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Abstract

Classical General Equilibrium models are discrete-time and assume away financial

frictions, especially endogenous default and liquidity. We develop a continuous time

stochastic macroeconomic model that incorporates both features. We identify the default

channel that accelerates the rate of decrease of leverage and consequently investment.

We also assess the equilibrium trade-off relationship between money supply and default

penalty. We show that there exists an optimal monetary and regulatory mix, which

achieves optimal levels of equilibrium welfare.

⇤
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1 Introduction

The global financial crisis (2008-10) underscored the importance of endogenous default

when studying financial crises. The role of default has now recognised as a necessary

ingredient of any attempt to assess the interaction of regulatory and monetary policy

(see [Goo+18]). Indeed liquidity and default should be studied contemporaneously

since one can not logically study the occurrence of default absent of the liquidity needs,

Hence, the introduction of default in liquidity based models is warranted as the recent

experience of the global financial crisis demonstrated clearly. A series of continuous

time general equilibrium models, such as [B214], [HK11] and [HK13], addressed the

entire dynamics of the economy. Furthermore, there are evident differences between the

steady economy usually analysed under classical discrete-time macroeconomic literature

and the long term behavior of an economy which incorporates financial frictions and

aggregate shocks considered in [B214] and [BS16a]. This contrast is primarily attributed

to the existence of the endogenous risk that is induced by the economy which shifts

the equilibrium dynamics far from the situation where no such risk is accounted for.

Continuous time frameworks have the advantage that they grasp this risk fully without

losing any second order effects.

Until the global financial crisis, important financial frictions such as liquidity and de-

fault, were omitted in the mainstream macro models, which were also constructed on a

discrete time structure. There are two principal reasons why most of the DSGE litera-

ture fails to incorporate default. First, there is great difficulty in modeling it. Second,

when default coexists with other financial frictions, the computational complexity sub-

stantially increases. Excluding default, however, causes uncertainty to policy makers

and regulators, to estimate the effects of their proposals.1. A rational approach mod-
1
A comprehensive survey of modelling liquidity and default is included in [Goo+18].
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elling default would also allow for a strategic default whenever the default cost is lower

than the effective benefit.

Until now, there is no investigation regarding the interaction of endogenous default

and liquidity in Continuous Time Finance. The advantages of using a continuous time

framework are the following. Firstly, as opposed to a discrete time setting, continuous

time frameworks (in most cases) guarantee smoothness of functions and variables, lead-

ing to simple first order optimality conditions that guarantee tractability. Tractability

allows for a closed-form characterization of equilibrium and, implicitly, more analytical

solutions prior to numerical optimization and simulations. For example, in our model,

we derive explicit closed form expressions for the loan repayment rate. The major-

ity of discrete time settings would require log-linear approximation around the steady

state solution, hence obviating the importance of the second moments of distributions.

Additionally, it has been widely argued by economists [BS16a] that continuous time

representation provides a more accurate depiction of reality. For example, agents do

not consume only at the end of the month or the end of the quarter. In a discrete

time setting linear time aggregation within a quarter and a non-linear across quar-

ters is implicitly assumed. Consequently, the great advantage of using a continuous

time frameworks is the analytical tractability of the system’s dynamics and the lack of

necessity to log-linearize around the steady state.

The organization of the rest of this paper is as follows. The next subsection discusses

the related literature. Section 2 describes the model and defines the equilibrium dy-

namics. Section 3 solves for the equilibrium and characterizes its dynamics. Section 4

is dedicated to simulations and the results that stem from them and section 5 highlights

the comparative statics of the model. Section 6 provides the trade-off between money

supply and default penalty, and finally section 7 concludes.
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1.1 Related Literature

The model that will be presented below is a modified version of the working paper

[RT19], that in turn extends [B214] by introducing default on a nominal bond that is

exchanged between two agent. In our model, we introduce a central bank and fiat money

as a stipulated mean of exchange as in [DG92], so that to assess the relationship between

money supply and the default penalty. In [B214], the utility functions of the agents

are risk neutral whereas in [BS16a], the authors consider more general utility functions

as well as they allow for precautionary savings and endogenous equity issuance. The

above series of papers in continuous time finance can be thought as extensions of [BC98],

[HK13] and [HK11] which are the seminal papers in this literature. There is also a series

of papers in continuous time macrofinance regarding monetary economics. For instance,

in [BS16b] , money is a bubble as in [Sam58] and [Bew76] . In our paper however, the

banking sector creates inside money endogenously and there is an interaction between

monetary and macroprudential policy. Furthermore, in [Ach+17], an algorithm that

solves Bewley models with uninsurable endowment risk in continuous time is presented.

Finally, [DSS18] shows how risk premia are affected by monetary policy in a monetary

economy were banks are less risk averse.

The last class of models, are the ones that incorporate endogenous default. In these

models, every time each agent decides to default (due to a strategic decision or ill for-

tune), his utility function faces a real penalty proportional to the amount of debt. This

idea (which is also called � default) was first introduced in [Shu73]. [SW77] first intro-

duced a banking sector into a general equilibrium model and investigated the optimal

default penalty. They introduced bankruptcy penalties to represent the idea that the

banking sector might only imperfectly be able to enforce the repayment of its loans.

In this formulation, an agent suffered a loss of utility proportional to the number of
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dollars of his unpaid bank loans. [DG92] considers a banking sector in a monetary

economy and investigates the existence of monetary equilibrium when there are finite

bankruptcy penalties. [DGS05] extends the standard model of general equilibrium with

incomplete markets to allow for default and punishment by thinking of assets as pools.

Their work also captures the adverse selection and signalling phenomena due to the

presence of sellers with a proclivity for default having an incentive to sell dispropor-

tionately many promises to the pool, thus decreasing the delivery rate. Furthermore, in

[Tso+18], Martinez and Tsomocos developed a model that by including agent hetero-

geneity, liquidity and endogenous default in a pure exchange economy, addressed issues

of financial stability as well as suggesting appropriate policy responses. Their results,

suggest that liquidity and default in equilibrium should be studied contemporaneously

due to their interconnectedness and welfare effects. Finally, [EGT09] shows that, in a

monetary exchange economy, assets prices in a complete markets general equilibrium

are a function of the supply of liquidity by the Central Bank. An interesting result is

also shown, namely that higher spot interest rates increase state prices and sequentially

risk neutral probabilities. In our paper, we aim to prove a continuous time version of

this result.
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2 The Model

We develop a rigorous continuous time framework that can be used to investigate the

relationship between endogenous default and liquidity provided by Central Banks. A

novel endeavor is made to create an analytical yet tractable continuous time model

that incorporates liquidity and endogenous default. Optimal monetary responses will be

examined, when the above financial frictions are present, in a formal general equilibrium

framework. In particular we consider a stochastic continuous time economy that can

be viewed as a combination of the model considered by [RT19], (which is an extension

of [B214]) and the model of [DG92]. We examine the relationship of money supply,

provided by the central bank, with the bankruptcy penalty that each agents faces in

case he opts to default.

