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Abstract

We develop estimation methodology for an additive nonparametric panel model that is suitable

for capturing the pricing of coupon-paying government bonds followed over many time periods. We

use our model to estimate the discount function and yield curve of nominally riskless government

bonds. The novelty of our approach is the combination of two different techniques: cross-sectional

nonparametric methods and kernel estimation for time varying dynamics in the time series context.

The resulting estimator is used for predicting individual bond prices given the full schedule of their

future payments. In addition, it is able to capture the yield curve shapes and dynamics commonly

observed in the fixed income markets. We establish the consistency, the rate of convergence, and

the asymptotic normality of the proposed estimator. A Monte Carlo exercise illustrates the good

performance of the method under different scenarios. We apply our methodology to the daily CRSP

bond market dataset, and compare ours with the popular Diebold and Li (2006) method.
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1 Introduction

The yield curve, or the term structure of interest rates, describes how interest rates vary with maturity.

The curve reveals the level of current interest rates, but it also carries critical information about the

expectations of market participants regarding future movements of interest rates. It is one of the main

factors driving financial and economic decisions, at both the private and public level. The yield curve is

instrumental in monetary policy decisions, because it serves as an indicator of the future interest rate level

formed by current market expectations. Furthermore, it can serve as a touchstone for financial market

participants to identify any abnormality in newly issued and traded bond prices. We refer to Piazzesi

(2005), Ang et al. (2006), Dai et al. (2007) and Björk (2004) for more detailed discussion. The statistical

analysis of the yield curve lies at the heart of empirical finance.

Estimation and inference about the yield curve poses several issues. The yield curve is not directly

observable in practice due to the lack of zero coupon bonds for time-to-maturities longer than one year; it

needs to be estimated from the prices of traded coupon paying bonds. There are two general approaches

to estimating the yield curve at a point in time: parametric and nonparametric. Nelson and Siegel (1987)

propose a parametric model for the forward curve that is nonlinear in one parameter; estimation is based

on nonlinear least squares for the implied discount function (the forward, yield, and discount functions

are in one to one relation, see (Anderson et al., 1996, pp 12-13) compared with observed coupon bond

prices. Svensson (1994) extends this model by adding an extra term. In the parametric case, standard

asymptotic theory can be used to derive the limiting distribution of the estimator and to justify confidence

intervals obtained from this. Following the seminal work of McCulloch (1971), an alternative approach

is to use nonparametric curve fitting methods. McCulloch (1971, 1975) uses regression splines for the

discount function, Chambers et al. (1984) use polynomials for the yield curve, Vasicek and Fong (1982)

use exponential splines for the discount function, and Fisher et al. (1995) use a general variable roughness

penalty approach (VRP). Tanggaard (1997) uses kernel smoothing, which was extended in Linton et al.

(2001). Both classes of methods are well represented in central bank toolkits: the nonparametric spline

approach is used for example by the Bank of England and the Federal Reserve Board, whereas the European

Central Bank (ECB) primarily uses Nelson-Siegel, see Bank for International Settlements (BIS) paper (BIS,

2005) and Nymand-Andersen et al. (2018). Diebold and Li (2006) and Härdle and Majer (2014) provide

good discussions of the shortcomings of existing approaches.

There is an almost separate literature that focuses on time series modelling of yield curves under

continuous time equilibrium models. The equilibrium approach derives the yield curve from the dynamic

evolution of the time series of instantaneous spot rates and perhaps other state variables under the

equilibrium condition. In the empirical literature usually a small dimensional vector of “pre-calculated”

yields are taken as given. The fact that these are estimated from data is not usually acknowledged. In

this literature, the spot rate modelling has been a focus of particular attention: Ait-Sahalia (1996) rejects

the usual parametric framework and advocates a semiparametric model. Recently, there has been some

work modelling the cross-sectional quantities of the yield curve evolving dynamically over time, utilizing

both cross-sectional and time series data; see e.g., Diebold and Li (2006), Kargin and Onatski (2008),
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Christensen et al. (2011), Hays et al. (2012), Härdle and Majer (2014) and reference therein.

We focus on the panel data framework that combines both cross-sectional and time series information.

In particular, we develop new econometric methodology to estimate time varying yield curves nonparamet-

rically from discrete time (daily) panel data on bond prices and cash flows; we also provide the means to

conduct inference about the yield curves. Our model incorporates the standard present discounted value

assumption from the cross section of bonds at a point in time (it is static arbitrage free), and allows the

discount function to change over time either deterministically or driven by a vector of observed covariates.

We suppose that the observed prices are subject to some measurement error. This could be associated

with market microstructure issues or with irrational behavioural errors; either way, this generates sampling

error in our estimation procedures. We compute our estimator from quoted prices and cash-flow informa-

tion of both zero-coupon and coupon bonds issued by a government at a series of discrete time points.

Our model is nonparametric so that the point in time discount curve is not restricted by functional form,

and the way the discount curve evolves over time or state is also not restricted, except that we require

the drivers to be observed. In some sense, the dynamic parametric models of Diebold and Li (2006) are a

special case of our approach.

Our main goal is to derive a robust inferential procedure for the curve: starting from traded assets

we estimate the yield curve time period-by-time period. We do not impose a particular functional form

nor do we explicitly impose the dynamic no-arbitrage condition in the time dimension (even if this were

possible in our general class it would require making a number of additional strong assumptions on the

state variable dynamics for example, which we do not feel are justified). Our purpose is different from

Ang and Piazzesi (2003) and Ang et al. (2006), whose aim is forecasting the yield curve inside the class of

affine models based on pre-calculated yields. They explicitly enforce the dynamic no-arbitrage restriction

inside their continuous time model. We do not make any such assumption about the continuous time

evolution of the curve. Of course, ignoring this aspect might entail efficiency loss when the restriction

is valid—e.g. when the underlying data generating process has a specific affine parametric form, when

the stochastic discount factor is an affine exponential martingale and the time-varying risk-premium has

an affine structure. Nevertheless, we emphasize that, from our stand point, the potential efficiency gain

obtained imposing the modelling restriction needed to satisfy the no-arbitrage condition must be weighed

against the possibility of inducing an estimation bias, due to model misspecification. Our model is very

general in terms of functional form of the yield curve and unlike the models considered in the above-

mentioned papers, our inferential procedure does not involve the affine structure. We flag that if the

no-arbitrage condition is approximately satisfied in the analyzed data set- some have argued that this

is likely the case for the U.S. Treasury bill market, as remarked by Diebold et al. (2006) (although the

treasury flash rally episode on the 15th of October in 2014 surely suggests some caution on this) - it will

also likely be approximately satisfied by our estimates, as our model is quite flexible and provides a good

fit to the data.1 It is an interesting topic for our future research how to impose the dynamic no arbitrage

restrictions on our model, Cheng and Tehranchi (2018) provide some work in this direction. Our approach

1For a discussion on this point, we refer to Diebold et al. (2005), page 417. See also the report on the treasury flash rally,

Treasury (2015).
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has an advantage in comparison with other methods in terms of residual analysis and model diagnostics;

we illustrate this aspect in Section 6.4.

We use kernel-based nonparametric methodology to estimate the unknown discount function, gener-

alizing Linton et al. (2001). We establish the properties of our procedure when both the cross-section

and time series dimension are large. In particular, we establish consistency, the rate of convergence, and

the asymptotic normality of our yield curve estimator. We also propose a statistical procedure to define

confidence intervals, deriving a consistent estimator for the asymptotic covariance of our estimator. In our

view, this is a key aspect of our estimation method: extant procedures have not clearly addressed how

to construct confidence intervals for proposed estimators of the discount/yield curve and its dynamics;

see, e.g. Diebold and Li (2006) and Yallup (2012). Indeed, in practice, our estimated yield curve can be

applied to evaluate the meaningful impact of implemented monetary policies on the economy and identify

any significant discrepancy between observed bond prices and the estimated prices so as to price new

issues or evaluate investors’ trading strategies. Market bond prices are indispensable for analyzing such

trading strategies. Given that the yield curve needs to be estimated, such purposes can be accomplished

in a fully informative way only when a theoretical device is available to quantify the uncertainty in the

estimates. Confidence intervals provide helpful tools to achieve this goal.

The development of this theory encounters several challenges. We use a panel dataset of daily prices

of bonds along with their nominal cashflows, and there seems to be no good reason to restrict the cross-

sectional or time series dependence of the error process. Bonds traded in the same market are likely to

experience common factors in their liquidity and hence pricing errors. Existing asymptotic results for

yield curve estimation are available either for the (independent observations) cross-sectional set-up only,

e.g. Linton et al. (2001) or for the time series set-up only, e.g. Koo and Linton (2012). We develop new

asymptotic techniques that allow a general correlation structure over the cross-sectional units and over

time in a unified framework.

The remainder of this paper is organized as follows. In Section 2 we introduce the model and the

related framework. Section 3 discusses our estimation procedure for the yield curve dynamics. Section 4

develops the large sample distribution theory. The Monte Carlo exercises reported in Section 5 provide

numerical evidence that our nonparametric estimation method ensures the degree of flexibility required

to match several time-changing shapes of the yield curve. Application results are reported in Section 6.

Section 7 concludes. The mathematical proofs are provided in the supplementary Appendix.

2 The Model

Most bond markets do not possess zero coupon bonds for useful spans of maturities. The discount function

must therefore be extracted from the prices of coupon bonds instead. Coupon bonds generate several

payments at future dates, and in an efficient bond market, the present value of these future payments

should, apart from a small error, be equal to the trading price. We observe a panel of Government bonds,

in particular their prices pit and their promised cashflows for i = 1, . . . , nt and t = 1, . . . , T . We consider
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the following discrete time semiparametric model for the bond prices:

pit =

mit∑
j=1

cit(τij)d(τij, Xt) + εit, (1)

where cit(τij) are the cash flows at future payment dates (known at time t) attributable by holding the

bond i to maturity, where payment dates are {τij}mitj=1 with τi1 < · · · < τimit for each bond i. We treat

the cash flows as nonstochastic; each bond may have a different expiry date and different cashflows. We

suppose that Xt ∈ RL, with L � n(= mint nt), are some (possibly stochastic) covariates or factors that

are observable at time t and are known to drive the evolution of the yield curve over time, while εit is

a conditional (on Xt) mean zero pricing error associated with the bond i at time t.2 The function d is

unknown but is assumed to be a smooth function of its arguments, it is the object of interest. For each

value of x, d(τ, x) is the discount function corresponding to maturity τ when the covariate equals x (this

allows counterfactual analysis or extrapolation to different x). For the realized value Xt, the function

d(·, Xt) in (1) is the discount function dt(·) pertaining at time t that reflects the idealized arbitrage free

world where cash flows are known and bond prices are the present discounted value of future payments,

i.e., pit =
∑mit

j=1 cit(τij)dt(τij). In this idealized world (under some restrictions on d such as monotonicity)

there are no ”static arbitrage opportunities” that are available for trading bonds at time t, since all bonds

are perfectly priced reflecting their coming cash flows. Unless there are further restrictions on d, there

may be dynamic arbitrage opportunities available for trading bonds over time (in the absence of ε). We

will discuss this issue further below.

The factors Xt could include deterministic time and stochastic determinants of the yield curve dynamics

such as the short rate or macroeconomic variables. The special case where Xt ≡ t/T ∈ [0, 1] implies that d

is deterministic and the yield curve changes slowly over time in an orderly fashion. While this special case

provides useful (and effective) statistical descriptions of the yield curve dynamics in the high frequency case,

some other factors such as macroeconomic variables give some insights into the nature of the underlying

economic forces that drive the movements of yield curves over the longer horizon. This type of modelling

is common in financial econometrics. For instance, Engle and Rangel (2008) incorporate macroeconomic

factors to explain the underlying long run trend in a multiplicative volatility model, while Koo and Linton

(2015) consider a deterministic time component for the long run trend. We allow for both deterministic

and stochastic Xt.

We suppose that the pricing error εit is mean zero, stationary, and affects price in an additive fashion.

The error term is needed to reconcile the different observed bond prices corresponding to identical cash

flows. This type of model for microstructure noise is common in equity modelling using high frequency data,

see Foucault et al. (2013). The noise represents microstructure features such as price discreteness, bid-ask

bounce, and liquidity issues in the trading process. The pricing error can also reflect short term irrational

behavioural pricing errors, Lamont and Thaler (2003); we do not distinguish or need to distinguish between

these two sources of pricing errors. We emphasize that we adjoin the errors to the price process rather

2Note however that d is not the regression function of prices on maturities and state variables. The model is a type of

weighted additive regression model with varying number of components.
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than to yields as has been assumed in some studies. We allow the error process to be heterogeneous and

correlated across bonds and over time in a general fashion. We may suppose that the pricing error is quite

small so that the no-arbitrage condition is not violated after transactions costs and market impact costs

are taken into account, although this is not necessary for the statistical theory.

Finally, we remark that our dataset is an unbalanced panel since we observe a variety of bonds over

time but for a given day t, the number of bonds in the cross-section varies. Moreover, various bonds for

different payment structure and maturities are issued or expire on the different date. Nevertheless, as will

be shown later, our estimation method will accommodate this general data structure.

2.1 Connection with Diebold and Li (2006)

Recall that the discount function, yield curve, and forward curve satisfy the relations: d(τ, x) = exp(−τy(τ, x))

and f(τ, x) = −d′(τ, x)/d(τ, x), where d′(τ, x) = ∂d(τ, x)/∂τ, so that one can obtain from one of these

curves any of the others, in particular, given d(τ, x) we obtain y(τ, x) = −(log d(τ, x))/τ. In our case since

d is unrestricted in its functional form, so is y, and the yield curve can be upward sloping or downward

sloping for different values of x.

