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Abstract

In many settings, there is a dearth of instruments, which hampers economists’ ability

to investigate causal relations. We propose a quite general way to construct instruments:

“granular instrumental variables” (GIVs). In the economies we study, a few large firms or

countries account for a large share of economic activity. As they are large, their idiosyncratic

shocks a↵ect aggregate outcomes. This makes those idiosyncratic shocks valid instruments for

aggregate shocks. We provide a methodology to extract idiosyncratic shocks from the data,

this way creating GIVs. Those GIVs allow us to then estimate parameters of interest, including

causal elasticities.

We first illustrate the idea in a basic supply and demand framework: we achieve a novel

identification of supply and demand elasticities, based on idiosyncratic shocks to supply or

demand. We then show how the procedure can be adapted to handle many enrichments. We

provide initial illustrations of the procedure with two applications. First, we measure how

“sovereign yield shocks” spill over to other countries in the Eurozone. Second, we estimate

short-term supply and demand elasticities in the oil market. Our estimates match well existing

estimates that use much more complex and labor-intensive (e.g., narrative) methods. We

sketch how GIVs could be useful to estimate a host of other causal parameters in economics.
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1 Introduction

In many settings, there is a dearth of instruments, which hampers economists’ understanding of

causal relations (Ramey (2016); Nakamura and Steinsson (2018); Stock and Watson (2016, 2018);

Chodorow-Reich (2017)). We propose a general way to construct instruments: “granular instru-

mental variables” (GIVs). Those instruments in turn allow to tease apart causal relations in a wide

variety of economic contexts.

In the economies we study, many decisions are taken by a few large actors, such as firms, indus-

tries or countries. As has been observed before, those actors are often large, and their idiosyncratic

shocks (e.g., productivity shocks) a↵ect the aggregate ones.1

Those idiosyncratic firm- or country-level shocks are valid instruments for the aggregate shocks.

Now, we need a methodology to extract those idiosyncratic shocks, and the paper presents such a

methodology. This creates GIVs. Those GIVs then allow us to estimate parameters of interest.

We first illustrate the idea in a basic static setup with supply and demand (Section 2). It

is a classic case, and we show how GIVs allow for a novel estimation procedure: they yield an

instrument that allows us to estimate the elasticities of supply and demand. Indeed, idiosyncratic

demand shocks to large firms or countries give a valid instrument for demand change – and thus allow

one to estimate the elasticity of supply. They also allow us to estimate the elasticity of demand: the

idiosyncratic demand shock of a large firm impacts the price, which changes the demand of other

firms. We formalize those ideas, and present a way to “optimally extract” idiosyncratic shocks, this

way constructing optimal GIVs.

We will see that some conditions are needed to obtain valid GIVs. Hence, GIVs are not quite a

“free lunch” in constructing instruments, but a “very cost-e↵ective lunch” that yields instruments

at a modest cost.

Once the ideas are in place, we show in Section 3 how the procedure can be extended to handle

many enrichments, such as feedback loops, heterogeneity, and several exogenous factors. We specify

the procedure within this general framework.

Empirical illustrations We provide preliminary empirical results for two applications: sovereign

yield spillovers and the equilibrium of global crude oil markets.

First, we study sovereign yield spillovers in the Eurozone in 2009-2018. If a country has an

increase in its sovereign yield spread (i.e., on the yield on its government debt, minus the comparable

yield for Germany), how much does that “spill over” to other Eurozone countries? We present a

simple model that allows to think about that, and delivers a theoretically-grounded functional form

for the shape of the spillovers (the modeling device we use is partial mutualization of debt, and

we argue that other devices are likely to give a similar reduced form). Then, we use GIVs to

1Hence, economies are “granular”: their shocks are made of incompressible “grains” of economic activity, at the
firm, industry, or country level. This theme is laid out in Gabaix (2011), and developed in Acemoglu et al. (2012);
di Giovanni and Levchenko (2012); Carvalho and Grassi (2019).
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estimate that spillover. Specifically, we run a factor model for yield increases, and trace the impact

of an idiosyncratic sovereign yield shock of one country on the other countries’ yields. We find a

“multiplier” of 1.5 (1 signifying the absence of spillovers). One implication is that an idiosyncratic

increase of 200bps in the Italian yield spread leads to an increase of 20bps in the other countries’

yield spreads, implying a “pass-through” of 0.1.

Second, we use GIVs to estimate the short-term demand and supply elasticities in the global

crude oil market. Since the seminal work by Kilian (2009), who uses an ordered VAR to identify

the shocks in a structural VAR, an active literature explores sign restrictions, informative priors,

and narrative methods to estimate these elasticities (see for instance Kilian and Murphy (2014),

Baumeister and Hamilton (2019), and Caldara et al. (2018)). We use country-level oil supply

growth to construct the GIV, after removing common factors using principal components and

OPEC membership to construct an OPEC factor. We find that the granularly identified elasticities

are in the range documented in the literature. Moreover, given the apparent importance of demand

shocks in crude oil markets during the last 15 years, future work can use disaggregated data on (net)

imports, inventories, and oil consumption to sharpen the estimates and to estimate more general

models to understand price fluctuations in oil markets.

Uses of GIVs GIVs allow to “democratize” and “automatize” instruments, especially in macro-

finance where they have been rare. In standard practice, finding an instrument is a heroic and very

ingenious a↵air. For instance, the “China shock” (entry of China in the World Trade Organization,

Autor et al. (2013)) depends on detailed historical knowledge, and applies only to a specific time

period. With GIVs, we can have a more systematic way to obtain instruments, that can apply more

generally and over many time periods.

Once one thinks about causality and GIV procedures, the answers to many interesting questions

feel suddenly within reach. We sketch a few here, hoping that they will inspire other researchers to

investigate those and related topics with the help of GIVs.

Doom loops are the notion that when banks do badly, this will hamper the financial health of

the state (as the state may need to bailout banks), and hence will increase the yield on the sovereign

debt. This in turn will create a fall in bank returns, in a “doom loop” (Farhi and Tirole (2017)).

How important are those doom loops quantitatively? Using the idiosyncratic returns of large banks,

GIVs allow to estimate both channels, from banks to state and from state to bank. We plan to

pursue this application.

If the Turkish Lira (to take a concrete example) appreciates, how does that a↵ect Turkey’s

exports and borrowing? One could handle that via idiosyncratic demand shocks by large investment

funds for the Turkish Lira (Koijen and Yogo (2019) provide a methodology for demand systems).2

If there is an export boom, what’s the impact on the exchange rate, and the rest of the economy?

Idiosyncratic shocks to large exporters will be useful for that, as recent research has shown them

2See Caballero and Simsek (2018) and Gabaix and Maggiori (2015) for models along those lines.
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to be very large (di Giovanni et al. (2014); Gaubert and Itskhoki (2018); Kramarz et al. (2016)).

Do firm-specific hiring, investment and innovations spill over to peer firms operating in the same

product market (i.e., what is the sign and magnitude of strategic complementaries)? Idiosyncratic

innovation shocks to some large players will help construct the GIV.

How much do constraints of financial intermediaries (e.g., broker dealers) matter for asset prices?

