts imply another negative externality.

So far, we have focused on the scenario where the supply curve is flat, and thus prices

are fixed, as is the case in China. This is not true of all energy markets. For example,

small businesses in the United States typically face an upward-sloping supply curve (even if

prices are managed in a dirty float), which implies that prices to a certain extent adjust to

changes in demand. Figure 3 considers this scenario. Again, Panels A and B correspond to

the case where the capacity constraint is not binding and is binding, respectively. E0 and

E1 denote the pre- and post-cryptomining market equilibrium. Since supply slopes upward,

the increase in total demand now translates into higher prices (P1 > P0).

In the floating price regime, the welfare implications are slightly different. The local

community benefits in tax revenues, although perhaps less so due to the moderating effect

of the upward-sloping supply. Offsetting this is again the negative externality of pollution.

In addition, the local community is directly impacted via steeper energy bills. In Panel B,

electricity capacity binds, which again implies the additional negative externalities incurred

with energy shortages.

Thus the local consequences in both settings involve a monetary tradeoff between taxes

and costs borne by utility provision (in Figure 2) or borne by local businesses and households

in terms of higher prices and quantity blackouts (in 3 ).

We add to this tradeoff a pecuniary representation of the pollution externalty in Figure

4 for the floating price regime. We plot the marginal social cost curve (labeled SupplySocial)

above the direct cost supply curve. The social marginal cost is higher than the private

marginal cost due to the pollution externality. In Panel A, when the capacity constraint is not

binding, the market equilibrium is characterized by higher quantity and lower price relative
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to the social optimum. This holds true both before the entry of cryptominers (Q0 > QSocial
0

and P0 < P Social
0 ) and after that (Q1 > QSocial

1 and P1 < P Social
1 ). On the other hand, when

the capacity constraint binds (Panel B), the post-cryptomining equilibrium quantity might

be the same as the socially optimal one (Q1 = QSocial
1 = Qmax), but the equilibrium price is

still too low (P1 < P Social
1 ) since it does not internalize the negative externality.

Because pollution has global consequences such as climate change, the negative external-

ities are not confined to the local markets. In order to formalize this, we adapt the model of

Ma et al. (2018) (MGT, henceforth) to allow for externalities. MGT show that, assuming en-

try into the cryptomining market is free and miners are symmetric, the following relationship

hold in the worldwide equilibrium

Nc (x∗) = P (1)

where N is the total number of cryptominers, c (x∗) is each miner’s private cost associated

with their chosen level of energy consumption x∗, and P is the reward from cryptomining

(e.g., the price of a newly minted bitcoin and possibly additional fees). In words, the sum of

the private costs of mining equals the reward in equilibrium, so that there are zero aggregate

private profits. If energy consumption involves negative externalities φ (x∗), then the socially

optimal equilibrium is characterized by

N [c (x∗) + φ (x∗)] = P (2)

Comparing (1) to (2) yields the following comparative statics: In the socially optimal equi-

librium, either N is lower or x∗ is lower (or both) relative to the market equilibrium. In

order to correct this market failure, the regulator could decide to impose a tax on consump-

tion of x devoted to cryptomining. However, note that, since anyone in the world is able

to participate in cryptomining, this is a global market and thus the tax would need to be

imposed simultaneously world-wide. A local tax would not achieve the goal of remedying the

negative externality, since miners from non-taxing countries would make up for the reduced

activity from the miners subject to the tax. This is a similar pattern to that of multinational

companies shifting their profits to low-tax countries (see, e.g., the recent paper by Tørsløv

et al. (2018)).
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2 Data

Our goal is to analyze the local consequences of cryptomining, embedding the choice of

location. Our analyses thus begin with a study of the location of cryptomining facilities,

reflecting attributes that make cryptomining most profitable. We then embed this selection

of location into our study of the outcomes. Outcomes on the local economy are of two

categories – those reflecting the intended governmental motives in attracting cryptominers

and those reflecting unintended consequences. During the last decade, China hosted 70-

83% of cryptomining (Cambridge (2018)), making it the most important setting to study

cryptomining. It is also a location with little short-term electricity price reaction to pressures

and shocks. For this reason, in Section 5 we also study a second location with a more flexible

price regime, that of New York State (NY).

2.1 Cryptomines and Power Plants at the Chinese City-Seat Level

Our first, and most difficult, task is to uncover the location of cryptomines. No pub-

lic registries exist globally or in China. Our hand collection process begins with all the

city names within all Chinese provinces which are subsequentially reported in the economic

statistics Yearbooks. We exclude all coastal provinces and three major urban centers (Bei-

jing, Chongqing, and Tianjin) as their economies are substantially more advanced than those

of the rest of China, and they are not likely to host a significant amount of cryptomining

operations (Cambridge, 2018). Further, we exclude the autonomous regions of Tibet and

Qinghai due to sparse data on economic outcomes. We end up with 206 cities, which have a

mean population of 356 thousand people. These city designations are more akin to a county

with a city seat of local power; all of the land mass is covered by city divisions.

For each city, we do manual searches in Google and Google news (in English) and, more

importantly, in Baidu and Baidu news (in Mandarin) to look for local news articles (or

other web references) to any cryptomining facilities. Our search terms include cryptomining

(and variation of it, such as crypto mining and crypto-mining), the names of the top crypto

currencies (Bitcoin, Ethereum, Ripple), and the names of the top mining pools (BTC.com,

AntPool). We coded a mining variable equal to 1 only if an article or webpage explicitly

mentioning crypto operations in the city (or the area administered by the city). We find

54 unique cities with cryptomining, and 164 unique cities without cryptomining. Figure 5

shows the location of cryptomining cities. Panel A provides the heat map of to the province
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level, akin to Cambridge (2018). Panel B presents data at our more granular level of city-

seats. Not surprisingly, cryptomining has more intensity in the northern regions with cooler

temperatures and coal-based production economies as well as in a central China river valley.

Motivated by the importance of power, we gather data on the location of power plants, in

particular focusing on the distance to the closest power plant (calculated using GIS mapping)

and the type of power plane (hydro, coal, solar, gas, wind, or oil).1 We classify a cryptomine

as being clean if the closest power plant produces electricity using hydro, solar, or wind

energy. We classify a cryptomine as being fossil fuel-powered if the closest power plant

generates electricity from coal, oil, or natural gas. Matching the locations of power plants

to the location of cryptomines will be important to assess the environmental impact of

cryptomining, which we do in Section 4.1.

2.2 Chinese Local Economy Variables

We gather data on Chinese local economies from the province-level Yearbooks directly

from each province’s statistical website. We supplement with data from aggregators, whose

coverage is often incomplete. Included in the data are annual local economic indicators, as

well as energy consumption, at the city level. Our data cover years 2011-2017 across 206

cities.

Table 1 reports the summary statistics for 154 cities without cryptomining and 52 cities

with evidence of cryptomining. The average city has a population of about 360 thousands

with no large differences between cities with or without cryptomining. The average GDP of

cities without cryptomining is about 13 billion Yuan, while cryptomining cities have a lower

average GDP around 2 billion Yuan. Despite the lower GDP cryptomining cities consume

on average more energy than cities without cryptomining, collect higher business and value

added taxes and have higher fixed assets investments.

Table 1 also reports the variables used in the location model. The average (median)

temperature in the sample is about 13.5 (15.6) degrees celsius. The average (median) distance

of the city from the closest power plant is about 31 (23) kilometers. Finally, we gather the

price of electricity at the province level from the government agency National Development

1The data on location of power plants comes from the Global Power Plant Database, which is compre-
hensive, global, open source database of power plants. We complemented this source with a manual search
for additional plants not included in the database.
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and Reform Commission.2 The average (median) price of electricity is about 539 (533) yuan

per kilowatt/hour.