Nelson and Siegel (1987) specify a parametric model for the static forward curve. Let

fθ(τ) = β0 +

(
β1 + β2

(
τ

τ0

))
exp

(
− τ
τ0

)
,

where θ = (β0, β1, β2, τ0)
ᵀ

are unknown parameters. This implies that the static discount function and

yield curve are:

dθ(τ) = exp
(
−τ
(
β0 + (β1 + β2) (1− exp(−τ/τ0))×

τ0
τ
− β2 exp(−τ/τ0)

))
(2)

yθ(τ) =
2∑
j=0

βjϕj(τ ; τ0),

where ϕ0(τ ; τ0) = 1, ϕ1(τ ; τ0) = (1− exp(−τ/τ0)) (τ0/τ), and ϕ2(τ ; τ0) = (1− exp(−τ/τ0)) (τ0/τ) −
exp(−τ/τ0). This functional form is quite general and allows a combination of shapes for the long end and

the short end of the yield curve. Exploiting the linearity of the static yield curve yθ(τ) in β = (β0, β1, β2)
ᵀ
,

Diebold and Li (2006) allow the unknown parameters/latent factors βt to evolve in a dynamic fashion

according to a VAR process, thereby generating a dynamic yield curve model in discrete time. They

develop estimation methodology to uncover the parameters of these processes. First, based on seventeen

yields (these were estimated by the Fama-Bliss method using a larger sample of bonds) at time t, they

estimate the parameters βt (they peg τ0 at some plausible value) by least squares. Second, they fit a time

series model to these βt. We argue that their model is a special case of our model if we allow Xt to be the

unobserved dynamic parameters βt. In the case where Xt are observed covariates, then we may consider

the following alternative but related model for y (or equivalently d)

y(τ,Xt) =
L∑
j=1

βj(Xjt)ϕj(τ), (3)
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where βj(.), ϕj(.) are smooth but unknown functions. This corresponds to a special case of the d function

in (1) and is closely related to the Diebold and Li (2006) specification if further ϕj(τ) = ϕj(τ ; τ0) and

βj(Xjt) = Xjt, see Huse (2011) and Härdle and Majer (2014). Incidentally, the general nonparametric

version of (3) is related to Breiman’s PIMPLE, Breiman (1991).

We do not impose the particular structure (3) and allow the function d in (1) to be unrestricted in its

second argument. We allow for arbitrary non-separability between maturity effects and calendar time or

the covariates driving evolution. The general model can be used as a starting point for testing or further

specification especially in the case where L is large where models like (3) would be attractive.

The parameters βt in Diebold and Li (2006) are interpreted as ”level, slope, and curvature” aspects of

the yield curve. These aspects are usually measured by time series averages of yields or differenced yields,

Diebold and Li (2006, Table 1). In our framework we may define these quantities as functionals of y(τ, x)

in a model-free fashion. In particular, the average yield curve can be defined as l(x) =
∫
y(τ, x)w(τ, x)dτ,

where w is a weighting function. Likewise, we define the slope as the average slope of the yield curve for

a given covariate value x or averaged over the covariate, and likewise the curvature:

s(x) =

∫
∂y(τ, x)

∂τ
w(τ, x)dτ, s =

∫
∂y(τ, x)

∂τ
w(τ, x)dτdx. (4)

c(x) =

∫
∂2y(τ, x)

∂τ 2
w(τ, x)dτ, c =

∫
∂2y(τ, x)

∂τ 2
w(τ, x)dτdx. (5)

2.2 Dynamic Arbitrage Restrictions

Gouriéroux et al. (2002) consider a discrete time model of the term structure. They show how to impose the

absence of dynamic arbitrage on their model. They assume the compound autoregressive process (affine

Markov conditional characteristic function) for the observed state variables, which include both endogenous

state variables such as the short rate and exogenous state variables such as macroeconomic variables. As

they remark, in the discrete time framework the stochastic discount factor is not unique. They assume that

the stochastic discount factor (Mt,t+1, say) is log linear in the current and past state variables, so that after

imposing the economic restrictions on it, they obtain Mt,t+1 = exp(γ0 + γᵀ1Xt + γᵀ2Xt+1) for parameters γj.

In this case, in our notation, dt(τ) = exp(aᵀτXt+bτ ), where aτ and bτ satisfy nonlinear first order difference

equations that are determined by the parameter functions in the conditional characteristic function of the

state variables and the parameters of the stochastic discount function. In their framework, both time and

maturity occupy the same time grid and so their d function is defined only on integers apparently, but

one can interpolate to dt(τ) = exp(a(τ)ᵀXt + b(τ)) for continuous functions a(τ), b(τ), which is a special

case of our model (3). Duffie and Kan (1996) work in a continuous time continuous maturity framework;

they show that the absence of arbitrage implies that a(·) and b(·) must obey certain differential equations.

Diebold and Rudebusch (2013, Ch.3) show how to adjust the Diebold and Li (2006) model to satisfy the

dynamic arbitrage restrictions. We could impose the Duffie and Kan (1996) restrictions on the functions

a(·) and b(·) in the special case of our model dt(τ) = exp(a(τ)ᵀXt + b(τ)), but this is a major undertaking

computationally and merits a new paper.
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In our general framework it is not clear how to impose the absence of dynamic arbitrage restrictions.

Cheng and Tehranchi (2018) show how to impose these restrictions in a class of polynomial models, but

it remains an open question whether this can be extended to a “nonparametric class of functions”. In any

case, we have not assumed a particular form for the stochastic discount function, we have not assumed

that the yield curve is affine, and we have not even so far assumed that the state variables are Markov, let

alone having an affine log conditional characteristic function. We have not yet embedded our discrete time

model into a continuous time process that assumes continuous costless trading is possible. All of these

assumptions are questionable, and there is empirical evidence against them.

3 Estimation

We introduce our estimation methodology based on kernel smoothing or localized least squares. The

advantage of this method is that it requires only low dimensional optimization and its theoretical properties

are well understood allowing us to propose inference methods that are valid under quite general conditions.

We could apply the method in Linton et al. (2001) to each cross-section to extract a yield curve or discount

function dt(τ) for each time t, and then estimate the relationship between dt(τ) and the covariates Xt using

the time series information. Instead, we propose to use both cross-section and time series information

simultaneously in our joint smoothing method. There are reasons to think that this is more efficient

than doing first cross-section estimation and then time series estimation when the structure is correct, see

Andreasen et al. (2017). Kernel methods are discussed in Härdle and Linton (1994) and Li and Racine

(2007).

3.1 Local constant smoothing

The model (1) is a kind of structural nonparametric regression model with a varying number of additive

components that are identical apart from known scaling factors due to the cash flows. We employ a

nonparametric kernel estimation method that generalizes Linton et al. (2001). The idea is to start with

a smoothed objective function and then to derive feasible estimating equations from that. Mammen

et al. (1999) introduced this class of methods for the estimation of additive nonparametric models and

argued why it has superior theoretical performance to methods that start from approximating first order

conditions. Define the following smoothed sample least squares objective function for any smooth function

d(.). For si· in the neighbourhood of τi·,

QnT (d) =
T∑
t=1

nt∑
i=1

∫ {
pit −

mit∑
j=1

cit(τij)d(sij, x)

}2 mit∏
k=1

{Kh(sik − τik)dsik}Kh(x−Xt)dx, (6)

where Kh(s) =
∏L

i=1Khi(si) with a bandwidth parameter hi and Khi(·) = K(·/hi). In (6), integrating

over si· in the neighbourhood of τi· is a necessary estimation step. See page 193 in Linton et al. (2001)

for a related discussion. For the sake of notational simplicity, we henceforth set h1 = ... = hi = h. The
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estimator of the discount function is the minimizer of QnT (·) such that

d̂(.) = arg min
d(·)∈D

QnT (d) (7)

where D is the class of all functions for which Q(·) is well defined. The objective function QnT (d) can

be thought of as expectation, with respect to the kernel density estimate of the “density” of τ,X, of the

conditional least squares error brought about by a candidate function d.

We next obtain the first order condition that defines d̂(.). Let δ(τ,x)(·, ·) be the (L + 1)-dimensional

Dirac delta function at (τ, x) such that
∫
r∈RL

∫
y∈R+ δ(τ,x)(y, r)g(y, r)dydr = g(τ, x) for any generic function

g(·, ·) continuous at the point (τ, x). Note that by definition, δ(τ,x)(·, ·) = δ(τ)(·)
∏L

j=1 δ(xj)(·), where

x = (x1, . . . , xL). Let d(·, ·) = d̂(·, ·) + ηδ(τ,x)(·, ·), and differentiate QnT (d) with respect to η at the

point of η = 0. The first order condition for (6) yields d̂(τ, x) which is obtained by

T∑
t=1

nt∑
i=1

mit∑
j=1

cit(τij)
2Kh(τ − τij)Kh(x−Xt)d̂(τ, x)−

T∑
t=1

nt∑
i=1

mit∑
j=1

pitcit(τij)Kh(τ − τij)Kh(x−Xt)

= −
T∑
t=1

nt∑
i=1

mit∑
j=1

mit∑
p=1

p6=j

cit(τij)cit(τip)Kh(τ − τij)Kh(x−Xt)

∫
d̂(τ ′, x)Kh(τ

′ − τip)dτ ′. (8)

Therefore, the first order condition (8) can be further simplified as the following integral equation,

d̂(τ, x) = d̄(τ, x) +

∫
Ĥ(τ, τ ′, x)d̂(τ ′, x)dτ ′, (9)

where:

d̄(τ, x) =

∑T
t=1

∑nt
i=1

∑mit
j=1 pitcit(τij)Kh(τ − τij)Kh(x−Xt)∑T

t=1

∑nt
i=1

∑mit
j=1 cit(τij)

2Kh(τ − τij)Kh(x−Xt)
, (10)

Ĥ(τ, τ ′, x) = −
∑T

t=1

∑nt
i=1

∑mit
j=1

∑mit
p=1,p 6=j cit(τij)cit(τip)Kh(τ − τij)Kh(τ

′ − τip)Kh(x−Xt)∑T
t=1

∑nt
i=1

∑mit
j=1 cit(τij)

2Kh(τ − τij)Kh(x−Xt)
. (11)

Details regarding the derivation of (8) and (9) are provided as Lemma 2 in the Appendix. It is important

to note that d̄(τ, x) is a linear function of the observed prices.

In the special case where all bonds are zero-coupon bonds, this equation simplifies considerably and

one has a closed-form solution for d̂(τ, x). In general, however, (9) involves the unknown function d̂(·, x)

in the left hand side and inside of the integral, which prevents exact solution and renders computation

tricky. This is also known as a Fredholm integral equation of the second kind. See Riesz and Nagy (1990)

for more details. One way of solving this type of integral equation is the backfitting approach or successive

approximation, see Mammen et al. (1999). We define our estimator for the general case as follows. For

a = 0, 1, . . . let

d̂[a+1](τ, x) = d̄(τ, x) +

∫
Ĥ(τ, τ ′, x)d̂[a](τ ′, x)dτ ′, (12)
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where the starting value d̂[0](·) is equal to d̄(·). We iterate this until it converges. Each step of the update

involves simple linear operations. Some conditions that ensure convergence are given in Section 4 and

Appendix.

Following Mammen et al. (1999), we also interpret the estimator obtained by (9) as a projection of

the data in a suitable functional space. From (12), to ensure convergence of the successive approximation

method, the key set of regularity conditions is concerned with the operator Ĥ defined, for every g ∈ L2, as

Ĥg(τ, x) =

∫
Ĥ(τ, τ ′, x)g(τ ′, x)dτ ′. (13)

We introduce the operator sup-norm of Ĥg(·) such that

‖Ĥ‖ = sup
‖g‖=1

∥∥∥Ĥg∥∥∥ .
In Lemma 1 (in the Appendix), we show that an application of the Neumann series yields:

d̂ = (1− Ĥ)−1d̄, (14)

which is well-defined if (1− Ĥ) is invertible, namely provided that ‖Ĥ‖ < 1.

Once the estimate of the discount curve is available, we can easily estimate other related quantities,

exploiting the one-to-one mapping between the discount function d(τ, x), the yield curve y(τ, x) and the

forward rate f(τ, x), where τ and x denote time-to-maturity and time. Thus, from the relationship

mentioned in Section 2.1, estimates of the yield curve and of the forward curve are defined as

ŷ(τ, x) = − ln(d̂(τ, x))/τ (15)

f̂(τ, x) = −
∫
K ′h(t− s)d̂(s, x)ds∫
Kh(t− s)d̂(s, x)ds

. (16)

The level, slope, and curvature functionals can also be defined based on this in the same way as in section

2.1.

3.2 Shape Restrictions

We can incorporate restrictions on the shape of the discount curve. For example, it is natural to assume

that the discount function be monotonically decreasing in the maturity. To impose this restriction we

define our estimator as the minimizer of QnT (d) in (6), where the minimization runs now over a suitably

constrained class of functions. Let us denote by d̂constr the estimate resulting from the solution to (6).

This solution has an interpretation in terms of Hilbert spaces theory: it represents the projection of d̂ in

(14) onto the constrained class with respect to the norm

‖g‖2 =
T∑
t=1

nt∑
i=1

∫
sik

∫
x

{
mit∑
j=1

cit(τij)gi(sij, x)

}2 mit∏
k=1

{Kh(sik − τik)dsik}Kh(x−Xt)dx

10



for the n-tuples of functions g = (g1, g2, . . . , gn). Namely, we have:

d̂constr = arg min
d(·)
‖d− d̂‖2

= arg min
d(·)

T∑
t=1

nt∑
i=1

∫
sik

∫
x

{
mit∑
j=1

cit(τij)
(
d(sij, x)− d̂(sij, x)

)}2

×
mit∏
k=1

{Kh(sik − τik)dsik}Kh(x−Xt)dx,

where the minimization runs over the constrained class of functions d.