The GIV will rely on idiosyncratic shocks to intermediary wealth, which may be related to shocks

to other parts of the banks.

How much do international shock propagate (e.g., how does a boom in Germany transmit to

the rest of Europe)? Using idiosyncratic shocks (di↵erentiating between productivity and demand

shocks) to countries will help us answer that question.

Likewise, how do regional “micro” shocks propagate into macro shocks? GIVs allow to measure

that, and also estimate a micro-to-macro multiplier.3

Related literature We relate to a number of literatures. We o↵er some brief pointers here, while

o↵ering a longer discussion in Section 6.2.

Instruments for macro. An active literature discusses identification strategies in macro (Ramey

(2016); Nakamura and Steinsson (2018); Stock and Watson (2018); Chodorow-Reich (2017)). We

add to it, by proposing to use GIVs, which are quite ubiquitous. There are lots of idiosyncratic

shocks, and GIVs allow us to construct them systematically.

Origins of aggregate fluctuations. A growing literature finds that a sizable amount of volatility is

“granular” in nature – coming from idiosyncratic shocks to firms or industries (see Long and Plosser

(1983); Gabaix (2011), Acemoglu et al. (2012); di Giovanni and Levchenko (2012); di Giovanni et

al. (2014); Baqaee and Farhi (2018a); Pasten et al. (2017); Carvalho and Grassi (2019)). We provide

tools that can tease that apart in the presence of loops. Datasets used in this literature can be

revisited forming GIVs which allow us to investigate causal relations. Gabaix (2011) introduces

the notion of “granular residual” – a weighted sum of proxies for idiosyncratic shocks, and shows

how idiosyncratic shocks to firms appear to explain about one third of GDP fluctuations. But that

paper does not take the crucial step to use this kind of concept as an instrument to measure causal

relations, e.g. in a demand and supply setting.

The idea that we propose is, in retrospect, so natural that we suspected it may have been

already proposed in the literature, perhaps in a forgotten paper in the 1940s. However, after

searching the literature and consulting with many experts, we could not find it. We are quite sure

that this idea has not been systematically implemented in mainstream economic applications. The

idea to use idiosyncratic shocks as instruments to estimate spillover e↵ects has been explored in

several creative papers, as we discuss in more detail in Section 6.2, such as Leary and Roberts

(2014b), Amiti and Weinstein (2018), and Amiti et al. (2019). However, the typical approach is

to use idiosyncratic shocks to other variables that are excluded from the main estimating equation

3We are pursuing this last question in ongoing work.
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to instrument for the actions of competing firms. We, instead, use the idiosyncratic shocks in

the estimating equation directly. In addition, we allow for more flexible exposures to unobserved

common shocks in extracting idiosyncratic shocks.

Plan The reader is encouraged to read Section 2, Section 4 and Section 5 at first, and then go to

Section 3, which contains the general procedure, in a second reading. Section 6 presents a number

of extensions and robustness checks, including an application to the estimation of di↵erentiated

product demand systems, and discusses more extensively the link with the rest of the literature.

Section 7 presents simulations. Section 8 concludes. Long proofs are in Section 9 and the online

appendix.

2 The basics

2.1 Notations

We will throughout use the following notations. For a vector X = (Xi)i=1...N and a series of relative

weights Si with
P

i Si = 1, we let

XE :=
1

N

NX

i=1

Xi, (1)

XS :=
NX

i=1

SiXi, (2)

X� := XS �XE, (3)

so that XE is the equal weighted average of the vector’s elements, XS is the size weighted average,

and X� is their di↵erence.

We will also have shocks ui that are uncorrelated and with variance �2

ui
. Then, we will define

the “pseudo-equal weights” or “inverse variance weights”

Ẽi :=
1/�2

uiP
j 1/�

2
uj

, (4)

which satisfy
P

i Ẽi = 1, and are equal to Ẽi =
1

N when all the �2

ui
are equal. ThenXẼ :=

PN
i=1

ẼiXi.

We’ll also define

�̃i := Si � Ẽi. (5)

Then, X
�̃
will be the “granular residual” in a number of settings. It is the size-weighted sample

average of X minus the “inverse-variance” weighted sample average of X. It will be an optimal

proxy for idiosyncratic shocks.
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We use the notation �e for the estimator of a parameter �; ET for the sample temporal mean,

ET [Yt] :=
1

T

PT
t=1

Yt; Ct for a vector of controls; ◆ for a vector of 1’s, I for the identity matrix, of the

appropriate dimension given the context; V Y = E [YtY 0
t ] for a variance-covariance matrix; X ? Y

to say that random variables X and Y are uncorrelated.

2.2 A very simple example with no feedback loop

We introduce GIVs by considering a very simple example with supply and demand.

2.2.1 Basic model

For clarity, we lay out a concrete economic model of the equilibrium in, for instance, the oil market.

Demand by country i at date t is Dit = Q̄Si (1 + yit), where Q̄ is the average total world production,

yit is a demand disturbance term, and Si is country i0s share of demand, normalized to follow:

NX

i=1

Si = 1. (6)

The demand disturbance is assumed to be the sum of a common shock ⌘t, and an idiosyncratic

shock uit:

yit = �i⌘t + uit. (7)

For now we consider the case with uniform loadings,

�i = 1, (8)

but we will relax that soon.

All shocks are i.i.d. across dates. Then, total world demand is Dt =
P

i Dit = Q̄ (1 + ySt),

where ySt :=
P

i Siyit is the size-weighted average demand disturbance. We suppose that supply

is Qt = Q̄
�
1 + pt�"t

↵

�
, where pt = Pt�P̄

P̄
is the proportional deviation from P̄ , which is thus the

average price of oil. Then, to equilibrate supply and demand (Dt = Qt (pt)), we must satisfy:

Q̄ (1 + ySt) = Q̄
�
1 + pt�"t

↵

�
. That is, the deviation of the price from the average satisfies:

pt = ↵ySt + "t. (9)

It depends on the size-weighted average demand shock, ySt =
P

i Siyit.

The classic problem is that we cannot estimate ↵ by OLS. Indeed, a direct regression of pt on

ySt (that is, a regression of the form pt = ↵ySt+ "t) would be biased, as "t and ⌘t (hence "t and ySt)

can be correlated.
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However, suppose that we form the GIV:

zt := y�t = ySt � yEt =
NX

i=1

Siyit �
NX

i=1

1

N
yit. (10)

Then, we have, using uSt :=
PN

i=1
Siuit, uEt :=

PN
i=1

1

N uit, that

ySt =
NX

i=1

Siyit = ⌘t + uSt, yEt =
NX

i=1

1

N
yit = ⌘t + uEt,

so zt := ySt � yEt = (⌘t + uSt
)� (⌘t + uEt) satisfies

zt = uSt � uEt =: u�t. (11)

Note that zt := ySt � yEt is just constructed from observables. It is the di↵erence between the

size-weighted demand and the equal-weighted demand. Intuitively, it captures the “idiosyncratic

demand” by large units, as shown by zt = u�t.