Figure 6 shows the evolution of electricity prices over time for six selected regions in

China. Solid lines represent three regions where we have evidence of intense cryptomining

activity (dark red areas in the map in Figure 5); while dash lines represent three regions

where we have no (less) evidence of cryptomining activity (light yellow areas in the map in

Figure 5). Over time electricity prices trend upward in all regions, but with some interesting

differences across regions with higher vs lower mining intensity. Regions where there is less

evidence of cryptomining activity experiences the largest increase in electricity prices, while

we find lower increases in regions with intense cryptomining activity. As a result, by the end

of the period all regions with cryptomining activity have lower electricity prices than region

with no cryptomining activity.

Several reasons can explain this differential trends, but two remarks are worth making.

First, some high cryptomining regions may experience lower increases in electricity prices

because the local economy is overall declining, thus lowering the demand for (and possibly

the price of) electricity. This may indeed be the case of Inner Mongolia, which is always

an “outlier” along the price electricity dimension. However, Jilin and Heilongjiang have

almost identical electricity prices during the first half of the sample, while in the second

half prices in Jilin increase significantly, while prices Heilongjiang are almost unchanged,

despite the high electricity usage by cryptominers in the area. Second, the dynamics of

electricity prices in China is an interesting comparison with our result for the US, where we

find increase in electricity prices associated with increases in mining of Bitcoin. The different

responses of electricity prices in China and the US following increase in demand coming from

cryptomining are important to understand how market forces and regulation may shape the

future of cryptocurrencies.

3 Empirical Methodology

3.1 Identification Strategy

Our empirical strategy is based on the following model:

2See ndrc.gov.cn

11

ndrc.gov.cn


Yct = α miningc × Postt + β1X
(1)
ct + β2X

(2)
ct + γc + γt + εct (3)

where miningc is a dummy equal to one if there is evidence of cryptomining operations

in city c and Postt is a dummy equal to one if t ≥ 2015; γc and γt are city and year fixed

effects; X
(1)
c,t are time-varying city level controls (electricity prices and population) that also

enter the cryptominers’ location decisions modeled in the next section, and X
(2)
c,t are controls

(the percentage changes in population and electricity prices, as well as the percentage change

in GDP) that do not enter the location model. The dependent variables Yct measure several

outcomes of interest: energy consumption, business tax revenues, wages, value added tax

revenues and fixed asset investments. We normalize each of these outcome variables by

dividing by city-level GDP and then taking logs.3

Notice that, since we interact miningc with the Postt indicator in (3), this is a diff-in-diff

specification. In other words, the coefficient α measures how hosting cryptomining activities

affects changes in the outcome variables over time. Any time-invariant unobservables are

captured by the city fixed-effects γc. Thus, if miners’ location decisions were only based on

time-invariant unobserved factors, we could consistently recover α by estimating (3) by OLS.

However, one might be worried that time-varying factors might also influence the miners’

location decisions. For example, our testimonial evidence suggests that cryptomining tends

to locate in declining cities. In order to account for this possibility, we rely on the location

decision model estimated in Section 3.2. Specifically, we employ an inverse probability

weighting (IPW) strategy where the weights are the propensity scores obtained from the

location model

miningc = f
(
Zct, X

(1)
ct , ηct

)
(4)

In order to make this formal, we define Y
(1)
ct , Y

(0)
ct as the potential outcomes for city c in year

t with and without cryptomining, respectively. Then, under the “selection on observables”

assumption

Y
(1)
ct , Y

(0)
ct ⊥ miningc|X(1), X(2), Z, (5)

an IPW regression based on (3) will yield consistent estimates of the effect of cryptomining

3We do not normalize wages by GDP since they are already measured on a per-capita basis.
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on the outcomes even in the presence of time-varying unobservables. In words, the “selection

on observables” assumption (5) requires that the observables included in the location and

outcome models be rich enough that all the remaining variation in the location decisions

is independent of the potential outcomes. The high pseudo-R2 of the location logit model

lends support to this assumption.

Still, in order to tackle potential violations of “selection on observables,” we apply a con-

trol function approach to (3) and (4) (see, e.g., Wooldridge (2015)). Specifically, denoting by

r̂ct the generalized residuals from the location model (4), we estimate the following regression

Yct = α miningc × Postt + β1X
(1)
ct + β2X

(2)
ct + γc + γt + r̂ct + εct (6)

with IPW. This allows for the fact that unobservable factors affecting the location decisions

— ηct in (4) — might also enter the outcome equations and thus provides estimates that are

robust to violations of “selection on observables.”

3.2 Selection Model

“On the way to Bitmain’s Ordos mine, I ask Su what he looks for when he surveys new

locations. He’s like Bitmain’s real estate developer, scoping out places that fill the right

criteria for a mine. It’s not quite “location, location, location” but there is a rough checklist:

climate, cost of electricity, distance to a power station, and lastly, whether or not there are

opportunities to partner with the local government.”

— Tech in Asia, August 22, 2017

As the above quote makes clear, the location decision for cryptominers incorporates

temperature (because the machines become hot and malfunction without cooling), the price

of electricity, proximity to a power plant, and a friendly local government. We use the first

three of these in the following location choice model:

miningc = f
(
Zct, X

(1)
ct , ηct

)
(7)

In order to flexibly model the impact of the right-hand side variables on the location decisions,

we estimate a logit specification with piecewise linear splines. Specifically, for each variable,

we partition the support into five bins based on the quintiles of the distribution, and we
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include an intercept and a linear slope term for each of the bins. Because our analysis on

outcomes uses predictions from this estimation, we limit the sample period to 2013 and 2014,

the earliest years with a full panel of data yet prior to the cryptomining period. We cluster

standard errors by city to adjust for the short panel.

The results are shown in Table 2. Column (1) corresponds to a specification with bin-

specific constants, but no bin-specific slopes. The results are easy to interpret. We find that

cities which are not within the first two quintiles of being the closest to a power plant are much

less likely to host cryptomining. As for temperature, the pattern is non-monotonic at first.

The lowest quintile locations are less likely to host cryptomining, perhaps due to the lack

of power supply. Afterwards, there is a decreasing monotone pattern that colder locations

are more likely to host. In pricing, the pattern becomes much more clear when we include

the bin-specific slopes. Column (2) reports the results for the full specification with both

intercepts and slopes varying across bins of the explanatory variables. The full specification

is best interpreted by plotting the predicted probability resulting functions, which we do in

Figure 7. Note that in the lower panels, we provide the histogram of the distribution of the

explanatory variables in order to elucidate which regions on the graphs are economically of

trivial relevance. We see clearly that distance from power plants is very important, with the

closest locations having a predicted probability of nearly 0.6 on average as compared to 0.15

for those farthest away. Turning to pricing, the specification with the full set of splines in

column (2) reveals a monotonically-declining relationship between between electricity prices

and probability of hosting cryptomining activities. Finally, regarding temperature, we again

obtain a non-monotonic pattern, but the histogram suggests that that there are few cities

accounting for the increasing portion of the function.

What is perhaps most important is the very good fit of the models in columns (1) and

(2) as revealed by the high pseudo R-squared coefficients. Clearly, the variables we are using

to model the location decisions of cryptominers play an essential role consistent with the

testimonial evidence reported at the beginning of the section.
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4 Results for a fixed-price regime

4.1 Energy

First, we investigate the energy mix used by cryptomines in China. Anecdotally, it is

interesting that two cities where it is well-publicized that cryptomining is taking place are

in Inner Mongolia. These cities — Erdos and Baotou — are located in areas surrounded

by a large supply of coal plants. Sichuan, on the other hand, hosted a large volume of

cryptomining during its high-river season close to the city of Mianyang, where we identify

two coal plants.