2.1 Model Setup

Let as begin with the complete probability space (⌦,F ,P) which is endowed with a

standard Brownian Motion Zt. We assume that Z0 = 0 almost surely. All economic

activity will be assumed to take place in the horizon [0,1). Let :

FZ(t) , �{Zs; 0  s  t}, 8t 2 [0, T ]

be the filtration generated by Z(.) and let N denote the P- null subsets of FZ(T ). We

shall use the augmented filtration:

F(t) , �{FZ(t) [N}, 8t 2 [0, T ]
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One should interpret the ��algebra F(t) as the information available to agents at time

t, in the sense that if ! 2 ⌦ is the true state of nature and if A 2 F(t), then all agents

will know whether ! 2 A. Note that F(0) contains only sets of measure one and sets

of measure zero, so every F(0) measurable random variable is almost surely constant.

We consider an economy with two agents, agent A and agent B, in which we introduce a

strategic ”dummy” that we shall call a monetary authority (Central Bank). Both types

of agents can own capital and money, but agents of type A are able to use capital in a

more productive way.

2.1.1 Technology

The aggregate amount of capital in the economy is denoted by Kt and capital owned

by an individual agent i by ki
t , where t 2 [0,1) is time. Physical capital kA

t held by

an agent of type A produces output at rate:

yAt , �AkA
t , 8t 2 [0,1) (1)

per unit of time, where �A is an exogenous productivity parameter. In a world without

fiat money, output could be modeled as a numeraire, and its price could be normalized

to one. However, in the current model, we will denote the price of output (and as

a result the price of the consumption good) as pct which is going to be determined

endogenously in equilibrium. Capital owned by agent A, with state space F ✓ R

satisfies the following Ito’s process:

dkA
t , (⇤(◆At )� �A)kA

t dt+ �kA
t dZt, 8t 2 [0,1) (2)
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where ◆At is the investment rate per unit of capital and dZt are exogenous aggregate

standard Brownian shocks defined above. We assume that F is an interval with end-

points �1  a < b  1 and that kA
t is regular in (a, b); kA

t reaches y with positive

probability starting at x. for every x and y in (a, b). We shall denote F = F the

natural filtration of kA
t . Function ⇤, which satisfies ⇤(0) = 0, ⇤0(0) = 1, ⇤0(.) > 0, and

⇤00(.) < 0, represents a standard investment technology with adjustment costs. In case

there is no investment, capital managed by agent A depreciates at rate �A. The con-

cavity of ⇤(◆) represents technological illiquidity, that is adjustment costs of converting

output to new capital and vice versa.

Agents of type B are less productive. Capital managed by agent B, with state space

F ✓ R, produces the following output:

yBt , �BkB
t , 8t 2 [0,1) (3)

with �B  �A and evolves according to

dkB
t , (⇤(◆Bt )� �B)kB

t dt+ �kB
t dZt, 8t 2 [0,1) (4)

with �B > �A, where ◆Bt is the agent’s investment rate per unit of capital. We assume

that F satisfies the same conditions as for agent A above.

2.1.2 Preferences

Agents A and B will have preferences that are generally characterized by the instan-

taneous utility function ui(cit) : R+ ! R, where i 2 {A,B}, and they also have con-
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stant discount factors �i. The consumption space defined above must also be square-

integrable:

ˆ 1

0

��cit
�� dt < 1

Agents want to maximize their lifetime utility function given by:

U(ci) ,
ˆ 1

0

e��itui(cit)dt, 8t 2 [0,1) (5)

The utility function obeys the standard assumption summarized below.

Assumption 1: The utility function ui : R+ ! R, is concave and continuously diffen-

tiable and also

u
0i , @ui

@cit
> 0 for i 2 {A,B}

Only agent A has access to borrow money from the Central Bank, and she needs to

repay the very next moment dt with interest rt. In this paper, default is modelled as

in [DGS05]. The extend of default is determined by the existence of non-pecuniary

penalties that are proportional to the amount of the contractual obligations that are

not repaid to the Central Bank. Penalties, incurred by default, are subtracted from the

utility function of the agents and can be thought as either reputational costs or material

sanctions that households suffer by deciding not to fulfill their contractual obligations.

We must now specify the utility UA, to A, of the outcome (cA, dA), where dA is the

percentage of outstanding balance owed to the central banks with respect to the total

nominal value of the capital in the economy that is given by dA =| (1�vt)(µA
t )

ptKt
|. In

case there is no incentive to return money to the bank, the agent would always choose
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vt = 0 and cAt and dA very large. Prices would go to infinity in this case, and hence

equilibrium will not obtain. Thus we consider, a penalty equal to ⌧max(0, dA) where

⌧ proxies the severity of the default penalty, ut is the repayment rate and µA
t is the

amount that agent A borrowed by the Central Bank. Hence, overall payoff of agent A:

UA(cA, dA) ,
1̂

0

e��it(uA(cAt )� ⌧dt+)dt (6)

where ⌫+ = max{0,⌫} for any real number ⌫.

The function UA incorporates a bankruptcy penalty through the rate ⌧ . The penalty

increases in harshness directly with the size of the debt. For different values of this

penalty, we can assess different bankruptcy regimes defined in terms of the harshness

of the default penalty.

2.1.3 Market for Capital

Agents A and B have the opportunity to trade physical capital in a competitive market.

