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Regression adjustment with covariates in experiments is intended to improve precision over a
simple difference in means between the treated and control outcomes. The efficiency argument
in favor of regression adjustment has come under criticism lately, where papers like Freedman
(2008a,b) find no systematic gain in asymptotic efficiency of the covariate adjusted estimator.
In this paper, we verify that when treatment effects are heterogeneous, additively controlling for
covariates in a regression is not guaranteed to bring additional efficiency gain. We then show
that, like in Lin (2013), estimating separate regressions for the control and treated groups
is guaranteed to do no worse than both the simple difference-in-means estimator and just
including the covariates in additive fashion. Usually, the estimator that includes a full set
of interactions strictly improves asymptotic efficiency. Unlike Imbens and Rubin (2015), who
assume full knowledge of the population means of the covariates in a random sampling context,
we show that the fully interacted estimator improves asymptotic efficiency even when one
accounts for the sampling variation in the sample means of the covariates. This result appears to
be new, and simulations show that the efficiency gains can be substantial. We also show that in
some important cases – applicable to binary, fractional, count, and other nonnegative responses
– nonlinear regression adjustment is consistent without any restrictions on the conditional mean
functions.
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1 Introduction

The role of covariates in randomized experiments has been studied since the early 1930s [Fisher
(1935)]1. When compared with the simple difference-in-means (SDM) estimator, the main
benefit of adjusting for covariates is that the precision of the estimated average treatment effect
(ATE) can be improved if the covariates are sufficiently predictive of the outcome [Cochran
(1957); Lin (2013)]. Nevertheless, regression adjustment is not uniformly accepted as being
preferred over the SDM estimator. For example, Freedman (2008a,b) argues against using
regression adjustment because it is not guaranteed to be unbiased unless one makes the strong
assumption that the conditional expectation functions are correctly specified and linear in
parameters.

It is important to understand that there are two different, potentially valid criticisms of
regression adjustment (RA). The first is the issue of bias just mentioned: unlike the SDM
estimator, which is unbiased conditional on having some units in both the control and treatment
groups, RA estimators are only guaranteed to be consistent, not unbiased. Therefore, in
experiments with small sample sizes, one might be willing to forego potential efficiency gains in
order to ensure an unbiased estimator of the average treatment effect. As Bruhn and McKenzie
(2009) points out, samples of 100 to 500 individuals or 20 to 100 schools or health clinics
is fairly common in experiments conducted in development economics. In situations where
unbiased estimation is the highest priority, the current paper has little to add, other than to
provide simulation evidence that using our preferred RA procedure often results in small bias.
Henceforth, we are not interested in small-sample problems as a criticism of RA. More and
more economic experiments, especially those conducted online, include enough units to make
consistency and asymptotic efficiency a relevant criteria for evaluating estimators of ATEs. In
cases where effect sizes are small (but important in the aggregate), improving precision can be
important even when sample sizes seem fairly large.

A second criticism of RA methods, and the one most relevant for this paper, is that RA
methods may not improve over the SDM estimator even if we focus on asymptotic efficiency.
Freedman (2008a,b) and Lin (2013) level this criticism of RA when the covariates are simply
added as controls along with a treatment indicator in a linear regression analysis. Freedman
(2008a), for example, finds no systematic efficiency gain from using covariates. Lin (2013)
provides an in-depth discussion about how simply adding covariates will not necessarily produce
efficiency gains when treatment effects are heterogeneous. Both Freedman and Lin operate
under a finite population paradigm where all population units are observed in the sample.
Therefore, uncertainty in the estimators is due to the assignment into treatment and control,
and not due to sampling from a population [Abadie et al. (2017b), Abadie et al. (2017a) and
Rosenbaum (2002) discuss similar settings].

1In the statistics and biomedical literature, such variables are also known as prognostic factors or concomitant
variables. In the econometrics of program evaluation literature they are known as pre-treatment covariates. As
the name suggests, they are ideally measured before the treatment is administered.
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Random sampling from a population is still an important setting for empirical work, and
the findings in Freedman (2008a) and Lin (2013) do not extend to the random sampling sce-
nario. One would require a framework that explicitly accounts for both kinds of uncertainties:
sampling-based and design-based. Our paper will not have more to say about the differences
between these two types of randomness. For a deeper discussion of sampling-based and design-
based uncertainty, see Abadie et al. (2017b). Our primary motivation for studying this problem
comes from Imbens and Rubin (2015), who study linear regression adjustment in the same sam-
pling setting that we use here: independent and identically distributed (i.i.d.) draws from a
population. However, Imbens and Rubin state efficiency results only in the case that the pop-
ulation means of the covariates are known, even though only a random sample is available.
In addition, Imbens and Rubin only consider linear regression adjustment, and, in fact, warn
against using nonlinear regression adjustment.

After writing the initial draft of this paper, we discovered that regression adjustment in
experiments with random sampling has been studied in the statistics literature. These include
the papers by Yang and Tsiatis (2001), Tsiatis et al. (2008), Ansel et al. (2018), and Pitkin
et al. (2017) for the case of linear adjustment and by Rosenblum and Van Der Laan (2010) and
Bartlett (2018) for the case of nonlinear regression adjustment. While several of the results
derived in these papers overlap with what we show, our approach is more transparent, and the
representations of the various estimators make the source of efficiency gains easy to understand
when using separate versus pooled methods, and whether or not one knows that population
means of the covariates. Our arguments in the linear case are based on population linear
projections. Moreover, in the nonlinear case, we appeal to results on doubly robust estimation
by Wooldridge (2007), relying on population properties of pseudo-true parameters. At the
same time, we fill a gap in the literature by studying pooled nonlinear methods. Namely, we
show that, for settings where separate nonlinear regression adjustment is consistent, the pooled
version is also consistent. Such a result is practically important in cases where a researcher may
lack sufficient degrees of freedom to feel comfortable with estimating separate models for the
control and treatment groups. If one uses a pooled nonlinear method and finds an improvement
in precision, the researcher may be satisfied with that.

For emphasis, in the case of linear regression adjustment, we study four estimators: the SDM
estimator, the pooled regression adjusted (PRA) estimator, the full regression adjusted (FRA)
estimator – which uses separate regressions for the control and treatment groups – and what
we call the infeasible regression adjusted (IRA) estimator, which is like the FRA estimator but
assumes the population means of the covariates are known. We include IRA for completeness,
as it is studied in Imbens and Rubin (2015), and doing so allows us to characterize the lost
efficiency due to having to estimate the population means.

Our most important results in the linear regression case can be easily summarized. First,
even when accounting for the sampling error of the covariates in estimating the population
means, using separate linear regressions for the control and treatment groups leads to an ATE
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estimator that is never less precise (asymptotically) than the SDM estimator and the PRA
estimator. Unless small sample bias is a concern, there is no reason not to use full regression
adjustment. Further, there are two interesting cases when there will be no precision gain
when using full RA compared with pooled RA. The first is when there is no heterogeneity
in the slopes of the linear projections of the potential outcomes (although there could be
in the unobservables). In this case, it is not surprising that using pooled RA is sufficient
to capture the efficiency gains of using covariates. The second important case where there
is no additional gain from FRA is when the design is balanced: the probability of being in
the treatment group is equal to 0.5. Therefore, if one has imposed a balanced design and is
considering only linear regression adjustment, the pooled method is probably preferred (due
to conserving degrees of freedom). A final result, which is pretty obvious, is that there is no
efficiency gain when the covariates are not predictive of the potential outcomes; then, SDM
is asymptotically efficient. We want to emphasize that there is no (asymptotic) cost in doing
the regression adjustment, whether PRA or FRA: each estimator has the same asymptotic
variance. In situations where one has good predictors of the outcome, regression adjustment
can be attractive. Our simulation study illustrates the special cases derived from our theortical
results.

We also simply characterize situations where nonlinear regression adjustment preserves con-
sistency of average treatment effect estimators without imposing additional assumptions. In
particular, we show that when the response is binary, fractional, count, or some other non-
negative outcome, certain kinds of nonlinear regression adjustment consistently estimates the
average treatment effect. Our simulations for the case of binary and non-negative response
suggest that nonlinear RA, especially the full version, can produce sampling variances that are
substantially smaller than SDM and also linear regression adjustment. Plus, in terms of bias
the nonlinear FRA (NFRA) methods are comparable to the SDM estimator, which we know
is unbiased.

The rest of the paper is organized as follows. Section 2 briefly introduces the potential
outcomes setting and defines the population average treatment effect – the parameter of interest
in this paper. Section 3 discusses the random assignment mechanism and the random sampling
assumption. Section 4 is important and describes linear regression adjustment in the population
in terms of linear projections, which are consistently estimated by ordinary least squares (OLS)
given a random sample. Importantly, we need not impose any assumptions on the conditional
mean functions of the potential outcomes. Section 5 presents the asymptotic variances of the
four linear estimators and ranks them on the basis of asymptotic efficiency. We also characterize
the cases under which estimating two separate regressions does not improve efficiency over SDM
or PRA (or both). Section 6 presents Monte Carlo simulations that compare the bias and root
mean squared error (RMSE) of the estimators for eight different data generating processes.
In section 7 we draw on results from the doubly robust estimation literature and characterize
the nonlinear RA estimators – both pooled and full – that produce consistent estimators of
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the ATE. Our simulations in this section show that nonlinear methods have modest bias while
considerably improving efficiency compared with both SDM and linear RA methods. Section
8 concludes the paper with a discussion of some future research topics. All proofs along with
figures and tables are included in the appendix.
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2 Potential Outcomes and Parameter of Interest

Our framework is the standard Neyman-Rubin causal model, involving potential (or coun-
terfactual) outcomes. Let {Y (0), Y (1)} be the two potential outcomes corresponding to the
control and treatment states, respectively, where {Y (0), Y (1)} has a joint distribution in the
population. The setup is nonparametric in that we make no assumptions about the distribu-
tion of {Y (0), Y (1)} other than finite moment conditions needed to apply standard asymptotic
theory. In particular, {Y (0), Y (1)} may be discrete, continuous, or mixed random variables.
For example, Y (0) and Y (1) can be binary employment indicators for nonparticipation and
participation in a job training program. Or, they could be the fraction of assets held in the
stock market, or counts of the number of hospital visits taken by a patient.

Define the means of the potential outcomes as

µ0 = E [Y (0)]

µ1 = E [Y (1)]

The parameter of interest is the population average treatment effect (PATE),

τ = E [Y (1)− Y (0)] = µ1 − µ0

As has been often noted in the literature, the problem of causal inference is essentially
a missing data problem. We only observe one of the the outcomes, Y (0) or Y (1), once the
treatment, represented by the Bernoulli random variable W , is determined. Specifically, the
observed Y is defined by

Y =

Y (0), if W = 0

Y (1), if W = 1
(1)

It is also useful to write Y as

Y = (1−W ) · Y (0) +W · Y (1). (2)

3 Random Assignment and Random Sampling

In determining an appropriate method to estimate τ , we need to know how the treatment,
W , is assigned. In this paper, we assume that W is independent of the potential outcomes as
well as observed covariates, which we write as X = (X1, X2, . . . , XK). Formally, the random
assignment assumption is as follows.