As reported in Table 1, only 27.8% of cryptomining cities are powered by hydropower,

plus another 13% powered by wind. This leaves just short of 60% of cryptomining cities

being powered by coal (48.2%) and gas (11.1%). It could be that because we do not see

capacity at each cryptomine, we are overestimating the importance of coal; however, given

the recent press surrounding media tours of few cryptomines in Inner Mongolia (which is a

coal-based province), it is probably more likely that 48.2% is an underestimate of the im-

portance of coal. However, if 48.2% of Chinese cryptomining is powered by coal, and 80%

of the world’s cryptomining happened in China during this period, this implies that at least

39% of the world’s cryptomining was coal-based or 47.4% was fossil-fuel-based if we add in

oil power plants. This is a large underestimate since we assume all other cryptomining is

from renewables, which is clearly not the case for the large cryptomines in Alberta, Canada,

western Australia, and many other places in the media with cryptomining. Thus, we con-

servatively conclude that one-half to two-thirds of cryptomining involved fossil fuels during

this time period. This is in stark contrast to the claim sometimes made by advocates that

cryptomining is mostly powered by renewable energy.

Next, we look at whether crypto operations lead to higher energy consumption. On the

one hand, one would expect energy consumption to increase due to the nature of crypto-

mining, all else equal; on the other, it could be that cryptomines crowd out energy usage

by other economic activities.4 Thus, the net effect is a priori ambiguous, implying that this

is ultimately an empirical question. As shown in Table 3, we find robust evidence of an

increase in energy consumption per unit of GDP in Chinese cities hosting crypto operations

4Indeed, anecdotal evidence from several countries suggest that cryptomining does lead to increased prices
and even blackouts (see Appendix).
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powered by fossil fuels. The magnitude of the effect varies across the different specifications;

a conservative estimate is that cryptomining increases energy consumption per unit of GDP

by around 10%.

4.2 The Public Sector

Given the results in the previous section, it is natural to ask why local governments in

China might be willing to allow or even encourage an activity as energy-consuming and

polluting as cryptomining. The anecdotes in the Appendix suggest that one reason is that

cryptomines provide a substantial source of tax revenues for local governments in areas with

declining economies. For example, the government in Inner Mongolia has partnered with

Bitmain, owner of two of the largest mining pools in the world, and even granted the company

access to subsidized electricity.

We use our data to test whether this pattern holds more broadly. The results in Table 4

strongly support the thesis that governments have an incentive to attract cryptomining due

to the fact that it tends to increase business tax revenues (relative to GDP) by at least 10%.

This is consistent with the fact that cryptomining is a highly profitable activity5 and, thus,

one that tends to yield more tax dollars per unit of output.

Note that even the OLS regression in column (1) of Table 4 yields a positive and significant

effect of cryptomining on local taxes, in spite of the fact that cryptomining tends to locate

in cities with declining economies. Indeed, the pattern in Table 4 is consistent with this type

of selection: as we control for the endogenous location decisions better (i.e. moving from left

to right in Table 4), the estimated effect on taxes increases.

4.3 The Household Sector

In addition to increased tax revenues, advocates argue that cryptomining might induce

positive spillovers in local economies. Local governments from Inner Mongolia to Alberta in

Canada to Washington state have cited this among the motives behind their decision to allow

cryptomines. In order to test this claim, we look at the impact of cryptomining on wages as

well as value-added tax revenues. Interestingly, Table 5 shows that wages tend to decrease

as a result of crypto operations, with a more statistically and economically significant effect

5See, e.g., digiconomist.com.
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for cities located near fossil fuel power plants. Tables 5 also points to a negative effect on

value-added taxes revenues, although not statistically significant.

4.4 The Business Sector

Finally, we consider whether cryptomining has any positive spillover effects on local

business activity. The results in Table 6 indicate a negative impact on fixed asset investments.

Taken together, these findings suggest that, while governments benefit from cryptomining via

a substantial increase in business tax revenues, large swaths of the local economies suffer as a

result. This crowding out effect constitutes an important (possibly unintended) consequence

of hosting crypto operations that local governments should weigh against the benefits in

terms of increased business tax revenues.

5 Results for a floating-price regime

“In recent months, NYMPA members have experienced a dramatic increase in requests

for new service for disproportionately large amounts of power. Most such requests come

from similar types of potential customers: server farms, generally devoted to data process-

ing for cryptocurrencies. ... These applicants tend to require high quantities of power and

have extremely high load density and load factors. In addition, these customers do not bring

with them the economic development traditionally associated with similar load sizes. These

customers have few to no associated jobs, and little if any capital investment into the local

community. ... The potential for sudden relocations results in unpredictable electrical use

fluctuations in the affected areas. In sum, HDL customers negatively affect existing cus-

tomers.”

— Read and Laniado, LLP, February 15, 2018

The above quote summarizes the heated debate taking places in some areas of New York

State, where cryptominers exploited the cold climate and cheap electricity to set up some of

their largerst facilities. Far away from New York City, most of NY’s towns and cities have

a historical foundation in farming or manufacturing, and many turned to cryptomining in

the mid-2010s. In NY, electricity prices float to some degree, especially for businesses, with

pressures of supply and demand.
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In this section, we turn to New York State to consider another consequence of crypto-

mining at the local level — the incidence of price impact on local actors. The electricity

market in NY is divided (and uniformly reported) into three markets — household, small

commercial, and business. In the small commercial market, pricing is often bound by con-

tracts. Thus, electricity prices do not react in the short-term to pressures or shocks in supply

and demand. Likewise, household utility prices are often fixed, except when a utility imple-

ments a well-publicized change through a process of negotiation with the local government.

However, in the business market, prices are much more variable.

5.1 Data and empirical methodology

We follow a similar procedure to the one in China to uncover the location of cryptomines

in NY state. In this case we focus on counties as the relevant geographical unit, but present

also some evidence at the city/town level. For each county, we do manual searches in Google

and Google news in English. Our search terms include cryptomining (and any variation

of it, such as crypto mining, crypto-mining, etc.), the names of the top crypto currencies

(Bitcoin, Ethereum, Ripple), and the names of the top mining pools (BTC.com, AntPool).

We coded a mining variable equal to 1 only if an article or webpage explicitly mentioning

crypto operations in the county. We find 9 unique counties with cryptomining, and 52 unique

counties without cryptomining.6 Panel A of Figure 8 shows the location of cryptomining

counties. Not surprisingly, cryptomining has more intensity in the northern regions with

cooler temperatures and excess supply of electricity.

NY State regulators mandate counties to report monthly of data on electricity information

from the utilities and data on a uniform set of economic statistics from governments. Table 7

reports the summary statistics for the main variable in the analysis. Panel A shows the data

at the provider-user type level. The list of providers includes the six major utility companies

in NY State. Panel B of Figure 8 shows the main provider of electricity in different areas of

NY State. User types are corporate, business and household. The mean (median) monthly

revenues are $42 (26) million coming from selling 360 (248) thousands megawatts per hour

to 440 (225) thousands customers. The average (median) electricity price is 0.11 (0.11) $

per kilowatts per hour.

Panel B of Table 7 shows the data at the provider-user type-county level. The mean

6For one of the cryptomining county and five of the counties without cryptomining we do not have data
on electricity price and consumption and therefore we drop them analysis.
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(median) sales are 27 (8) thousands megawatts per hour to 17 (4) thousands customers.

We also report average temperature at the county level It is worth nothing that we do not

observe variation in electricity prices at the county level, but only the the aggregate NY

State level by provider and user type.

Finally, panel C of Table 7 shows the price of BTC, which varies only over time (we

have 32 months in our analysis from January 2016 to August 2018). The price of BTC is

easily available online (see among other sources https://coinmarketcap.com). During our

sample, the price of BTC is on average $3.7 thousands, but it ranges from $400 to more than

$15 thousands. In the empirical analysis we exploit this large swings in the price of BTC to

identify the impact of electricity prices and consumption in NY State.