3.3 Local constant exponential smoothing

Many empirical studies try to directly model the relationships between bond yields and macro variables;

see e.g. Ang and Piazzesi (2003) and Ang et al. (2006) for applications in the case of affine term structure

models. Rather than using local constant smoothing and then defining a yield curve estimates as in (15),

here we propose to fit directly local exponential functions, which directly estimates the yield curve.

To this end, we define the estimator of the yield curve, by the minimization, with respect to y(·), of

the following objective function:

QnT (y) =
T∑
t=1

nt∑
i=1

∫ {
pit −

mit∑
j=1

cit(τij) exp{−sijy(sij, x)}

}2

×
mit∏
k=1

{Kh(sik − τik)dsik}Kh(x−Xt)dx. (17)

Theoretically this is hard to analyse, as the first order condition is a nonlinear integral equation.

3.3.1 Imposing Affine Yield Curve

A special case of our model is consistent with the affine structure. We may further assume the affine

structure y(τ, x) = a(τ)+ b(τ)x for some unknown functions a(·), b(·), see Gouriéroux et al. (2002). In this

case, we do not need to smooth against Xt, that is, we minimize the smoothed objective function

QnT (a, b) =
T∑
t=1

nt∑
i=1

∫
sik

{
pit −

mit∑
j=1

cit(τij) exp{−sij(a(sij) + b(sij)Xt)}

}2 mit∏
k=1

Kh(sik − τik)dsik

with respect to a(·), b(·), similar to Gouriéroux et al. (2002). An alternative and simpler way of im-

posing affinity is to proceed in two steps, i.e., find the closest affine yield curve to our unrestricted

nonparametric yield curve (15) based on some simple objective function. For example, we may use∫
(ŷ(τ, x)− a(τ)− b(τ)x)2 dw(τ, x), where w is a weighting function. One could use the minimized objec-

tive function to deliver a statistical test of affinity.

11



3.4 Forecasting Future Bond Prices and Yields

We next discuss forecasting of future yield curves within our model framework. There are several ap-

proaches here depending on the choice of covariates, which itself is partly determined by the sampling

frequency of the data, and the treatment of the error term. We first consider the case where the error

term is considered unforecastable given the past state and prices.

We first consider the case where Xt = t/T, in which case the yield curve evolves deterministically,

although the form of d in this case is unknown to the econometrician. We have by Taylor expansion

d

(
τ,
T + k

T

)
= d (τ, 1) + d2 (τ, 1)

k

T
+

1

2
d22 (τ, 1)

k2

T 2
+ o(k2T−2),

where d2 (τ, x) = ∂d (τ, x) /∂x and d22 (τ, x) = ∂2d (τ, x) /∂x2. This suggests that we can forecast the

discount function (and hence the yield curve) at period T + k by d (τ, 1), by d (τ, 1) + d2 (τ, 1) k
T
, or even

by d (τ, 1) + d2 (τ, 1) k
T

+ 1
2
d22 (τ, 1) k2

T 2 , depending on the horizon k and the accuracy required, Robinson

(2012). This amounts to: constant, linear, or quadratic interpolation of the curve. In practice one has to

replace d (τ, 1) , d2 (τ, 1) , and d22 by estimates. The special case as in (3) corresponds to

y(τ, t/T ) =
L∑
j=1

βjtϕj(τ), (18)

where the quantities βjt = βj(t/T ) are deterministic and change slowly over time, in particular, βjt =

βj,t−1 + δjt, where δjt is a small deterministic update factor or “error term”. This should be compared

with the Diebold and Li (2006) model in which βt has an autoregressive form with stochastic error term.

This kind of “local trend model” in (18) is an alternative to dynamic specification, see Starica (2003) and

Vogt and Linton (2014). Engle and Rangel (2008), Hafner and Linton (2010) and Koo and Linton (2015)

combine the slowly varying nonparametric trend with a short run dynamic model.

A second way of forecasting uses predictive regression, whereby the stochastic Xt that enter d, and

hence y, are taken to be lagged values. This changes the interpretation of the discount function somewhat,

but is otherwise an approach that is widely used.

A third approach is to specify a dynamic model for the covariates or rather restrict the dynamics

somewhat. Specifically, suppose that Xt follows a first order Markov process with time invariant transition

density π(x, x′) (it is common practice to assume a VAR for Xt). We can forecast the future coupon bond

price pi,T+1 given the data set {pit, Xt, i = 1, . . . , nt, t = 1, . . . , T} as follows. First, estimate d(τ, x) by

our method. Second, estimate g(τ, x) =
∫
d(τ, x′)π(x′, x)dx′ by smoothing the estimated discount function

against lagged values of Xt, i.e., let

ĝ(τ, x) =

∑T−1
t=1

∑nt
i=1Kh(τ − τi)Kh(x−Xt)d̂(τi, Xt+1)∑T−1

t=1

∑nt
i=1Kh(τ − τi)Kh(x−Xt)

.

Then define the forecast of pi,T+1

p̂i,T+1|T =

mi,T+1∑
j=1

cij,T+1ĝ(τij, XT ), (19)

12



where we use the known payment scheme for bond i prevailing at time T + 1. Because the model is linear

in the discount function, this gives an approximately unbiased forecast of future prices. Likewise we could

forecast future yields by smoothing our estimated y(τ,Xt+1) against lagged X. A prediction interval for

d(τ,Xt+1) or y(τ,Xt+1) can be obtained by estimating the corresponding conditional c.d.f. given Xt under

the Markov assumption.

If one is willing to impose further restrictions such as linear covariate effect in the yield curve, then

one can obtain much simpler forecasts. Suppose that

y(τ,Xt) =
L∑
j=1

Xjtϕj(τ),

where ϕj(τ) are smooth but unknown functions of maturity only, which corresponds to the affine class.

Further suppose that for some L× L matrix A, Xt = AXt−1 + ηt, as in Diebold and Li (2006). This is a

special case of our model. We may identify ϕj(τ) nonparametrically by ϕj(τ) = ∂y(τ, x)/∂xj, j = 1, . . . , L.

Then we would forecast y(τ,XT+k) by

ŷ(τ,XT ) =
L∑
j=1

(
ejA

kXT

)
ϕj(τ), (20)

where ej is the jth unit vector. In practice we have to replace A and ϕj(τ) by estimates. In this case, the

persistence in the yield curves is driven by the persistence in the observed factors.

Finally, we have so far supposed that there is no information about future prices in the current and

past values of the error terms. In fact, pricing errors are serially correlated and it is possible in principle

to use this information to better predict future bond prices. Suppose that εit = ρiεi,t−1 + ηit, where ηit

is i.i.d. with mean zero. Then we may add to (19) a term such as ρ̂iε̂iT , where hats indicate estimated

quantities.

4 Large Sample Properties

In this section, we provide the Central Limit Theorem for the local constant estimator of the discount

function. As described in the previous section, our approach involves nonparametric estimation over two

dimensions, i.e., time-to-maturity and covariate, e.g., time. This pooling of information allows for more

precise estimation of the common structure.

Our estimator is the solution of a linear integral equation (12), and successive approximation such as

the backfitting projection algorithm is required for solution. Therefore, we require regularity conditions

for the solution to (12) to converge, which we will discuss in detail in this section. We impose high level

assumptions on the error structure {εit}, the operator Ĥ and its norm ‖Hk‖ for k ≥ 1. In the following, c

is a generic constant, which may be different at different places.

4.1 Asymptotic distribution

Assumption A
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(A1) Model (1) holds. Furthermore, the discount function d is twice boundedly continuously differentiable

in τij (time-to-maturity) and in each component of the L-dimensional Xt (factors). Each factor

Xit, for i = 1, . . . , L, is stationary and has finite second moment.

(A2) For each time point t, the error variables {εit}nti=1 represent bond specific errors. They are het-

eroskedastic and possibly cross-sectionally correlated in a sense that their variance changes propor-

tionally with time to maturity and common sources for pricing errors are accommodated. Further-

more, for a given bond type i, there exists time dependence, which exponentially decays. In particular,

the error variables {εit}nti=1 have the following structure: for i = 1, . . . , nt and t = 1, . . . , T ,

εit =
T∑
s=1

nt∑
j=1

Wijtsεjs (21)

where {εjs}j=1,...,nt;s=1,...,T are independent of {Xt}, independent and identically distributed random

variables, with mean zero and E|εjs|2+ζ <∞ for any arbitrary positive value ζ. Each Wijts remains

general and unspecified: it captures the cross-sectional correlation between the bond types i and j

and their temporal dependence at time point t and s.

(A3) Let the operator Ĥ be as in (13). There exists a constant c and ρ < 1 such that, for k ≥ 1 and n

large enough, ‖Ĥ‖p < c and ‖Ĥk‖p < ρ when p = 2.

(A4) The following conditions hold:

max
1≤k≤nt;1≤s≤T

∫ (∫
Ĥ(τ, τ ′, x)Rk,s(τ

′, x)dτ ′
)2

dτ = op
(
h−(L+1)

)
(22)∫

Ĥ2(τ, τ ′, x)dτ ′ ≤ c (23)

where Xt ∈ RL and

Rk,s(τ, x) =

∑T
t=1

∑nt
i=1Wikts

∑mit
j=1 cit(τij)Kh(τ − τij)Kh(x−Xt)

(nT )−1
∑T

t=1

∑nt
i=1

∑mit
j=1 cit(τij)

2Kh(τ − τij)Kh(x−Xt)
.

For all t, τ ∈ χ and x ∈ RL,

nt∑
k=1

∫ ∣∣∣∣ ∂∂τ Ĥ(τ, τ ′, x)Rk,s(τ
′, x)dτ ′

∣∣∣∣ ≤ C, (24)

T∑
s=1

∫ ∥∥∥∥ ∂∂xĤ(τ, τ ′, x)Rk,s(τ
′, x)dτ ′

∥∥∥∥ ≤ C, (25)

where C <∞.

(A5) The quantity

ωit(τ, x) =

∑mit
j=1 cit(τij)Kh(τ − τij)Kh(x−Xt)∑T

t=1

∑nt
i=1

∑mit
j=1 cit(τij)

2Kh(τ − τij)Kh(x−Xt)
, (26)

is uniformly bounded in (τ, x) ∈ RL+1.
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Let us comment briefly on these assumptions. Assumption (A1) is concerned with the model and the

main object of interest in our estimation. It also ensures that the discount function is smooth enough for

us to employ a nonparametric kernel estimation method. We maintain here that the factor is stationary

but the theory can easily be extended to allow the more general local stationarity property, Vogt and

Linton (2014).

Assumption (A2) involves the error structure. The error in our model involves two indexes: one for the

bond type and one for time. Note that the error structure implicitly assumes the double array, i = 1, . . . , nt

and t = 1, . . . , T . Although (22), (24), and (25) in (A4) are affected by the structure of Wijts via R·,·(·, ·),
the exact form of Wijts is not required for the derivation of the asymptotic theory. However, for the

development of inference tools it is helpful to impose additional structure, as shall do in Section 4.2. The

estimator d̂(τ, x) in (7) is well-defined under Assumption (A3) that is satisfied in practice since (A3) holds

when the principal of a bond is considerably larger than its coupon.

Assumption (A4) regulates both cross-sectional correlation and temporal dependence. Although Wijts

in (21) remains unspecified, (A4) implicitly restricts the quantity governing the error structure in (1).

(A4) is satisfied under quite general setup, e.g. when cross-sectional dependence and temporal dependence

decay with an exponential rate as the distance between i and j, (|i − j|) and t and s, (|t − s|) get larger

respectively. This assumption is typical in spatial and temporal processes as we discuss in Section 4.2.

When (A4) is violated, the central limit theorem for Theorem 1 is no longer guaranteed.

In what follows, for the sake of simplicity, we treat Wijts as a deterministic function of the relative

distance between the ordered bonds at different time points. Assumptions (A4) and (A5) are needed to

prove the consistency and asymptotic normality of the proposed estimator, with (A5) guaranteeing the

existence of the estimator variance.

Additionally, for the validity of our kernel estimation and its asymptotics, we assume:

Assumption B

(B1) The kernel K(·) is a bounded symmetric around zero function such that: (i) it is continuously

differentiable up to order r on R with 2 ≤ r; (ii) it belongs to L2,

∫
|K(u)|du <∞,

∫
K(u)du = 1,

and the support of K is contained in [−1, 1]; (iii) µi(K) =

∫
uiK(u)du = 0, i = 1, . . . , r − 1, and:∫

urK(u)du 6= 0,

∫
|u|r|K(u)|du <∞, lim

||u||→∞
||u||K (u) = 0; (iv) K(·) is Lipschitz continuous, i.e.

|K(u)−K(u′)| ≤ C‖u− u′‖ for all u, u′ ∈ R.

(B2) Let h be the bandwidth and n = mint nt. ; (i) T = O(n) ; (ii) as T → ∞, h → 0, Th → ∞ and

nThL+1 →∞.

Define the following quantities:

B∗
d̂
(τ, x) = B̃∗

d̂
(τ, x) +

˜̃B
∗

d̂(τ, x),

B̃∗
d̂
(τ, x) =

∑T
t=1

∑nt
i=1

∑mit
j=1 c

2
it(τij)[d(τij, Xt)− d(τ, x)]Kh(τ − τij)Kh(x−Xt)∑T

t=1

∑nt
i=1

∑mit
j=1 c

2
it(τij)Kh(τ − τij)Kh(x−Xt)

,
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˜̃B
∗
d̂(τ, x) =

∑T
t=1

∑nt
i=1

∑mit
j=1

∑mit
p=1,p 6=j cit(τij)cit(τip)Kh(τ − τij)Kh(x−Xt)

∫
Kh(τ ′ − τip) [d(τip, x)− d(τ ′, x)] dτ ′∑T

t=1

∑nt
i=1

∑mit
j=1 c

2
it(τij)Kh(τ − τij)Kh(x−Xt)

,

Vd̂(τ, x) = (nThL+1)var

[
T∑
t=1

nt∑
i=1

ωit(τ, x)εit

]
, (27)

where ωit(τ, x) is given in (26).