Assumption 3.1. The binary assignment indicator, W , is a Bernoulli random variable and
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is independent of {Y (0), Y (1),X}, where X = (X1, X2, . . . , XK). Mathematically,

W ⊥ {Y (0), Y (1),X}.

Letting ρ = P (W = 1) be the probability of being assigned into treatment, assume that 0 < ρ <

1.

The assumption of random assignment implies that there are many consistent estimators of
τ . The goal in this paper is to rank, as much as possible, commonly used estimators of τ in
terms of asymptotic efficiency.

As mentioned in the introduction, both early [Neyman (1923) and Fisher (1935)] and recent
[Freedman (2008a) Freedman (2008b) and Lin (2013)] approaches to estimating ATEs assume
that the entire population is the sample. Therefore, the only stochastic element of the setup
is the assignment of the treatment, which is randomized. Such a perspective rules out any
uncertainty stemming from unobservability of the entire population (also termed sampling-
based uncertainty) and only allows uncertainty that arises due to the experimental design
(also known as design-based uncertainty). Here, we adopt the assumption commonly used in
studying various estimators in statistics and econometrics.

Assumption 3.2. For a nonrandom integer N , {(Yi(0), Yi(1),Wi,Xi) : i = 1, 2, . . . , N} are
independent and identically distributed draws from the population.

Given the random sampling assumption, standard asymptotic theory for i.i.d. sequences of
random vectors can be applied, where N tends to infinity. We assume in what follows that at
least second moments of the potential outcomes and covariates are finite so that, when we use
regression methods, we can apply the law of large numbers and central limit theorem. We do
not state these moment assumptions explicitly.

For each unit i drawn from the population, the treatment effect is

Yi(1)− Yi(0),

which we can write as

Yi(1)− Yi(0) = τ + [Vi(1)− Vi(0)]

where Vi (w) = Yi(w) − µw for w ∈ {0, 1}. The treatment effects are homogeneous when the
unit-specific components, Vi(1)− Vi(0), are identically zero for any random draw i.

4 Estimators

We now carefully describe the estimators that we use in the linear regression context.
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4.1 Simple Difference in Means (SDM)

Random assignment provides the luxury of using an estimator available from basic statistics.
This estimator dates back to Neyman (1923) in the context of causal inference using potential
outcomes. Let Wi be the treatment indicator for unit i. Then N0 =

∑N
i=1(1 − Wi) and

N1 =
∑N

i=1Wi are the number of control and treated units in the sample, respectively. These
are random variables. When N0, N1 > 0 we can define the sample averages for the control and
treated units:

Ȳ0 = N−10

N∑
i=1

(1−Wi)Yi (3)

Ȳ1 = N−11

N∑
i=1

WiYi, (4)

where Yi is the observed outcome for unit i. The simple difference-in-means estimator is

τ̂SDM = Ȳ1 − Ȳ0. (5)

Under random assignment and conditional on N0, N1 > 0, τ̂SDM is unbiased for τ – see,
for example, Imbens and Rubin (2015). Further, τ̂SDM is consistent as N → ∞ for τ when
0 < ρ < 1, as we assume. As is well know, τ̂SDM can be obtained as the coefficient on Wi in
the simple regression

Yi on 1,Wi, i = 1, . . . , N. (6)

See, for example, Imbens and Rubin (2015).

4.2 Pooled Regression Adjustment (PRA)

When we have covariates that (hopefully) predict the outcome Y , the simplest way to use those
covariates is to add them to the simple regression in (6). As documented in Słoczyński (2018),
adding covariates along with a binary treatment indicator is still very common in estimat-
ing treatment effects, whether one has randomized assignment or assumes unconfoundedness
conditional on the covariates. Specifically, the regression is

Yi on 1,Wi,Xi, i = 1, 2, . . . , N.

The coefficient on Wi is the estimator of τ , and we called this estimator “pooled regression
adjustment” (PRA) and denote it τ̂PRA. The name “pooled” emphasizes that we are pooling
across the control and treatment groups in imposing common coefficients on the vector of
covariates, Xi. In other words, the slopes are the same forW = 0 andW = 1. It is important to
understand that we are making no assumption about whether the coefficients in an underlying
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linear model in the population are the same, or even whether there is an underlying linear
model representing a conditional expectation. This will become clear in the next subsection
when we formally describe linear projections.

As is well known, adding the variables Xi to the simple regression does not change the
probability limit providedWi and Xi are uncorrelated, which follows under random assignment.
However, it is not always the case that adding Xi improves asymptotic efficiency: it can lead
to a treatment effect estimator that actually has a larger asymptotic variance than the SDM
estimator.

4.3 Linear Projections and Infeasible Regression Adjustment (IRA)

The SDM estimator is an example of an estimator that can be written as

τ̂ = µ̂1 − µ̂0,

where, in the case of SDM, µ̂0 and µ̂1 are the sample averages of the control and treated
groups, respectively. But there are other ways to consistently estimate µ0 and µ1 when we
have covariates X, represented as a 1 ×K vector. In particular, define the linear projections
of the potential outcomes on the vector of covariates as

L [Y (0)|1,X] = α0 + Xβ0 (7)

L [Y (1)|1,X] = α1 + Xβ1, (8)

where the expressions for α0, α1, β0, and β1 can be found in Wooldridge (2010) Section 2.3.
As discussed in Wooldridge, the linear projections always exist and are well defined provided
Y (w) and the elements of X have finite second moments. Any of the random variables can
be discrete, continuous, or mixed. The elements of X can include the usual functional forms,
such as logarithms, squares, and interactions. The requirement for the coefficients in the linear
projections (LPs) to be unique is simply that the variance-covariance matrix of X, ΩX, is
nonsingular, an assumption that rules out perfect collinearity in the population.

It is often helpful to slightly rewrite the LPs. Define the 1×K vector of population means
of X as µX = E (X), and let Ẋ = X−µX be the deviations from the population mean. Then
we can write the linear projection in terms of the means µ0 and µ1 as

L [Y (0)|1,X] = µ0 + Ẋβ0 (9)

L [Y (1)|1,X] = µ1 + Ẋβ1 (10)

The two representations make it clear that the PATE, τ , can be expressed as

τ = µ1 − µ0 = (α1 − α0) + µX(β1 − β0)
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Therefore, if we have consistent estimators of α0, α1, β0, β1, and µX, then we can consis-
tently estimate τ . Importantly, as discussed in Wooldridge (2010) Chapter 4, ordinary least
squares estimation using a random sample always consistently estimates the parameters in a
population linear projection (subject to the mild finite second moment assumptions and the
non-singularity of ΩX). This is true regardless of the nature of Y (w) or X. This insight is
critical for understanding why regression adjustment produces consistent estimators of τ , and
for the asymptotic efficiency arguments later on. Unlike in Imbens and Wooldridge (2009), we
do not assume that the linear projection is the same as the conditional mean. We are silent on
the conditional mean functions E [Y (0)|X] and E [Y (1)|X].

Given random assignment, consistent estimators of the LP coefficients are obtained from
the separate regressions

Yi on 1,Xi using Wi = 0 (11)

Yi on 1,Xi using Wi = 1 (12)

Wooldridge (2010) Chapter 19 formally shows that the linear projections are consistently esti-
mated under the assumption that selection – in this case, Wi – is independent of [Xi, Yi(w)].
This is sometimes called the “missing completely at random” (MCAR) assumption in the miss-
ing data literature [for example, Little and Rubin (2002)].

If we assume that the vector of population means µX is known, a consistent estimator of τ
is

τ̂IRA = (α̂1 − α̂0) + µX(β̂1 − β̂0),

where α̂0, α̂1, β̂0, and β̂1 are the OLS estimators from the separate regressions. We call this the
“infeasible regression adjustment” (IRA) estimator because it depends on µX, which is likely
to be unknown in our context with random sampling.

From the algebra of ordinary least squares (OLS) it is easily shown that τ̂IRA can be obtained
as the coefficient on Wi in the regression that includes a full set of interactions between Wi and
Ẋi, namely,

Yi on 1, Wi, Xi, Wi · Ẋi, i = 1, . . . , N .

The demeaning of the covariates ensures that the coefficient on Wi is τ̂IRA. This regression is
also convenient for obtaining a valid standard error for τ̂IRA, as the usual Eicker-Huber-White
heteroskedasticity-robust standard error is asymptotically valid.

In the case where the linear projections are also the conditional expectations – that is,
E [Y (w)|X] = L [Y (w)|1,X], w ∈ {0, 1} – α̂0, α̂1, β̂0, and β̂1 are unbiased conditional on
{Xi : i = 1, 2, . . . , N}, provided we rule out perfect collinearity in the control and treated sub-
samples. Then, τ̂IRA would also be unbiased conditional on {Xi : i = 1, 2, . . . , N}, and unbiased
unconditionally if its expectation exists. But linearity of the conditional expectations is much
too strong an assumption, and it is clearly not needed for unbiasedness or consistency of the
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SDM estimator. Therefore, in what follows, we make no assumptions about E [Y (w)|X]. We
simply assume enough moments are finite and rule out perfect collinearity in X in order for
the linear projections to exist.

4.4 Full Regression Adjustment (FRA)

We can easily make the IRA estimator feasible by replacing µX with the sample average,
X̄ = N−1

∑N
i=1 Xi. This leads to what we will call the “full regression adjustment” (FRA)

estimator:
τ̂FRA = (α̂1 − α̂0) + X̄(β̂1 − β̂0).

This estimator can also be obtained as the OLS coefficient on Wi but from the regression

Yi on 1, Wi, Xi, Wi · Ẍi, i = 1, 2, . . . , N,

where
Ẍi = Xi − X̄, i = 1, 2, . . . , N

are the demeaned covariates using the sample average. This estimator is always available
given a sample {(Yi,Wi,Xi) : i = 1, 2, . . . , N}. Generally, τ̂FRA 6= τ̂IRA. Like τ̂IRA, we can
only conclude that τ̂FRA is consistent, although it will be unbiased under essentially the same
assumptions discussed for τ̂IRA. In the next section, we will rank the four estimators, to the
extent possible, in terms of asymptotic efficiency.

5 Asymptotic Variances and Efficiency Comparisons

We first derive the asymptotic variances of the SDM, PRA, IRA and FRA estimators in the
general case of heterogeneous treatment effects. Naturally, the formulas include homogeneous
treatment effects as a special case. We then compare the asymptotic variances in general and
in special cases.