Our empirical strategy is based on the following model, which we estimate separately for

each user type:

Yput = αBTC pricet + βXtu + γp + εput, (8)

where BTC pricet is the logarithm of Bitcoin prices; γp are provider fixed effects; Xtu

are additional controls (month fixed effects and temperature). The dependent variable Yput

measure the main outcomes of interest, the logarithm of electricity prices by provider p to

user type u at time t. In the appendix we also report estimates for the same model on some

closely related variables that we also observe at the same level of aggregation: revenues, sales

and number of customers. Our parameter of interest is α which measures the elasticity of

electricity price to Bitcoin price. Notice that with months fixed effects we are controlling

for variation in prices due to seasonality and with temperature we are controlling for year-

on-year differences due to exceptional weather circumstances which can affect the price of

electricity.

Given that electricity prices do not vary across counties we cannot fully exploit cross-

sectional variation in mining activities (Panel A in Figure 8). However, we leverage the

different geographical distribution of the operations of different utility providers (Panel B of

Figure 8) to create a measure of exposure of utility providers to variation in Bitcoin prices.

More precisely, we focus on New York State Electricity and Gas (NYSEG) and Central

Hudson Gas and Electricity (CHG&E). The former operates in several counties in the north-

east of NY State, where we found evidence of cryptomining. The latter operates instead in

counties in the south (Albany and below), where we founds no evidence of cryptomining.

Using electricity prices from these two providers, we estimate the following empirical model:
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Yput = αBTC pricet × Treated providerp + βXtu + γp + γt + εput, (9)

where BTC pricet is the now a dummy equal to one if the price of Bitcoin is above $10

thousands; Treated providerp is a dummy equal to one if the provider is located in areas with

evidence of cryptomining; γp and γt are provider and time fixed effects; Xt are additional

controls (temperature). The dependent variables Yput measure the main outcomes of interest,

the logarithm of electricity prices by provider p to user type u at time t. Our parameter

of interest if α which in this case measures the differential effect of extremely high Bitcoin

prices on the price of electricity for providers in areas where cryptomining is likely to take

place. Notice that, since we interact Treated providerp with the BTC pricet indicator in (9),

this is a diff-in-diff specification. In other words, the coefficient α measures how hosting

cryptomining activities affects changes in the electricity prices over time when the price of

Bitcoin is extremely high. Any time-invariant unobservables are captured by the provider

fixed-effects γp and all macro-level time-varying factors are now absorbed by the time fixed-

effects γt.
7

5.2 Results

We begin our analysis of the impact of Bitcoin prices on electricity consumption and

prices in NY State by focusing on the dynamics around a clear event. Most notably, we

focus on the city of Plattsburgh in New York state, which has been the first municipality

in the US to issue a moratorium on cryptocurrency. Plattsburgh attracted a lot of mining

activities due to its cold climate and cheap electricity. Residents pay about 4.5 cents per

kilowatt-hour, compared to 10 cents which is what the rest of the country pays on average,

and the price of electricity for industrial activity is even lower at 2 cents per kilowatt-hour.

Figure 9 shows monthly electricity consumption in the town of Plattsburgh and the

neighboring town of Peru. Before the end of 2017 both Plattsburgh and Peru experience a

similar pattern in electricity consumption. However, in January 2018 just after the peak of

the Bitcoin price we observe an increase in electricity consumption of almost 150% relative to

December in Plattsburgh, while almost no change in Peru. Interestingly, after Plattsburgh

issues the moratorium on cryptocurrencies the energy consumption returns to a pattern

7Note that the time fixed-effects fully absorb the average effect of Bitcoin prices, while we can still estimate
the effect of temperature because the latter varies over time but also across providers due to their different
geographical location.
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which resembles the one of the neighboring town Peru. Preliminary evidence from articles

suggests that residents in Plattsburgh experienced increases in electricty bills by $100-200

during January and February 2018.

In Figure 9 we also look at the pattern of electricity consumption in Plattsburgh and Peru

exactly one year before the Bitcoin price peaked. We emphasize the month of the Bitcoin

price peak and the same month the previous year in grey. We do not find large differences in

consumption between Plattsburgh and Peru as the price of Bitcoin fluctuates mildly around

an average of $1.000.

To reinforce our story of a causal effect of cryptomining on local electricity consumption

we perform an additional test. In Figure 10 we compute for the each city-town and each

month in 2018 the difference in electricity consumption relative to the same months the

previous year. 8 We then compare changes in Plattsburgh relative to the changes in all other

towns in NY state, for which we show different moments of the distribution. Plattsburgh

displays absolute differences in electricity consumption across years that are significantly

larger than other towns in NY state. The large local presence of cryptomining companies

increase the volatility of electricity demand which respond to sudden changes in the price of

Bitcoin.

We now present the results on the effect of Bitcoin prices on electricity prices for NY

State. Table 8 collects the main results.

Columns (1) to (3) shows the estimates from equation (8). We find an average positive

and significant association between Bitcoin price and price of electricity for all user types in

NY State. Looking at magnitudes, the effects are largest for business with an elasticity of

almost 0.08. A 100% increase in Bitcoin price generates a 8 percent increase in electricity

prices for businesses. The elasticities for commercial and households are smaller, but still not

negligible in magnitude. A 100% increase in Bitcoin price generates a 2 (3) percent increase

in electricity prices for commercials (households). To put these numbers in context, when

the price of Bitcoin went from about $5 thousands to more than $15 thousands at the end

of 2017 (a threefold increase) electricity prices raised on average by 16 percent for business,

4 percent for commercials and 6 percent for households.

One possible concern with our estimates of the elasticities of electricity prices to the price

of Bitcoin is that they are biased by unobservable time-varying factors correlated with the

8Note that for September to December we are computing 2017 relative to 2016, as our data ends in
August 2018.
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price of Bitcoin. To address this concern we exploit cross-sectional variation in “exposure”

to fluctuations in the price of Bitcoin among providers of electricity in NY State. Figure 11

provides the graphical representation of our difference in differences exercise. We focus on

the price of electricity for Businesses by New York State Electricity and Gas (NYSEG) and

Central Hudson Gas and Electricity (CHG&E) and normalized the price to 100 in December

2017. Before the end of 2017 both NYSEG and CHG&E experience a similar pattern in

the price of electricity. It is interesting to note that NYSEG has more volatility on average

than CHG&E. However, in January 2018 just after the peak of the Bitcoin price the price

electricity more than double for NYSEG, while CHG&E only displays a small increase.

In Figure 11 we also look at the price of electricity by NYSEG and CHG&E exactly one

year before the Bitcoin price peaked. We emphasize the month of the Bitcoin price peak

and the same month the previous year in grey. We do not find large differences in the price

of electricity between NYSEG and CHG&E as the price of Bitcoin fluctuates mildly around

an average of $1.000.

Columns (4) to (6) of Table 8 shows the estimates from equation (9). We find an average

positive and significant association between high Bitcoin price and the price of electricity by

NYSEG for businesses and commercials. The magnitude of the effects are large too. In the

periods in which the Bitcoin price is above $15 thousands businesses (commercial companies)

in affected areas in NY state pay about a 54 (27) percent higher prices for electricity than

business (commercial companies) in unaffected areas. The estimates are positive, but not

significant for the case of households, consistent with the higher stickiness of electricity prices

for households.