Theorem 1. Suppose that assumptions (A1)-(A4) and (B1)-(B2) hold. Then,

√
nThL+1Vd̂(τ, x)−1/2

(
d̂(τ, x)− d(τ, x)−B∗

d̂
(τ, x)

)
d→ N (0, 1). (28)

Following (15) and (16), the asymptotic properties of the related estimators (ŷ(τ, x) for the yield curve

dynamics and f̂(τ, x) for the forward curve dynamics) can be obtained by applying the delta-method to

the results in Theorem 1. For instance, regarding the estimator for the yield curve dynamics, ŷ(τ, x), the

following asymptotic properties can be derived.

Corollary 1. Suppose that all assumptions for Theorem 1 hold. Then,

√
nThL+1Vŷ(τ, x)−1/2

(
ŷ(τ, x)− y(τ, x)−B∗ŷ(τ, x)

) d→ N (0, 1),

where B∗ŷ(τ, x) = (τd(τ, x))−1B∗
d̂
(τ, x) and Vŷ = (τd(τ, x))−2Vd̂(τ, x) with Vd̂(τ, x) specified in (27).

The rate of convergence is fast, upto order (nT )−1/3 for the case L = 1 and twice continuously differ-

entiable d, reflecting the fact that both time series and cross-sectional information are used to estimate

the function d. The estimated yields yjt = ŷ(τj, Xt) = y(τj, Xt) + ξjt,T , where the error terms ξjt,T are

correlated over time and yield, under our assumptions, and are small.

4.2 Asymptotic variance estimation

The availability of an asymptotic distribution as in Theorem 1 represents one of the advantages of our

method, since
√
nThL+1

(
d̂(τ, x)− d(τ, x)−B∗

d̂
(τ, x)

)
d→ N (0,Σd̂(τ, x)), where

Σd̂(τ, x) = limn,T→∞ var

[
1√

nThL+1

T∑
t=1

nt∑
i=1

ωit(τ, x)εit

]
. (29)

where limnt,T→∞ represents the short hand notation for the limit taken as n and T diverge.

Thus, if a consistent estimator of the asymptotic variance in (29) is available, then we can compute

consistent pointwise confidence intervals for the estimated discount curve. To achieve this inferential goal,

we propose the following two steps: first, we obtain ε̂it = pit −
∑mit

j=1 cit(τij)d̂(τij, Xt); second, we define

V̂d̂(τ, x) =
1

nThL+1

T∑
t=1

T∑
s=1

nt∑
j=1

nt∑
i=1

ωit(τ, x)ωjs(τ, x)ε̂itε̂js.

Because the error structure specified in (A2) and (A4) is quite general, it is difficult (if not impossible)

to obtain a consistent estimator of Σd̂(τ, x) without any further restriction, either on the bandwidth or
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on the weight {Witjs} as in (21). Therefore, we need to impose more structure on {Witjs}. Among the

possible solutions, we choose to impose a restriction on both cross-sectional dependence and temporal

dependence. Thanks to this additional assumption, we can prove that V̂d̂(τ, x)
p→ Σd̂(τ, x), as n and T

diverge.

We suppose that there exists some relabelling of the cross-sectional bonds, whose generic index we

denote by i, such that the cross sectional dependence decays with the bond economic distance, which

is a function of |i − j|. This approach has been adopted, e.g., in Lee and Robinson (2016) and in Ma

et al. (2017) in the context of spatial panel data models. In our setting, it is natural to obtain the

data ordering according to the maturity: two bonds are similar and close if they have similar string of

cash flows. To elaborate further, we introduce the φ-mixing coefficient on the error term. For S1, S2 ⊂
[1, . . . , n]× [1, . . . , T ], let

φ(S1, S2) ≡ sup{|P (A|B)− P (A)| : A ∈ σ(εit, (i, t) ∈ S1), B ∈ σ(εjs, (j, s) ∈ S2)},

where σ (·) denotes a σ-field. Then, for any k ∈ N, the φ-mixing coefficient of {εit} is defined as

φ(k) ≡ sup{φ(S1, S2) : dB(S1, S2) ≥ k},

where

dB(S1, S2) ≡ min{
√
|t− s|2 + |i− j|2 : (i, t) ∈ S1, (j, s) ∈ S2},

represents the economic distance between ordered bonds.

Then, we introduce the following:

Assumption C

(C1) The stochastic process {εit} is a random field of φ-mixing random variables, where for each i and

t, E[|εit|4+ζ ] <∞, for ζ > 0. The φ-mixing coefficient of {εit} satisfies φ(k) ≤ ce−λ1k for c, λ1 > 0.

For each given i, {εit} is a strictly stationary sequence.

(C2) The asymptotic variance resulting from Theorem 1 and as in (29) is such that Σd̂(τ, x) 6= 0, for every

(τ, x) ∈ RL+1.

Assumption (C1) complements the error structure given in Assumption (A2), ensuring that errors are

marginally cross-sectional mixing, and marginally temporally mixing. This type of dependence is assumed

in much literature on spatial and temporal processes; see e.g. Connor and Korajczyk (1993), Conley (1999)

and Lee and Robinson (2016), among many others. Loosely speaking, we assume that, as the distance

between points in time gets larger, the temporal dependence decays at the exponential rate. Likewise, as

the types of bonds under consideration become more heterogeneous, say a short-term treasury bill and

a long-term treasury bond, the cross-sectional dependence between them gets smaller at the exponential

rate. Thus, to account for dependence in the time-to-maturity space, we may set Wijts ∝ exp−b1|i−j|, for

some b1 > 0, as suggested by Rebonato and Cooper (1997) (see Table 1 in that paper), whilst we may set

Wijts ∝ exp−b2|t−s|, for some b2 > 0, to account for temporal dependence, as it is customary in the time
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series literature. This is a mathematically convenient choice which helps in proof of the consistency of the

proposed estimator of Σd̂. We emphasize that this additional specification is needed only for the estimation

of the asymptotic variance: some other specifications can be considered at the cost of a more complicated

proof for the consistency of the proposed asymptotic variance estimator; see Linton et al. (2001), page

202 for a related discussion. Assumption (C2) is standard and it guarantees that the asymptotic variance

admit an inverse; see, e.g., Assumption (B5) in Conley (1999).

Finally, we state the following.

Theorem 2. Suppose that assumptions (A1)-(A4), (B1)-(B2) and (C1)-(C2) hold. Then, as n, T →∞

V̂d̂(τ, x)
p→ Σd̂(τ, x).

Theorem 2 justifies the use of V̂d̂(τ, x) in the definition of asymptotic confidence intervals, pointwise in

(τ, x) ∈ RL+1, for the estimated yield curve. The confidence intervals are useful when considering scenarios

for the yield curve based on different values of the state variables and maturities, since we should take

account of the estimation uncertainty in the presentation.

5 Monte Carlo Study

5.1 Simulation design

We illustrate the performance of our nonparametric estimator in a simulation study.3 We consider a time

horizon of about 10 years of bi-weekly data. We set the number of bonds to n = 24 daily on average and

for each bond (either zero coupon or coupon bearing) the face value (paid at the expiration date) is set

to 100. The number of repetitions is 100. We consider zero coupon bonds issued with original time to

maturity of 1-12 months, while coupon bonds have longer maturities with coupon payments once in every

six month. We replace each expired bond with a new one, having the same data structure as the expired

one, but with a different identification number.

Bond prices are generated by the model in (1). In particular, in line with the theory in Section 4, we

generate εit as follows. For a given i, ε·t has a ARMA(1,1) structure with AR coefficient (−0.1) and MA

coefficient (0.2) to allow for temporal dependence. That is, ε·t = −0.1ε·t + ε·t + 0.2ε·t−1 with ε·t being

a mean zero random variable drawn from the Gaussian distribution. Across bond types, we let variance

increase over duration (therefore, bonds having longer maturities display larger variability).

We generate the initial yield curve using the Nelson & Siegel model (Nelson and Siegel, 1987), a model

which has been applied in several empirical studies of term structure estimation (see, e.g., Bliss (1996);

Dahlquist and Svensson (1996)). We choose the extended version

y(τ) = β0 + β1

[
1− exp(−τ/τ1)

τ/τ1

]
+ β2

[
1− exp(−τ/τ2)

τ/τ2
− exp(−τ/τ2)

]
(30)

3A simpler version of the simulation study in this section will be included in the r-package ycevo developed in line with

this paper in the Comprehensive R Archive Network (CRAN). https://cran.r-project.org/
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and we derive the corresponding discount curve. We select the parameterization: β0 = 0, β1 = 0.05,

β2 = 2, τ1 = 0.75 and τ2 = 125, which is such that the curve has a stationary point; see Linton et al.

(2001). The yields generated by (30) define the initial (at time τ0) yield curve. To incorporate the time

(in t) dynamics, we introduce two deterministic trends for the yield curve: the first is a cubic trend

having equation −0.55t3 + 0.55t2 − 0.55t + 1, while the second is a quadratic trend having equation

−0.85t2 + 0.85t + 1. Both trends affect the initial Nelson & Siegel yield curve and induce, over time,

a cubic or parabolic pattern in the simulated discount curve, respectively. More specifically, y(τ, t) =

y(τ, 0) × trend where trend is either a cubic or parabolic pattern described earlier. Within these two

different settings, we construct bond prices using five different annualised coupon rates cit(τij) from the set

{0%, 1%, 2%, 3%, 4%, 5%}. If the time until expiry for a bond is less than or equal to a year, we allocate

0% coupon rate (zero coupon bond) with 50% probability and the other non-zero coupon rates with equal

weight, 10% each. If the time until expiry is larger than a year, we allocate non-zero coupon rates with

equal weight (20%). Coupons are paid biannually.
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Figure 1: Cubic time-dynamics of the discount curve.
Top panels: in each plot, we display the true cubic dynamics of the discount rate (red continuous line) and the estimated

cubic dynamics of the discount rate in 95% coverage of Monte Carlo runs (median in blue dashed line), over rescaled time

(x-axis) for three different time to maturities. Bottom panels: true (red solid line) and estimated discount curve (blue dotted

line) and grey area corresponds to 95% coverage of Monte Carlo runs), over all considered maturities (x-axes), for three

different time rescaled points.
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Figure 2: Parabolic time-dynamics of the discount curve.
Top panels: in each plot, we display the true parabolic dynamics of the discount rate (red continuous line) and the estimated

parabolic dynamics of the discount rate in 95% coverage of Monte Carlo runs (median in blue dashed line), over rescaled

time (x-axis) for three different time to maturities. Bottom panels: true (red solid line) and estimated discount curve (blue

dotted line) and grey area corresponds to 95% coverage of Monte Carlo runs), over all considered maturities (x-axes), for

three different time rescaled points.

5.2 Outputs

Before commenting on the results, a few implementation details are in order. In general, a constant band-

width over the time-to-maturity space does not perform well. This is because the payments distribution

is far from uniform over the considered maturities. Accordingly, we use a nonconstant bandwidth over the

time-to-maturity space, for both the cubic and parabolic dynamics. For a given trading day t, the selected

bandwidth is proportional to the duration of each considered bond. The Epanechnikov kernel is employed.

In each Monte Carlo simulation and for each day t, we estimate the discount curve using the method

of Section 3. In Figure 1, we display the results for the cubic dynamics. In the top panels we focus on the

time evolution. Specifically, we select three time-to-maturities (12, 36 and 60 months) and we compare

over rescaled time (t/T , on the x-axes) the true discount rate dynamics (red solid line) with the estimated

discount rate (dashed line: median and grey shaded area: 95% coverage of the Monte Carlo runs). The

plots show that our method captures the discount curve cubic (upward) dynamics over time.

To validate our method further, we investigate the ability of our method to capture also the shape of

the discount curve, on a given day. To this end, in the bottom panels of Figure 1, we select three rescaled

times and for every considered maturity (expressed in years, on the x-axes), we plot the true and the
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estimated discount curve. The red solid line represents the true discount curve, while, the blue dotted line

denotes the median of estimates of Monte Carlo runs, a grey shaded area corresponds to 95% coverage

of the estimated discount curve from Monte Carlo runs. The plots illustrate that the proposed estimator

captures the shape of the true discount curve. As seen from Figure 1, the coverage gets wider as the

time-to-maturity gets larger reflecting the error structure. Temporal dependence in the simulation error

structure does not affect the estimation much in line with the theory in Section 4. In Figure 2, we show

that similar considerations hold also for the parabolic dynamics.

6 US yield curve evolution

We apply our methodology to US bond data. We establish the confidence interval for the US discount

function when other factors including time and three-month treasury bill rates are its drivers. We dis-

cuss the in-sample fit and the out-of-sample forecasting performance of our estimation in comparison

with the widely used method of Diebold and Li (2006). This section starts with our data and real-data

implementation issues before we report our estimation results and comparison studies.4

6.1 Data description

Our dataset consists of daily US treasury data obtained from the Centre for Research in Security Prices

(CRSP) US Treasury Database. CRSP provides extensive historical data related to all US treasury bonds

including each bond’s issue date, its type (say, treasury bill, note, bond), its maturity, its historical bid

and ask price quotes with corresponding accrued interests, a history of its coupon payments and payment

dates. Note that when a bond is sold, the actual price the buyer pays is the quoted price plus the interest

amount accrued until the transaction day. Each bond is characterized by its unique identifier. There are

nine different types of issues depending on whether it is callable or not and tax related issues. Note that

callable bonds contain an intrinsic option of redemption to the issuer and tax would affect yield curves,

which are not captured by our model. Therefore, for our analysis, we select noncallable bonds and notes,

treasury bills. Almost all of coupon payments are made biannually except for a few bonds that pay the

first coupon in less than a half year and paid biannually thereafter. The data covers the seven-year-period

from Jan. 2001 to Dec. 2007.5 We provide several statistics as to the data for our estimation in Table 1.