In order to obtain the asymptotic variances, we need to study the linear projections of
the potential outcomes on the covariates more closely. Recall that we can write the potential
outcomes as

Y (0) = µ0 + V (0) (13)

Y (1) = µ1 + V (1), (14)

where V (0) and V (1) have zero means, by construction. Following the discussion in Section 4,
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we linearly project each of V (0) and V (1) onto the population demeaned covariates, Ẋ:

V (0) = Ẋβ0 + U(0) (15)

V (1) = Ẋβ1 + U(1) (16)

where the intercepts are necessarily zero. Then

Y (0) = µ0 + Ẋβ0 + U(0) (17)

Y (1) = µ1 + Ẋβ1 + U(1) (18)

By definition of the linear projection,

E [U(0)] = E [U(1)] = 0

E
[
Ẋ′U(0)

]
= E

[
Ẋ′U(1)

]
= 0

It follows that

V [Y (0)] = β′0ΩXβ0 + σ2
0

V [Y (1)] = β′1ΩXβ1 + σ2
1

where σ2
0 = V [U(0)] and σ2

1 = V [U(1)].
We can write the observed outcome, Y , as

Y = (1−W )
[
µ0 + Ẋβ0 + U(0)

]
+W

[
µ1 + Ẋβ1 + U(1)

]
(19)

= µ0 + Ẋβ0 + U(0) + τW +
(
W · Ẋ

)
δ +W · [U(1)− U(0)] (20)

where δ = β1 − β0. The following lemma is a precursor to the efficiency comparisons.

Lemma 5.1. Under the assumptions of random assignment given in 3.1, random sampling
3.2, and finite moment assumptions, the following asymptotic distributions hold:

√
N (τ̂SDM − τ)

d→ N
(
0, ω2

SDM

)
(21)

ω2
SDM =

β′1ΩXβ1

ρ
+

β′0ΩXβ0

(1− ρ)
+
σ2
1

ρ
+

σ2
0

(1− ρ)
(22)

√
N (τ̂PRA − τ)

d→ N
(
0, ω2

PRA

)
(23)

ω2
PRA =

(
(1− ρ)2

ρ
+

ρ2

(1− ρ)

)
(β1 − β0)

′ΩX (β1 − β0) +
σ2
1

ρ
+

σ2
0

(1− ρ)
(24)
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√
N (τ̂FRA − τ)

d→ N
(
0, ω2

FRA

)
(25)

ω2
FRA = (β1 − β0)

′ΩX (β1 − β0) +
σ2
1

ρ
+

σ2
0

(1− ρ)
(26)

√
N (τ̂IRA − τ)

d→ N
(
0, ω2

IRA

)
(27)

ω2
IRA =

σ2
1

ρ
+

σ2
0

(1− ρ)
. � (28)

The asymptotic variance expressions allow us to determine asymptotic efficiency under var-
ious scenarios. Not surprisingly, all four asymptotic variances depend on the error variances,
σ2
0 and σ2

1. Generally, the asymptotic variances of the three feasible estimators can depend on
ΩX, β0, and β1.

By comparing the formulas in Lemma 5.1 we have the following result, which ranks the
asymptotic variances of the four different estimators in the general case of heterogeneous treat-
ments and ρ ∈ (0, 1).

Theorem 5.2. Under the assumptions of Lemma 5.1,

(i)

ω2
FRA ≤ ω2

SDM (29)

ω2
FRA ≤ ω2

PRA (30)

ω2
IRA ≤ ω2

FRA (31)

(ii) If β0 = β1 = 0 then all asymptotic variances are the same.

(iii) If β0 = β1 = β then ω2
PRA = ω2

FRA = ω2
IRA and if β 6= 0 then ω2

SDM is strictly larger.

(iv) If ρ = 1/2 then ω2
PRA = ω2

FRA ≤ ω2
SDM , with strict inequality in the latter case unless

β1 = −β0.

Many of the results in Theorem 5.2 follow from inspection of the asymptotic variance for-
mulas, although some are more subtle. For example, (31) is immediate because the first term
in (26) is nonnegative. Part (iii) is also immediate because all asymptotic variances equal
σ2
1/ρ+ σ2

0/(1− ρ) when β0 = β1. For part (iv), the function

g(ρ) ≡ (1− ρ)2

ρ
+

ρ2

(1− ρ)
,ρ ∈ (0, 1)
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can be shown to have a minimum value of unity, uniquely achieved when ρ = 1/2.
The most difficult inequality to establish, and the one that is most important, is (29).

Straightforward matrix multiplication shows that

ω2
SDM − ω2

FRA =
β′1ΩXβ1

ρ
+

β′0ΩXβ0

(1− ρ)
− (β1 − β0)

′ΩX (β1 − β0) = λ′ΩXλ,

where

λ =

√(
1− ρ
ρ

)
β1 +

√(
ρ

1− ρ

)
β0.

Because ΩX is assumed positive definite, ω2
SDM = ω2

FRA if and only if λ = 0. One case where
λ = 0 is β1 = β0 = 0, in which case the covariates do not predict the potential outcomes. It
can happen in other cases but all of the slope coefficients would have to have opposite signs
in the linear projections of the two potential outcomes. For example, if ρ = 1/2, we would
need β1 = −β0, which means the slopes in the linear projection of Y (1) on 1, X would be the
opposite signs of the slope coefficients in the linear projection of Y (0) on 1, X. This seems
highly unlikely. For example, we would expect pre-training education to have a positive effect
on earnings whether or not someone participates in a job training program. In the homogenous
case β1 = β0 6= 0, ω2

SDM > ω2
FRA = ω2

PRA.
We can never know for sure whether β1 = β0, but we should know whether ρ = 1/2 based

on the design of the experiment. If ρ = 1/2 then 5.2 suggests that the pooled estimator is
probably preferred: it is as asymptotically efficient as the full RA estimator and conserves on
degrees of freedom, which may be important if N is not large and the potential K (number of
covariates) is somewhat large. For ρ 6= 1/2, Theorem 5.2 shows that the full RA estimator is
attractive provided small-sample issues are not important. In particular, τ̂FRA is always more
asymptotically efficient that both τ̂SDM and τ̂PRA in the presence of heterogenous slopes, and
there is no (asymptotic) price to pay if β1 = β0 or even if β1 = β0 = 0. Estimating the 2K

parameters is, asymptotically, harmless when it comes to the precision in estimating τ .
It may be helpful to provide intuition as to why τ̂FRA is more efficient than τ̂SDM . Consider

estimating the mean of the potential outcome in the treated state, µ1. The FRA estimator is

µ̂1,FRA = α̂1 + X̄β̂1,

where X̄ is the sample average across the entire sample. By the simple mechanics of OLS,

Ȳ1 = α̂1 + X̄1β̂1

where

X̄1 = N−11

N∑
i=1

WiXi
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is the sample average of the Xi over the treated units. Because of random assignment, X̄1 is
also a

√
N -consistent, asymptotically normal estimator of µX. But it is inefficient compared

with X̄ because the latter uses the entire sample. The same is true of µ̂0,FRA and Ȳ0. This
does not quite prove that τ̂FRA is asymptotically more efficient because µ̂1,FRA and µ̂0,FRA

are not (asymptotically) uncorrelated, but it does provide some intuition. The same sort of
intuition indicates why τ̂IRA is asymptotically more efficient than τ̂FRA: τ̂IRA is not subject to
the sampling error in estimating µX.

6 Simulations

In this section we study the finite sample properties of the four estimators just discussed.
We evaluate the estimators primarily in terms of root mean squared error (RMSE), since this
accounts for bias as well as sampling variance. Since bias has been cited as a concern with
covariate adjustment estimators, especially in small-scale experiments, looking at the trade offs
between bias and efficiency through RMSE is key to studying the finite sample performance
of these estimators. In order to compute the RMSE, we generate a population of 10,000
observations corresponding to each data generating process, outlined below, to approximate
an “infinite” population setting. We then repeatedly draw random samples of sizes 100, 500
and 1,000 from the population a thousand times. For a comprehensive assessment, we report
the RMSE across these different sample sizes and treatment probability combinations where
the treatment probabilities range from 0.1 to 0.9. To keep the tables simple, we report results
only for the odd treatment probabilities even though the graphs are plotted for all values. The
reported simulation results are for the case of heterogeneous treatment effects in the population,
both in terms of the slopes on the linear projections and in the distribution of the projection
errors, U(0) and U(1).

6.1 Design Details

The treatment, W , is a binary variable, and so it has a Bernoulli distribution with

P (W = 1) = ρ,

and we vary the value of ρ. For the potential outcomes, we consider continuous and discrete
responses. In the first, the potential outcomes are conditionally normally distributed, with
means linear in a quadratic in two covariates, X1 and X2. Specifically,

Y (0) = γ00 + γ01X1 + γ02X2 + γ03X
2
1 + γ04X

2
2 + γ05X1X2 +R(0) ≡ Zγ0 +R(0)

Y (1) = γ10 + γ11X1 + γ12X2 + γ13X
2
1 + γ14X

2
2 + γ15X1X2 +R(1) ≡ Zγ1 +R(1),
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where
Z =

(
1 X1 X2 X2

1 X2
2 X1X2

)
and

R(0)| (X1, X2) ∼ N (0, σ2
0)

R(1)| (X1, X2) ∼ N (0, σ2
1)

We allow the γwj to differ across w ∈ {0, 1}, and so there is heterogeneity in the treatment
effects in terms of the observables, X, and the unobservables, R(0) and R(1) which are allowed
to be correlated.2 We also allow σ2

0 and σ2
1 to differ.

It is important to understand that, in order to be realistic, we do not assume that the
quadratic conditional mean function is known. Instead, the researcher uses only linear regres-
sion on a constant, X1, and X2. In a traditional view of econometrics, these regressions would
be “misspecified.” Of course, to ensure we have the best mean squared error predictors of Y (0)

and Y (1), we would use the correct specifications of E [Y (0)|X] and E [Y (1)|X]. But it would
be unusual for us to know the exact specification of the conditional mean functions. One can
argue that most empirical researchers would include simple functions, such as squares as inter-
actions. But then the true mean function could depend on higher order polynomials, or other
more exotic functions. In fact, the mean might not even be linear in parameters. We take our
setup as reflecting the realistic case that the researcher uses a linear regression that does not
correspond to the correct conditional mean.

Our second design generates the potential outcomes as binary variables. Remember, when
W is randomly assigned, we can use any kind of linear regression adjustment to improve
asymptotic efficiency, regardless of the nature of Y (0), Y (1). Specifically, for Z defined above,

Y (0) = 1[Zγ0 +R(0) > 0]

Y (1) = 1[Zγ1 +R(1) > 0],

where R(0) and R(1) are again independent of (X1, X2) and normally distributed, this time
each with unit variances. As before, R(0) and R(1) are allowed to be correlated. In the binary
response case, one might traditionally think of two forms of “misspecification” in using linear
regression adjustment on (1, X1, X2). First, we are using what is traditionally called a “linear
probability model” rather than the correct probit model. Second, we are omitting the terms
X2

1 , X2
2 , and X1X2. Thus, there are two kinds of functional form “misspecification.” Our view

is that, to make a case for linear regression adjustment, it should produce notable efficiency
gains even when the potential outcomes are discrete (although we return to this issue in the
next section).