6 Conclusion

In this paper, we have presented testimonial and empirical evidence of the effects of

cryptomining on local economies. Using data from Chinese cities, we find that crypto op-

erations tend to substantially increase business taxes, which provides a strong incentive for

local governments to attract cryptominers. At the same time, we find negative impacts on

local wages and value added taxes, suggesting that cryptomining results in crowding-out of

other economic activities. The evidence from New York State points to an upward pressure

on electricty prices for business and commercial operations, with potential spillovers to elec-

tricity prices for households as well. Overall, our findings suggest that local governments in
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their decisions to allow cryptomining should weigh against the benefits in terms of increased

taxes the potentially large costs in terms of crowding-out of other economic activities. A

fully-fledged welfare analysis of cryptomining must balance global pollution externalities and

local crowding out against oligopolistic cryptomining profits and local government revenue

gains.
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Figure 1: Bitcoin price and world-wide electricity consumption
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Note: The chart shows the price of Bitcoin and the minimum and estimated energy consumption per year
for Bitcoin mining. Bitcoin prices comes from Coinmarketcap. Bitcoin minimum and estimated energy
consumption comes from https://digiconomist.net/bitcoin-energy-consumption.
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Figure 2: Cryptomining with fixed electricity prices

Panel A: Equilibrium in Local Electricity Market with Fixed-Price Supply

Panel B: Equilibrium in Local Electricity Market with Fixed-Price Supply & Capacity
Binding

Note: The chart shows illustrations of supply and demand in markets with (Panel B) and without (Panel
A) supply capacity binding. The figures depict the setting in which the local electricity supplier provides
electricity up to capacity at a fixed price.
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Figure 3: Cryptomining with floating electricity prices

Panel A: Equilibrium in Local Electricity Market with Upward-Sloping Supply

Panel B: Equilibrium in Local Electricity Market with Upward-Sloping Supply & Capacity
Binding

Note: The chart shows illustrations of supply and demand in markets with (Panel B) and without (Panel
A) supply capacity binding. The figures depict the setting in which the local electricity supplier provides
electricity up to capacity with a standard upward-sloping supply curve.
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Figure 4: Cryptomining with floating electricity prices and pollution exter-
nality

Panel A: Equilibrium in Local Electricity Market with Fixed-Price Supply

Panel B: Equilibrium in Local Electricity Market with Fixed-Price Supply & Capacity
Binding

Note: Plotted are illustrations of supply and demand in markets with (Panel B) and without (Panel A)
supply capacity binding. Two supply curves are depicted, both with the local electricity supplier provides
electricity up to capacity with a standard upward-sloping supply curve. One supply curve, however, embeds
the societal cost of pollution externality.
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Figure 5: Mining cities

Panel A: Province-level locations of crytomining

Panel B: City-Seat-level locations of cryptomining

Note: Data on mining locations come from manual searches in local newspapers and newsources in Mandarin
through Baidu and in English through Google. In panel A, we depict a heat map of China Province-level
cryptomining counts. In panel B, we present locations at our finer level of cities-seat, where a city-seat is
the main city with its controlling surrounding areas (akin to counties).
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Figure 6: Electricity prices over time in China
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Note: Data on electricity prices in China from from the government agency National Development and
Reform Commission (URL: ndrc.gov.cn). We collected data for all provinces in China for 2009-2010 and
2015-2016. We fill the missing years in the following way. We attribute 2009 prices for all years up to 2009,
2010 prices for years between 2010 and 2012, 2015 prices for years between 2013 and 2015, and 2016 prices for
years from 2016 onward. The chart reports electricity prices for three regions with high cryptomining activity
(Heilongjiang, Inner Mongolia and Sichuan) and three regions with low cryptomining activity (Guangxi, Jilin
and Shaanxi) based on the data reported in Figure 5.
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Figure 7: Predicted Propensity of a City to Host CrytoMining by Distance to Power Plant, Electricity
Price & Temperature

Note: Presented are graphics emerging from the predicted values of the location decision of the logit model
column (2) of Table 2. The model includes the full spline specification of knot constants and interval slopes
for each of the three variables depicted above - log distance to closest power plant, electricity price, and
average city temperature (Celsius). The top row of figure are the predict location propensity score plotted
against the continuous variable. The bottom figures add in the underlying density (a simple histogram) of
the x-axis variable to show which regions of the plots are relevant.
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Figure 8: Mining counties and electricity providers in New York state

Panel A: County-level locations of crytomining

No Evidence of Mining
Evidence of Mining
No data

Mining Counties

Panel B: Map of electricity providers

Note: In panel A, we present a map with mining counties identified from manual searches in local newspapers
and newsources through Google. Panel B shows the map of electricity providers in New York State (URL:
https://power2switch.com/NY/utility_territory_map/).
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Figure 9: Bitcoin prices and electricity consumption

BTC price peak -> <- Plattsburgh first
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Note: Electricity consumption data comes from NYSERDA. The blue sold line and the red dash line shows
total electricity consumption by small businesses in Plattsburgh and Peru, respectively. We normalize
electricity consumption in each town to 100 in December 2017, which is the month is which Bitcoin prices
reach their maximum at around $15.000. Bitcoin price data comes from Coinmarketcap. Grey areas denote
december, january and february of 2016-2017 and 2017-2018.
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Figure 10: Bitcoin prices and electricity consumption within town across
years

-5
0

0
50

10
0

El
ec

tri
cit

y 
Co

ns
um

pt
io

n 
Di

ffe
re

nc
e

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Control Treatment: Plattsburg

Note: Energy consumption data comes from NYSERDA. For each town we compute for the each month in
2018 the difference in electricity consumption relative to the same months the previous year. For September
to December we compute the difference between the month in 2017 relative to the same month in 2016, as
our data ends in August 2018. The dash red line shows the case of Plattsburgh. The differences for all other
cities and towns represented by Tukey boxplots, where the box represents the interquartile range (IQR) and
the whiskers represent the most extreme observations still within 1.5 × IQR of the upper/lower quartiles.
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Figure 11: Bitcoin prices and electricity prices
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Note: Price of electricity data comes from NYSERDA. The blue sold line and the red dash line shows the
electricity price for corporate in NYSEG and CHG&E (Central Hudson Gas & Electric), respectively. We
normalize electricity prices for each utility provider to 100 in December 2017, which is the month is which
Bitcoin prices reach their maximum at around $15.000. Bitcoin price data comes from Coinmarketcap. Grey
areas denote december, january and february of 2016-2017 and 2017-2018.
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Table 1: Summary statistics for China
Summary statistics are presented at the city-seat level for all of the cities within the inland provinces of
China, with the exception of three export-oriented, large metropolitian areas. The city data is the average
over the time period 2010-2017 for each city, unbalanced in the early years. Panel A reports statistics for
cities not hosting cryptomining, and Panel B, with cryptomining. Economic variable data are from Province
Yearbooks. The location of cryptomines are from manual news searches in Baidu using each city name and
keywords for cryptomining.