We generate a price data matrix pit for a bond i at time t using the average of bid and ask quotes

of bond i and corresponding accrued interest for each quotation day. We calculate time-to-maturity of

each bond as a calendar-day between the quotation day and its maturity for each time, t. Similarly, we

calculate payment dates of each bond, τij for j = 1, . . . ,mit as the calendar day between the quotation

day and payment dates. Based on these, we calculate the cash flows cit(τi·) for the bond i by combining a

history of coupon payments and their payment dates over different quotation days.

4All our computations are conducted with the r programming language. Codes are available in the form of an r-package

ycevo at https://github.com/bonsook/ycevo.
5The entire period ranges from Jan. 1970 to Dec. 2007. The results of the same analyses for the other periods are not

different from those reported in this paper.
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Table 1: Summary Statistics of CRSP Bonds Data

2001 2002 2003 2004 2005 2006 2007

Average No. of Daily Quotes 162 149 143 150 160 171 182

Time to Maturity(1) 10963 10636 10271 9906 9539 10956 10964

Ratio of Treasury bills(2) 0.34 0.38 0.38 0.38 0.36 0.33 0.32

Ratio of Treasury notes(2) 0.44 0.42 0.42 0.45 0.48 0.52 0.53

Ratio of Treasury bonds(2) 0.21 0.21 0.2 0.18 0.16 0.15 0.15

Notes: (1) Longest days from the quote date to maturity for each year.

(2) calculated as the number of each type over the number of entire set of bonds for each year.

We use deterministic time (u = t/T ) and three-month treasury bill rates (r) as factors (x = (u, r)ᵀ)

for our estimation. Three month treasury bill rates (secondary market rate) are obtained from FRED at

the Federal Reserve Bank of St. Louis. We plot them in Figure 3 for each time grid in 2007 with Treasury

Bill factor grids in the dotted lines.

Figure 3: Three-month Treasury Bill Rates (Secondary Market)
Three-month Treasury bill rates (2007) used for one of factors are plotted in solid line in each estimation window. Dotted

lines denote the grids set for each estimation window (33% and 66%).

6.2 Implementation of nonparametric estimation

We estimate d̄(τ, x) and Ĥ(τ, τ ′, x) given as in (10) and (11). The estimate for the discount function,

d̂(τ, x) is obtained via (9). The corresponding yield curve, ŷ(τ, x) is estimated indirectly from the one-to-

one relationship between the discount function and the yield curve as in (15). The variances of d̄(τ, x) and

ŷ(τ, x) are calculated from Theorem 2 and Corollary 1. In doing so, there are several issues worth noting in

the empirical implementation. First, although the discount function of interest is infinite-dimensional and

is assumed continuous over an interval in R+, discrete grids for factors and time-to-maturities need to be

selected for the estimation in practice. Moreover, intrinsically, there exists the data sparsity for the longer

time-to-maturities because bonds with more than ten-year maturity are scarce. This incurs significant

estimation challenge so that we pay close attention to bonds with longer maturities so as to ensure the

data for longer time-to-maturities are enough for reliable estimation. That is, we cannot choose equally-

spaced grids for the time-to-maturity. Rather, it is crucial to choose grids for time-to-maturities in such a

22



way that a decent number of data points are available in the window around each selected grid while the

window around each selected grid covers the decent local coverage of the corresponding time-to-maturity.

Second, since we obtain estimates of the function of interest only for finite trivariate discrete grids

(time, treasury bill rate, time-to-maturity), interpolation of estimates for between grid points is required.

Furthermore, the three dimensional grids chosen for time, treasury bill rate and time-to-maturity are

not necessarily equally spaced but rather irregularly or/and regularly spaced for the maximum precision

and efficiency, which renders interpolation tricky. Many interpolation techniques are available including

multilinear interpolation, cubic spline interpolation and local polynomials interpolation. We use equally

spaced grids for time and treasury bill rate whereas we use irregularly spaced grids for time-to-maturity

due to the first issue mentioned in the previous paragraph. For the interpolation method, we use the local

polynomials interpolation for time-to-maturity and linear interpolation for time and treasury bill rate.

Third, there are three different bandwidths required for the estimation: ones for the time-to-maturity

hτ , the treasury bill rate hr and the time hu. As is the usual case with nonparametric kernel estimation,

choosing appropriate bandwidths, in particular one for the time-to-maturities leads to better estimation

results. This is very much so in that the structure of bond data is very diverse according to the time-

to-maturities. A lot of data are available for the shorter maturity, in particular zero coupon bonds and

coupon paying bonds about to expire (less than 6 months) account for more than 50% of price data for any

given day whereas the number of middle- and long-term bonds with more than twice coupon payments left

are relatively very small. Consequently, we set smaller bandwidths for the shorter time-to-maturities while

we set larger bandwidths for the longer time-to-maturities, which ensures reliable and robust estimation

results. For hr and hu, we employ the rule of thumb bandwidth selection.

Here, we choose equally spaced time grids such that ui+1 − ui = 0.2 where ui = ti/T . That is, for

the entire period of k years, we have N(= 5k − 2) number of grids since we have five time grid points for

each year except for the beginning and the end of the entire period. The bandwidth for each chosen time

grid is hu = 0.2 with the Epanechnikov kernel. For the treasury bill rate, we choose r grids as the ones

corresponding to 33 percentile and 66 percentile of treasury bill rates in the window in the vicinity of time

point u. As mentioned, the bandwidths for the chosen r grids are selected following the rules of thumb.6

On the other hand, we employ an automated selection of grids for the time-to-maturities in such a way

that we choose a grid with a maximum number of data while there exist enough price and cash flow data in

the windows around the selected grids where each window is determined by the corresponding bandwidth.

For instance, when the grid in the vicinity of 10 years in time-to-maturity domain needs to be chosen, we

check the number of data available for each candidate of time-to-maturities in the window where enough

data reside say at least 5, say from 3600 days to 3700 days and select the grid, say 3640 if that time-

to-maturity day has the maximum number of data available for the estimation. Based on the selected

trivariate grids, we calculate d̄(τ, x) and Ĥ(τ, τ ′, x) and finally d̂(τ, x). Regarding the interpolation, we

employ an r-package called loess for the interpolation of estimates for our application although other

interpolation methods readily available could be used without much issue.

6Although the choice for hr and hu follows the rules of thumb, we tried finer or wider u and r grids with different

bandwidths but results are quite similar if not worse.
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6.3 Estimation results

Estimation results for the discount function and yield curve for the year 2007 are reported in Tables 2

and 3, respectively. We report the curve at five different days in 2007 for a range of maturities while the

treasury bill rates (r) is fixed at 33 percentile in each estimation window, along with the pointwise standard

error in parentheses. We also provide the corresponding graphical representation of the estimated discount

function and yield curve along with their corresponding pointwise confidence bands via interpolation in

Figure 4 and Figure 5 respectively. Figures 6a and 6b report three-dimensional shapes of discount functions

and yield curves over time-to-maturity and time from Jan. 2004 to Dec. 2007 respectively while r is fixed

at 50 percentile of three month treasury bill rates in each estimation window.

Table 2: Estimates of Discount Function (2007)

Grid (u,r) 3 Months 6 Months 1 Year 3 Years 5 Years 10 Years 15 Years

2007 0.984 0.973 0.952 0.871 0.796 0.626 0.475

u:0.0, r:4.94 (0.002) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

2007 0.984 0.973 0.953 0.872 0.797 0.624 0.471

u:0.2, r:4.90 (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

2007 0.985 0.974 0.952 0.868 0.789 0.610 0.454

u:0.4, r:4.75 (0.006) (0.004) (0.004) (0.006) (0.006) (0.006) (0.006)

2007 0.986 0.976 0.955 0.875 0.797 0.616 0.456

u:0.6, r:4.08 (0.008) (0.01) (0.01) (0.008) (0.008) (0.008) (0.008)

2007 0.990 0.981 0.963 0.893 0.822 0.641 0.475

u:0.8, r:3.33 (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

Notes: (1) Values in parentheses denote standard errors.

(2) The following calendars correspond to the time point u we consider: 2007-01-02 (u = 0.0),

2007-03-15 (u = 0.2), 2007-05-24 (u = 0.4), 2007-08-06 (u = 0.6), 2007-10-17 (u = 0.8).

(3) Three month Treasury bill rates (r) are fixed at 33 percentile in each estimation window.

Table 3: Estimates of Yield Curve (2007)

Period 3 Months 6 Months 1 Year 3 Years 5 Years 10 Years 15 Years

2007 0.043 0.045 0.046 0.048 0.049 0.053 0.058

u:0.0, r:4.94 (0.016) (0.008) (0.004) (0.002) (0.002) (0.001) (0.001)

2007 0.018 0.033 0.041 0.048 0.05 0.055 0.06

u:0.2, r:4.90 (0.016) (0.008) (0.004) (0.002) (0.002) (0.001) (0.001)

2007 0.022 0.034 0.04 0.045 0.047 0.052 0.058

u:0.4, r:4.75 (0.02) (0.01) (0.006) (0.002) (0.002) (0.001) (0.001)

2007 -0.023 0.009 0.026 0.039 0.043 0.051 0.057

u:0.6, r:4.08 (0.036) (0.018) (0.01) (0.004) (0.002) (0.002) (0.002)

2007 -0.023 0.011 0.028 0.041 0.045 0.053 0.059

u:0.8, r:3.33 (0.034) (0.018) (0.01) (0.002) (0.002) (0.002) (0.002)

Notes: (1) Values in parentheses denote standard errors.

(2) The following calendars correspond to the time point u we consider: 2007-01-02 (u = 0.0),

2007-03-15 (u = 0.2), 2007-05-24 (u = 0.4), 2007-08-06 (u = 0.6), 2007-10-17 (u = 0.8).

(3) Three month Treasury bill rates (r) are fixed at 33 percentile in each estimation window.
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Figure 4: Estimates for the discount function d̂(τ, x) with pointwise confidence intervals
Discount function given a time point with 95% and 5% confidence intervals. Given time grids (u = (0.0, 0.2, 0.4, 0.6, 0.8)

for a sample year, 2007) and time-to-maturities grids, we plot our estimates of the discount functions while r is fixed at 50

percentile of treasury bill rates in each estimation window for 2007 with the shaded pointwise confidence interval.

Figure 5: Estimates for the yield curve ŷ(τ, x) with pointwise confidence intervals
Yield curve given a time point with 95% and 5% confidence intervals. Given time grids (u = (0.0, 0.2, 0.4, 0.6, 0.8) for a

sample year, 2007) and time-to-maturities grids, we plot our estimates of the yield curves while r is fixed at 50 percentile of

treasury bill rates in each estimation window for 2007 with the shaded pointwise confidence interval.

Generally, as seen from Figures 4 and 5, discount functions seem to display smoothly declining shapes over time-

to-maturity but yield curves display various shapes over time-to-maturity depending on the economic conditions

in the neighbourhood of the time point. Meanwhile, the shape of yield curve over time given a time-to-maturity

is compatible with the movement of the other market interest rates, e.g. dynamics of six-month treasury bill rates

and five-year treasury constant maturity rates are comparable with cross-sections of three-dimensional yield curve

estimates at corresponding time-to-maturities, i.e. τ = 0.5yrs and τ = 5yrs respectively from Jan. 2004 to Dec.

2007 as seen from Figure 7. The confidence bands for the discount curve and the yield curve show the degree of

uncertainty about the actual value the curve takes given the data we have used. The confidence interval generally

widens with maturity for both discount function and yield curve; there is also quite a bit of uncertainty regarding

the spot yield.
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(a) Discount function 3-dim (b) Yield Curve Dynamics 3-dim

Figure 6: 3-dimensional shapes of d̂(τ, x) and ŷ(τ, x)

(a) Cross-section of 3-dim Yield Curve at τ = 0.5yrs (b) Six-month T-Bill Rates

(c) Cross-section of 3-dim Yield Curve at τ = 5yrs (d) 5 year Treasury Constant Maturity Rates

Figure 7: Cross-sections of ŷ(τ, x) at 6 month and 5 year time-to-maturities

6.4 Evaluation of estimates of the US discount function

This section discusses the performance of the proposed nonparametric estimation of the discount function via

its in-sample fit and out-of-sample forecasting. It is worth mentioning that the goodness of fit criterion for our

approach based on the market bonds data is quite different from the usual parametric approach based on the pre-

calculated yields. In that case, the fit is evaluated by the discrepancy between a small dimensional pre-calculated

yields and the corresponding predicted points in the estimated yield curve. That is, the generated yields are the

targets to which the estimated yield strives to be matched with. Instead, we evaluate the fit by the discrepancy

between the market bond prices and the model estimated bond prices. We believe that it is a objective measure of

the goodness of fit since the pre-calculated yields are not data per se but they contain some randomness that is not

accounted for. Although each approach has its own merit, our estimator is better for predicting individual bond

prices and can be applied to evaluate the meaningful impact of implemented monetary policies on the economy

and identify any significant discrepancy between observed bond prices and the constructed prices so as to price

new issues or evaluate investors’ trading strategies.
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In what follows, we calculate the residuals as the difference between the observed price (quoted price plus accu-

mulated interest) and the corresponding theoretical price constructed from the first principle that the asset price

is the present value of all the cash flows generated from the asset ε̂it = pit− p̂it, where p̂it =
∑mit

j=1 cit(τij)d̂(τij , Xt)

with Xt as factors. We calculate the mean squared errors (MSE) by summing the squared values of all residuals.