We consider two different designs for generating the covariates. Both are based on an
2R(0) and R(1) are generated to be affine transformations of the same standard normal variable.
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underlying bivariate normal distribution:

X∗′ =

(
X∗1

X∗2

)
∼ N

[(
1

2

)
,

(
2 0.5

0.5 3

)]
.

In the first design, X = X∗. In the second design, X1 = X∗1 and

X2 = 1[X∗2 > 0],

so that X2 is binary (in which case X2
2 is redundant in the mechanism generating the potential

outcomes).
With the linear and probit data we consider two different levels of heterogeneity across the

coefficients γ0 and γ1, which we label “mild” and “strong.” For the mild heterogeneity with
continuous covariates

γ ′0 =
(

2 2 −2 −0.05 −0.02 0.3
)
, γ ′1 =

(
3 1 −1 −0.05 −0.03 0.6

)
and for the strong heterogeneity

γ ′0 =
(

0 1 −1 −0.05 0.02 0.6
)
, γ ′1 =

(
1 −1 1.5 0.03 −0.02 −0.6

)
With the binary regressor, for mild heterogeneity we have

γ ′0 =
(

0 1 −1 0.05 0.2
)
, γ ′1 =

(
3 3 1 0.05 0.9

)
and for strong heterogeneity we have

γ ′0 =
(

0 1 −2 −0.05 0.2
)
, γ ′1 =

(
3 −1 1 0.05 −0.9

)
Combining the linear and probit designs for the potential outcomes with two different levels

of heterogeneity and two different covariate compositions leads to a total of eight scenarios.
We allow the treatment probability, ρ, to range between 0.1 and 0.9 in increments of 0.1 . We
consider three sample sizes, 100, 500, and 1,000. Note that when N = 100 and ρ = 0.1, we
expect only 10 treated units and 90 control units. The covariates are generated to ensure that
they are predictive of the potential outcomes, with the population R-squared ranging between
(0.1, 0.6). The variances σ2

0 and σ2
1 are allowed to be different for the two potential outcomes

and across four of the eight different data generation processes.
We assess the relative finite sample performance of the four estimators under each such

scenario, which we term a DGP. The Table below describes each of the DGP’s in detail.

Table 6.1: Description of the Data Generating Processes
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DGP Design Covariates Heterogeneity R2
0 R2

1 σ2
0 σ2

1 PATE

1 Quadratic X Mild 0.52 0.44 16 9 2.68
2 Quadratic X Strong 0.31 0.46 16 9 0.93
3 Quadratic X2 = 1[X∗2 > 0] Mild 0.59 0.33 1 4 7.46
4 Quadratic X2 = 1[X∗2 > 0] Strong 0.27 0.34 9 4 2.92
5 Probit X Mild 0.59 0.38 1 1 0.28
6 Probit X Strong 0.51 0.45 1 1 0.09
7 Probit X2 = 1[X∗2 > 0] Mild 0.45 0.28 1 1 0.35
8 Probit X2 = 1[X∗2 > 0] Strong 0.38 0.40 1 1 0.43

6.2 Discussion of Simulation Findings

In the eight different DGPs, we see that FRA performs better than SDM and PRA in terms
of RMSE. This behavior seems to be more pronounced at larger sample sizes as seen from the
figures. Two things are worth pointing. One, the difference in IRA and FRA is less prominent
for cases of mild heterogeneity. In such cases, PRA also performs comparably. This makes
sense since pooling slopes in the treatment and control groups when the slopes are not very
different should produces estimates that are close to the ones estimated by the separate slopes
regression. Second, as was clear from Theorem 5.2, PRA and FRA have approximately the
same RMSE at ρ = 0.5. This is not surprising to see in the graph because at larger sample
sizes, biases in these estimators are negligible which means that RMSE is approximately the
same as the variance.

Overall we see that the finite sample performance of FRA is superior to SDM and PRA for
a variety of data generating processes (see figures 1 and 2 for quadratic design with mild and
strong levels of heterogeneity, 3 and 4 for quadratic design with one binary covariate with mild
and strong levels of heterogeneity, 5 and 6 for a probit design with mild and strong levels of
heterogeneity and finally 7 and 8 for a probit design with one binary covariate with mild and
strong levels of heterogeneity. For tables, see 1, 2 and 3).

7 Nonlinear Regression Adjustment

If the outcome Y – more precisely, the potential outcomes, Y (0) and Y (1) – are discrete, or
have limited support, using nonlinear conditional mean functions, chosen to ensure fitted values
are logically consistent with E [Y |X], have considerable appeal. Intuitively, getting better
approximations to E [Y (0)|X] and E [Y (1)|X] can yield estimators with smaller asymptotic
variances when compared with the SDM estimator and linear regression adjustment. However,
as cautioned by Imbens and Rubin (2015) page 128, one should not sacrifice consistency in
order to obtain an asymptotically more efficient estimator. Imbens and Rubin (2015) leave the
impression that all nonlinear models should be avoided because consistency cannot be ensured.
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In this section, we use the features of the linear exponential family class of distributions,
combined with particular conditional mean models, to show that if one is careful in choosing
the combination of conditional mean function and quasi-log likelihood (QLL) function, one
can preserve consistency. Unfortunately, we cannot formally show that using this particular
set of nonlinear models is more efficient than the SDM estimator, but our simulations suggest
the efficiency gains can be substantial. (And we have found no cases where it is worse to do
nonlinear RA.)

In deciding on nonlinear RA methods, the key is to remember is that

τate = µ1 − µ0,

and so we need to consistently estimate µ1 and µ0 without imposing additional assumptions.
Earlier we showed how linear regression adjustment does just that. And, linear RA, when done
separately to estimate µ0 and µ1, is asymptotically more efficient than the SDM estimator.
Our goal here is to summarize the nonlinear methods that produce consistent estimators of
τate without additional assumptions (except for standard regularity conditions). We start with
pooled methods.

7.1 Pooled Nonlinear Regression Adjustment

In the generalized linear models (GLM) literature, it is well known that certain combinations
of QLLs in the linear exponential family (LEF) and link functions lead to first order conditions
where, in the sample, the residuals average to zero and are uncorrelated with every explanatory
variable. To state the precise results, let g (·) be a strictly increasing function on R, with range
that can be a subset of R. The inverse, g−1 (·), is known as the “link function” in the GLM
literature. In the context of treatment effect estimation with mean function g (α + xβ + γw),
when using the so-called canonical link function [McCullagh and Nelder (1989)] the first order
conditions (FOCs) are of the form

N∑
i=1

[
Yi − g

(
α̂ + Xiβ̂ + γ̂Wi

)]
= 0

N∑
i=1

Wi

[
Yi − g

(
α̂ + Xiβ̂ + γ̂Wi

)]
= 0

N∑
i=1

X′i

[
Yi − g

(
α̂ + Xiβ̂ + γ̂Wi

)]
= 0

When g (z) = z, these equations produce the first order conditions for the pooled OLS es-
timator. The leading cases where these conditions hold for nonlinear estimation are for the
Bernoulli QLL when g (z) = Λ(z) = exp(z)/[1 + exp(z)] is the logistic function and for the
Poisson QLL when g (z) = exp(z).
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Under random sampling and weak regularity conditions, the probability limits of the estima-
tors solve the population versions of the sample moment conditions. Let α∗, β∗, and γ∗ denote
the probability limits of α̂, β̂, and γ̂, respectively. Importantly, as argued in White (1982),
these plims exist very generally without assuming that mean function is correctly specified –
just as the parameters in the linear projection exist under very weak assumptions. The first
two FOCs in the population are

E [Y − g (α∗ + Xβ∗ + γ∗W )] = 0 (32)

E {W [Y − g (α∗ + Xβ∗ + γ∗W )]} = 0; (33)

we will not need the last set of conditions obtained from the gradient with respect to β. As
before, we assume that ρ = P (W = 1) satisfies 0 < ρ < 1.

Now, recall that Y = (1−W )Y (0) +WY (1). Then, by random assignment,

E (Y ) = E (1−W )E [Y (0)] + E (W )E [Y (1)] = (1− ρ)µ0 + ρµ1.

Therefore, we can write (32) as

(1− ρ)µ0 + ρµ1 = E [g (α∗ + Xβ∗ + γ∗W )]

By iterated expectations,

E [g (α∗ + Xβ∗ + γ∗W )] = E {E [g (α∗ + Xβ∗ + γ∗W ) |X]}

and, because W is independent of X with P (W = 1) = ρ,

E [g (α∗ + Xβ∗ + γ∗W ) |X] = (1− ρ)g (α∗ + Xβ∗) + ρg (α∗ + Xβ∗ + γ∗) .

Therefore,

(1− ρ)µ0 + ρµ1 = (1− ρ)E [g (α∗ + Xβ∗)] + ρE [g (α∗ + Xβ∗ + γ∗)] . (34)

Further, using and WY = WY (1), from (33),

E [WY (1)] = E [Wg (α∗ + Xβ∗ + γ∗W )] .

Again using random assignment and iterated expectations,

ρµ1 = (1− ρ) · 0 + ρE [g (α∗ + Xβ∗ + γ∗)] = ρE [g (α∗ + Xβ∗ + γ∗)] .

Because ρ > 0, we have

µ1 = E [g (α∗ + Xβ∗ + γ∗)] . (35)
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Also, because ρ < 1, (34) now implies

µ0 = E [g (α∗ + Xβ∗)] (36)

It follows that

τate = E [g (α∗ + Xβ∗ + γ∗)]− E [g (α∗ + Xβ∗)] . (37)

This equation essentially is the basis for proving that pooled regression adjustment, where we
use a QLL in the linear exponential family and the conditional mean implied by the canonical
link function, is consistent. Consistency follows because the estimated ATE using the pooled
method is

τ̂ate,pooled = N−1
N∑
i=1

[
g
(
α̂ + Xiβ̂ + γ̂

)
− g

(
α̂ + Xiβ̂

)]
. (38)

By Wooldridge (2010) question 12.17, this converges in probability to (37). As a practical
matter, it is convenient to note that (38) is the exact quantity reported by standard software
packages when one requests the average “marginal” (or “partial”) effect of the binary variable
W after a standard GLM estimation. Packages that have this pre-programmed also provide
a valid standard error, although one must be sure to use a “robust” option during the GLM
estimation so that a sandwich estimator is used for the asymptotic variance of the parameter
estimators

(
α̂, β̂′, γ̂

)′
.

Table 7.1 summarizes the useful combinations of the QLL and mean functions that lead to
consistent estimation of τate without additional assumptions.
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Table 7.1: QLL and mean function combinations
Restrictions on Support of Response Quasi-Log Likelihood Function Conditional Mean Function
None Gaussian (Normal) Linear
Y (w) ∈ [0, 1] Bernoulli Logistic
Y (w) ∈ [0, B] Binomial Logistic
Y (w) ≥ 0 Poisson Exponential
Yg(w) ≥ 0,

∑G
g=0 Yg(w) = 1 Multinomial Logistic

The Bernoulli/logistic case applies to binary or fractional outcomes, without change. When
Y is fractional, it can have probability mass at zero, one, or anywhere else. See Papke and
Wooldridge (1996) for further discussion. In any case, we treat the problem as quasi-MLE
because we do not wish to assume either that the distribution or mean function is correct.