Unique Cities Mean St.Dev Min Median Max
Panel A: Inland Cities without Cryptomining

Population (1,000s) 154 355.7 237.2 20.6 298.5 1,194.2
GDP (million CNY) 154 13,550 126,523 8,394 99,155 843,242
Energy (10,000 Kwh) 148 513,162 579,782 18,763 333,605 3,730,726
Business Taxes (million CNY) 43 214.1 65.9 89.3 195.2 390.3
Wages (CNY / year) 154 46,171 8,248 28,594 45,752 83,742
Value-Add Taxes (million CNY) 54 148.7 76.7 22.1 140.2 373.8
Fixed Asset Invest. (million CNY) 163 111,974 1,014 59 852 6,392
Location Prediction Variables

Temperature (Celsius) 123 13.8 5.6 -1.0 15.6 23.2
Electricity Price (yuan /KwH) 155 539 71 362 533 638
Closest Distance to Power (Km) 164 31.8 33.7 1.2 23.2 324.2

Closest Power Plant Type: Coal 61.0%
Gas 7.9%

Hydro 19.5%
Oil 0.6%

Solar 1.8%
Wind 9.2%

Panel B: Inland Cities with Cryptomining
Population (1,000s) 52 375.6 251.5 55.3 326.7 1,319.4
GDP (million CNY) 52 18,770** 18,026 1,904 12,698 89,726
Energy (10,000 Kwh) 44 956,075*** 958,055 53,061 512,366 4,878,905
Business Taxes (million CNY) 10 282.5** 107.2 163.8 259.2 515.6
Wages (CNY / year) 52 51,337*** 12,845 32,570 50,109 114,759
Value-Add Taxes (million CNY) 12 239.3** 116.5 87.6 200.7 438.8
Fixed Asset Invest. (million CNY) 54 154,877** 147,673 23,719 100,727 696,984
Location Prediction Variables

Temperature (Celsius) 40 13.1 4.2 5.0 14.7 19.7
Electricity Price (yuan /KwH) 52 519* 75 407 519 638
Closest Distance to Power (Km) 54 21.8** 24.4 1.1 13.3 137.5

Closest Power Plant Type: Coal 48.2%
Gas 11.1%

Hydro 27.8%
Oil 0.0%

Solar 0.0%
Wind 13.0%
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Table 2: CryptoMining Location Decision
Presented are logit coefficients from the choice of cryptomining city location. Economic variable data are
from Province Yearbooks. The location of cryptomines are from manual news searches in Baidu using each
city name and keywords for cryptomining. The data are from 2013-2014. Errors are clustered at the city
level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels.

Dependent Variable: Logit (City has CryptoMining)
(1) (2)

Distance to Closest Power Plant
Quintile 2 -0.432 -16.39*

[0.600] [9.156]
Quintile 3 -2.779*** -64.19*

[0.833] [34.98]
Quintile 4 -1.646** 9.848

[0.813] [14.52]
Quintile 5 -1.637** -13.55**

[0.751] [6.136]
Slope Quintile 1 to 2 -0.022

[0.703]
Slope Quintile 2 to 3 5.763*

[3.488]
Slope Quintile 3 to 4 19.34*

[10.91]
Slope Quintile 4 to 5 -3.636

[4.292]
Slope Quintile 5 to 6 2.562*

[1.403]
Temperature

Quintile 2 1.833** 14.39***
[0.733] [5.233]

Quintile 3 1.297 14.73***
[0.888] [4.133]

Quintile 4 1.215* 13.83***
[0.700] [3.897]

Quintile 5 -0.316 12.61***
[0.898] [3.837]

Slope Quintile 1 to 2 2.195***
[0.631]

Slope Quintile 2 to 3 0.132
[0.265]

Electricity Price
Quintile 2 -1.288 -48.6

[0.935] [47.01]
Quintile 3 -0.259 -25.47

[0.910] [15.64]
Quintile 4 -1.988* -28.85*

[1.136] [15.97]
Quintile 5 -0.855 -27.67*

[0.845] [16.00]
Slope Quintile 1 to 2 -0.0640*

[0.0375]
Slope Quintile 2 to 3 0.0426

[0.0831]
Log Population 0.405 0.303

[0.373] [0.419]
Observations 276 276
Pseudo R-squared 0.25 0.387
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Table 3: Effect of Cryptomining on Energy
All models are difference-in-differences specifications, with varying methods to account for location selection.
The dependent variable is an annual observation of kilowatt hours of energy consumption per city GDP at
the city-seat level for all of the cities within the inland provinces of China. Economic variables data are from
Province Yearbooks. MiningCity is an indicator that the city-seat hosts cryptomines, manually collected
from news searches in Baidu and other sources using each city name and keywords for cryptomining. Post
indicates post-2015. Clean indicates that the city’s clostest power plant is hydropower, wind or solar.
Fossil indicates that the power plant is coal, oil, or gas. The Predicted MiningCity and ControlFunction
variables are respectively the predicted probability of cryptomining (propensity score) and the residual from
Table 3, column (2). Column (1) is OLS. Columns (2) and (3) are IPW, weighting observations by the
inverse probability weight, normalized, to level the estimated weights to make the treatment and control
have the same probability of hosting cryptomining. Column (4) is an IV-specification where the variables
temperature and distance to power plant from Table 3, column (2) serve as the instruments, still within
the IPW difference-in-differences framework. Columns (5) and (6) are control function IPW difference-
in-differences specifications. All columns have control variables log GDP, GDP growth, log population,
population growth, electricity price, electricity price growth, and year dummies. Errors are clustered at the
city level. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels.

(1) (2) (3) (4) (5) (6)
Dependent Variable: Log (Energy Consumption)

Difference-in-differences Model: OLS IPW IPW IPW-IV IPW-CF IPW-CF

Post * MiningCity * Clean -0.148* -0.0977
[0.0858] [0.0730]

Post * MiningCity * Fossil 0.0964** 0.106**
[0.0446] [0.0484]

Post * MiningCity 0.0429
[0.0506]

Post * Predicted MiningCity * Clean 0.0506 0.0752
[0.122] [0.122]

Post * Predicted MiningCity * Fossil 0.227* 0.246*
[0.130] [0.129]

Post * ControlFunction * Clean -0.115**
[0.0556]

Post * ControlFunction * Fossil 0.00461
[0.0563]

Post * Predicted MiningCity 0.192
[0.123]

Post * ControlFunction -0.0238
[0.0481]

Control Variables Y Y Y Y Y Y
City Fixed Effects Y Y Y Y Y Y
Year Fixed Effects Y Y Y Y Y Y
Observations 595 595 595 595 590 590
R-squared 0.954 0.947 0.946 0.947 0.948 0.947
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Table 4: Effect of Cryptomining on the Public Sector
All models are difference-in-differences specifications, with varying methods to account for location selection.
The dependent variable is an annual observation of the log of business taxes collected per city GDP at the
cityseat level for all of the cities within the inland provinces of China. Economic variables data are from
Province Yearbooks. MiningCity is an indicator that the city-seat hosts cryptomines, manually collected
from news searches in Baidu and other sources using each city name and keywords for cryptomining. Post
indicates post- 2015. Clean indicates that the city’s clostest power plant is hydropower, wind or solar.
Fossil indicates that the power plant is coal, oil, or gas. The Predicted MiningCity and ControlFunction
variables are respectively the predicted probability of cryptomining (propensity score) and the residual from
Table 3, column (2). Column (1) is OLS. Columns (2) and (3) are IPW, weighting observations by the
inverse probability weight, normalized, to level the estimated weights to make the treatment and control
have the same probability of hosting cryptomining. Column (4) is an IV-specification where the variables
temperature and distance to power plant from Table 3, column (2) serve as the instruments, still within the
IPW difference-in-differences framework. All columns have control variables GDP growth, log population,
population growth, electricity price, electricity price growth, and year dummies. Columns (5) and (6) are
control function IPW difference-in-differences specifications. Errors are clustered at the city level. ***, **,
and * indicate statistical significance at the 1%, 5%, and 10% levels.