We assume that the shocks uit are idiosyncratic, in the sense that:

E [uit"t] = 0 for all i, t. (12)

This “exogeneity” or “exclusion” assumption needs to be discussed in each economic application —

as we will below. More minor, for simplicity, the uit are here i.i.d. over time, but the uit, ujt could

be correlated.4

Then, we have

E [zt"t] = 0 : Exogeneity, (13)

and

E [ztySt] 6= 0 : Relevance. (14)

Hence, zt = u�t is a valid instrument (and as Proposition 3 will show, an optimal one). We call it

a “granular instrumental variable” (GIV).

Given that pt � ↵ySt = "t, we have

E [(pt � ↵ySt) zt] = 0, (15)

that is, E [ptzt]� ↵E [yStzt] = 0, which gives the supply elasticity ↵, by

↵ =
E [ptzt]

E [yStzt]
. (16)

4If we have disaggregated data for both supply and demand, we can relax that condition (12), see Section 12.5.
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Indeed, in practice, we might estimate ↵ using sample means:5

↵e
T :=

1

T

P
t ptzt

1

T

P
t yStzt

. (17)

We now state a formal proposition.6

Proposition 1 (Consistency of the GIV estimator in this example). Suppose that E [uit"t] = 0 (but

the uit can have an arbitrary distribution, with mean 0), and we have a succession of i.i.d. dates t.

Form the GIV estimator zt := y�t. Then, zt identifies the price elasticity, by ↵ = E[ptzt]
E[yStzt]

. In other

terms, the GIV estimator for the price elasticity ↵, ↵e
T :=

1
T

P
t
ptzt

1
T

P
t
yStzt

, is a consistent estimator.

Precision of the GIV estimator We define the excess Herfindahl as h =
q

� 1

N +
PN

i=1
S2

i . In

the context of industries, for example, a higher h 2
h
0,
q
1� 1

N

i
means that the industry is more

concentrated: an industry where all the firms have the same size features h = 0.

The quantity h will prove to be analytically useful, since if (ui)i=1...N is a series of uncorrelated

random variables with mean 0 and common variance �2

u, then the volatility of the GIV zt = u�t is:

�u� = h�u. (18)

The next proposition states the conditions under which we have a precise estimator (its proof

is in Section 9).

Proposition 2 (Precision of the GIV estimator in this example). The above estimator based on

the granular instrument variable (GIV) y�t achieves identification of the elasticity parameter ↵, at

the following rate, for T ! 1: p
T (↵e

T � ↵) ⇠ N
�
0, �2

↵

�
,

where �↵ = �"
�u�

. If we assume further than the uit are i.i.d. with variance �2

u,

�↵ =
�"
h�u

, (19)

where h is the excess Herfindahl:

h :=

vuut� 1

N
+

NX

i=1

S2

i . (20)

5One can also use zt to estimate ↵ by OLS, as in the regression pt = ↵zt + "0t , or even pt = ↵u�t + �⌘et + "pt .
Section 13 develops this.

6It holds under mild regularity conditions on the joint distribution of uit, ⌘t, "t given that the data are i.i.d. across
dates.
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So in order to have a precise estimate (low �↵), we need: some large units (in order to have a

large excess Herfindahl h), and that idiosyncratic shocks are large compared to aggregate shocks

(large �u/�").

This simple example illustrates the basic idea. The reader might at this point have in mind a

number of questions and objections: What if the factor structure is non-trivial (for instance, we

don’t have �i = 1 in (7))? What if the demand is sensitive to price? Is the GIV that we constructed

the best instrument we can find? What happens if there are more feedback loops?

The next subsections are devoted to answering them in turn.

2.2.2 Time-varying size weights

Suppose that we have a time-varying size Si,t�1, so that the demand increase is
P

i Si,t�1yit, with

(1, Si,t�1) uit ? (⌘t, "t). Then everything goes through without problems, replacing Si by Si,t�1

throughout. The basic GIV becomes: zt = ySt�1,t � yEt =
P

i

�
Si,t�1 � 1

N

�
yit.

2.2.3 Model with an enriched factor structure

The model might have a richer factor structure, with r factors, i.e. instead of (7) we have:

yit =
rX

f=1

�fi ⌘
f
t + uit, (21)

or, in vector form:

yt = ⇤⌘t + ut, (22)

where ⇤ is a N ⇥ r matrix, and ut ? (⌘t, "t).

Then, in order to construct a valid GIV we simply run a factor model – for example, via Principal

Component Analysis (PCA) – and, in essence, we extract the residuals uit to form the GIV. Let

us see that more precisely. Suppose that we have estimated the � vector (e.g. via PCA, as we will

detail later). Then, let Q be a N ⇥ N matrix projecting vectors onto a space orthogonal to ⇤, so

that Q⇤ = 0.7 Then, Qyt = Qut. Hence, via factor analysis, we obtain the transformed residuals

ǔt = Qut. Then, the GIV is formed as:

zt := S 0ǔt = S 0Qyt = �
0yt, � := Q0S, (24)

7For instance, we can take Q = Q⇤,W , where

Q⇤,W := I � ⇤ (⇤0W⇤)
�1

⇤0W, (23)

with W = (V u)�1 (optimally) or W = I for simplicity. This choice satisfies Q⇤,W⇤ = 0 and has a number of good
properties listed in (177).
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so that

zt = �
0ut. (25)

Then, zt is a valid instrument, since it is composed of idiosyncratic shocks. Since pt �↵ySt = "t
and E [ut"t] = 0, we have E [(pt � ↵ySt) zt] = 0, i.e. (15).8

This generalizes our basic example (7). In that example, we had Q = I � ◆E 0, so that ǔit =

uit � uEt, and the GIV was: zt = ǔSt = uSt � uEt. We therefore had � = Q0S = S � E.

2.3 A simple demand and supply example with feedback loops

A simple model We next enrich the previous example, and consider a simple supply and demand

example that features a “loop.” Suppose that demand for some commodity (say, oil) is:

yit = �dpt + ⌘t + uit, (26)

and supply is

st = �spt + "t, (27)

where ⌘t, "t can be correlated. We can expect that the demand and supply elasticities (respectively

�d and �s) satisfy �d < 0 < �s. Again, to be more formal, yit, st, and pt are understood as percent

deviations from the average demand of country i, from supply, and from price, respectively.9

In equilibrium, supply equals demand, ySt = st, which gives the price

pt =
uSt + ⌘t � "t
�s � �d

. (28)

There is a “loop” because the demand shocks ⌘t and uit feed into the price pt, which then in turns

a↵ects demand. The equilibrium quantity produced is

st = ySt =
�suSt + �s⌘t � �d"t

�s � �d
. (29)

The classic problem of estimating supply and demand equilibrium quantity st and price pt is that

we cannot regress: st = �pt + "t, and hope to get � = �s, as "t and pt are correlated.

However, suppose that we form the GIV, as in (10)

zt := ySt � yEt. (30)

8This shows that the GIV is valid and possible as long as � := Q0S 6= 0. Fortunately, this is generically true. If �
were close to 0, that would be picked up by very large standard errors.