The Poisson/exponential combination is very useful for nonnegative outcomes without a
natural upper bound, although it can be applied to any nonnegative outcome. This includes
count outcomes but also continuous outcomes and outcomes with corner solutions at zero (or
other focal points). In the latter case, it is important to understand that commonly used
models, such as Tobit, do not provide any known robustness to misspecification of the Tobit
model. By contrast, the Poisson QMLE with an exponential mean provides full robustness.
Remember, we are not trying to estimate the conditional mean functions; we are trying to
consistently estimate the unconditional means, µ0 and µ1. Other than linear regression, the
Poisson QMLE with an exponential mean is the only sensible choice for nonnegative, unbounded
responses.

If the outcome has a natural, known upper bound, say Bi, which may vary by unit i, the
binomial QMLE can be used in conjunction with the mean function

m(b,x, w,θ) = b

[
exp(α + xβ + γw)

1 + exp(α + xβ + γw)

]
,

as this is known to be the mean associated with the canonical link for the binomial distribution.
The data then consists of (Yi, Bi,Xi,Wi). Again, it does not matter whether Yi is an integer
response or is continuous, or even has a corner at zero, Bi, or both: using the binomial QMLE
with logistic mean is simply a way to possibly improve over SDM or linear RA. The estimated
ATE is

N−1
N∑
i=1

Bi

[
exp(α̂ + Xiβ̂ + γ̂)

1 + exp(α̂ + Xiβ̂ + γ̂)
− exp(α̂ + Xiβ̂)

1 + exp(α̂ + Xiβ̂)

]
;

again, this is simple the average partial effect with respect to the binary variable W .
The last entry in Table 7.1 extends the Bernoulli QLL/logistic mean and is relevant in

two general situations. The first is when the support of the response is finite (and greater
than two; otherwise one would use the logistic mean function with the Bernoulli QLL). For
example, Yg(w) could be an ordered response, such as a measure of health on a Lichert scale,
or an unordered response, such as the choice of a health plan. A second situation is when
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the response consists of fractions that sum to unity, such as proportions of wealth in different
investment categories, in which case the model has been called “multinomial fractional logit”
[Mullahy (2015)]. If there are G+ 1 possible outcomes then there are G+ 1 means each for the
control and treated states. The conditional mean functions for a pooled estimation would be

mg(x, w, θ) =
exp(αg + xβg + γgw)[

1 +
∑G

h=1 exp(αh + xβh + γhw)
] , g = 0, 1, ..., G

with α0 = 0, β0 = 0. Then the estimated means are

µ̂wg = N−1
N∑
i=1

exp(α̂g + Xiβ̂g + γ̂gw)[
1 +

∑G
h=1 exp(α̂h + Xiβ̂h + γ̂hw)

] , w ∈ {0, 1} , g ∈ {0, 1, ..., G}
and the estimated average treatment effect for each g is

τ̂ate,g = µ̂1g − µ̂0g.

Because for each w,
∑G

g=0 µ̂wg = 1, the sum over g of the τ̂ate,g is necessarily zero.

7.2 Full Nonlinear Regression Adjustment

As in the linear case, consistency is preserved if we estimate two separate regression functions
for the control and treatment cases. This follows from Wooldridge (2007) results on doubly
robust estimators, where, in the current setting, the propensity score, P (W = 1|X = x) = ρ,
is not a function of x. But a direct argument is easier to follow. For example, consider using a
QLL with the canonical link function using only the treatments. The FOC for α̂1, the intercept
inside the conditional mean function, is simply

N∑
i=1

Wi

[
Yi − g

(
α̂1 + Xiβ̂1

)]
= 0.

Notice again how the treatment indicator serves to select the subsample of treated units. The
population analog is

E [WY (1)] = E [Wg (α∗1 + Xβ∗1)]

or, because of random assignment,

ρµ1 = ρE [g (α∗1 + Xβ∗1)] .

It follows that
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µ1 = E [g (α∗1 + Xβ∗1)]

The same argument works for the untreated case, where Wi is replaced with (1 −Wi), and(
α̂1, β̂

′
1

)′
are replaced with

(
α̂0, β̂

′
0

)′
. The conclusion is

µ0 = E [g (α∗0 + Xβ∗0)] .

Remember, the parameters with a “*” now indicate the probability limits from the two separate
estimations, rather than there being the same parameters as in the pooled estimation. It follows
under general regularity conditions that a consistent and asymptotically normal estimator of
τate is

τ̂ate,full = N−1
N∑
i=1

[
g
(
α̂1 + Xiβ̂1

)
− g

(
α̂0 + Xiβ̂0

)]
.

As a practical matter, some packages, such as Stata, have built-in commands for some full RA
estimators, including the Bernoulli/logistic and the Poisson/exponential combinations, and so
a standard error is computed along with the estimate. Again, one must be sure to use a robust
variance matrix estimator for the parameters. Alternatively, using a bootstrap routine is very
efficient for these kinds of estimators.

In deciding on a procedure to use – linear versus nonlinear, pooled versus full – it is important
to understand that all methods studied in this paper produce consistent estimators of τate. In
the linear case, we have the result that full RA is asymptotically efficient compared with SDM
and pooled RA. As mentioned earlier, a proof that full nonlinear RA is asymptotically more
efficient than the pooled version is elusive. Also, we have not proven that full nonlinear RA is
always at least as asymptotically efficient as SDM. We now report representative simulations
that show the nonlinear methods can improve precision substantially in some cases without
introducing bias, even in pretty small sample sizes.

7.3 Simulations

For non-linear simulations we only consider continuous covariates which means that for both
binary and non-negative data generating processes, X = X∗ where,

X∗′ =

(
X∗1

X∗2

)
∼ N

[(
1

2

)
,

(
2 0.5

0.5 3

)]
.

As with the linear simulations,

Z =
(

1 X1 X2 X2
1 X2

2 X1X2

)
.
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The tables report bias and standard deviation for sample sizes of N = 500 and N = 1, 000

which are drawn repeatedly thousand times from a population of size 10,000 as in the linear
regression adjustment simulations. To keep the tables simple, we only report bias and standard
deviation values for treatment probabilities ρ = 0.1, 0.3, 0.5, 0.7, 0.9 even though the graphs are
plotted for ρ ranging between 0.1 to 0.9.

7.3.1 Binary Response

For the binary response case, the outcomes have been generated using a probit mean function
as given below

Y (0) = 1[Zγ0 +R(0) > 0]

Y (1) = 1[Zγ1 +R(1) > 0],

and

γ ′0 =
(
−2 1 2 0.05 0.02 0.1

)
, γ ′1 =

(
0 3 1 −0.05 0.03 0.9

)
and

R(0)| (X1, X2) ∼ N (0, 1)

R(1)| (X1, X2) ∼ N (0, 1)

where R(0) and R(1) are allowed to be correlated like before. While estimating the nonlinear
pooled and separate slopes estimators we use case (ii) in Table 7.1.

We find that separate slopes nonlinear estimator (NFRA) has the lowest root mean squared
error compared with the linear estimators and the pooled nonlinear estimator (NPRA) for all
treatment probabilities (see figure 9). The tables show that nonlinear estimators have bias that
is comparable to the SDM estimator (see table 4).

7.3.2 Nonnegative Response

For the non-negative response, the outcomes have been generated using a log normal distribu-
tion as given below

Y (0) = exp
(

Zγ0 +R(0)

10
+ 0.3 · N (0, 1)

)
Y (1) = exp

(
Zγ1 +R(1)

10
+ 0.4 · N (0, 1)

)
,
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where

γ ′0 =
(

0 2 −1 −0.05 0.02 0.6
)
, γ ′1 =

(
1 −1 1.5 0.03 −0.02 −0.6

)
and

R(0)| (X1, X2) ∼ N (0, 4)

R(1)| (X1, X2) ∼ N (0, 9)

where R(0) and R(1) are allowed to be correlated. While estimating the nonlinear pooled and
separate slopes estimators we use case (iv) in Table 7.1.

Similar to the binary response simulations, we see that that NFRA again has the lowest
root mean squared error compared with both linear and pooled nonlinear estimators across all
treatment probabilities. In fact, NFRA peforms better than both SDM and FRA. The NPRA
and linear PRA are very similar in terms of RMSE; see table 5 and figure 10.

8 Concluding Remarks

We have studied linear and nonlinear regression adjustment estimators of the average treat-
ment effect in an experimental framework. For linear regression adjustment, this paper makes
some key contributions to the econometrics literature on randomized experiments. First, by
considering a previously ignored aspect of the separate slopes estimator, this paper is able to fill
a clear gap in the literature by showing the full RA estimator is always the most efficient even
when the population means of the covariates is estimated using the sample sample. Second,
in obtaining our results, we rely only on linear projections, and so no extra assumptions are
used in establishing asymptotic efficiency. Third, the setup allows us to determine when using
full RA, or RA at all, is unecessary to achieve efficiency. Our simulation findings support the
theory and show that substantial efficiency gains are possible when we have good predictors of
the response. Obtaining the correct standard errors for the full RA estimator is particularly
simple in commonly used software packages. For example, Stata®, with its built-in “teffects”
command, provides the correct standard errors for the FRA estimator

As an interesting complement to our work, Słoczyński (2018) studies pooled versus full RA
when assignment is unconfounded conditional on covariates. Assuming that the conditional
means are linear in parameters, Słoczyński (2018) shows that using pooled RA when the
treatment effects are heterogeneous is inconsistent for the ATE in a way that is particularly
troublesome in designs that are heavily unbalanced. In particular, the pooled RA estimator
consistently estimates the weighted average (1− ρ) · τATT + ρ · τATU , where τATT is the average
treatment effect on the treated (W = 1) and τATU is the ATE on the untreated (W = 0). The
ATE can be expressed as τATE = ρ·τATT +(1− ρ)·τATU , and so the PRA estimator, in the limit,
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gets the weights reversed. Under random assignment, there is no difference between τATE, τATT ,
and τATU , and so consistency of PRA for τATE is not the issue. But as we showed, the pooled RA
estimator is generally inefficient when treatment effects are heterogeneous. Also, when ρ = 1/2,
there is no inconsistency in the pooled RA estimator when unconfoundedness holds. As we
have shown in this paper, in the random assignment case ρ = 1/2 is precisely the condition
that implies no efficiency gain from full RA even when there is arbitrary heterogeneity in the
treatment effects. Our findings mesh well with those of Słoczyński (2018), with the conclusion
that in moderate samples, FRA should be used unless ρ is known to be close to 1/2.