We denote the equilibrium market price of capital in terms of output by pt with state

space F ✓ R and we will also assume that it will satisfy the following Ito’s process:

dpt , µp
tptdt+ �p

t ptdZt (7)

for some Borel functions µp
t : F ! R and �p

t : F ! (0,1). Using the definition above,

capital kt costs ptkt . Please note that, in equilibrium pt is determined endogenously.
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2.1.4 Return to Capital

When an agent A buys kt units of capital at price pt, by Ito’s Lemma the value of this

capital evolves according to:

d(kA
t pt)

kA
t pt

= (⇤(◆t)� �A � µp
t + ��p

t )dt+ (� + �p
t )dZt (8)

Hance, the total return that experts earn from capital (per unit of wealth invested) is:

drAk
t =

�A � ◆At
pt

dt+ (⇤(◆At )� �A � µp
t + ��p

t )dt+ (� + �p
t )dZt (9)

Similarly, the less productive agent B earns the return of

drBk
t =

�B � ◆Bt
pt

dt+ (⇤(◆Bt )� �B � µp
t + ��p

t )dt+ (� + �p
t )dZt (10)

2.2 Agent’s A Optimization Problem

The non-monetary net worth wA
t of an agent of type A who invests fraction xt of her

wealth in capital, consumes cAt dt and sells part of his production to agent B evolves

according to:

dwA
t = xtw

A
t dr

Ak
t + (xt � 1)wA

t dt� pctc
A
t dt (11)
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At the beginning of each period, agent A will buy capital from agent B, by using his

outside money (mA
t ) together with the moneys he will borrow from the bank. Thus, we

will have,

(xt � 1)wA
t dt  (µte

�rt +mA
t )dt (12)

An the end of each period, he repays his loan to the bank by selling part of the output

produced to agent B. Thus we will get:

vtµtdt 
bt(�A � iA)pctw

A
t

pt
xtdt (13)

Here bt is the proportion of output that agent A will sell and as a result it will be

between 0 and 1.

Finally, agent A will consume the rest of her output. That is,

pctc
A
t dt 

(1� bt)(�A � ic)pctw
A
t

pt
xtdt (14)

Note that xt represents the weight of wealth that agent A will invest in capital. In our

model, agent A will use leverage (xt > 1), and sequentially she will pay �(1�xt)wA
t to

agent B to buy capital.

She buys capital, by using her new monetary endowment ( mA
t ), and and borrowed

funds from the bank which are approximately equal to µA
t e

�rt ' µA
t /(1 + rt). In case

the agent defaults she repays vAt µA
t to the bank where vAt is the repayment rate which is
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bounded below by zero and above by one. In case xt is less than 1, there is no borrowing

at period t and hence there is no potential for default and vt is equal to one.

Formally, each agent type A solves

maxµt�0,xt�0,cAt,�0,0vAt 1,0bAt 1E[

1̂

0

e��At(uA(cAt )� ⌧td
A
t+)dt] (15)

where dAt+ = max(0, (1�vt)µt

ptKt
)

subject to the solvency constraint wA
t � 0, the dynamic budget constraints (11) and to

the cash in advance constraints (12) , (13) and (14).

2.3 Agent’s B Optimization Problem

Agent of type B behaves as follows. First, she sells capital to A, and thus she receives

fiat money equal to wA
t (xt � 1). Her goal is to maximize her utility and she can do so

by consuming the output that her capital produces as well as by buying consumption

goods from agent A. Thus, she will use the amount of money he received from agent

A, plus the private monetary endowment to buy consumption goods from A.

Similarly with agent A, the non-monetary net worth wB
t of B who invests fraction x̄t

of his wealth in capital and consumes cBt dt is,

dwB
t = x̄tw

B
t dr

Bk
t + wB

t (x̄t � 1)dt� pctc
B
t dt (16)

Agent B will also sells part of his capital in order to buy output as x̄t < 1. Therefore,
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(wB
t (x̄t � 1) + sbt)dt  mb

tdt (17)

Formally, each Agent of type B solves

maxx̄t,,�0,cBt,�0,sBt �0,E[

1̂

0

e��Bt(u(cBt )dt] (18)

subject to the solvency constraint wB
t � 0, the dynamic budget constraints (16) and

the cash-in-advance constraint (17).

2.4 Equilibrium

Intuitively, an equilibrium is characterized by a map from shock histories {ZS, s 2 [0, t]},

to prices pt and pct and asset allocations such that, given rational expectation prices,

agents maximize their expected utilities and markets clear. To define an equilibrium

formally, we denote the set of agents of type A to be the interval I = [0, 1] and index

individual experts by i 2 I. Similarly, we denote the set of agents of type B by J = (1, 2]

with index j.

We now proceed by stating the market clearing conditions and finally defining the

equilibrium.

2.5 Market Clearing

The three markets that clear in equilibrium 8t 2 T are the capital, commodity and

money markets.
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in the model that need to clear, capital, commodity and money market.

2.5.1 Capital Market

The total capital held by the firms plus the total capital held by the households should

be equal to the total supply of capital i.e.

ˆ 1

0

ki
tdi+

ˆ 2

1

kj
tdj = Kt, 8t 2 [0,1) (19)

where Kt is the total supply of capital. We hasten to add that the total supply of capital

in the model is not fixed since both agents create new capital through their production.

In addition, the following equation describes the evolution of the total supply of capital,

dKt ,
✓ˆ 1

0

�
⇤
�
◆it
�
� �
�
ki
tdi+

ˆ 2

1

�
⇤
�
◆jt
�
� �
�
kj
tdj

◆
dt+ �KtdZt, 8t 2 [0,1) (20)

2.5.2 Money Market

Money market equates money supply with money demand. That is:

µte
�rtdt = Mtdt (21)

2.5.3 Commodity Market

Finally, if the capital and money market clear then the market for consumption also

clears, i.e.,

ˆ 1

0

ki
t

�
�A � ◆it

�
di+

ˆ 2

1

kj
t

�
�B � ◆jt

�
dj =

ˆ 2

1

cjtdj +

ˆ 1

0

citdi, 8t 2 [0,1) (22)
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Now, we are in a position to formally define the equilibrium of our economy.

Definition 1. An equilibrium in this economy consists of the stochastic processes of

capital and consumption prices {pt, pct , t � 0}, the interest rate {rt, t � 0}, the invest-

ment, consumption, default and borrowing decisions for both agents i.e. {(ki
t, ◆

i
t, c

i
t, vt, µt) , t � 0}

for agent A (i 2 [0, 1]) and
��

kj
t , ◆

j
t , c

j
t

�
, t � 0

 
for agent B (j 2 (1, 2]). These processes

should satisfy the following two conditions:

1. Given the price processes pt, pct and rt, each agent of type A (i 2 [0, 1]) and

each agent of type B (j 2 (1, 2]) maximize their objective functions (15) and

(18) respectively with the set of choice variables {(ki
t, ◆

i
t, c

i
t, vt, µt) , t � 0} and

��
kj
t , ◆

j
t , c

j
t

�
, t � 0

 
, respectively, subject to their corresponding budget constraints.