9We take the model of Section 2.2, and simply set yit = �dpt + ⌘t + uit, where pt = Pt�P⇤
P⇤

is the proportional
deviation from the average.
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Given that

ySt = �dpt + ⌘t + uSt, yEt = �dpt + ⌘t + uEt,

we have:

zt = uSt � uEt =: u�t. (31)

As in the previous example, we assume that the shocks uit are idiosyncratic:

E [uit⌘t] = E [uit"t] = 0 for all i, t. (32)

Then, we have again a valid instrument:

E [zt"t] = E [zt⌘t] = 0 : Exogeneity,

E [ztpt] 6= 0 : Relevance.

Estimations of supply and demand elasticities by GIV The supply equation (27) implies

E [(st � �spt) zt] = 0, (33)

which gives the supply elasticity �s by

�s =
E [stzt]

E [ptzt]
. (34)

Indeed, in practice, we form the sample average �s,e
T = ET [stzt]

ET [ptzt]
.

Now, we want to estimate demand. For that, we make a stronger assumption: we assume that

the shocks uit are i.i.d. across i’s and not just dates (we will relax this later). Then, this implies10

E [uEtu�t] = 0. (35)

So, given this, we have: yEt � �dpt = ⌘t + uEt, and E
⇥�
yEt � �dpt

�
zt
⇤
= 0. This gives an estimate

of the demand elasticity �d,

�d =
E [yEtzt]

E [ptzt]
, (36)

and the estimator is �d,e
T = ET [yEtzt]

ET [ptzt]
.

10Indeed, in the i.i.d. case we have

E [uEtu�t] = E
"
(
X

i

1

N
uit)(

X

i

�iuit)

#
=

1

N

X

i

�i�
2
u = 0.

as
P

i �i = 0. Equation (79) generalizes this to the non-i.i.d. case.
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Estimation by OLS and interpreting it as a first- and second-stage IV estimator Let

us recast our GIV in the language of applied microeconomics, and estimate the parameters by OLS

(as we will often do in the general case). Recall that the solutions are:

pt =
1

�s � �d
uSt + "pt , st = ySt =

�s

�s � �d
uSt + "st ,

where the "pt , "
s
t are linear combinations of "t, ⌘t. So, if we run the OLS regression, with zt = u�t,

pt = bpzt + "pt , (37)

we estimate

bp =
1

�s � �d
, (38)

which is the sensitivity of the price to the supply or demand shock. If we run the OLS regression:

ySt = bySzt + "st , (39)

we estimate

byS =
�s

�s � �d
= M. (40)

In the language of applied microeconomics, one can view the “first stage” as a regression of the

price on the GIV (37). The “second stage” is running supply on the instrumented change in the

price bpzt:

st = �s (bpzt) + "st , (41)

which gives �s. Alternatively, one can run the “reduced form equation” (39), which estimates M.

The supply elasticity is given by:

�s =
byS

bp
. (42)

The demand elasticity is similar. In the second stage we run equal-weighted demand on the

instrumented change in the price, bpzt:

yEt = �d (bpzt) + "yt , (43)

which gives the demand elasticity �d.11 Alternatively, we can run the reduced form equation yEt =

byEzt + "yt which gives byE = �dM , and the demand elasticity is �d = byE
bp .

In practice, we will add controls to those regressions, including estimates of ⌘t recovered from

factor analysis.

From M and bp, we can recover the elasticities �s and �d. This is exactly the same estimate as

11Here we used (35), which makes the OLS valid.
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the IV estimator, derived earlier in (34), (36).12

Standard errors: When “weak instruments” are or are not a problem When estimating

via OLS (e.g. bp and M), the standard errors are reliably estimated by the usual OLS method,

even in small samples. When a ratio is implicitly performed (e.g. to estimate �d, �s), the 2SLS

procedure as in (41) will also give correct standard errors when the instrument is strong enough. A

good rule of thumb for the strength of the instrument is that the F statistics (which is the squared

t-statistic on bp) on the first stage (37) should be greater than 10.13

2.4 Optimality of the GIV

We come back to the simplest case of Section 2.2.1, for ease of exposition.14 Above, we have shown

that zt = y�t allows for identification, for a specific � = S � E. It is easily verified that GIV with

weights � such that
P

i �i = 0 would work. Hence, we can ask for an optimal �. The � we proposed

initially was actually optimal, as we formalize below.

Proposition 3 (Optimal weights � for the GIV y�t). Consider the GIV zt = y�t =
P

i �iyit, with

some weights �i with
P

i �i = 0. The idiosyncratic shocks uit’s are assumed to be i.i.d. across time,

and have variance-covariance matrix V u. Then, in the basic supply and demand model of Section

2.2, the asymptotic variance of the estimator ↵e
T in 17 (which is �2

↵ = limT!1 Tvar (↵e
T � ↵))

satisfies �2

↵ (�) =
�2
"E[y2�t]

E[ySty�t]
2 . The value

�̃ = S � Ẽ, Ẽ :=
(V u)�1 ◆

◆0 (V u)�1 ◆
, (44)

gives the optimal GIV estimator, in the sense that for any other � that is not collinear to �̃, the

asymptotic variance �2

↵ (�) is larger. When the shocks are i.i.d., this implies Ẽi =
1

N , and when

they are uncorrelated, this implies Ẽi :=
1/�2

uiP
j
1/�2

uj

, so that Ẽ may be called the “precision-weighted

quasi-equal” weights.

Hence, the “essence” of the GIV is not to be “size weighted minus value weighted” idiosyncratic

shocks, but rather “size weighted minus precision weighted” (i.e. inverse-variance weighted when

shocks are uncorrelated) idiosyncratic shocks.

There are two more ways in which the GIV is optimal. First, it is the optimally-weighted GMM

estimator.15 This implies that other combinations of idiosyncratic shocks (besides weighing by

12Indeed, the OLS estimators are Me
T = ET [yStzt]

ET [z2
t ]

and  e
T = ET [ptzt]

ET [z2
t ]

. We have �s,eT = Me
T

 e
T

= ET [yStzt]
ET [ptzt]

, which is the

same as (34), as st = ySt in equilibrium.
13See the literature on weak instruments, e.g. Stock and Yogo (2005); Andrews et al. (2018).
14But it will be clear to the reader that the results in the present subsection hold much more generally.
15Any moment ET [(pt � ↵ySt) (uit � uEt)] = 0 is a valid GMM moment to identify ↵. It is easy to check that the

optimal GMM weighted estimator is our GIV, ET [(pt � ↵ySt) (uSt � uEt)] = 0

13



�) would not help the precision of the estimator. Second, one can show that it is the maximum

likelihood estimator, if we assume that all shocks are Gaussian (see Section 14). Still, the optimality

formulation of Proposition 3 is the simplest to use in other contexts.

2.5 Interpreting and diagnosing idiosyncratic shocks

What is an idiosyncratic shock? Mathematically, an idiosyncratic shock is plainly a random

variable uit such that Et�1 [⌘̃tuit] = 0, where ⌘̃t = (⌘t, "t) includes all the common shocks. But it

may be useful to discuss di↵erent types of economic settings that map into that definition.