In addition to the linear estimators, we also propose nonlinear regression adjustment estima-
tors, characterizing the combinations of quasi-log-likelihood functions and conditional means
functions that ensure consistency regardless of misspecification. We believe this paper is the
first to do so. We do not have theoretical results to show when the nonlinear RA methods
unambiguously improve asymptotic efficiency, and this is a good topic for future research.
However, our simulations suggest that nonlinear adjustment estimators can have bias compa-
rable to that of simple difference in means (SDM) and can produce sampling variances that are
considerably smaller than that of SDM and, in majority of cases, substantially smaller than
linear feasible regression adjustment.

Going forward, there are a lot of natural extensions. One is to study an assignment scheme
that is different from the one considered here. This paper assumes independence across treat-
ment assignments but a more common design, known as the completely randomized experiment,
induces dependence across units by fixing the number of treated units before sampling from
the population. Also, because most randomized experiments in economics are plagued with
issues of nonparticipation or nonrandom attrition, it is also fruitful to study regression adjust-
ment in conjunction with an Instrumental Variables (IV). Comparing the efficiency of standard
regression adjustment estimators under random assignment to estimators based on stratified
assignment schemes is also a good area for future research.
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9 Proofs

9.1 Proof of Lemma 5.1

Proof. Asymptotic variance of SDM
Consider the difference-in-means estimator. We can write the sample average for the treated
as

Ȳ1 = N−11

N∑
i=1

WiYi = N−11

N∑
i=1

Wi

[
µ1 + Ẋiβ1 + Ui(1)

]
= µ1 +N−11

N∑
i=1

Wi

[
Ẋiβ1 + Ui(1)

]
Therefore,

√
N
(
Ȳ1 − µ1

)
= (N/N1)N

−1/2
N∑
i=1

Wi

[
Ẋiβ1 + Ui(1)

]
= (1/ρ)N−1/2

N∑
i=1

Wi

[
Ẋiβ1 + Ui(1)

]
+ op(1)

because N1/N
p→ ρ. By the CLT,

N−1/2
N∑
i=1

Wi

[
Ẋiβ1 + Ui(1)

]
d→ Normal(0, c21)

where, c21 = E

{
Wi

[
Ẋiβ1 + Ui(1)

]2}
= ρ

(
β′1ΩXβ1 + σ2

1

)
where Wi independent of (Xi, Ui(1)) is used. It follows that

Avar
[√

N
(
Ȳ1 − µ1

)]
= (1/ρ)2ρ

(
β′1ΩXβ1 + σ2

1

)
=
(
β′1ΩXβ1 + σ2

1

)
/ρ (39)

Similarly,
Avar

[√
N
(
Ȳ0 − µ0

)]
=
(
β′0ΩXβ0 + σ2

0

)
/(1− ρ). (40)

Combining results from eq(39) and eq(40), we have:
√
N (τ̂SDM − τ)

d−→ N
(
0, ω2

SDM

)
Since the sample averages are asymptotically uncorrelated, therefore

ω2
SDM = β′1ΩXβ1/ρ+ β′0ΩXβ0/(1− ρ) + σ2

1/ρ+ σ2
0/(1− ρ)

Proof. Asymptotic variance of P-RA
To find the asymptotic variance of τ̌ , note that it can be obtained from

Yi on 1, Wi, Ẋi.
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Note that Ẋi is orthogonal to (1,Wi) because E(Ẋi) = 0 and Wi is independent of Xi. We
know that

L(Yi|1,Wi) = µ0 + τWi

because τ = E(Yi|Wi = 1)− E(Yi|Wi = 0). Therefore,

L(Yi|1,Wi, Ẋi) = µ0 + τWi + Ẋiβ

By orthogonality,

β =
[
E
(
Ẋ′iẊi

)]−1
E
(
Ẋ′iYi

)
Now

Yi = (1−Wi)µ0 + (1−Wi)Ẋiβ0 + (1−Wi)Ui(0)

+Wiµ1 +WiẊiβ1 +WiUi(1)

Therefore,

E
(
Ẋ′iYi

)
= E

[
(1−Wi)Ẋ

′
iẊiβ0

]
+ E

[
WiẊ

′
iẊiβ1

]
= (1− ρ)E

(
Ẋ′iẊi

)
β0 + ρE

(
Ẋ′iẊi

)
β1

where we use the linear projection properties of the errors, E
(
Ẋi

)
= 0, and independence of

Wi and [Xi, Ui(0), Ui(1)]. Plugging in gives

β = (1− ρ)β0 + ρβ1

Now we can write the projection error as

Ui = (1−Wi)µ0 + (1−Wi)Ẋiβ0 + (1−Wi)Ui(0)

+Wiµ1 +WiẊiβ1 +WiUi(1)

− µ0 − (µ1 − µ0)Wi − Ẋi [(1− ρ)β0 + ρβ1]

= −(Wi − ρ)Ẋiβ0 + (1−Wi)Ui(0)

+ (Wi − ρ)Ẋiβ1 +WiUi(1).

Because (1,Wi) is orthogonal to Ẋi, it follows as in the previous section that

√
N(τ̂PRA − τ) =

[
E(Ẇ 2

i )
]−1(

N−1/2
N∑
i=1

(Wi − ρ)Ui

)
+ op(1)

= [ρ(1− ρ)]−1
(
N−1/2

N∑
i=1

(Wi − ρ)Ui

)
.

Then using asymptotic equivalence lemma and CLT, we have:
√
N(τ̂PRA − τ)

d−→ N
(
0, ω2

PRA

)
where ω2

PRA = V ar ((Wi − ρ)Ui) / [ρ(1− ρ)]2.
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Now we need to find the asymptotic variance of N−1/2
∑N

i=1(Wi−ρ)Ui. The term (Wi−ρ)Ui

has zero mean by the linear projection property. Further,

(Wi − ρ)Ui = −(Wi − ρ)2Ẋiβ0 + (Wi − ρ)2Ẋiβ1

+ (Wi − ρ)(1−Wi)Ui(0) + (Wi − ρ)WiUi(1)

The covariance between the last two terms is zero as (1−Wi)Wi = 0. The last two terms can
be written as

−ρ(1−Wi)Ui(0) + (1− ρ)WiUi(1)

and so
V ar [−ρ(1−Wi)Ui(0) + (Wi − ρ)WiUi(1)] = ρ2(1− ρ)σ2

0 + (1− ρ)2ρσ2
1.

Write the first two terms as
(Wi − ρ)2Ẋi (β1 − β0) .

The variance is
E
[
(Wi − ρ)4

]
(β1 − β0)

′ΩX (β1 − β0) .

Combining all of the terms gives

Avar
[√

N(τ̂PRA − τ)
]
= [ρ(1− ρ)]−2

{
E
[
(Wi − ρ)4

]
(β1 − β0)

′ΩX (β1 − β0) + ρ2(1− ρ)σ20 + (1− ρ)2ρσ21
}

=
E
[
(Wi − ρ)4

]
[ρ(1− ρ)]2

(β1 − β0)
′ΩX (β1 − β0) +

σ20
(1− ρ)

+
σ21
ρ

Note that we can write
E [(Wi − ρ)4]

[ρ(1− ρ)]2
=
E [(Wi − ρ)4]

[V ar(Wi)]
2

and Jensen’s inequality tells us this is greater than unity: take Zi = (Wi − ρ)2. We can also
show

E
[
(Wi − ρ)4

]
= (1− ρ)4ρ+ ρ4(1− ρ)

and so the scale factor is

(1− ρ)4ρ+ ρ4(1− ρ)

[ρ(1− ρ)]2
=

(1− ρ)2

ρ
+

ρ2

(1− ρ)
.

Hence,

Avar
[√

N (τ̂PRA − τ)
]

=

(
(1− ρ)2

ρ
+

ρ2

(1− ρ)

)
(β1 − β0)

′ΩX (β1 − β0) +
σ2
0

(1− ρ)
+
σ2
1

ρ

Proof. Asymptotic variance of F-RA
Now consider the full regression adjustment estimator. Let α̂1 and β̂1 be the OLS estimates
from the Wi = 1 sample:

Yi on 1, Xi Wi = 1

and then
µ̂1,FRA = α̂1 + X̄β̂1

where X̄ is the sample average over the entire sample. (For intuition, it is useful to note that
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Ȳ1 = α̂1 + X̄1β̂1, and so µ̂1 uses a more efficient estimator of µX.) By least squares mechanics,
µ̂1 is the intercept in the regression

Yi on 1, Xi − X̄, Wi = 1.

Let Ẍi = Xi − X̄ and
R̈i = (1, Ẍi).

Define

γ̂1 =

(
µ̂1

β̂1

)
=

(
N∑
i=1

WiR̈
′
iR̈i

)−1( N∑
i=1

WiR̈
′
iYi

)

=

(
N−1

N∑
i=1

WiR̈
′
iR̈i

)−1(
N−1

N∑
i=1

WiR̈
′
iYi(1)

)
.

Now write

Yi(1) = µ1 + Ẋiβ1 + Ui(1) = µ1 + Ẍiβ1 + (Ẋi − Ẍi)β1 + Ui(1)

= µ1 + Ẍiβ1 + (X̄− µX)β1 + Ui(1) = R̈iγ1 + (X̄− µX)β1 + Ui(1)

Plugging in gives

N−1
N∑
i=1

WiR̈
′
iYi(1) =

(
N−1

N∑
i=1

WiR̈
′
iR̈i

)
γ1+

(
N−1

N∑
i=1

WiR̈
′
i

)
(X̄−µX)β1+N

−1
N∑
i=1

WiR̈
′
iUi(1)

Now we can write

γ̂1 = γ1 +

(
N−1

N∑
i=1

WiR̈
′
iR̈i

)−1 [(
N−1

N∑
i=1

WiR̈
′
i

)
(X̄− µX)β1 +N−1

N∑
i=1

WiR̈
′
iUi(1)

]

and so

√
N (γ̂1 − γ1) =

(
N−1

N∑
i=1

WiR̈
′
iR̈i

)−1 [(
N−1

N∑
i=1

WiR̈
′
i

)
√
N(X̄− µX)β1 +N−1/2

N∑
i=1

WiR̈
′
iUi(1)

]

Next, because X̄
p→ µX , the law of large numbers and Slutsky’s Theorem imply

N−1
N∑
i=1

WiR̈
′
iR̈i = N−1

N∑
i=1

WiṘ
′
iṘi + op(1)

where
Ṙi = (1, Ẋi) = (1,Xi − µX)

Further,

N−1
N∑
i=1

WiṘ
′
iṘi

p→ E
(
WiṘ

′
iṘi

)
= ρE

(
Ṙ′iṘi

)
.
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Note that

A ≡

(
1 0

0 E
(
Ẋ′iẊi

))
The terms

√
N(X̄− µX)β1 and N−1/2

∑N
i=1WiR̈

′
iUi(1) are Op(1), and so

√
N (γ̂1 − γ1) = (1/ρ)A−1

[(
N−1

N∑
i=1

WiR̈
′
i

)
√
N(X̄− µX)β1 +N−1/2

N∑
i=1

WiR̈
′
iUi(1)

]
+op(1).