2. Capital, consumption and money markets clear.

3 Characterization for Equilibrium

In this section, we will discuss how to find the equilibrium prices pt and pct , the agents

’ consumption decisions, as well as the optimal repayments rates given the history

of macro shocks {Zs, 0  s  t}. Furthermore, we will present a simple proof that

establishes the relationship between money supply and the default penalty in the case

of logarithmic utilities. For computational simplicity, we assume that all the money

in the economy will be homogeneous of degree 1 with respect to the total capital of

the economy Kt.. Put differently, we conjecture a map between liquidity and capital

formation at every point that allows us a computationally tractable solution that is

confirmed in equilibrium.

We first start with some definitions.
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Definition 2. The entire non-monetary wealth of agent A and agent B is given, re-

spectively, by summing up their individual wealth, that is:

Wt =

ˆ 1

0

wi
tdi W t =

ˆ 2

1

wj
tdj, 8t 2 [0,1)

Please observe that clearing conditions (21) become,

ˆ 1

0

xi
tw

i
tdi+

ˆ 2

1

xj
tw

j
tdj = ptKt, 8t 2 [0,1) (23)

Wt +W t = ptKt (24)

ˆ 1

0

xi
tw

i
t

�
�Ai
t � ◆Ai

t

�
di+

ˆ 2

1

xj
tw

j
t

⇣
�Bj � ◆Bj

t

⌘
dj = pt

ˆ 2

1

cjtdj + pt

ˆ 1

0

citdi (25)

We now provide the definition of the most important state variable of our economy, that

is the proportion of wealth agent of type A possesses. By representing each variable in

the model in terms of ⌘t which is bounded between 0 and 1, we can fully characterize

the equilibrium variables.

Definition 3. The proportion of wealth that Agent A possesses is given by,

⌘t =
Wt

Wt +W t

(26)

We further postulate that the dynamics of ⌘t evolve as follows,

d⌘t
⌘t

= ↵(⌘t)dt+ �(⌘t)dZt (27)
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By using (25) and (27), we obtain the equilibrium condition,

⌘t =
Wt

ptKt
(28)

The entire dynamics of the model are being driven by ⌘t. Evidently, in equilibrium we

have,

xt 
1

⌘t
(29)

which means that the leverage that agent A will use is bounded above, by the maximum

leverage she may obtain. The above constraint will be binding. When ⌘t is large then

xt =
1
⌘t

in equilibrium, which implies that agent A is holding all the capital. Note that

in [B214] all agents use risk neutral utilities, and thus the optimal leverage would be

the maximum possible. Consequently, if she leverages to her maximum, only corner

solutions obtain!

3.1 Internal Investment

Hereafter, we proceed by defining the investment function ⇤ as follows,

⇤(ijt) = ln(ijt + 1), 8t 2 [0,1), j 2 {A,B}

which satisfies all standard assumptions discussed in section 2.1.1. In this model we do

not allow for disinvestment, thus we also assume that ijt � 0.
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3.2 Agent’s A optimization Problem

Agent A maximizes her objective function (15) subject to constraints (11), (12), (13)

and (14). We now fully characterize her optimal consumption cAt , her optimal invest-

ment iAt , the optimal amount of output that she sells to agent B, the optimal amount

of money she borrows µt and the optimal repayment rate vt.

Proposition 1. Assume that all agents have the same logarithmic utility. Then:

i) The optimal consumption is given by :

pctc
A⇤
t =

ptKt

⌧

ii) The equilibrium interest rate r⇤t is given by:

r⇤t = ln
⌧(

�A�◆At
pt

)pct+1/⇢(⇤(◆At )���µp
t+��p

t +1)�⌘t1/⇢(�+�p)2xt

⌧

iii) The optimal investment rate ◆A⇤
t is given by:

iA⇤
t = pt

⌧⇢1pct
� 1

Proof. The Hamiltonian-Jacobian-Bellman (HJB) equation of agent A is given by:

⇢1V = maxbt,xt,cAt ,µt,vt ln c
A
t � ⌧

ptKt
(1� vt)µt + �1(µte

�rt +mA
t � (xt � 1)wA

t )+

+�2(
bt(�A�◆At )pctw

A
t

pt
xt�vtµt)+�3(

(1� bt)(�A � ◆At )p
c
tw

A
t

pt
xt�pctc

A
t )+(

�A � ◆At
pt

+⇤(◆At )��A�µp
t+��

p
t )+

�pctc
A
t )

dVt
dwt

+ (xtwt(�+�p
t ))

2

2
d2Vt

dwA2
t

+ dV
d⌘t

{drift of ⌘t}+ d2V
d⌘2t

{vol of ⌘t}
2
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where �1,�2 and �3 are the corresponding langrage multipliers of constraints (12), (13)

and (14).

The first order conditions with respect to cAt , vt, and µt are given by:

1

cA⇤
t

= pct
dVt

dwA
t

+ �3p
c
t (30)

⌧

ptKt
= �2 (31)

⌧(1� vt)

ptKt
+ �1e

�rt + �2vt = 0 (32)

Using equation (32) we get:

⌧

ptKt
= �1e

�rt (33)

From (32) and (34) we observe that the multipliers for constraints (12) and (13) are

positive and thus by Kuhn-Tucker the constraints must bind.

Now, by taking the first order condition with respect to bt (the percentage of output

that he sells to Agent B), we obtain:

� dVt

dwt
+ �2 � �3 = 0 () ⌧ptKt = �2 =

dVt

dwt
+ �3(34)

By combining the above result with equation (31) we get that optimal consumption has

to be:
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pctc
A⇤
t =

ptKt

⌧(35)

Now, the first order condition with respect to xt, becomes:

xtw
A
t
2
(�+ �p

t )
2 d

2Vt

dwA2

t

+ ((1� bt)
�A � ◆At

pt
+⇤(◆At )� �A � µp

t + ��p
t + 1)wA

t

dVt

dwA
t

� �1w
A
t +

+�2(
bt(�A � iAt )p

c
tw

A
t

pt
) + �3(

(1� bt)(�A � iAt )p
c
tw

A
t

pt
) = 0

Here, we just have to use equation (36) in order to eliminate of bt. Consequently, we

observe that wA
t cancels out as well and therefore we solve for the equilibrium interest

rate:

r⇤t = ln
⌧(�

A�◆At
pt

)pct + 1/⇢(⇤(◆At )� � � µp
t + ��p

t + 1)� ⌘t1/⇢(� + �p)2xt

⌧

The final step that concludes the proof is finding the optimal investment rate iA⇤
t .