(1) (2) (3) (4) (5) (6)
Dependent Variable: Log (Business Taxes per GDP)

Difference-in-differences Model: OLS IPW IPW IPW-IV IPW-CF IPW-CF

Post * MiningCity * Clean 0.0566 0.0576
[0.0468] [0.0427]

Post * MiningCity * Fossil 0.117* 0.124*
[0.0628] [0.0644]

Post * MiningCity 0.101*
[0.0538]

Post * Predicted MiningCity * Clean 0.220* 0.242**
[0.125] [0.115]

Post * Predicted MiningCity * Fossil 0.252** 0.281**
[0.120] [0.130]

Post * ControlFunction * Clean -0.0952**
[0.0458]

Post * ControlFunction * Fossil -0.0496
[0.0590]

Post * Predicted MiningCity 0.272**
[0.119]

Post * ControlFunction -0.0665
[0.0452]

Control Variables Y Y Y Y Y Y
City Fixed Effects Y Y Y Y Y Y
Year Fixed Effects Y Y Y Y Y Y
Observations 255 255 255 255 255 255
R-squared 0.904 0.891 0.89 0.892 0.893 0.893
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Table 5: Effect of Cryptomining on the Household Sector
All models are difference-in-differences specifications, with varying methods to account for location selection. The dependent variable in columns (1)
to (6) is an annual observation of the log of hourly wages at the city-seat level for all of the cities within the inland provinces of China. The dependent
variable in columns (7) to (12) is an annual observation of the log of value-added taxes paid (as a proxy for consumption) per GDP. Economic variables
data are from Province Yearbooks. MiningCity is an indicator that the city-seat hosts cryptomines, manually collected from news searches in Baidu
and other sources using each city name and keywords for cryptomining. Post indicates post-2015. Clean indicates that the city’s clostest power
plant is hydropower, wind or solar. Fossil indicates that the power is coal, oil, or gas. The Predicted MiningCity and ControlFunction variables are
respectively the predicted probability of cryptomining (propensity score) and the residual from Table 3, column (2). Column (1) is OLS. Columns
(2) and (3) are IPW, weighting observations by the inverse probability weight, normalized, to level the estimated weights to make the treatment and
control have the same probability of hosting cryptomining. Column (4) is an IV-specification where the variables temperature and distance to power
plant from Table 3, column (2) serve as the instruments, still within the IPW difference-in-differences framework. Columns (5) and (6) are control
function IPW difference-in-differences specifications. All columns have control variables: GDP growth, log population, population growth, electricity
price, electricity price growth, and year dummies. Errors are clustered at the city level. ***, **, and * indicate statistical significance at the 1%, 5%,
and 10% levels.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Dependent Variable: Log (Wages) Dependent Variable: Log (VA Tax per GDP)

Difference-in-differences Model: OLS IPW IPW IPW-IV IPW-CF IPW-CF OLS IPW IPW IPW-IV IPW-CF IPW-CF

Post * MiningCity * Clean -0.0113 -0.00331 0.0452 0.0341
[0.0369] [0.0461] [0.119] [0.139]

Post * MiningCity * Fossil -0.0768** -0.0608* -0.108 -0.145
[0.0335] [0.0341] [0.106] [0.0906]

Post * MiningCity -0.0444 -0.0918
[0.0288] [0.0954]

Post * Predicted MiningCity * Clean -0.015 -0.0104 0.387 0.375
[0.0605] [0.0619] [0.477] [0.359]

Post * Predicted MiningCity * Fossil -0.113*** -0.112** -0.205 -0.127
[0.0429] [0.0439] [0.176] [0.213]

Post * ControlFunction * Clean -0.00461 -0.426
[0.0316] [0.346]

Post * ControlFunction * Fossil 0.00247 -0.0258
[0.0175] [0.0980]

Post * Predicted MiningCity -0.0931** 0.0504
[0.0405] [0.261]

Post * ControlFunction 0.00251 -0.144
[0.0157] [0.174]

City & Year Fixed Effects, Controls Y Y Y Y Y Y Y Y Y Y Y Y
Observations 698 698 698 698 693 693 301 301 301 301 301 301
R-squared 0.871 0.891 0.891 0.893 0.893 0.892 0.761 0.742 0.742 0.745 0.751 0.74341



Table 6: Effect of Cryptomining on the Business Sector
All models are difference-in-differences specifications, with varying methods to account for location selection.
The dependent variable is an annual observation of the log of fixed asset investment per city GDP at the
city-seat level for all of the cities within the inland provinces of China. Economic variables data are from
Province Yearbooks. MiningCity is an indicator that the city-seat hosts cryptomines, manually collected
from news searches in Baidu and other sources using each city name and keywords for cryptomining. Post
indicates post- 2015. Clean indicates that the city’s clostest power plant is hydropower, wind or solar. Fossil
indicates that the power is coal, oil, or gas. The Predicted MiningCity and ControlFunction variables are
respectively the predicted probability of cryptomining (propensity score) and the residual from Table 3,
column (2). Column (1) is OLS. Columns (2) and (3) are IPW, weighting observations by the inverse prob-
ability weight, normalized, to level the estimated weights to make the treatment and control have the same
probability of hosting cryptomining. Column (4) is an IV-specification where the variables temperature and
distance to power plant from Table 3, column (2) serve as the instruments, still within the IPW difference-in-
differences framework. Columns (5) and (6) are control function IPW difference-in-differences specifications.
All columns have control variables: log GDP, GDP growth, log population, population growth, electricity
price, electricity price growth, and year dummies. Errors are clustered at the city level. ***, **, and *
indicate statistical significance at the 1%, 5%, and 10% levels.

(1) (2) (3) (4) (5) (6)
Dependent Variable: Log (Fixed Asset Investment)

Difference-in-differences Model: OLS IPW IPW IPW-IV IPW-CF IPW-CF

Post * MiningCity * Clean -0.0955 -0.0882
[0.148] [0.186]

Post * MiningCity * Fossil -0.222** -0.153*
[0.0955] [0.0889]

Post * MiningCity -0.134
[0.0887]

Post * Predicted MiningCity * Clean -0.163 -0.179
[0.283] [0.285]

Post * Predicted MiningCity * Fossil -0.233* -0.241*
[0.135] [0.135]

Post * ControlFunction * Clean 0.0648
[0.173]

Post * ControlFunction * Fossil 0.0181
[0.0619]

Post * Predicted MiningCity -0.224
[0.136]

Post * ControlFunction 0.0293
[0.0622]

Control Variables Y Y Y Y Y Y
City Fixed Effects Y Y Y Y Y Y
Year Fixed Effects Y Y Y Y Y Y
Observations 704 704 704 704 699 699
R-squared 0.897 0.886 0.886 0.887 0.887 0.887
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Table 7: Summary statistics for New York State
Data are from the economic statistics website of New York State and from each electricity provider’s required
reporting of the electricity regulator. Panel A shows the data at the provider-user type level. The list of
providers includes the six major utility companies in NY State. Panel B shows the data at the provider-
user type-county level. Panel C shows the price of BTC whic is available online (see among other sources
https://coinmarketcap.com).

Obsevations Mean St.Dev Min Median Max
Panel A: Provider-user type level

Revenues (1.000$) 502 42,327 41,386 282 26,425 173,524
Sales (MWH) 502 364,422 348,739 2,698 248,439 1,383,197
Customers (Count) 502 443,750 481,623 285 225,763 1,377,314
Price ($/kWh) 502 0.11 0.03 0.04 0.11 0.21

Panel B: County level
Sales (MWH) 10,880 27,740 59,857 0 8,713 634,171
Customers (Count) 10,880 17,439 37,159 0 4,661 298,589
Temperature (Degrees Fahrenheit) 10,880 47.50 17.01 13.50 49.70 76.80

Panel C: Other
BTC price ($) 32 3,779 4,072 404 1,207 15,294
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Table 8: Effect of Cryptomining on Electricity Prices
Columns (1) to (3) report the estimates of the fixed effect model. Columns (4) to (6) report the estimates of
the difference-in-differecens model. The dependent variable is an the log of the monthly price of electricity
per provider per user type. Electricity data are from NYSERDA. Bitcoin price data are from Coinmarketcap.
Temperature data are from the National Center for Environmental Information. In columns (4) to (6) we
focus on two providers: NYSEG and Central Hudson Gas and Electric. Treated provider is an indicator for
NYSEG, a provider operating in areas in which we manually collected evidence on crypomining from news
searches in google and other using each county name and keywords for cryptomining. Month fixed effects
are dummies for the months capturing seasonality. Provider fixed effects are dummies for each provider
capturing time-invariant differences in electricity prices. Time fixed effects are dummy for the year-month
capturing aggregate timevarying trends in electricity prices. Errors are clustered at the time level. ***, **,
and * indicate statistical significance at the 1%, 5%, and 10% levels.