Consider the first element of N−1
∑N

i=1WiR̈
′
i:

N−1
N∑
i=1

WiR̈
′
i = N−1

N∑
i=1

Wi

(
1

Ẍi

)
and so the first element is

N−1
N∑
i=1

Wi = N1/N = ρ̂
p→ ρ.

Also,

N−1/2
N∑
i=1

WiR̈
′
iUi(1) = N−1/2

N∑
i=1

Wi

(
1

Ẍi

)
Ui(1)

and so the first element is

N−1/2
N∑
i=1

WiUi(1).

Because of the block diagonality of A, the first element of,
√
N (γ̂1 − γ1),

√
N (µ̂1 − µ1) satisfies

√
N (µ̂1,FRA − µ1) = (1/ρ)ρ

√
N(X̄− µX)β1 + (1/ρ)N−1/2

N∑
i=1

WiUi(1) + op(1)

=
√
N(X̄− µX)β1 + (1/ρ)N−1/2

N∑
i=1

WiUi(1) + op(1).

We can also write
√
N (µ̂1,FRA − µ1) = N−1/2

N∑
i=1

[(Xi − µX)β1 +WiUi(1)/ρ] + op(1)

A similar argument gives
√
N (µ̂0,FRA − µ0) = N−1/2

N∑
i=1

[(Xi − µX)β0 + (1−Wi)Ui(0)/(1− ρ)] + op(1)

and so
√
N (τ̂FRA − τ) = N−1/2

N∑
i=1

[
Ẋi (β1 − β0) +WiUi(1)/ρ− (1−Wi)Ui(0)/(1− ρ)

]
+ op(1)
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Again, by asymptotic equivalence lemma and CLT, we have:
√
N (τ̂FRA − τ)

d−→ N
(
0, ω2

FRA

)
where ω2

FRA = V ar
(
Ẋi (β1 − β0) +WiUi(1)/ρ− (1−Wi)Ui(0)/(1− ρ)

)
Now consider the above expression inside the variance. The three terms are pairwise uncor-

related, the second and third becauseWi(1−Wi) = 0, and the first with the other two because,
for example,

E
[
(β1 − β0)

′ Ẋ′iWiUi(1)
]

= E(Wi) (β1 − β0)
′E
[
Ẋ′iUi(1)

]
= 0

because E
[
Ẋ′iUi(1)

]
= 0 by linear projection properties. It follows that

Avar
[√

N (τ̂FRA − τ)
]

= (β1 − β0)
′ΩX (β1 − β0) + (1/ρ2)E(Wi)E

[
U2
i (1)

]
+

(1/(1− ρ)2)E(1−Wi)E
[
U2
i (0)

]
= (β1 − β0)

′ΩX (β1 − β0) + σ2
1/ρ+ σ2

0/(1− ρ).

Proof. Asymptotic variance of I-RA
The derivation for τ ∗ follows closely that for τ̂ , with the important difference that Ẍi = Xi−X̄
is replaced with Ẋi = Xi−µX. This means that the terms

√
N(X̄−µX)β1 and

√
N(X̄−µX)β0

terms will not appear. Therefore,

Avar
[√

N (τ̂IRA − τ)
]

= σ2
1/ρ+ σ2

0/(1− ρ).

9.2 Proof of Theorem 5.2

Proof. CLAIM 1 : ω2
FRA ≤ ω2

SDM

For this consider consider the left hand side,

Avar
[√

N(τ̂SDM − τ)
]
− Avar

[√
N(τ̂FRA − τ)

]
= β′1ΩXβ1/ρ+ β′0ΩXβ0/(1− ρ)− (β1 − β0)

′ΩX (β1 − β0)

The last term in the above expression can be written as:

β′1ΩXβ1/ρ+ β′0ΩXβ0/(1− ρ)− [β′1ΩXβ1 + β′0ΩXβ0 − 2β′0ΩXβ1]

=

(
1− ρ
ρ

)
β′1ΩXβ1 +

(
ρ

1− ρ

)
β′0ΩXβ0 + 2β′0ΩXβ1

≡ δ′ΩXδ
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where

δ =

√(
1− ρ
ρ

)
β1 +

√(
ρ

1− ρ

)
β0.

Because ΩX is positive definite, this proves the claim. One case where there is no efficiency
gain is when ρ = 1/2 and β1 = −β0. The second condition seems unrealistic unless both
vectors are zero.

CLAIM 2 : ω2
FRA ≤ ω2

PRA

For this consider the left hand side of the expression above,

Avar
[√

N(τ̂PRA − τ)
]
− Avar

[√
N(τ̂FRA − τ)

]
=

[
(1− ρ)2

ρ
+

ρ2

(1− ρ)
− 1

]
(β1 − β0)

′ΩX (β1 − β0)

≥ 0

CLAIM 3 : ω2
IRA ≤ ω2

FRA

It is easy to see why this holds true since the L.H.S just equals

Avar
[√

N(τ̂FRA − τ)
]
− Avar

[√
N(τ̂IRA − τ)

]
= (β1 − β0)′ΩX (β1 − β0)

Because ΩX is psd and the above is just a quadratic form which will be greater than or equal
to zero.

Combing the results from CLAIM 1, 2 and 3 we have the result.
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10 Figures
10.1 Root mean squared error across different sample sizes

Figure 1: Quadratic Design, Continuous covariates (Mild Heterogeneity)

N=100 N=500

N=1000
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Figure 2: Quadratic Design, continuous covariates (Strong Heterogeneity)
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N=1000
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Figure 3: Quadratic Design, one binary covariates (Mild Heterogeneity)

N=100 N=500

N=1000

39



Figure 4: Quadratic Design, one binary covariate (Strong Heterogeneity)
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Figure 5: Probit Design, continuous covariates (Mild Heterogeneity)
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Figure 6: Probit Design, continuous covariates (Strong Heterogeneity)
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Figure 7: Probit Design, one binary covariate (Mild Heterogeneity)
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Figure 8: Probit Design, one binary covariate (Strong Heterogeneity)
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Figure 9: Binary outcome, Bernoulli QLL with Logistic mean
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Figure 10: Non-negative outcome, Poisson QLL with exponential mean
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11 Tables

45



Table 1: Bias and Standard deviation for N=100

DGP1

0.1 0.3 0.5 0.7 0.9

Estimator bias std bias std bias std bias std bias std

SDM 0.045 1.590 0.025 1.056 0.034 1.008 -0.035 1.194 0.070 2.023
PRA 0.047 1.312 -0.022 0.825 0.039 0.756 -0.031 0.929 0.039 1.566
FRA 0.017 1.697 -0.023 0.815 0.042 0.757 -0.022 0.922 -0.021 1.750
IRA 0.004 1.690 -0.014 0.810 0.026 0.746 -0.025 0.914 -0.022 1.786

DGP2

SDM 0.045 1.590 0.025 1.056 0.034 1.008 -0.035 1.194 0.070 2.023
PRA 0.047 1.312 -0.022 0.825 0.039 0.756 -0.031 0.929 0.039 1.566
FRA 0.017 1.697 -0.023 0.815 0.042 0.757 -0.022 0.922 -0.021 1.750
IRA 0.004 1.690 -0.014 0.810 0.026 0.746 -0.025 0.914 -0.022 1.786

DGP3

SDM -0.058 2.508 -0.085 1.350 0.041 1.141 -0.038 1.120 -0.039 1.391
PRA -0.045 2.083 -0.069 1.061 0.054 0.910 0.038 0.987 -0.094 1.602
FRA 0.051 1.988 -0.100 1.052 0.030 0.907 0.003 0.926 0.043 1.286
IRA 0.046 1.944 -0.085 1.003 0.019 0.850 0.014 0.864 0.072 1.221

DGP4

SDM 0.094 1.517 -0.040 0.891 0.005 0.751 0.014 0.747 -0.031 0.958
PRA 0.013 1.716 -0.047 0.932 0.007 0.752 0.004 0.845 -0.034 1.410
FRA 0.042 1.593 -0.050 0.860 0.002 0.752 0.015 0.739 0.058 0.931
IRA 0.022 1.561 -0.072 0.783 0.003 0.658 0.003 0.632 0.019 0.848

DGP5

SDM 0.002 0.134 0.002 0.088 -0.002 0.086 -0.002 0.100 0.003 0.170
PRA 0.003 0.109 -0.001 0.069 0.000 0.063 0.000 0.073 0.003 0.123
FRA 0.025 0.117 0.003 0.068 0.000 0.064 0.000 0.073 -0.001 0.144
IRA 0.026 0.117 0.005 0.067 0.001 0.063 0.002 0.073 -0.001 0.145

DGP6

SDM -0.002 0.169 0.000 0.108 0.000 0.096 0.001 0.107 0.003 0.168
PRA 0.000 0.249 0.001 0.124 0.003 0.099 0.004 0.119 0.007 0.239
FRA 0.028 0.206 0.009 0.108 0.004 0.097 0.004 0.104 0.004 0.164
IRA 0.030 0.195 0.013 0.084 0.008 0.074 0.008 0.081 0.004 0.151

DGP7

SDM 0.000 0.102 0.000 0.076 -0.003 0.082 -0.005 0.097 -0.008 0.167
PRA -0.001 0.105 0.002 0.065 0.001 0.066 -0.001 0.081 -0.005 0.140
FRA 0.019 0.093 0.005 0.063 0.000 0.066 -0.004 0.080 -0.004 0.150
IRA 0.020 0.091 0.005 0.061 0.001 0.063 -0.002 0.078 -0.003 0.150

DGP8

SDM 0.004 0.136 0.006 0.092 0.004 0.093 -0.003 0.103 -0.022 0.165
PRA -0.005 0.199 0.009 0.104 0.008 0.093 0.002 0.111 -0.015 0.213
FRA 0.020 0.134 0.011 0.091 0.007 0.091 0.002 0.098 0.010 0.163
IRA 0.022 0.125 0.011 0.075 0.010 0.072 0.006 0.082 0.013 0.152

a Here SDM refers to simple difference in means, PRA refers to pooled regression adjustment, IRA is the
infeasible regression adjustment estimator and FRA is the feasible regression adjustment estimator.
b Simulation across 1000 replications.
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Table 2: Bias and Standard deviation for N=500

DGP1

0.1 0.3 0.5 0.7 0.9

Estimator bias std bias std bias std bias std bias std

SDM 0.035 0.675 0.023 0.493 -0.029 0.453 -0.005 0.535 0.049 0.856
PRA 0.025 0.566 0.009 0.379 -0.019 0.353 0.007 0.396 0.029 0.648
FRA 0.023 0.511 0.008 0.374 -0.019 0.353 0.008 0.382 0.011 0.612
IRA 0.021 0.507 0.007 0.353 -0.019 0.332 0.009 0.372 0.013 0.606