However, this is just a static problem since iAt appears only multiplicatively with �2

and the dVt

dwA
t

terms of the HJB.. Hence, all the other terms of (35) can be safely ignored.

Thus by taking first order conditions we obtain:

� ⌧pct
pt

+ 1
⇢⇤

0(◆At ) = 0 () ⇤0(◆At ) =
⇢⌧pct
pt

Finally, by choosing ⇤(◆At ) = ln(◆At + 1) , the proof is concluded.
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Note that by choosing value function equal to V (wA
t , ⌘t) =

ln(ptKt)
⇢ +f(⌘t) we can verify

that the HJB is satisfied (i.e. is all wA
t terms cancel out).

3.2.1 Agent’s B Problem

Agent B optimizes her utility function (18) subject to its net worth evolution (16)

and her cash-in advance (17). The proposition below, solves B’s optimal choices for

consumption cBt , leverage xt (expected to be negative), and investment ◆Bt .

Proposition 2. Agent’s B optimal choices for consumption, leverage and investment

are given by the following equations

xt =
E[drkt ]/dt + 1

(� + �p
t )

2 ◆t =
pt
pct

� 1 cBt = ⇢2w
B
t (36)

Proof. Let

V (t, wt, ⌘t) = supxt�0, ◆Bt t
�0, "t�0,st�0Et

ˆ +1

t

e��s
⇥
ln
�
"tw

B
t

�⇤
ds

�
(37)

where "t =
cBt
wt

.

We have that
d⌘t
⌘t

= ↵(⌘t)dt+ �(⌘t)dZt

.

Consequently, the HJB equation that V must satisfy to be optimized is given by

⇢2V = supxt�0, ◆t�0, "t�0,st�0{e�⇢1t ln
�
cBt
�
+

dV

dwB
t

�
drift of wB

t

 
+

d2V

dwB
t
2

�
vol of wB

t

 

2
+
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+
dV

d⌘t
{drift of ⌘t}+

d2V

d⌘2t

{vol of ⌘t}
2

} (38)

We conjecture that the solution will satisfy the form V = e��t

✓
f (⌘t) +

log(wB
t )

⇢2

◆
for

some function f . By direct substitution, we obtain:

⇢2f (⌘t) + ln
�
wB

t

�
= supxt�0, ◆t�0, "t�0{ln

�
cBt
�
+

+
1

⇢1wB
t

⇥
xtwt

�
E[drkt ]/dt + 1

�
� pctc

B
t

⇤

� 1

⇢1

"
((� + �p

t )wt)
2

2

#
+ ⌘tf

0
(⌘t)↵ (⌘t) +

1

2
⌘2t f

00
(⌘t) �

2 (⌘t)} (39)

Clearly, when maximizing with respect to ◆t, we obtain ⇤
0
(◆t) =

pt
pct

, which similarly to

agent’s A problem gives

◆Bt =
pct
pt

� 1

Set bt = E[drkt ]/dt+1. Re-arranging equation (39) and taking into account that f should

satisfy it for all values of ⌘t, then

⇢2f (⌘t)�
1

�
� ⌘tf

0
(⌘t)↵ (⌘t)�

1

2
⌘2t f

00
(⌘t) �

2 (⌘t)�

� supxt�0
1

⇢2


btxt �

1

2
((� + �q

t ) xt)
2

�
� sup"�0t


� "t
⇢2

+ ln ("t)

�
= 0 (40)

Finally, optimizing with respect to " gives

"t = ⇢2 =) cBt = ⇢2w
B
t
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Also optimizing btxt � 1
2 ((� + �p

t ) xt)
2, with respect to xt � 0 we have:

xt =
bt

(� + �q
t )

2 =
E[drkt ]/dt + 1

(� + �q
t )

2

However, to fully characterize the equilibrium, we need to derive the evolution of the

state variable ⌘t. Define the fraction of capital held by agent A by

 t =

´ 1

0 ki
tdi

Kt

This entails that, in equilibrium, 1�  t =
´ 2
1 kjtdj

Kt
, the fraction of capital held by agent

B, is equal to

Proposition 3. In equilibrium

xt =
 t

⌘t
xt =

1�  t

1� ⌘t
(41)

Proof. It follows immediately from the clearing condition (24).

Proposition 4. The evolution of the expert’s wealth relative to the entire economy is

given by

d⌘t
⌘t

=
 t � ⌘t
⌘t

✓
drkt + (1� �A � ◆At

pt
pct � (� + �q

t )
2 + (1�  t)

�
�B � �A

�
)dt

◆
(42)

Proof. Aggregating the wealth evolution over all experts and using proposition 3 we

get

dWt =  tptKtdr
k
t �  tptKt(

�A � ◆At
pt

)pctdt�Wtdt (43)
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By Ito’s quotient rule2, we have

d⌘t
⌘t

=
dWt

Wt
� d (ptKt)

ptKt
+

✓
d (ptKt)

ptKt

◆2

� dWt

Wt

d (ptKt)

ptKt
(44)

In addition, Ito’s product rule and the fact that the optimal investment choice is iden-

tical for both agents give

d (ptKt)

ptKt
= drkt �

A� ◆At
qt

pctdt� (1�  t) (� � �) dt (45)

where the first two terms of the right-hand side are the expert capital gains and the

third term is the adjustment for the household held capital. Now, from (46) we obtain

d⌘t
⌘t

=
 t � ⌘t
⌘t

✓
drkt + (1� �A � ◆At

pt
pct � (� + �q

t )
2 + (1�  t)

�
�B � �B

�
)dt

◆

and this concludes the proof.

Corollary 1. The drift and volatility of ⌘t are given by

↵ (⌘t) =
 t � ⌘t
⌘t

 
E
⇥
drkt
⇤

dt
+ 1� �A � ◆At

pt
pct � (� + �q

t )
2 + (1�  t)

�
�B � �A

�
!

(46)

and

� (⌘t) =
 t � ⌘t
⌘t

(� + �p
t ) (47)

Proof. It follows immediately from proposition 4 and the fact that drkt has volatility

� + �p
t .

2
Ito’s quotient rule states that

d(X/Y )
X/Y = dX

X � dY
Y +

�
dY
Y

�2 � dX
X

dY
Y .
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Now by knowing the drift and the volatility of our state variable, we can calculate the

the drift and the volatility of the price of capital.