Likewise, forecasting errors are calculated via the difference between the h-period ahead observed price, pi,t+h

and the price forecast constructed from p̂it(h) =
∑mit

j=1 cit(τij)d̂(τij , Xt+h), where Xt+h is the forecast of factors.

The forecasting mean squared errors (FMSE) are calculated accordingly.

We provide the empirical distribution of the residuals and discuss some notable features of residuals in line with

some of the assumptions we made for the asymptotic analysis. We also use the MSE criterion for the in-sample

fit and the FMSE criterion for the out-of-sample forecasting performance. Since we observe price quotes of an

array of different types of bonds per day, it is natural for us to calculate the MSE and the FMSE on a daily basis.

Then, for each year, we provide a summary of distribution of daily MSE and FMSE for concise presentation.

6.4.1 In sample fit: residual analysis

We next plot the empirical distribution of the residuals in Figure 8: different colours are used for different types to

highlight the magnitude of residuals over type. As seen from Figure 8, residuals for the long-term bonds and for

highly volatile periods are larger. This is consistent with our assumption that the variances of discount functions

and yield curves vary over time-to-maturity and time. We also report quantiles and mean of residuals for each

year in Table 4.

Figure 8: Histograms of residuals for the sample year
Different colours are used according to the bond type. Type 1, 2, and 4 denote treasury bonds, treasury notes and treasury

bills respectively.

Table 4: Percentiles of Residuals
2001 2002 2003 2004 2005 2006 2007

min -3.5686 -4.2374 -5.5529 -6.3623 -3.7558 -3.5268 -4.0874

25% -0.1994 -0.6942 -0.8825 -0.4851 0.0361 0.0826 0.1028

median 0.2703 0.3626 0.1841 0.3190 0.2151 0.2609 0.3448

mean 0.5164 0.4056 0.4418 0.4463 0.4017 0.4465 0.6578

75% 0.9355 1.2126 1.2385 1.0053 0.5162 0.5694 0.9251

max 10.278 7.8678 10.658 8.2870 6.9790 5.0412 8.7145
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In addition, we look at the correlations of residuals across different time-to-maturities and across different

points in time. Recall that our asymptotic theory is based on the several assumptions related to random pricing

errors εit. The error structure assumed for the method is quite general in that it could be allowed to be hetero-

geneous and correlated across the bond type given the fixed time point t and it might be dependent over time.

Nevertheless, in Assumption (C1) for the asymptotic variance estimation, we assume that as difference in the

maturities between two different bonds i and j gets bigger, say for a long term bond and a short term bond, the

cross-sectional dependence gets smaller and smaller and is expected to tend to zero when the distance tends to

infinity. Also, a similar type of assumption for the time series temporal dependence is made in that as time points,

t and s are far away each other, the temporal dependence gets smaller, for instance, mixing type of dependence.

It is difficult to identify the exact structure of random pricing errors but we can check whether there is a

tendency by graphically examining correlations over time-to-maturity and time. Correlations for cross-sectional

dependence and temporal dependence are plotted in Figure 9 and Figure 10 respectively. More specifically, as seen

from Figures 9a and 9b, the correlations between residuals with respect to short term bonds (type 4) or long term

bonds (type 1 or 2) are high, whether it is positive or negative. However, Figure 9c shows that the correlation

between short term and long term bonds is close to zero. This is compatible with our assumption of cross-sectional

dependence. Meanwhile, Figure 10 shows the temporal dependence of residuals. Congruent with our assumption

of the temporal dependence of random pricing errors, high correlation between residuals with respect to the same

bonds with close points in time (close quote dates) is reported in Figure 10a, whereas lower correlation is reported

when the distance between time points gets larger, say 3 years in Figure 10b.

(a) Correlations between short

term bonds

(b) Correlations between long

term bonds

(c) Correlations between short

and long term bonds

Figure 9: Cross-sectional correlations
Labels denote identifiers of various bonds. The first eight digit (year-month-day) denotes the maturity of the bond and the

number following a dot denotes its type (1: bond; 2: note; 3: bill) and the remainder denotes its coupon rate.

(a) Correlations between close time points (b) Correlations between times far away each other

Figure 10: Temporal correlations
Labels denote the date of quote for various bonds.
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6.4.2 Out of sample forecasting

Recall that we can forecast the discount function or yield curve based on the dynamics of factors incorporated in

our model. That is, d(τ,Xt+h) can be forecast by d(τ,Xt+h) and the dynamics of Xt+h.

We implement our forecasting study using the horizon, h = 30 days. Also, for the dynamics of factors, Xt, in

our experiment (the three month Treasury Bill rates) an autoregressive time series model is used. The empirical

distribution of forecasting residuals for 2007 are reported in Figure 11. Table 5 reports the summary of forecasting

residuals for each year from 2001 to 2007.

Figure 11: Histograms of forecasting residuals for the sample year
Different colours are used according to the bond type. Type 1, 2, and 4 denote treasury bonds, treasury notes and treasury

bills respectively.

Table 5: Percentiles of Forecasting Residuals

2001 2002 2003 2004 2005 2006 2007

min -5.00 -5.19 -12.8 -8.49 -6.21 -11.5 -8.85

25% 0.090 -0.783 -0.891 -0.926 -0.0599 -0.360 0.114

median 0.903 0.300 0.125 -0.058 -0.197 0.199 0.520

mean 1.59 1.18 0.146 0.408 0.212 0.270 1.11

75% 2.40 2.22 1.24 1.80 0.241 0.649 1.88

max 13.3 14.5 13.3 9.48 13.3 7.70 10.4

In the following section, we compare the estimation in sample fit and out of sample forecasting performance

of our method with those in Diebold and Li (2006).

6.5 Comparison studies

This section compares our results with those of Diebold and Li (2006). We emulate what Diebold and Li (2006)

estimate yield curves. That is, we use the pre-calculated US Treasury yields from 2001 through 2007 for tenors of

1 Month, 3 Months, 6 Months, 1 Year, 2 Years, 3 Years, 5 Years, 7 Years, 10 Years, 20 Years, and 30 Years. We
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estimate yield curves based on the following parametric specification in Diebold and Li (2006):

yt(τ) = β1t + β2t

(
1− e−λtτ

λtτ

)
+ β3t

(
1− e−λtτ

λtτ
− e−λtτ

)
where yt(τ) is the yield of bonds with the time-to-maturity τ , βi for i = 1, 2, 3 are three common factors and λt

reflects the exponential decay rate.

The three common factors {βi}i=1,2,3 can be interpreted in terms of level, slope, and curvature respectively,

as how their respective loadings change represents the characteristics of long-term, short-term and medium-term:

the loading on β1 is a constant, the loading on β2 starts at one and decays to zero, and the loading on β3 starts

at 0, increases then drops to 0. Following Diebold and Li (2006) recommendation, we set the λt value at 0.0609

which maximizes the loading on β3t at 30 months. By fixing λt, the problem comes down to a simple linear

regression from a nonlinear one. Then two factor loadings (regressors) are computed and from those computed

factor loadings, three common factors ({βit}i=1,2,3) for each t are obtained via ordinary least squares. For more

details, see Diebold and Li (2006).

Once all of βs are estimated, the h-step ahead forecast of yield curve is achieved by

ŷt+h/t(τ) = β̂1,t+h/t + β̂2,t+h/t

(
1− e−λtτ

λtτ

)
+ β̂3,t+h/t

(
1− e−λtτ

λtτ
− e−λtτ

)
where the factors have underlying AR(1) specification such that

β̂i,t+h/t = ĉi + γ̂iβ̂it

for i = 1, 2, 3.

These results are reported in Tables 6 and 7. Table 6 reports in sample fit of Diebold and Li (2006) and our

nonparametric method. Again, for MSE, we calculate the sum of squared differences between the observed prices

and the corresponding constructed prices from the estimated yield curve. For FMSE, we calculate the sum of

squared differences between the h-period ahead observed prices pi,t+h and the price forecasts constructed from the

yield forecasts. Overall, our method compares favourably against the method proposed by Diebold and Li (2006)

Meanwhile, Table 7 reports the out-of-sample forecasting performance of both methods. Again, our method yields

very impressive performance compared with the alternative.

7 Concluding Remarks

We propose a nonparametric estimation method that estimates slowly time varying yield curves from panel data on

bond prices and payments without imposing parametric restrictions. The method is straightforward to implement

and we illustrated our approach with a simulation study and an application to US data. We established the

consistency and asymptotic normality of our procedures and developed consistent confidence intervals based on

our theory. We allow throughout for general cross-sectional and temporal weak dependence in the error terms,

and show that our standard errors are consistent under these general conditions.
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Table 6: Summary of Distribution of Daily Prediction MSE

(In Sample Fit)

year method min 25% median mean 75% max

2001
NP 0.0445 0.257 0.548 1.22 1.30 15.0

DL 0.189 1.062 3.019 5.253 6.866 29.51

2002
NP 0.460 0.709 1.010 1.51 1.60 8.20

DL 0.651 2.896 5.668 8.995 13.10 34.32

2003
NP 0.513 0.818 1.21 2.49 2.90 18.1

DL 0.414 4.457 8.916 11.25 14.97 52.96

2004
NP 0.081 0.537 0.862 1.53 1.88 7.93

DL 1.033 3.430 5.540 6.137 8.24 18.81

2005
NP 0.024 0.092 0.252 0.548 0.624 4.38

DL 0.347 0.983 1.802 2.898 3.948 11.98

2006
NP 0.022 0.127 0.303 0.433 0.611 1.83

DL 0.172 0.328 0.597 0.812 1.139 3.66

2007
NP 0.045 0.158 0.389 0.677 0.856 5.39

DL 0.161 0.442 0.973 1.751 2.402 10.81

Note: NP and DL denote nonparametric and Diebold and Li (2006)

estimations respectively.

Table 7: Summary of Distribution of Daily FMSE

(Out of Sample Forecasting)

year method min 25% median mean 75% max

2001
NP 0.326 1.11 2.86 4.44 5.68 17.8

DL 2.050 5.26 7.90 14.40 17.37 54.79

2002
NP 0.510 0.789 2.21 6.15 5.43 32.1

DL 1.804 5.758 11.34 14.59 19.83 50.52

2003
NP 0.537 0.826 1.47 7.26 14.1 27.6

DL 1.945 6.763 12.44 16.25 20.58 106.0

2004
NP 0.752 1.99 4.26 4.15 5.87 9.94

DL 1.253 3.877 6.996 10.16 12.56 51.79

2005
NP 0.197 0.837 2.41 4.49 8.96 15.1

DL 0.784 2.156 3.783 4.837 6.319 17.96

2006
NP 0.078 0.718 1.75 1.88 2.73 5.89

DL 0.743 1.613 2.722 3.198 4.439 10.38

2007
NP 0.078 0.273 0.981 2.11 3.57 11.0

DL 0.658 1.520 2.500 3.168 4.274 12.91

Note: NP and DL denote nonparametric and Diebold and Li (2006)

estimations respectively. (2) h = 30 days.
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Foucault, T., Pagano, M., Roell, A., and Röell, A. (2013). Market liquidity: theory, evidence, and policy. Oxford

University Press.

Gouriéroux, C., Monfort, A., Polimenis, V., et al. (2002). Affine Term Structure Model. INSEE.

Hafner, C. M. and Linton, O. (2010). Efficient estimation of a multivariate multiplicative volatility model. Journal

of econometrics, 159(1):55–73.
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Supplementary Appendix

A Appendix

A.1 Proofs of Theorems

Proof of Theorem 1. By triangular inequality,

|d̂(τ, x)− d(τ, x)| ≤ |d̂(τ, x)− Ed̂(τ, x)|︸ ︷︷ ︸
(A.1.1)

+ |Ed̂(τ, x)− d(τ, x)|︸ ︷︷ ︸
(A.1.2)

(31)

Let us start with (A.1.2). Recall that the sample criterion function for the estimation of the discount function is

given by

QnT (d) =
1

ntT

T∑
t=1

nt∑
i=1

∫
sik;k=1,...,mit

∫
x

pit −
mit∑
j=1

cit(τij)d(sij , x)


2
mit∏
k=1

{Kh(sik − τik)dsik}Kh(x−Xt)dx. (32)

We henceforth set n = mint nt and mit = mi for notational simplicity without loss of much generality. Given that

d̂(·, ·) can be interpreted as least squares projection of the data in an appropriate function space affiliated with

(32), due to the model construction,

Ed̂(τ, x) = arg min
v

T∑
t=1

n∑
i=1

∫ ∫
x


mi∑
j=1

cit(τij) [d(τij , Xt)− v(sij , x)]


2
mi∏
k=1

{Kh(sik − τik)dsik}Kh(x−Xt)dx

This implies that the bias component has the following representation,

Ed̂(τ, x)− d(τ, x)

= arg min
v

T∑
t=1

n∑
i=1

∫ ∫
x

 mi∑
j=1

cit(τij) [d(τij , Xt)− v(sij , x)− d(sij , x)]

2

×
mi∏
k=1

{Kh(sik − τik)dsik}Kh(x−Xt)dx

(33)

Due to Lemma 3, the first order condition for (33) yields

Ed̂(τ, x)− d(τ, x) = B∗
d̂
(τ, x) +

∫
Ĥ(τ, τ ′, x)

[
Ed̂(τ ′, x)− d(τ ′, x)

]
dτ ′. (34)

where

B∗
d̂
(x, u) =

∑T
t=1

∑n
i=1

∑mi
j=1 c

2
it(τij)[d(τij , Xt)− d(τ, x)]Kh(τ − τij)Kh(x−Xt)∑T

t=1

∑n
i=1

∑mi
j=1 cit(τij)

2Kh(τ − τij)Kh(x−Xt)

+

∑T
t=1

∑n
i=1

∑mi
j=1

∑mi
p=1,p 6=j cit(τij)cit(τip)Kh(τ − τij)Kh(x−Xt)

∫
τ ′ Kh(τ ′ − τip) [d(τip, x)− d(τ ′, x)] dτ ′∑T

t=1

∑n
i=1

∑mi
j=1 cit(τij)

2Kh(τ − τij)Kh(x−Xt)
,

35



and

Ĥ(τ, τ ′, x) = −
∑T

t=1

∑n
i=1

∑mi
j=1

∑mi
p=1,p 6=j cit(τij)ci(τip)Kh(τ − τij)Kh(x−Xt)Kh(τ ′ − τip)∑T

t=1

∑n
i=1

∑mi
j=1 cit(τij)

2Kh(τ − τij)Kh(x−Xt)
.