DGP2

SDM 0.035 0.675 0.023 0.493 -0.029 0.453 -0.005 0.535 0.049 0.856
PRA 0.025 0.566 0.009 0.379 -0.019 0.353 0.007 0.396 0.029 0.648
FRA 0.023 0.511 0.008 0.374 -0.019 0.353 0.008 0.382 0.011 0.612
IRA 0.021 0.507 0.007 0.353 -0.019 0.332 0.009 0.372 0.013 0.606

DGP3

SDM 0.054 1.073 -0.003 0.642 -0.009 0.546 -0.013 0.486 0.001 0.621
PRA 0.031 0.878 0.002 0.490 0.003 0.415 0.010 0.428 0.025 0.707
FRA -0.014 0.755 -0.004 0.457 -0.003 0.414 0.000 0.400 0.007 0.544
IRA -0.011 0.729 0.003 0.429 -0.005 0.372 0.004 0.366 0.011 0.518

DGP4

SDM -0.034 0.652 0.012 0.391 -0.003 0.337 0.006 0.333 0.006 0.431
PRA -0.051 0.744 0.013 0.402 -0.004 0.336 -0.001 0.364 -0.001 0.624
FRA -0.007 0.599 0.012 0.375 -0.004 0.335 0.007 0.333 0.001 0.401
IRA -0.010 0.574 0.001 0.336 -0.005 0.287 0.000 0.273 0.000 0.365

DGP5

SDM 0.001 0.056 0.001 0.039 0.000 0.038 0.000 0.044 0.006 0.073
PRA 0.000 0.047 0.000 0.030 0.001 0.028 0.001 0.031 0.004 0.053
FRA 0.003 0.044 0.000 0.030 0.001 0.028 0.001 0.030 0.002 0.050
IRA 0.003 0.043 0.001 0.028 0.001 0.027 0.001 0.030 0.002 0.049

DGP6

SDM 0.000 0.072 0.001 0.048 -0.001 0.043 -0.001 0.050 0.006 0.077
PRA 0.001 0.101 0.001 0.055 -0.001 0.043 -0.001 0.055 0.008 0.106
FRA 0.006 0.062 0.003 0.046 0.000 0.043 0.001 0.048 0.005 0.063
IRA 0.006 0.055 0.004 0.035 0.000 0.031 0.001 0.035 0.004 0.054

DGP7

SDM -0.001 0.044 -0.001 0.035 0.000 0.036 0.001 0.042 0.001 0.072
PRA -0.001 0.044 0.000 0.030 0.001 0.028 0.001 0.034 0.002 0.059
FRA 0.003 0.038 0.000 0.029 0.001 0.028 0.001 0.033 0.001 0.055
IRA 0.004 0.037 0.001 0.028 0.001 0.027 0.000 0.032 0.001 0.054

DGP8

SDM -0.002 0.063 -0.002 0.042 0.001 0.039 0.001 0.044 0.002 0.071
PRA -0.002 0.087 -0.001 0.047 0.001 0.039 0.002 0.045 0.003 0.089
FRA 0.002 0.056 -0.001 0.041 0.001 0.038 0.002 0.041 0.005 0.061
IRA 0.004 0.050 0.000 0.032 0.002 0.030 0.001 0.034 0.005 0.055

a Here SDM refers to simple difference in means, PRA refers to pooled regression adjustment, IRA is the
infeasible regression adjustment estimator and FRA is the feasible regression adjustment estimator.
b Simulation across 1000 replications.
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Table 3: Bias and Standard deviation for N=1000

DGP1

0.1 0.3 0.5 0.7 0.9

Estimator bias std bias std bias std bias std bias std

SDM 0.016 0.467 -0.006 0.335 0.008 0.317 -0.009 0.373 0.018 0.599
PRA -0.002 0.401 -0.009 0.263 -0.001 0.243 -0.008 0.281 0.013 0.451
FRA -0.001 0.354 -0.010 0.252 -0.001 0.243 -0.009 0.274 0.011 0.425
IRA 0.000 0.347 -0.009 0.244 -0.001 0.233 -0.007 0.264 0.011 0.423

DGP2

SDM 0.016 0.467 -0.006 0.335 0.008 0.317 -0.009 0.373 0.018 0.599
PRA -0.002 0.401 -0.009 0.263 -0.001 0.243 -0.008 0.281 0.013 0.451
FRA -0.001 0.354 -0.010 0.252 -0.001 0.243 -0.009 0.274 0.011 0.425
IRA 0.000 0.347 -0.009 0.244 -0.001 0.233 -0.007 0.264 0.011 0.423

DGP3

SDM 0.019 0.753 0.001 0.468 0.010 0.363 -0.002 0.346 0.006 0.432
PRA 0.015 0.615 0.000 0.360 0.006 0.277 0.004 0.306 0.001 0.492
FRA -0.001 0.529 -0.006 0.337 0.003 0.277 0.000 0.284 0.001 0.369
IRA 0.001 0.519 -0.004 0.308 0.003 0.256 0.002 0.257 0.000 0.344

DGP4

SDM -0.007 0.486 -0.006 0.272 0.002 0.242 0.004 0.231 0.004 0.305
PRA -0.010 0.554 -0.006 0.281 0.002 0.240 0.003 0.247 0.007 0.442
FRA 0.002 0.432 -0.004 0.266 0.001 0.240 0.003 0.226 -0.003 0.275
IRA -0.002 0.413 -0.006 0.241 0.002 0.196 0.001 0.190 -0.004 0.241

DGP5

SDM 0.001 0.040 0.001 0.028 0.001 0.026 -0.001 0.032 0.001 0.051
PRA -0.001 0.033 0.000 0.022 0.000 0.020 0.000 0.022 0.001 0.036
FRA 0.001 0.031 0.001 0.021 0.000 0.020 -0.001 0.022 0.000 0.033
IRA 0.001 0.030 0.001 0.021 0.000 0.019 0.000 0.021 0.001 0.033

DGP6

SDM -0.001 0.049 0.001 0.033 0.000 0.032 -0.001 0.034 0.002 0.053
PRA -0.002 0.070 0.001 0.038 0.001 0.032 -0.001 0.037 0.002 0.073
FRA 0.003 0.041 0.001 0.032 0.001 0.032 0.000 0.033 0.001 0.044
IRA 0.003 0.036 0.001 0.025 0.001 0.024 0.000 0.025 0.002 0.037

DGP7

SDM 0.002 0.030 0.001 0.023 -0.001 0.026 -0.001 0.031 -0.001 0.048
PRA 0.000 0.031 0.000 0.020 -0.001 0.021 0.000 0.024 0.000 0.040
FRA 0.003 0.025 0.001 0.019 -0.001 0.021 0.000 0.023 -0.001 0.038
IRA 0.003 0.024 0.001 0.019 -0.001 0.020 0.000 0.022 -0.001 0.038

DGP8

SDM 0.001 0.042 0.000 0.030 0.000 0.029 -0.001 0.032 0.001 0.050
PRA 0.000 0.059 0.000 0.033 0.000 0.028 -0.001 0.034 0.000 0.062
FRA 0.004 0.036 0.001 0.028 0.000 0.028 -0.001 0.030 0.002 0.043
IRA 0.004 0.032 0.001 0.023 0.001 0.022 0.000 0.024 0.002 0.039

a Here SDM refers to simple difference in means, PRA refers to pooled regression adjustment, IRA is the
infeasible regression adjustment estimator and FRA is the feasible regression adjustment estimator.
b Simulation across 1000 replications.
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Table 4: Bias and Standard deviation for Binary outcome

N=500

0.1 0.3 0.5 0.7 0.9

Estimator bias std bias std bias std bias std bias std

SDM 0.014 0.062 0.002 0.041 -0.007 0.037 0.003 0.042 0.001 0.063
PRA 0.023 0.056 0.000 0.035 -0.002 0.031 0.003 0.035 0.015 0.054
FRA 0.018 0.051 0.000 0.034 -0.002 0.031 0.002 0.035 0.009 0.053
N-PRA 0.013 0.055 0.001 0.034 -0.001 0.030 0.004 0.034 0.014 0.055
N-RA 0.006 0.052 0.001 0.033 -0.002 0.030 0.004 0.033 0.007 0.051

N=1000

SDM -0.017 0.044 0.008 0.027 0.000 0.026 0.003 0.029 -0.016 0.043
PRA -0.021 0.038 0.010 0.023 0.000 0.022 0.009 0.024 -0.006 0.038
FRA -0.024 0.037 0.010 0.023 0.000 0.022 0.009 0.024 -0.010 0.036
N-PRA -0.019 0.038 0.010 0.022 -0.001 0.021 0.006 0.023 -0.003 0.038
N-RA -0.020 0.036 0.012 0.022 -0.001 0.021 0.006 0.022 -0.008 0.034

a Here SDM refers to simple difference in means, PRA refers to pooled regression adjustment, IRA is the
infeasible regression adjustment estimator and FRA is the feasible regression adjustment estimator, N-
PRA refers to pooled non-linear regression adjustment and N-RA refers to separate nonlinear regression
adjustment.
b Simulation across 1000 replications.
c. True ATE is 0.037, R2

0 = 0.491 and R2
1 = 0.457.

Table 5: Bias and Standard deviation for Non-negative outcome

N=500

0.1 0.3 0.5 0.7 0.9

Estimator bias std bias std bias std bias std bias std

SDM 0.010 0.137 -0.005 0.093 0.017 0.080 -0.027 0.101 -0.067 0.138
PRA -0.003 0.180 -0.024 0.103 0.015 0.078 -0.023 0.101 -0.074 0.166
FRA 0.024 0.132 -0.006 0.093 0.015 0.078 -0.013 0.093 -0.041 0.112
N-PRA 0.000 0.179 -0.022 0.101 0.015 0.078 -0.024 0.100 -0.078 0.168
N-RA 0.027 0.132 -0.006 0.092 0.011 0.077 -0.013 0.086 -0.039 0.107

N=1000

SDM -0.055 0.089 0.020 0.064 0.006 0.061 -0.014 0.066 -0.022 0.116
PRA -0.059 0.114 0.028 0.066 0.004 0.060 -0.023 0.068 -0.023 0.133
FRA -0.044 0.086 0.008 0.061 0.003 0.060 -0.002 0.061 -0.022 0.102
N-PRA -0.056 0.115 0.028 0.066 0.004 0.060 -0.024 0.068 -0.025 0.133
N-RA -0.040 0.084 0.006 0.060 0.006 0.059 -0.001 0.059 -0.013 0.089

a Here SDM refers to simple difference in means, PRA refers to pooled regression adjustment, IRA is the
infeasible regression adjustment estimator and FRA is the feasible regression adjustment estimator, N-PRA
refers to pooled non-linear regression adjustment and N-RA refers to separate nonlinear regression adjustment.
b Simulation across 1000 replications.
c. True ATE is 0.012, R2

0 = 0.435 and R2
1 = 0.233.
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