Proposition 5. The drift of the price of capital is given by

µp
t =

p
0
(⌘t)
pt

(xt⌘t � ⌘t)
⇣
⇤
�
◆At
�
� �A + ��p

t + 1 + (� + �p
t )

2 + ⌘t(1� xt⌘t)(�
B � �A)

⌘

⌘t + (xt⌘t � ⌘t)
p0 (⌘t)
pt

+

+

p
00
(⌘t)
pt � (⌘t)

2 ⌘2t

⌘t + (xt⌘t � ⌘t)
p0 (⌘t)
pt

, (48)

where � (⌘t) is given by equation (48) and the volatility of the price of capital, �p
t , is

given by

�p
t =

(xt⌘t � ⌘t)
p
0
(⌘t)
pt

�

1� (xt⌘t � ⌘t)
p0 (⌘t)
pt

(49)

Proof. To prove this, we will use Ito’s lemma.3

Applying Ito’s lemma to the function pt = p (⌘t), we get

dpt = p
0
(⌘t) d⌘t +

1

2
p
00
(⌘t) (d⌘t)

2

Recall that
d⌘t
⌘t

= ↵(⌘t)dt+ �(⌘t)dZt

3
Ito’s formula states that if you have a function f of a random process St then the evolution of f

is given by

df (St) =
#f (St)

#St
dSt +

1

2

#2f (St)

(#St)
2 (dSt)

2
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From this last equation, we obtain that

(d⌘t)
2 = ⌘2t �(⌘t)

2dt

and thus, substituting the last two equations into the first one and dividing by pt, we

obtain

dpt
pt

=

 
⌘t↵ (⌘t)

p
0
(⌘t)

pt
+
⌘2t � (⌘t)

2

2

p
00
(⌘t)

pt

!
dt+ ⌘t� (⌘t)

p
0
(⌘t)

pt
dZt (50)

From proposition 4, we have that

↵ (⌘t) =
 t � ⌘t
⌘t

 
E
⇥
drkt
⇤

dt
+ 1� �A � ◆At

pt
pct � (� + �p

t )
2 + (1�  t)

�
�B � �A

�
!

(51)

and

� (⌘t) =
xt⌘t � ⌘t

⌘t
(� + �q

t )

Thus, we have that

�p
t =

(xt⌘t � ⌘t)
p
0
(⌘t)
pt

�

1� (xt⌘t � ⌘t)
p0 (⌘t)
pt

Finally, by combining the above equation for ↵ (⌘t) and corollary 1 of proposition 4

equation (51) obtains. It gives the drift of the price of capital as a function of exogenous

variables, the state variable ⌘t and the leverage xt. This concludes the proof.

3.2.2 Optimal Default, Leverage and Borrowing

We derive closed formed solutions for optimal default, optimal amount of output that

agent A sells to agent B as well as the optimal borrowing µt. From equations (32) and
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(34) we observe that the langrange multipliers are positive and so the constraints are

binding. The following theorems summarise our results.

Proposition 6. Assume that all agents have logarithmic utilities. Then:

i) The optimal borrowing is given by

µ⇤
t = ((xt � 1)pct⌘t �mA

t
⇤)ert,

ii) The equilibrium default is given by

vt =
Mt+mA

t +mB
t

ertMt
,

iii) Agent A sells to agent B the following proportion of his output

bt =
⌧vtµt

pt+⌧vtµt
,

iv) The price of consumption is given by

pct =
pt+⌧tpt⌘txt�⌧mA

t
Mt+mA

t +mB
t

Mt

�⌘txt�⌧(xt�1)⌘t
Mt+mA

t +mB
t

Mt

.

Proof. Since �t is positive, the inequality (12) binds. Consequently, (xt � 1)wA
t =

(µte�rt +mA
t ) ) (xt � 1)wA

t = (µ⇤
tKte�rt +mA

t
⇤Kt) ) (xt�1)wA

t
Kt

= (µ⇤
t e

�rt +mA
t
⇤)

By using the definition of ⌘t we get

µ⇤
t = ((xt � 1)pct⌘t �mA

t
⇤)ert .

This establishes the first claim. In order to find the optimal default we use equation

(22). In equilibrium, we have that money supply is equal to money demand, and hence

we have:

ertt Mtvt = Mt +mA
t +mB

t
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The right hand side shows the money will be repaid to the bank, and the left hand side

the amount of money that the agent A repays to the bank. Solving for vt, we obtain

an equation for optimal default.

In order to find the optimal proportion of output that agent A will sell to agent B,

we first observe that constraints (13) and (14) are binding, since the corresponding

multipliers are not zero. By dividing these equation by parts we obtain:

bt
1� bt

=
⌧vtµt

pt

By adding the both numerators to their corresponding denominator, we obtain:

bt =
⌧vtµt

pt + ⌧vtµt

Finally, we need to find the optimal price of consumption. Using the facts that (14) is

binding, we obtain

1

⌧
=

(1� bt)(�A � iAt )p
c
t

pt
xt⌘t )

1

⌧
=

(1� ⌧vtµt

pt+⌧vtµt
)(pct�

A � pt)

pt
xt⌘t )

)
p2t +t ((xt � 1)pct⌘t �mA

t
⇤)M+mA

t +mB
t

Mt

⌧
= (pct�

A � pt)xt⌘t )

pct =
p2t + ⌧ptxt⌘t � ⌧ptmA

t
Mt+mA

t +mB
t

Mt

�Axt⌘t � ⌧pt(xt � 1)⌘t
Mt+mA

t +mB
t

Mt

.
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This concludes the proof.

4 Simulations and Results

We solve a numerical example to assess the dynamics of our model.. For our simulation

we use the following parametrization: ⌧ = 3.5, �A = 1.2, �B = 0.8, �A = 0.6, �B, ⇢1 =

0.07, ⇢2 = 0.06,M = 2,ma = 0.02 and mb = 0.03. We plot explicitly the interest rate

rt, the repayment rate vt and the price of capital pt and the price of consumption pct

with respect to ⌘t. But before doing that we need to find the optimal leverage which

will be given for the following proposition. Hereafter, for the sake of simplicity, we drop

the subscript t from ⌘t and all exogenous parameters.