In some cases it is quite clear – e.g. a random productivity shock, or demand shock. But there

are more subtle types of idiosyncratic shocks. One is an “unexpected change in the loading on a

common shock”. For instance, suppose that OPEC decided to cut down production, which in the

language of our example is an aggregate ⌘t shock. If Saudi Arabia cuts down production by more

than anticipated, that is an idiosyncratic shock. Formally, if supply is yit = �spt+
�
�i + �̌it

�
⌘t+vit,

with Et�1

⇥
(1, ⌘t⌘̃t) �̌it

⇤
= 0, then uit = �̌it⌘t+vit is a bona fide idiosyncratic shock. To take another

example, suppose that we hear about a change in real estate prices in the economy, ⌘t, but that a

bank i was more exposed to it than anticipated: the market thought the bank’s equity would move by

�i⌘t, but it moved by rit =
�
�i + �̌it

�
⌘t for an expectational surprise �̌it with Et�1

⇥
(1, ⌘t⌘̃t) �̌it

⇤
= 0.

Then, the bank will have an idiosyncratic shock uit = �̌it⌘t as part of its total return rit.

Likewise suppose that the news is that a bank failed a stress test (while it was anticipated it

would pass the test). This is an idiosyncratic shock. However, the bank could have failed the test

because of some development in the macroeconomy ⌘t. Then, provided that the factor model allows

for a rich enough structure in ⌘t, the latter will be controlled for.

Likewise, the volatility of idiosyncratic shocks can depend on the common shocks. Suppose that

uit = �tvit where �t and ⌘t could be correlated (for instance, �t could increase when |⌘t| is high), but
Et�1 [�t⌘̃tvit] = 0 (a su�cient condition is that vit independent of �t⌘̃t); then, uit is an idiosyncratic

shock in the sense that Et�1 [⌘̃tuit] = 0.

Thresholded and narrative GIVs In applications, it is possible to make further progress by

assessing the drivers of the top shocks narratively. One procedure is to simply select the top K

shocks by Si |ǔit| (where ǔit is the residual from factor analysis, e.g. ǔit = uit � uEt, and we select

across all actors i and dates t), and check in the news what happened on that day (and check that

the shocks are idiosyncratic indeed). We did that for some our applications. Formally, that means

that we formulate a “thresholded” GIV,

z⌧t =
X

i

⌧ (Siǔit) , (45)

14



using the thresholding function ⌧ (x) = x1|x|�b, which only keeps granular shocks bigger than b > 0.16

Then, the GIV procedure works using that “thresholded” GIV (see Section 12.8). This thresholded

GIV might also be useful to assess non-linear e↵ects, for instance, in case of demand or supply

curves.

After examining those largest shocks by looking at the news, some shocks might be eliminated as

not idiosyncratic; we can call INt the set of shocks that are “narratively certified” to be idiosyncratic

by this procedure, and form the alternative instrument

zNt =
X

i2IN
t

Siǔit. (46)

This is roughly what the “narrative” approach in the literature (e.g. Caldara et al. (2018)) does.

Here, in addition, we have a systematic way to select the candidate large shocks (by top values of

Si |ǔit|), and get the controls ⌘et for the idiosyncratic shocks, when we run the regressions.

Sporadic factors A potential issue is that of a “sporadic factor”, i.e. a factor ⌘t that a↵ects a

few actors special ways, but is not recurrent. An example would be a one-o↵ policy announcement

by the European Central Bank that they will buy both Italian and Spanish bonds, so that the truth

is not that Italy is a↵ecting Spain or vice-versa, but rather the ECB a↵ecting both.

One solution, besides the narrative check that we just detailed, would be to filter out days with

a high “sporadicity statistic” St that we now propose. Suppose that for each date we filter out

the idiosyncratic shocks ǔit. For each date and actor i we form bit =
ǔ2
it

�2
ui,t�1

, where a high bit is

an indicator of extra activity, and �2

ui,t�1
is a predictor of the volatility of uit. We may allow that

one entity has a large idiosyncratic shock, but if two (or more) do, this is suspicious, and possibly

the sign of a sporadic factor. So, calling b(2)t the activity of the second more active actor, we form

St = b(2)t.17 Over the entire sample, we might remove the days with anomalously high sporadicity

statistics, e.g. in the top 5% by that metric.

Quasi-experimental instruments and identification by functional form A large literature

explores identification by functional form, where consistency of the estimator depends on functional

form or distributional assumptions. Classic examples include the Heckman (1978) selection model,

identification via heteroskedasticity, as in Rigobon (2003) and Lewbel (2012), and Arellano and

Bond (1991) and Blundell and Bond (1998) in the context of dynamic panel data models. The

typical concern with these approaches, compared to quasi-experimental instruments that are outside

of the model, is that the estimators are inconsistent when the model is misspecified.

In the case of GIVs, we generally start from a structural model that motivates the estimating

equation, as for instance in the model of doom loops in Section 17, which prescribes the definition

16We adjust b to select a pre-specified expected number K of shocks that survive the thresholding.
17We could also sum over the most active K entities, excluding the most active one.
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of the size vector S and, in some cases, the characteristics that determine the exposures xit. To

extract idiosyncratic shocks, we rely on statistical factor models.18

Instead of viewing this last step as a merely statistical exercise that is hard to validate externally,

GIVs provide an empirical strategy to understand the economic drivers of the instrument by screen-

ing the top shocks narratively. By understanding the nature of the shock based on news coverage

(as in the narrative examination we just discussed), for instance, we can ensure that the shocks are

truly idiosyncratic and interpretable. For instance, a large negative return associated with a failed

stress test of a bank in the context of doom loops, a negative supply shock in Kuwait and Iraq

during the First Gulf War, or a positive demand shock in China in the early 2000s in the context

crude oil markets, are all valid instruments. While alternative identification methods might rely on

functional form assumptions only, GIVs, by being able to screen the shocks economically, provide

a systematic way to construct instruments more in the spirit of quasi-experimental instruments.

2.6 An over-identification test with multiple GIVs

Consider the model of demand with a single factor with heterogenous exposures

yit = �dpt + �i⌘t + uit,

and assume we obtained an estimate of the factor, ⌘et , as in Section 2.7. We abstract from estimation

error in the factor in this section.