Also, let the bias component (Ed̂(τ, x)− d(τ, x)) be Bd̂(τ, x). From Lemma 1 it follows

Bd̂(τ, x) =

∞∑
k=0

ĤkB∗
d̂
(τ, x). (35)

For the stochastic component (A.1.1),

d̂(τ, x)−Ed̂(τ, x) = arg min
v

T∑
t=1

n∑
i=1

∫ ∫
x

εit −
mi∑
j=1

cit(τij)v(sij , x)


2
mi∏
k=1

{Kh(sik − τik)dsik}Kh(x−Xt)dx (36)

Due to Lemma 4, the first order condition for (36) yields

d̂(τ, x)− Ed̂(τ, x) = S ∗
d̂

(τ, x) +

∫
Ĥ(τ, τ ′, x)

[
d̂(τ ′, x)− Ed̂(τ ′, x)

]
dx.

where

S ∗
d̂

(τ, x) =

∑T
t=1

∑n
i=1

∑mi
j=1 εitcit(τij)Kh(τ − τij)Kh(x−Xt)∑T

t=1

∑n
i=1

∑mi
j=1 cit(τij)

2Kh(τ − τij)Kh(x−Xt)

Again, due to Lemma 1, for the stochastic component Sd̂(τ, x) = d̂(τ, x)− Ed̂(τ, x), we have

Sd̂(τ, x) =

∞∑
k=0

ĤkS ∗
d̂

(τ, x). (37)

We need to show that √
nThL+1Sd̂(τ, x)V

−1/2
d̂

d−→ N (0, 1) (38)

where Vd̂ = (nThL+1)var
[∑T

t=1

∑n
i=1 ωit(τ, x)εit

]
. To begin with, we will show that Sd̂(τ, x) and S ∗

d̂
(τ, x) are

of the same asymptotic order and this relationship is uniform in τ and x. This allows us to focus on S ∗
d̂

(τ, x)

instead of Sd̂(τ, x). Note that

sup
τ∈χ

x∈RL+1

|ĤkS ∗
d̂

(τ, x)| ≤ sup

∣∣∣∣∫
R+

Ĥ(τ, τ ′, x)dτ ′
∣∣∣∣1/2 ‖Ĥk−1S ∗

d̂
(τ, x)‖2 ≤ cρkU (39)

where U = ‖ĤS ∗
d̂

(τ, x)‖2/ρ2 for ρ < 1. The first inequality comes from the Cauchy-Schwarz inequality with (23)

in Assumption (A4). The second inequality comes from the fact that

‖ĤkS ∗
d̂

(τ, x)‖2 ≤ ρk−1‖ĤS ∗
d̂

(τ, x)‖2

due to Assumption (A3). Equation (39) implies that

sup
τ
x

|Sd̂(τ, x)| = sup

∣∣∣∣∣
∞∑
k=0

ĤkS ∗
d̂

(τ, x)

∣∣∣∣∣ ≤
∞∑
k=0

cρkU = cU/(1− ρ) = op

(
(nThL+1)−1/2

)
(40)

due to (57) in Lemma 5. Equation (40) implies

sup
τ
x

∣∣∣Sd̂(τ, x)−S ∗
d̂

(τ, x)
∣∣∣ = op

(
(nThL+1)−1/2

)
(41)
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due to Lemma 1. Because of (41), we have that

√
nThL+1S ∗

d̂
(τ, x)V −1

d̂

d−→ N (0, 1), (42)

and

S ∗
d̂

(τ, x) =
√
hL+1/nT

T∑
s=1

n∑
k=1

Rk,s(τ, x)εks,

where

Rk,s(τ, x) =

∑T
t=1

∑n
i=1Wikts

∑mi
j=1 cit(τij)Kh(τ − τij)Kh(x−Xt)

(nT )−1
∑T

t=1

∑n
i=1

∑mi
j=1 cit(τij)

2Kh(τ − τij)Kh(x−Xt)
.

Therefore, the standard central limit theorem can be applied due to assumptions on the error structure and

normalisation with rescaling variance, V −1
d̂

. Combining (34) and (42) completes the proof.

Proof of Corollary 1. For the asymptotic distribution of the estimator for the yield curve dynamics, ŷ(τ, x), notice

that, based on the usual ∆-method, for τ > 0,

ŷ(τ, x)− y(τ, x) = − d̂(τ, x)− d(τ, x)

τd(τ, x)
+ op(‖d̂(τ, x)− d(τ, x)‖)

Then, applying Theorem 1 yields the result.

Proof of Theorem 2. We modify proofs of Proposition 3 in Conley (1999) under our setup. To begin with, we

define

Vd̂ =
(
nThL+1

)−1 T∑
t=1

T∑
s=1

n∑
i=1

n∑
j=1

ωit(τ, x)ωjs(τ, x)εitεjs. (43)

This contrived quantity represents a device that we apply in our proof, whose strategy goes through three steps.

Step 1, we prove that Vd̂
p→ E[Vd̂], as n and T diverge; Step 2, we prove that E[Vd̂] → Σd̂; Step 3, we show

that V̂d̂
p→ Vd̂. For the sake of readability of the lengthy proof, we separate each step. In what follows we set

M1 = o((hL+1n)1/3) and M2 = o((hL+1T )1/3), while C is a generic constant, which may be different at different

places.

Step 1 . We have to prove that Vd̂
p→ E[Vd̂]. First, we show that

(
nThL+1

)−1
T∑
t=1

T∑
s=1

n∑
i=1

n∑
j=1

ωit(τ, x)ωjs(τ, x)εitεjs − E[ωit(τ, x)ωjs(τ, x)εitεjs]

 p→ 0,

via Chebychev’s inequality. For fix (τ, x) ∈ RL+1, we set

Git =

T∑
s=1

n∑
j=1

{ωit(τ, x)εitωjs(τ, x)εjs − E[ωit(τ, x)εitωjs(τ, x)εjs]}
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and we have to prove that var(
∑T

t=1

∑n
i=1Git) is bounded. To achieve this goal, let us notice that the triangle

inequality yields:

var

(
T∑
t=1

n∑
i=1

Git

)
≤

T∑
t=1

n∑
i=1

∑
|i−i′|≤M1

∑
|t−t′|≤M2

|EGitGi′t′ |

+
T∑
t=1

n∑
i=1

∑
|i−i′|≥M1

∑
|t−t′|≤M2

|EGitGi′t′ |

+

T∑
t=1

n∑
i=1

∑
|i−i′|≤M1

∑
|t−t′|≥M2

|EGitGi′t′ |

+

T∑
t=1

n∑
i=1

∑
|i−i′|≥M1

∑
|t−t′|≥M2

|EGitGi′t′ |,

where we split the sum into four terms, according to close/far economic distance and close/far time lag separation7.

The first term contains the quantities with close economic distance and close time lag separation, as obtained

by summing over the indexes |i−i′| ≤M1 and |t−t′| ≤M2. The maximum number of terms within the considered

region is (2M1 + 1)(2M2 + 1). Therefore, letting ‖ · ‖q indicate the Lq-norm, we have

T∑
t=1

n∑
i=1

∑
|i−i′|≤M1

∑
|t−t′|≤M2

|EGitGi′t′ | ≤CnT (2M1 + 1)(2M2 + 1) sup
i
t

‖Git‖22

≤CnT (2M1 + 1)(2M2 + 1)LnT (44)

where LnT = (M1 + 1)2(M2 + 1)2 the last inequality follows from the fact that Assumption (C1) and Minkowski’s

inequality imply that, for ζ > 0,

sup
i,t
‖Git‖22+ζ ≤ CLnT . (45)

Thus, Holder’s inequality implies supi,t ‖Git‖22 ≤ CLnT .

For the second term, where |i− i′| ≥M1 and |t− t′| ≤M2, we have

T∑
t=1

n∑
i=1

∑
|i−i′|≥M1

∑
|t−t′|≤M2

|EGitGi′t′ | ≤Cn(2M2 + 1)
∑
i,i′

φ(|i− i′|)1/2E|Git|2+ζE|Gi′t′ |2+ζ (46)

≤Cn(2M2 + 1)
∑
i,i′

e−λ1(|i−i
′|)/2E|Git|2+ζE|Gi′t′ |2+ζ

≤Cn(2M2 + 1),

where the first inequality follows from the mixing inequality as in Corollary 14.5 in Davidson (1994) and third

inequality follows from (C1), as in (45).

The third term is similar to the second term (but for the fact that we consider far time lag distances rather

7We refer to Conley (1999) and in particular to the remark after Eq. (A.5) in that paper.
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than far economic distances) and hence the following relationship holds:

T∑
t=1

n∑
i=1

∑
|i−i′|≤M1

∑
|t−t′|≥M2

|EGitGi′t′ | ≤CT (2M1 + 1)
∑
t,t′

φ(|t− t′|)1/2E|Git|2+ζE|Gi′t|2+ζ

≤CT (2M1 + 1)
∑
t,t′

e−λ1(|t−t
′|)/2E|Git|2+ζE|Gi′t′ |2+ζ

≤CT (2M1 + 1).

The last term involves the quantities with far distances, say |i− i′| ≥M1 and |t− t′| ≥M2, so:

T∑
t=1

n∑
i=1

∑
|i−i′|≥M1

∑
|t−t′|≥M2

|EGitGi′t′ |

≤CLnT

∑
i,i′

φ(|i− i′|)1/2E|Git|2+ζEGi′t|2+ζ
[∑

t,s

φ(|t− t′|)1/2E|Git|2+ζE|Git′ |2+ζ
]

≤CLnT

∑
i,i′

e−λ1(|i−j|)/2E|Git|2+ζE|Gjt|2+ζ
[∑

t,s

e−λ1(|t−t
′|)/2E|Git|2+ζE|Git′ |2+ζ

]

≤CLnT max

∑
i,i′

e−λ1(|i−i
′|),
∑
t,t′

e−λ1(|t−t
′|)

 sup
i,t

E|Git|4+ζ ≤ CLnT , (47)

with the last inequality following from (C1). Combining all the above results, Chebychev’s inequality yields, for

any positive number ξ,

Pr

{∣∣∣∣∣ 1

nThL+1

T∑
t=1

n∑
i=1

Git

∣∣∣∣∣ ≥ ξ
}
≤ 1

ξ2
1

(nThL+1)2
var

(
T∑
t=1

n∑
i=1

Git

)

≤ 1

ξ2

[
CnT (2M1 + 1)(2M2 + 1)LnT + Cn(2M2 + 1) + CT (2M1 + 1) + CLnT

(nThL+1)2

]
.

The summands in the RHS of the last inequality go all to zero and this implies

1

nThL+1

T∑
t=1

n∑
i=1

Git
p→ 0. (48)

Now remark that

Vd̂ − E[Vd̂] =
1

nThL+1

T∑
t=1

n∑
i=1

Git,

thus (48) yields Vd̂
p→ E[Vd̂], as n and T diverge.

Step 2 . We have to prove that E[Vd̂]→ Σd̂, as n and T diverge. Notice that, from (43), it follows

E[Vd̂] =
(
nThL+1

)−1 T∑
t=1

T∑
s=1

n∑
i=1

n∑
j=1

E[ωit(τ, x)εitωjs(τ, x)εjs], (49)
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thus, moving along the same lines as in Step 1, we have:

E[Vd̂]− var

(
1√

nThL+1

T∑
t=1

n∑
i=1

ωit(τ, x)εit

)
≤ 1

nThL+1

[∑T
t=1

∑n
i=1

∑
|i−i′|≤M1

∑
|t−t′|≤M2

|Eεitεi′t′ |

+
∑T

t=1

∑n
i=1

∑
|i−i′|≥M1

∑
|t−t′|≤M2

|Eεitεi′t′ |

+
∑T

t=1

∑n
i=1

∑
|i−i′|≤M1

∑
|t−t′|≥M2

|Eεitεi′t′ |

+
∑T

t=1

∑n
i=1

∑
|i−i′|≥M1

∑
|t−t′|≥M2

|Eεitεi′t′ |
]
. (50)

We remark that Assumption (C1) and Minkowski’s inequality imply that, for ζ > 0, supi,t ‖εit‖22+ζ ≤ CLnT ;

thus, Holder’s inequality implies supi,t ‖εit‖22 ≤ CLnT . Therefore, moving along the same lines as in Step 1, we

apply the same arguments as in (44)-(47) to prove that the four summands in the RHS of the inequality (50)

converges to zero, as n and T diverge. This yields E[Vd̂]→ Σd̂, as n and T diverge.

Step 3 . Finally, we have show that V̂d̂
p→ Vd̂, as n and T diverge. This result follows from Theorem 1, in tandem

with the continuous mapping theorem.

The combination of the results in the three steps above concludes the proof.

A.2 Lemmata

Lemma 1 (Neumann series). Let Ĥ be an operator such that, for any square summable function g(·) ∈ L2,

Ĥg(·) =
∫
Ĥ(·, t)g(t)dt with a square-summable kernel Ĥ(·, ·) ∈ L2. Also, we have an integral equation of the

following form.