Proposition 7. The optimal leverage xt is given by:

xt =

8
><

>:

�b(⌘)+
p

b(⌘)2�4a(⌘)�(⌘)

2a(⌘) if 1
⌘ � xt

1
⌘ otherwise,

where

a(⌘) = ⌘2(M +ma +mb)�A � ⌘(⌘(M +ma)(�̃B � �A) + ⌘�A(M +ma +mb)

b(⌘) = ��A⌘2(M +ma +mb)� �A⇢1⌘(1� ⌘)(M +ma)� (1/⌧(M +ma)�̃B � �A⌘(M +

ma +mb))⌘ + ⌘(M +ma)(�̃B � �A⌘�̃B(M +ma +mb)

and

�(⌘) = 1/⌧(M +ma)�̃B � �A⌘(M +ma +mb)
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Proof:

Follows immediately from Proposition 6.

We plot the result of Proposition 7 and obtain a graph depicting the leverage of agent

A. For this example, we find that leverage is less than 1/⌘ and, therefore, a solution

exists.

Figure 1: The leverage of Agent A

By using this xt, we can use equations i) and iv) of proposition 6 and we can solve for

the price of consumption pct and for the price of capital pt.
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(a) Price of Consumption (b) Price of Capital

Figure 2: Prices in the model

The price of capital increases with the proportion of wealth that Agent A holds. This

is expected since as the productive agent A becomes richer, he demands more capital,

hence the price the capital increases. The same applies to the price of consumption.

Using the equations for prices and we can explicitly find the optimal investment it which

we plot with respect to ⌘ in the following figure:

Figure 3: Optimal Internal Investment
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With the above in hand, we can calculate the drift µp and the volatility �p using the

expression of Proposition 5. The result we obtain are:

(a) Drift (b) Volatility

Figure 4: Drift and Volatility of Price of Capital

Finally, now we have all the necessary endogenous variables to obtain the endogenous

interest rate rt as well as the repayment rate vt. This is done by just replacing these

endogenous variables in equations ii) of Proposition 1. The results we obtain are shown

below:

(a) Endogenous Interest Rate (b) Repayment Rate

Figure 5
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We observe that as the proportion of wealth of Agent A increases it becomes easier for

this agent to default strategically

as high wealth indicates tolerance to not repaying the loan back. As a result the

repayment rate decreases. This, in turn, will be reflected to a default premium in the

endogenous interest rate which increases. The relative dynamics of these two variables

can be shown below.

Figure 6: Endogenous Interest Rate vs Repayment Rate

The last result we plot is the response of bt which is the proportion of output that Agent

A sell to Agent B in order to finance his loan. We observe that Agent A sells a lower

proportion of output when his proportion of wealth is higher. This is because in this

case Agent A buys less capital from Agent B, as a result he needs to repay less, thus

he will need to sell lower output. This can be shown in the following diagram.
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Figure 7: Proportion of Agent’s A output sold

5 Comparative Statics

In this section, we investigate the relationship of our basic endogenous quantities with

the default penalty ⌧ . In particular, the following propositions show how leverage xt,

the price of capital pt, the price of consumption pct , the proportion of output sold bt and

the interest rate rt are related to ⌧ .

Proposition 8. The optimal leverage xt increases with ⌧ .

Proof. Follows immediately from considering the definition of optimal leverage using

Proposition 7 and taking the first order conditions with respect to ⌧ . It follows that
@xt
@⌧ > 0.
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In the following graph we plot the optimal leverage for different values of ⌧ . We observe

the outcome of proposition 8 in practice. The maximum leverage possible is given by
1
⌘t

and for higher ⌧ , we obtain larger xt. The reason for that is that as we increase ⌧ ,

Agent A has to default less (otherwise he will incur a higher penalty), and thus the

repayment rate will be increased as well. As a result, the default premium will go down,

leading to a greater capital acquisition from agent A.

Figure 8: Leverage for different values of ⌧

Then relation of the price of capital and the price of consumption are given in the

following proposition.

Proposition 9. pt and pct decrease with ⌧ . On the other hand bt will increase and it

approach 1 for very large values of ⌧ .

Proof. Since we have assume that all money in the economy are homogeneous of degree
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one with respect to capital kt, the cash in advance constraint (12) can be re-written

as : pt(xt � 1)⌘t = M⇤ + ma⇤ , pt = M⇤+ma⇤

(xt�1)⌘t
. From proposition 8 we know that

xt increases with ⌧ , thus pt will decrease. Similar for pct . Now, bt in equilibrium will

be given by: bt =
⌧(M⇤+ma+mb)

pt+⌧(M⇤+ma+mb) . As ⌧ increases, pt decreases and the (same) terms

⌧(M⇤ +ma +mb) in the numerator and the denominator will dominate. Thus bt will

approach (but never become) 1.

The main lesson of proposition 9 is that higher ⌧ will force Agent A to sell more

output in order to receive more cash to repay his outstanding debt so that he can avoid

penalization. We can now proceed to the interest rate rt and the repayment rate vt.

Proposition 10. rt will decrease with ⌧ and vt will increase.

Proof. Equilibrium rt is given by proposition 1. With direct calculations we obtain that
@rt
@⌧ < 0. From the money market we also have the clearing condition vt(1 + rt)Mt =

Mt +ma +mb, we secure the direct inverse relationship between the interest rate and

the repayment rate.

Proposition 10 highlights what we expected. With higher default penalty, we force

Agent A to repay more debt and thus he defaults less. This forces the repayment rate

to increase, and the default probability to go down. As a result, the default premium

reflected in the interest rate will decrease and , thus, the interest rate will decrease.

6 Money Supply and Default Penalty Trade-off

In this section we investigate the equilibrium trade-off between Money Supply M and

the default penalty ⌧ . In order to do that we need to find the equilibrium welfare. We
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do this in the following proposition.

Proposition 11. The welfare function is given by:

W = E[

1̂

0

e��At(ln(cAt )�A
t+)dt+

1̂

0

e��Bt ln(cBt )dt]

= E[

1̂

0

e��At(ln(
M +ma

⌘t(xt � 1)pct⌧
)� ⌧(xt � 1)⌘(rt + 1)M

M +ma

+
⌧(M +ma)⌘(xt � 1)

M +ma
dt+

1̂

0

e��Btln(
�A(1� ⌘)M

⌘t(xt � 1)pct
dt] (52)

Proof: From first order condition for consumption of Proposition 1, we obtain that

cAt = ptKt

pct⌧
= wA

t
⌘tpct⌧

. However we know that wA
t can be captured from the cash in advance

constraint (12) which binds, thus wA
t = M+mA

xt�1 . As a result we get cAt = M+mA

(xt�1)⌘tpct⌧

Consumption of agent B is given by cBt = ⇢BwB
t = ⇢B(1 � ⌘t)ptKt =

⇢B(1�⌘t)(M+mA)
(xt�1)⌘tpct

.