Suppose we construct two di↵erent instruments, z1t and z2t. These could include size weighted

averages of all ǔe
it; a subset of the largest realizations of Si |ǔe

it|; a subset of narratively-checked

shocks as in Section 2.5; or z1t might be based on supply shocks and z2t on demand shocks, as in

Section 12.5.19

One can then estimate separately the parameters of interest (e.g. �d) based on z1t vs z2t, and see

if they are economically di↵erent. We can also do a formal test. We form the moment conditions

as E [gt(✓)] = 0, where gt(✓) =
�
yEt � �dpt � �E⌘et

�
(z1t, z2t, ⌘et )

0 and ✓ = (�d,�E). We can simply

perform the Sargan-Hansen J�test for over-identifying moment conditions. The test statistic is

given by

J = Tg0EtWT gEt !d �2

1
, (47)

under the null, where WT =
⇣

1

T

PT
t=1

gtg0t

⌘�1

.20

18We discuss the robustness of GIVs to various forms of misspecification in Section 2.8.
19Yet another GIV procedure is to use characteristics xit measurable at time t � 1 (e.g., firm size, or GDP per

capita, or a bank’s credit risk), and form the x-weighted GIV: zxt :=
P

i Siǔe
itxit. If the test fails, it’s probably the

case that xit is economically important and it should have been included as a factor loading in a larger factor model.
20If we have K instruments zkt, k = 1 . . .K, then the procedure is the same, with gt(✓) =�
yEt � �dpt � �E⌘et

�
(z1t, . . . , zKt, ⌘et )

0, and then J !d �2
K�1.
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2.7 A step-by-step user’s guide

We can also have a richer factor structure, as in Section 2.2.3, and add observable factors. We can

specify demand as

yit = �dpt + �i⌘t +mCy
it + uit, (48)

where �i,⌘t could be multidimensional and Cy
it is an observable vector of controls. The arguments

in this section extend to multiple factors, as illustrated in Section 3.

The GIV procedure is as follows:

1. Estimate a panel regression

yit = at +mCy
it + eit,

where eit = �̌i⌘t + ǔit.

2. There are two approaches to estimate the factor, ⌘t, depending on whether one has information

about the factor loadings, �i.

(a) If one has information about the factor loadings, �̌i = bxi + ⇣i, with xi an observable

characteristic with E[xi⇣i] = 0, then we can estimate the factors using cross-sectional

regressions of eit on xi. Denote the estimated factor by ⌘x,et .

(b) If no information on the factor loadings is available, we can estimate the factors via PCA

or factor analysis. Denote the estimated factor by ⌘PCA,e
t . One can use one of the tests

in Bai and Ng (2002); Onatski (2009) to determine the number of factors.

3. We regress y�t = ↵0⌘et + ↵1Ce
�t + ue

�t, and set zt := ue
�t.

21 We proceed as above (Section 2.3),

e.g. estimate the demand elasticity by the moment condition

E
⇥�
yEt � �dpt � �E⌘

e
t �mCy

Et

�
(zt, ⌘

e
t , C

y
Et)

⇤
= 0.

4. We recommend examining the narratively largest shocks (as ranked by Si |ǔe
it|), as in Section

2.5. If one has enough power, one can construct a GIV only based on the narratively-checked

top events. If one has several GIVs, one can estimate separately the parameters of interest

(e.g. �d) based on each GIV, and see if they are economically di↵erent. One may even do a

formal over–identification test (Section 2.6).

2.8 Robustness to misspecification

The GIV procedure is robust to some forms of misspecification, and more fragile to others.

We may keep only the shocks to some actors (in a space It), i.e. set zt =
P

i2It Siǔe
it (with

ǔe
it = uit � uEt), selecting for example the shocks to the top K entities, the shocks for which we

21Here ⌘et can combine the estimates where ⌘x,et and ⌘PCA,e
t .
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have data, or some subset of the entities based on size. Then again, everything goes through.22 The

estimator is still valid, just not the optimal GIV estimator.

Suppose that we misspecify the vector S of sizes, for example by defining zt =
P

i S
�
i ǔ

e
it using a

wrong vector S�. Then, the IV is still valid, but the OLS can be biased. In our basic example of

Section 2.2, we still have E [(pt � ↵ySt) zt] = 0, so that the IV procedure (16) still works. Likewise,

in the more complex supply and demand case, the IV relations (34) and (36) still hold. But the

OLS relations are slightly biased.23

If we assume homogeneous coe�cients (e.g. on the elasticities of demand or supply), while in fact

they are truly heterogeneous, then again (assuming that ⌘t was well-estimated in the cross-section)

the IV estimates are correct, and so are the OLS estimates.24 One reason for potential instability

of GIV estimates with two or more GIVs (as in Section 2.7) may be that indeed the elasticities are

di↵erent across actors.25

If we misspecify the variance of the uit (but keeping them uncorrelated), things are essentially

fine: as uE = Op

⇣
1p
N

⌘
, we do not need E [u�tuEt] = 0 to hold exactly, as the term E [u�tuEt] will

still be small, of order O
⇣

1p
N

⌘
, and will vanish for large N .

A threat is that we might not control properly for common factors. Indeed, zt = u�t+��⌘t��e�⌘et ,
so there is a danger that, even after controlling for ⌘et in the regression we will not completely

eliminate the ��⌘t � �e
�
⌘et error.26 This danger is greater when |��| is greater, i.e. when loadings

are correlated with size. This is a small sample problem (with a large enough T,N we measure

⌘t,� accurately). A missing factor may also be detected by the tests of stability of estimates across

GIVs of Section 2.7, if di↵erent actors have di↵erent loadings on the missing factors. As is common

practice in the weak factors literature, one can verify the stability of the estimates by adding one or

two factors beyond what is recommended by the formal tests of Bai and Ng (2002); Onatski (2009).

A second approach in this literature is to make stronger parametric assumptions. In our setting it

would be natural to make assumptions about the distribution of the shocks and estimate the model

via maximum likelihood (see Section 14). A third approach is to filter out “sporadic factors” as in

Section 2.5. A fourth approach is to opt for the narrative GIV of Section 2.5. If one checks the top,

say, 10-20 events and they pass the narrative check, one can record that we could not reject the

hypothesis of a misspecified factor model. In a more purist way, one could even restrict the GIV to

those top events.

22For instance, we still have uSt = zt + "uS
t with zt ? "uS

t .
23Calling  = E[ztuSt]

E[z2
t ]

(which is 1 when S� = S), then the OLS above gives (in population) bp,e = bp and

Me = M . For some selection procedures (e.g. selecting the shocks to some pre-specified entities as we discussed),
we still have that  = 1, so that OLS is still valid.

24Just, the IV estimates yield �s, �dE , and the OLS coe�cients are those corresponding to the interpretation that
the elasticity of demand is �dE rather that �dS (see Section 12.9).

25Section 10.1 gives a way to estimate di↵erent elasticities �i.
26As we do control for ⌘et in the regression, the bias is due to the residual of ��⌘t � �e�⌘

e
t after controlling for ⌘et .
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3 General setup and procedure

The previous section introduced the GIV in a simple context, with no loops or a single loop. We

now propose a more general setup with potentially several factors, arbitrary loop structure, and

rich heterogeneity. This section can be skipped when reading the paper for the first time and the

reader can continue with Section 4.

3.1 Framework

Consider the following model of stationary “actions” yit (e.g. employment, investment, TFP shock,

return, etc.) by “actor” i (e.g., a firm or industry i in a closed-economy setting, or a country i in

an international setting):

yit =
X

f

�fitF
f
t + uit + kyi +mCy

it, (49)

where each F f
t is a factor, �fit are factor loadings, uit is an idiosyncratic shocks, kyi is a constant, Cy

it

is a vector of controls that may include lagged demands and other characteristics. Factor f follows:

F f
t = ↵fySt + ⌘ft + kf +mfCF

t . (50)

It depends on an exogenous shock ⌘ft , and some on the mean action ySt, and on a set of controls

CF
t (di↵erent from Cy

it). Those controls may include, for instance, lagged values. We assume that

the “size” weights have been normalized to add to one,
P

i Si = 1. We partition the factors into

“exogenous factors” FExo, where we know ↵f = 0, and “endogenous” factors FEndo, where ↵f may

be non-zero.