(1) (2) (3) (4) (5) (6)
Dependent Variable: Log (Electricity Price)

Fixed effect model Difference-in-differences
Business Commercial Household Business Commercial Household

BTC price (log) 0.077*** 0.019*** 0.028***
[0.014] [0.006] [0.004]

BTC price above $10K X Treated Provider 0.538* 0.277* 0.045
[0.276] [0.083] [0.092]

Temperature (log) -0.337 -0.204 0.067 -0.793 1.864* 1.127
[0.26] [0.161] [0.062] [2.469] [0.938] [0.872]

Month Fixed Effects Y Y Y
Provider Fixed Effects Y Y Y Y Y Y
Time Fixed Effects Y Y Y
SD Y 0.34 0.16 0.16 0.31 0.16 0.2
Obs. 126 126 126 64 64 64
R2adj 0.67 0.65 0.85 0.44 0.53 0.88
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Appendix Table 1: Testimonial Evidence on Local Government Motives for CryptoMining

Country Province Government Motive Source Author Date

1 China Inner Mongolia Tax Revenue Tech In Asia Eva Xiao 11/22/2016

2 China Inner MongoliaEmployment, Tax Revenues, GDP Quartz 11/22/2016

3 China Inner Mongolia Jobs, Economic Spillovers New York Times
Cao Li, Giulia 

Marchi
9/13/2017

4 Canada Alberta Jobs, Investment, Diversification Medicine Hat News Collin Gallant 3/20/2018

5 U.S. Washington Taxes, Economic Spillovers CNBC 1/11/2018

6 Georgia / Abhazia Economic Spillovers BitCoin News 10/20/2018

7 Australia Economic Spillovers CoinTelegraph William Suberg 5/7/2018

"Australia: Disused Coal Plant To Become ‘Blockchain Applications Complex’": Two blockchain companies

have partnered to launch a $190 mln Bitcoin mining operation in a disused coal plant in Australia....Similar

attempts in New York State and across the border in Canada drew criticism from authorities, who considered

such projects did not generate sufficient value for the local economy.

"China's bitcoin mining scene is catching the eye of the government": In Inner Mongolia, for instance,

Bitmain is partnering with the local government to access electricity from the State Grid for about four cents

per kilowatt hour. In exchange, the profit from Bitmain’s Ordos mine is taxed.

"How bitcoin miners work": A decade ago, after a speculative coal boom fizzled, the once-thriving desert city

of Ordos, in Inner Mongolia, became China’s largest ghost town, littered with unfinished or empty buildings

and desperate for another way to make money... The bitcoin mine and the industrial firms have one thing in

common: They use a lot of electricity. The local government has attracted Bitmain...to the park by offering

them a 30% discount on the electricity price, said Su Jiahai, who deals with local governments to build mining

farms for Bitmain. The mining farm uses 40 megawatts of electricity per hour, about equivalent to the amount

used by 12,000 homes during the same period. It pays roughly $39,000 a day for its electricity bill, even with

the discount. The electricity in Ordos mostly comes from nearby coal-fired power plants, which provide a

stable and constant source of electricity—although at a price to the environment.

In China’s Hinterlands, Workers Mine Bitcoin for a Digital Fortune: … On the other hand, the digital

currency may represent an opportunity for China to push into new technologies. Now the mine has about 50

employees,” said Wang Wei, the manager of Bitmain China’s Dalad Banner facility. “I feel in the future it

might bring hundreds or even thousands of jobs, like the big factories.”...The county of about 370,000 people

on the edge of the vast Kubuqi Desert boasts coal reserves and coal-powered heavy industries like steel. But it

lags behind much of the rest of the country in broadly developing its economy.

It’s a major economic win for the city, said Mayor Ted Clugston, who hailed it as a strong move toward

diversification, and the city gaining a high-tech industry and another industrial-sized power user in need of a

massive 42-megawatt power supply. “It’s an exciting day,” he told reporters following the meeting. “It’s 42

jobs, an investment of $100 million, and it’s just what we need right now.

Interview with Ron Cridlebaugh, the Port of Douglas County economic development manager. "It's good for

the economy. We're seeing [bitcoing mining] really diversifying our economy. There are millions of dollars

being invested in the economy. It's going to help our tax base.... Our infrastructure is actually being put to the

test. We're full"

"Cryptocurrency Mining Could Crash The Entire Power Grid Of Abkhazia": The tiny Republic of Abkhazia

has high hopes that cryptocurrency mining and operations could be its solution to economic woes. But the

rickety ex-Soviet electricity network is already at capacity, leaving risks of blackouts if a cold snap hits. 
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Appendix Table 2: Testimonial Evidence on Non-Motive Outcomes from CryptoMining

Country Province Local Outcome Expressed Source Author Date

1 Georgia / Abhazia Blackouts BitCoin News 10/20/2018

2 Australia More Fossil Fuels CoinTelegraph William Suberg 5/7/2018

3 U.S. Oregon More Fossil Fuels Willamette Week Katie Shepherd 2/21/2018

4 U.S. Oregon Rising Energy Costs Politico Paul Roberts 3/9/2018

5 Venezuela Blackouts Daily Mail Scot Campbell 1/19/2019

6 U.S. New York Rising Energy Costs CoinTelegraph Aaron Wood 3/16/2018

"US: Plattsburgh NY Introduces Temporary Ban On New Crypto Mining Operations": The city council

unanimously approved an 18 month moratorium on crypto mining activities in Plattsburgh. The moratorium

only affects new Bitcoin mining operations and does not affect ones already existing in the city. The idea of a

moratorium was first introduced by mayor Colin Read in January after residents reported inflated electricity

bills

"Cryptocurrency Mining Could Crash The Entire Power Grid Of Abkhazia": ...But the rickety ex-Soviet

electricity network is already at capacity, leaving risks of blackouts if a cold snap hits. 

"This Is What Happens When Bitcoin Miners Take Over Your Town": Many also fear that the new mines will

suck up so much of the power surplus that is currently exported that local rates will have to rise. In fact,

miners’ appetite for power is growing so rapidly that the three counties have instituted surcharges for extra

infrastructure, and there is talk of moratoriums on new mines. There is also talk of something that would have

been inconceivable just a few years ago: buying power from outside suppliers.

"Bitcoin mining 'is causing electricity blackouts": In Venezuela, Bitcoin mining has caused blackouts while

experts say the mass amounts of energy consumed could instead be used to power homes and businesses.

"Australia: Disused Coal Plant To Become ‘Blockchain Applications Complex’": Two blockchain companies

have partnered to launch a $190 mln Bitcoin mining operation in a disused coal plant in Australia.

"Bitcoin Miners Are Flocking to Oregon for Cheap Electricity. Should We Give Them a Boost?": The Bitcoin

boom poses a challenge to small towns like The Dalles. Electricity here may be cheap, but it isn't endless.

Dams kill endangered salmon. And the more hydropower is used by Bitcoin miners, the more the rest of the

state must rely on electricity generated by fossil fuels, including coal.

46


	BCM_WP_2019
	Conceptual Framework 
	Data 
	Cryptomines and Power Plants at the Chinese City-Seat Level
	Chinese Local Economy Variables

	Empirical Methodology 
	Identification Strategy
	Selection Model

	Results for a fixed-price regime
	Energy
	The Public Sector
	The Household Sector
	The Business Sector

	Results for a floating-price regime
	Data and empirical methodology
	Results

	Conclusion 

	anecdotes