The penalty term is given by ⌧(1�vt)]µt

ptKt
= ⌧µt

ptKt
� ⌧vtµt

ptKt
= ⌧(M+ma)⌘(xt�1)

M+ma � ⌧(xt�1)⌘(rt+1)M
M+ma

Using Proposition 11, we can plot the welfare function W for different values of ⌧ and

Mt, for given ⌘t. For example, for ⌘t = 0.2 we obtain the following graph.

From figure 9, it becomes evident that as there is no monotonic relationship between

money supply and default penalty and welfare. Instead, we see that there is a combina-

tion of money supply and default penalty which maximizes welfare. If, in an economy,

we are able to capture this combination, then we would clearly have welfare improv-

ing effects. In particular, as the penalty decreases, 2 things will happen in the econ-

omy.Firstly, the lower the penalty, the more agent A will default. Thus agent A will
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Figure 9: Welfare function as a function of Money Supply and Default Penalty

reduce his output for sale (and thus consumption) to agent B, since he will decide he

doesn’t need to get money from agent B to repay his debt. This will decrease the

payoff of agent B. Thus, increasing default penalty decreases the utility of agent A and

increases utility of agent B. Thus there must be a point in between which maximizes

welfare. Please not that more default, generates higher default premia, making agent’s

A ability to borrow money harder. This can be clearly seen in figure 10 where the

relationship of the interest rate with different ⌧ and Mt is presented.
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Figure 10: Interest Rate as a function of Money Supply and Default Penalty

The repayment rate, which is shown in the next figure, clearly shows that the more

harsh the default penalty is, the less agent A decide to default (for ⌧ > 8 agent does

decides to repay fully). Furthermore, increasing the money supply will decrease the

repayment rate up to a point, and then the effect of any further increase will negligible.

Thus providing agent A will more money increases the chances of him not repaying his

obligations.
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Figure 11: Repayment Rate as a function of Money Supply and Default Penalty

A plausible question to ask, regarding the effect of the penalty on welfare discussed

above, is that for a given level a default penalty, say ⌧ ⇤, what is the money supply that

optimizes welfare? Does it exist, and if yes, is it unique? The problem we are interested

in can be formulated as:

maxMW (⌧ ⇤,M) (53)

Figure 12 illustrates that for every positive ⌧ < ⌧ ⇤ there exists a money supply which

maximizes welfare. The set of these points is shown with the dark colour. From the

figure we observe that there is a point (⌧ ⇤,M⇤) such that a deviation of M⇤ from this

point will reduce welfare. The reason for that is the following: in the presence of default,
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two things will happen. The first one is that Agent A will incur a penalty from not

repaying, thus there will be a welfare decrease. The second one is that Agent A will

reduce the output for sale to Agent B and he will consume the proceedings. Since we

consider logarithmic utilities, the logarithm of a small number decreases dramatically

to �1. Thus welfare will go further down through the reduction of the utility of

Agent B. A deviation from the point (⌧ ⇤,M⇤) through a decrease of M⇤ will decrease

welfare since smaller M⇤ will reduce the total output (agent A will buy less capital),

and thus the total consumption of agents will decrease reducing welfare. On the other

hand, an increase of M⇤ will cause higher output accumulation from Agent A, reducing

dramatically the utility of agent B, causing a reduction of welfare. Changing the default

penalty accordingly would have welfare improving effects.

Figure 12: Optimal money supply Mt for given ⌧

For given ⌘t we also present the equilibrium trade-off between Money Supply M and
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the default penalty ⌧ . That is, we find the set of Money Supply and default penalty

values that achieve a given and fixed level of welfare. Formally we are interested in all

⌧ and M such that,

W (⌧,M) = C (54)

where C represents a constant level of welfare.

Figure 13 illustrates the set of points we are interest in:

Figure 13: Trade-off between money supply Mt and ⌧

The above plot, indicates that there are four regions, and thus the combination of

monetary and regulatory policy depends on the initial conditions of the money supply

and the default penalty. The first region, is the one with low default penalty (so
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high default region) as well as low money supply. In this region we can perform two

policies. First, an increase in money supply has welfare improving effects, since agent

A increases the amount of capital he buys from agent B. Furthermore, and increase in

default penalty also has welfare improving effects since agent A will be forced to sell

more consumption to agent B (and thus her utility increases). Thus an expansionary

mix of policies would be appropriate here in order to improve economic welfare. The

second region, is the region with low default penalty and high money supply. In this

case, agent will buy too much capital from agent B, without selling her back enough

output. Here, contractionary monetary policy together with expansionary regulatory

policy would be the effective way to restore welfare. The third region is the one with high

default penalty and low money supply. High default penalty will reduce the welfare of

agent A, since forcing him to repay the loan, results in selling excessive output to agent

B. This, in turn, results in lowering agent’s A utility which lowers welfare. Increasing

the money supply so that agent A could produce more and/or making regulatory policy

more lenient, had welfare improving effects. The last region is the one with high initial

money supply and high default penalty. With high money supply, agent A will buy

excessive capital from agent B, leaving her with very low levels. In this case, we note

that, with low levels of default, agent A buys excessive levels of capital from agent B

and she needs to sell excessive amounts of output in order to repay the loan. This will

lead to decreased levels of welfare for agent A, leading to a welfare reduction. The

situation can be inverted by a contractionary mix monetary and regulatory policies.
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7 Conclusion and Future Research

In this paper, we presented a monetary continuous time economy with a central bank

and endogenous default. The setting of this economy is very similar to that of [RT19]

and [DG92]. Our aim is to find a relationship between the default penalty ⌧ and the

money supply M that the central bank provides. We showed that there is a combination

of monetary and regulatory policy, which achieves optimal welfare. Any deviation from

that point will give inferior levels of welfare. Thus, the optimal policy depends heavily

on the our starting point of money supply and default penalty. The results of this paper

extends [DGS05] which indicates, through an example, that default in GEI could have

welfare improving effects. Our paper does not only provides a unified mathematical

framework to assess the possible welfare improving effect of default in the economy, but

also introduces money into the game. To conclude, introducing a commercial banking

sector in the model in order to investigate the interaction between monetary policy and

financial stability, will be also a topic for future research.
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