We model the exposures to factors as either non-parametric (unrestricted �fi ) or as parametric:

�fit = �f
0
+ �f

1
xf
it, (51)

where xf
it 2 R� is an observable (e.g. xit is the de-meaned log size of entity i). For endogenous

factors, we treat here the parametric case, and defer the non-parametric case to Section 10.1. We

can also treat the semi-parametric case where

�fit = �f
0
+ �f

1
xf
it + ⇣fi , (52)

where ⇣fi is an extra non-parametric case.

We make the following identifying assumptions, for all f , i, the noise uit are idiosyncratic:

uit ?
⇣
⌘ft , C

y
t , C

F
t , x

f
it

⌘
, (53)

but the ⌘ft may be correlated across f ’s, and ⌘ft may be correlated with the controls, Cy
t and CF

t .
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The uit may have some correlation across i’s and can be heteroskedastic, as we discuss later. For

expositional simplicity we assume that all dates are i.i.d.

We rewrite model (49) in vector form:

yt = ⇤tFt + ut + Cy
t m+ ky, (54)

with Ft =
�
FEndo0
t , FExo0

t

�0
, ⇤t =

�
⇤Endo0

t ,⇤Exo0
t

�0
, ⇤t a N ⇥ r matrix, Ft a r⇥ 1 vector, Cy

t an N ⇥ c

matrix, m is c⇥1, where c is the dimension of the controls, and ky is a N⇥1 vector. The endogenous

and exogenous factors, and their loadings, are defined by:27

F j
t = ↵jySt + ⌘jt + kj

F + CF
t �

j,

with j = Exo, Endo, with ↵Exo = 0. We write ↵ = (↵j)j=Exo, Endo
=
�
↵f
�
f=1...r

is an r ⇥ 1 vector.

Multipliers Solving for the model gives, ySt = ⇤StFt + uSt + kyS + Cy
Stm, that is,

ySt = ⇤St↵ySt + uSt + bt, (55)

where bt satisfies bt ? uSt.28 So, we can solve for the aggregate outcome ySt as ySt =
uSt+bt
1�⇤St↵

, that

is,

ySt = Mt (uSt + bt) , (56)

where the multiplier Mt =
dySt

duSt

is

Mt =
1

1� ⇤St↵
=

1

1�
P

f :Endo ⇤
f
St↵

f
(57)

and measures the total impact of shocks, after going through all feedback loops. Hence, an idiosyn-

cratic shock has an impact that Mt times bigger than its direct e↵ect. Also, the total impact of an

idiosyncratic shock on factor f is:

F f
t = Mt↵

fuSt + bft (58)

for another expression bft ? uSt. Our regressions will allow to identify M and M↵f .

In some cases, we may not observe all endogenous factors, FEndo

t . In this case, we still recover

the correct multiplier, Mt, and it should be interpreted as accounting for all feedback loops in the

economy, including those operating via the unobservable, endogenous factors. However, we can

obviously not estimate ↵f for those unobserved factors.

27Our initial examples are particular cases of the general procedure, as detailed in Section 12.11.
28We have bt = kyS + Cy

Stm+ ⇤Exo
St FExo

t + ⇤Endo
St

�
⌘Endo
t + kEndo

F + CF
t �

Endo
�
, with kyS :=

P
i Sikyi .
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3.2 A step-by-step user’s guide

We outline the benchmark procedure, alongside several extensions. We summarize the model as

yt = ⇤tFt + ut + ky + Cy
t m,

F j
t = ↵jySt + ⌘jt + kj

F + CF
t �

j,

where we focus on the case in which ⇤Endo

t = �Endo
0

◆, where �Endo
0

is a scalar.29 Loadings can be

semi-parametric, ⇤Exo

t = ⇤Exo

0
+ ⇤Exo

1
xt + ⇣t, where E

⇥
⇣̌tx̌t

⇤
= 0, or non-parametric.

We assume that yt is observed, and we run regressions on the observed factors F f
t .

1. Define ǎit = ait � aEt for a generic variable at, and estimate the panel regression

y̌t = c+ ⇤̌Exo

t CF,Exo
t �+ Čy

t m+ et,

which removes endogenous factors and estimates the coe�cients on the controls. The vector

of residuals equals et = ⇤̌Exo

t ⌘Exot + ǔt.

2. We can estimate the factors, ⌘Exot , and denote the estimates by ⌘et , in one of two ways:

(a) In the case of semi-parametric loadings, ⇤Exo

t = ⇤Exo

0
+ ⇤Exo

1
xt + ⇣t, we estimate the

factors using

et = x̌t⌘
Exo

t + ✏t,

which is equivalent to a series of cross-sectional regressions of et on xt to estimate ⌘Exot . By

considering semi-parametric loadings, we do not need to know exactly how the loadings

depend on characteristics, xt, and a noisy signal of exposures su�ces to estimate the

factors, ⌘Exot .30

(b) In the case of non-parametric loadings, we estimate the factors using factor analysis, in

case of small N , or principal components analysis (PCA), in case of large N , from et.

We estimate the number of factors using the methods developed in Bai and Ng (2002).

3. Estimate
�
M,↵fM

�
, using OLS, with Zt = y�t,

ySt = MZt + �0y⌘
e
t + ky + Cy

Stm+ eyt ,

FEndo

t = ↵EndoMZt + �0F⌘
e
t + kEndo

F + CF
t �

Endo + eEndot .
29The procedure in this section extends to the model with multiple endogenous factors, when the factor exposures,

�i, depend on a vector of characteristics, and to the case where the characteristics may vary over time, xit. Then,
the generalized version of ǎit = ait � aEt in Step 1 becomes ǎt = QX,Wat where QX,W is defined in (23) (if X = ◆,
then we recover ǎit = ait � aEt for W = I, and ǎit = ait � aẼt for W = (V u)�1.

30We refer to Fan et al. (2016) for a related approach in the context of principal components analysis.
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4. Estimate
�
↵Endo

�e
:=

(↵EndoM)
e

Me . Similarly, we can recover from ⇤Endo

S ↵Endo from M =
1

1�⇤Endo
S

↵Endo . In both cases, M e and
�
↵EndoM

�e
need to be su�ciently precisely estimated.

This is analogous to the weak instruments problem in the context of IV estimators.

When the idiosyncratic shocks are heteroskedastic, we may be able to improve the finite-sample

properties. We start from Ei =
1

N . After Step 2, we use the residuals to obtain an estimate of �2

ui

and update the weights to Ẽi = ��2

ui
/
PN

i=1
��2

ui
. In all cases, our estimators are consistent for large

N and T . However, to obtain consistency with finite N and large T , we need the precision-weighted

Ẽ.31 This implies a standard bias-e�ciency trade-o↵ if estimating volatilities reduces the e�ciency

of the estimator. If the idiosyncratic volatilities are related to size, we can parameterize them and

estimate

ln �2

ui
= �0 + �1 lnSi + ✏i,

and use �2

ui
= exp (�0)S

�1
i .