ĝ(τ) = ḡ(τ) +

∫
Ĥ(τ, t)ĝ(t)dt

Then, provided that ‖Ĥ‖ < 1, the above integral equation has the solution such that

ĝ(τ) = (I − Ĥ)−1ḡ(τ) =
∞∑
k=1

Ĥkḡ(τ)

where Ĥk is defined by the recurrence relation such that Ĥkg(·) = Ĥ(Ĥk−1g(·)).

Proof.

ĝ(x) = ḡ(x) +

∫
Ĥ(x, t)ĝ(t)dt

ĝ(x)−
∫
Ĥ(x, t)ĝ(t)dt = ḡ(x)

(I − Ĥ)ĝ(x) = ḡ(x)

The desired result follows once you notice that the inverse of I − Ĥ has an infinite series of the polynomial of Ĥ
such that (

I − Ĥ
)−1

=

∞∑
k=0

Ĥk.

See Sections 66 and 67 in Riesz and Nagy (1990) for more details.
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Lemma 2. Suppose

d̂(τ, x) = arg min
d∈D

Q(d(τ, x))

where

Q(d) =
1

nT

T∑
t=1

n∑
i=1

∫
sik;k=1,...,mi

∫
x

pit −
mi∑
j=1

cit(τij)d(sij , x)


2
mi∏
k=1

{Kh(sik − τik)dsik}Kh(x−Xt)dx. (51)

Then, d̂(τ, x) has the following representation.

d̂(τ, x) = d̄(τ, x) +

∫
Ĥ(τ, τ ′, x)d̂(τ ′, x)dτ ′

where

d̄(τ, x) =

∑T
t=1

∑n
i=1

∑mit
j=1 pitcit(τij)Kh(τ − τij)Kh(x−Xt)∑T

t=1

∑n
i=1

∑mi
j=1 cit(τij)

2Kh(τ − τij)Kh(x−Xt)
(52)

Ĥ(τ, τ ′, x) = −
∑T

t=1

∑n
i=1

∑mi
j=1

∑mi
p=1,p 6=j cit(τij)cit(τip)Kh(τ − τij)Kh(τ ′ − τip)Kh(x−Xt)∑T

t=1

∑n
i=1

∑mi
j=1 cit(τij)

2Kh(τ − τij)Kh(x−Xt)
(53)

Proof. We can think of the minimizer of Q(d) in a way that any slight deviation from the minimizer in any

direction would increase the value of Q(d). That is, the derivative of Q(d) with respect to any slight deviation

from the minimizer, say η must be zero in all direction. To formalize this, we consider a Gateaux derivative. Let

d(τij , x) = d̂(sij , x) + ηδ(τ,x)(sij , x), where sij is in the neighborhood of τij and η is any arbitrarily small positive

number. Then, solving (51) is equivalent to solving the problem

arg min
η

T∑
t=1

n∑
i=1

∫
si·

∫
x

pit −
mi∑
j=1

cit(τij)[d̂(sij , x) + ηδ(τ,x)(sij , x)]


2
mi∏
k=1

{Kh(sik − τik)dsik}Kh(x−Xt)dx (54)

where
∫
si·

=
∫
sik;k=1,...,mi

. For the ease of notation, in the following, we drop si·. Take the derivative of equation

(54) with respect to η at the point η = 0 yields the first order condition

T∑
t=1

n∑
i=1

∫ ∫
x
pit

 mi∑
j=1

cit(τij)δ(τ,x)(sij , x)

 mi∏
k=1

{Kh(sik − τik)dsik}Kh(x−Xt)dx

=
T∑
t=1

n∑
i=1

∫ ∫
x

 mi∑
j=1

cit(τij)d̂(sij , x)

 mi∑
p=1

cit(τip)δ(τ,x)(sip, x)

 mi∏
k=1

{Kh(sik − τik)dsik}Kh(x−Xt)dx.

(55)

Note that
∫
Kh(sik − τik)dsik = 1,

∫
δx(u)f(u)du = f(x) for any generic function, which is continuous at x and

δ(x,u)(·, ·) = δ(x)(·)δ(u)(·). From these facts, (55) becomes

T∑
t=1

n∑
i=1

mi∑
j=1

cit(τij)
2Kh(τ − τij)Kh(x−Xt)d̂(τ, x)−

T∑
t=1

n∑
i=1

mi∑
j=1

pitcit(τij)Kh(τ − τij)Kh(x−Xt)

= −
T∑
t=1

n∑
i=1

mi∑
j=1

mi∑
p=1

p6=j

cit(τij)cit(τip)Kh(τ − τij)Kh(x−Xt)

∫
τ ′
d̂(τ ′, x)Kh(τ ′ − τip)dτ ′

Rearranging it completes the proof.
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Lemma 3. The first order condition for (33) is given as

Ed̂(τ, x)− d(τ, x) = B∗
d̂
(τ, x) +

∫
Ĥ(τ, τ ′, x)

[
Ed̂(τ ′, x)− d(τ ′, x)

]
dτ ′.

where

B∗
d̂
(τ, x) =

∑T
t=1

∑n
i=1

∑mi
j=1 cit(τij)

2[d(τij , Xt)− d(τ, x)]Kh(τ − τij)Kh(x−Xt)∑T
t=1

∑n
i=1

∑mi
j=1 cit(τij)

2Kh(τ − τij)Kh(x−Xt)

+

∑T
t=1

∑n
i=1

∑mi
j=1

∑mi
p=1,p 6=j cit(τij)cit(τij)Kh(τ − τij)Kh(x−Xt)

∫
Kh(τ ′ − τip) [d(τip, x)− d(τ ′, x)] dτ ′∑T

t=1

∑n
i=1

∑mi
j=1 c

2
it(τij)Kh(τ − τij)Kh(x−Xt)

and

Ĥ(τ, τ ′, x) = −
∑T

t=1

∑n
i=1

∑mi
j=1

∑mi
p=1,p 6=j cit(τij)cit(τip)Kh(τ − τij)Kh(x−Xt)Kh(τ ′ − τip)∑T

t=1

∑n
i=1

∑mi
j=1 cit(τij)

2Kh(τ − τij)Kh(x−Xt)
.

Proof. Note that

Ed̂(τ, x)− d(τ, x)

= arg min
v

T∑
t=1

n∑
i=1

∫ ∫
x

 mi∑
j=1

cit(τij) [d(τij , Xt)− v(sij , x)− d(sij , x)]

2

×
mi∏
k=1

{Kh(sik − τik)dsik}Kh(x−Xt)dx. (56)

Replace v(sik, x) with v̂(sik, x) + ηδ(τ,x)(sik, x) and differentiate (56) with respect to η at η = 0.

T∑
t=1

n∑
i=1

∫ ∫
x

 mi∑
j=1

cit(τij)v̂(sik, x)

 mi∑
p=1

cit(τip, Xt)δ(τ,x)(sip, x)

 mi∏
k=1

{Kh(sik − τik)dsik}Kh(x−Xt)dx

=
T∑
t=1

n∑
i=1

∫ ∫
x

 mi∑
j=1

cit(τij)[d(τij , Xt)− d(sik, x)]

 mi∑
p=1

cit(τip)δ(τ,x)(sip, x)


×

mi∏
k=1

{Kh(sik − τik)dsik}Kh(x−Xt)dx.

Using
∫
Kh(sik − τik)dsik = 1 and

∫
δx(u)f(u)du = f(x) for any generic function, which is continuous at x yields

T∑
t=1

n∑
i=1

mi∑
j=1

cit(τij)
2v̂(x, u)Kh(τ − τij)Kh(x−Xt)

+
T∑
t=1

n∑
i=1

mi∑
j=1

mi∑
p=1

p 6=j

cit(τij)cit(τip)Kh(τ − τij)Kh(x−Xt)

∫
τ ′
v̂(τ ′, x)Kh(τ ′ − τip)dτ ′

=

T∑
t=1

n∑
i=1

mi∑
j=1

cit(τij)
2[d(τij , Xt)− d(τ, x)]Kh(τ − τij)Kh(u− ut)

+
T∑
t=1

n∑
i=1

mi∑
j=1

mi∑
p=1

p 6=j

cit(τij)cit(τip)Kh(τ − τij)Kh(x−Xt)

∫
τ ′

[d(τij , x)− d(τ ′, x)]Kh(τ ′ − τip)dτ ′

where v̂(x, u) = Ed̂(x, u)− d(x, u) by construction. Arranging the above equation completes the proof.
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Lemma 4. The first order condition for (36) is given as

d̂(τ, x)− Ed̂(τ, x) = S ∗
d̂

(τ, x) +

∫
Ĥ(τ, τ ′, x)

[
d̂(τ ′, x)− Ed̂(τ ′, x)

]
dτ ′.

where

S ∗
d̂

(τ, x) =

∑T
t=1

∑n
i=1

∑mi
j=1 εitcit(τij)Kh(τ − τij)Kh(x−Xt)∑T

t=1

∑n
i=1

∑mi
j=1 cit(τij)

2Kh(τ − τij)Kh(x−Xt)

and

Ĥ(τ, τ ′, x) = −
∑T

t=1

∑n
i=1

∑mi
j=1

∑mi
j=1,p 6=j cit(τij)cit(τip)Kh(τ − τij)Kh(x−Xt)Kh(τ ′ − τip)∑T

t=1

∑n
i=1

∑mi
j=1 cit(τij)

2Kh(τ − τij)Kh(x−Xt)

Proof. The proof is identical to the one for Lemma 2 once you notice that the only difference between the objective

functions (51) and (36) is pi(ut) for (51) and εit (36) respectively.

Lemma 5. Consider Sd̂(τ, x) = d̂(τ, x) − Ed̂(τ, x) and S ∗
d̂

(τ, x) given in Lemma 4. Then, for any arbitrarily

small ς > 0,

‖ĤS ∗
d̂
‖2 = op

(
(nThL+1)−1/2

)
(57)

sup
τ∈χ,x∈[ς,1−ς]

|ĤS ∗
d̂

(τ, x)| = op

(
(nThL+1)−1/2

)
(58)

where ‖f‖2 =
(∫
f(τ)2dτ

)1/2
.

Proof. Recall that εit =
∑T

s=1

∑n
k=1Wik,tsεks where εks is an i.i.d random variable, and that

Rk,s(τ, x) =

∑T
t=1

∑n
i=1Wikts

∑mi
j=1 cit(τij)Kh(τ − τij)Kh(x−Xt)

(nT )−1
∑T

t=1

∑n
i=1

∑mi
j=1 cit(τij)

2Kh(τ − τij)Kh(x−Xt)
.

Then, by the definition of the operator Ĥ as in (13), we have

E‖ĤS ∗
d̂

(τ, x)‖22 = E
1

(nT )2

T∑
t=1

T∑
s=1

n∑
k=1

n∑
m=1

∫
τ

∫
q

∫
p
Ĥ(τ, q, x)Ĥ(τ, p, x)Rk,t(q, x)Rm,s(p, x)dp dq dτ εktεms

≤ 1

nT

T∑
t=1

n∑
k=1

∫
τ

∫
q

∫
p
Ĥ(τ, q, x)Ĥ(τ, p, x)Rk,t(q, x)Rk,t(p, x)dp dq dτ E[ε2kt]

≤ C

nT

∫
τ

(∫
q
Ĥ(τ, q, x)Rk,t(q, x)dq

)2

dτ = op

((
nThL+1

)−1)
The first equality comes from the deterministic τij , Witjs, time, mi and cash flow8. The second inequality comes

from Cauchy-Schwartz inequality. Finally, the use of (22) (as in Assumption (A4)) completes the proof for (57).

For (58), note that

ĤS ∗
d̂

(τ, x) =
1

nT

T∑
t=1

n∑
k=1

Rk,tεkt,

where Rk,t =
∫
Ĥ(τ, q, x)Rk,t(q, x)dq. Note that EĤS ∗

d̂
(τ, x) = 0.

8This can be relaxed with relative ease to include also stochastic quantities. However the generalization will entail a much

more cumbersome nation, without yielding any additional insights. Therefore, we do not cover it here.
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Let Sn,T =
∑T

t=1

∑n
k=1Rk,t, Sn−1,T =

∑T
t=1

∑n−1
k=1 Rk,t, and Sn,T−1 =

∑T−1
t=1

∑n
k=1Rk,t and so on. Then, due

to (A4) and Chernoff’s bounding method, for a positive value c and ξ,

Pr
(

(nThL+1)1/2ĤS ∗
d̂

(τ, x) > ξ
)
≤ E

(
exp

{
λ
[
(nThL+1)1/2ĤS ∗

d̂
(τ, x)− ξ

]})
≤ e−λξE

(
exp

(
λ(hL+1/nT )1/2

T∑
t=1

n∑
k=1

Rk,tεkt

))

≤ e−λξE

(
exp

(
λ(hL+1/nT )1/2

T∑
t=1

n−1∑
k=1

Rk,tεkt

))
eλ

2c2α/8

≤ e−λξE

(
exp

(
λ(hL+1/nT )1/2

T−1∑
t=1

n−1∑
k=1

Rk,tεkt

))
eλ

2c2α/8eλ
2c2β/8

≤ e−λξeλ
2(nc2α+Tc

2
β)/8 = e−2ξ

2/(nc2α+Tc
2
β) = op(1),

where we set λ = 4ξ/(nc2α + Tc2β) and the feature of independent εkt has been applied. Meanwhile, replacing

(nThL+1)1/2ĤS ∗
d̂

(τ, x) by −(nThL+1)1/2ĤS ∗
d̂

(τ, x) yields the following result

Pr
(

(nThL+1)1/2ĤS ∗
d̂

(τ, x) < −ξ
)

= op(1).

Combining results gives

Pr
(
|ĤS ∗

d̂
(τ, x)| > ξ

)
= op

(
(nThL+1)−1/2

)
. (59)

Therefore, (58) follows.
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