First and second stages Let us see how to estimate ↵f in that first and second stage language.

The first stage is the regression:

ySt = bzt + �yS
⌘ ⌘

e
t + �yS

C CSt + "ySt , (59)

where we regress on zt, using our recovered factors ⌘t as controls. From the model, we know that

the regression coe�cient identifies b = M , the multiplier.

The second stage is the regression:

F f
t = ↵f (bezt) + �F f

⌘et + "F
f

t , (60)

which gives the estimator for ↵f . Alternatively, we can regress F f
t on zt (with controls) and the

coe�cient is ↵fM . When estimating the influence coe�cient, we can also view the second stage as

estimating

yEt = �M ezt + �yS
⌘ ⌘

e
t + �yS

C CSt + "ySt ,

which gives �.

3.3 A formal identifiability result

We encourage the reader to skip this section at the first reading. We provide here formal conditions

for identification, completing the simpler case of Section 2.

31Here we are talking about consistency in the estimation of M and ↵fM . It is achieved even if we do not
consistently estimate the underlying factors ⌘t. This may be surprising, but this is already the case in the simple
supply and demand case of Section 2.
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We study the “semi-parametric” case. We have some characteristics xit of actors (e.g. countries

or and firms): for instance, depending on the application we know that the loading is an a�ne

function of log market capitalization, or the stock market beta of a bank, or OPEC membership.

We also have a priori knowledge that �fit = �f
0
+�f

1
xf
it, for some parameters �f

1
in the parametric case

(51), and something similar in the non-parametric case (52). This is consistent with the practice in

modern finance in which risk exposures (betas) align with characteristics (see e.g. Fama and French

(1993)), so that parametric approaches are preferred, in particular because they are more stable

than non-parametric approaches. Section 10.1 develops the full non-parametric version, estimating

the factors. We don’t have a priori information about the ⌘t, nor their covariance V ⌘.

To obtain identification, we shall make the following two assumptions.

Assumption 1 (Condition for identification with GIV) The vector V uS is not spanned by the

factors loadings �f (where V u is the covariance matrix of ut).

Assumption 2 (Restriction on the admissible variance-covariance matrix of residual ut) The variance-

covariance on ut is diagonal.

Assumption 1 is essential and could not be relaxed. It ensures that the GIV is not identically

0. Economically, this assumption seems like a mild restriction. It is generically satisfied.32

Assumption 2 could be relaxed in number of ways.33 Other su�cient condition for identification

might be that V u is k�sparse, e.g. has at most k non-zero o↵-diagonal elements, for some k, e.g.

N � r2 (see also Zou et al. (2006)). Another is to allow for some correlation that depends on the

distance between entities i and j, perhaps via Gaussian processes (Rasmussen and Williams (2005)).

We conjecture that this proposition could be generalized in a number of ways, including in the large

T,N domain, using material such as Bai and Ng (2006). Doing this would however take us too far

afield.

We assume that all shocks are i.i.d. over time, though this would be easy to relax.

We next state a formal identification result, which is proven in Section 9.

Proposition 4 (Su�cient condition for identification with GIV) Consider the factor model above,

when N is fixed but T ! 1, and makes Assumptions 1 and 2. Then, the parametric (and semi-

parametric) procedure of Section 3.2 identifies M , ↵f by GIV. Furthermore, the standard errors on

M and ↵fM returned by OLS in this procedure are valid.

This completes our “abstract” development of GIV. We now turn to two initial applications.

32One case that does prevent this assumption to hold is the case where the variance would be inversely proportional
to size: then, GIV would fail, as then V uS = a◆ for some scalar a. Fortunately, in most contexts, variance may decay
a bit with size Si, but less violently than in 1/Si (see e.g. Lee et al. (1998) and the discussion in Gabaix (2011)).

33However, relaxations of Assumption 2 will still need to ensure some restrictions on the space of variance-
covariances allowed.
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4 An empirical model of sovereign yield spillovers

We study spillovers in sovereign yield markets as a first application of GIVs. We focus on the

transmission and amplification of idiosyncratic shocks during the European sovereign debt crisis.

4.1 Data

We use daily data on 10-year zero coupon yields from Bloomberg.34 The countries and Bloomberg

tickers that we use are listed in Table 7 in Appendix 11.4.35 We use data on general government

gross debt for each country from Eurostat.36 The sample is from July 2009 to May 2018.37

4.2 An empirical model of sovereign yield spillovers

Section 11 provides a model of sovereign yield spillovers and we summarize its empirical counterpart

here.38 The main idea of the model is that losses in one country will be partially shared with other

countries, implying that shocks to sovereign yields in one country spill over to other countries and

vice versa. We index countries by i. We define the yield spread, yit, as the yield in country i relative

to Germany’s yield.39 The model implies that relative changes in yield spreads satisfy the following

empirical model

rit = �rSt + �0i⌘t + uit, (61)

where

rit =
�yit
yi,t�1

. (62)

The key message is that the spillover impact is such that �yit
yi,t�1

, rather than�yit, depends linearly

on �rSt. This means that a country with almost no default risk should have almost no sensitivity

of its yield �yit (as there is no risk in the first place), which makes sense. Hence, we think that

alternative models are likely to yield a similar functional form.

Empirically, we use rit =
�yit

0.01+yi,t�1
to avoid problems when spreads get close to zero, yit ' 0. In

34We use Bloomberg’s price variable PX LAST.
35The tickers that we use for di↵erent countries are the ones used by European Insurance and Occupational

Pensions Authority (EIOPA) to construct the regulatory yield curves of insurance companies and pension funds in
the European Union. For the final construction of the curves, EIOPA combines data on zero yields and swap curves,
while we only use the zero yields.

36https://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&plugin=1&language=en&pcode=teina225.
37We remove days in which markets are closed, which is when none of the yields change on a given day, and

holidays.
38A natural extension would to be add the banking sector of each country. In addition, it would be interesting to

model the level of yields (i.e., the German yield) as well, which should go down as a result of safety e↵ects.
39Spillovers in sovereign bond markets may also operate via intermediaries. For instance, if losses in one country

impact the intermediaries’ constraints, then this can impact the pricing of bonds in other countries in which the
intermediaries are active.
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addition, the model implies that the size weights are defined as

Si,t�1 =
Bi,t�1yi,t�1P
j Bj,t�1yj,t�1

, (63)

where Bit denotes the outstanding government debt of country i.

It is essential to control for common factors ⌘t. It is well understood, see for instance Forbes and

Rigobon (2002), that omitted factors and endogeneity impact measures of spillovers and contagion.40

4.3 Estimation procedure

We estimate the model using the standard GIV procedure, accounting for heteroskedasticity.

1. We compute the rolling variance of relative changes in yield spreads using the trading days of

the last two months, and lag it by a day, Vart�1 (rit). We then define

�2

i,t�1
= max (Vart�1 (rit) ,mt�1) , (64)

where mt�1 = median (Vart�1 (rit)), that is, the cross-sectional median at time t � 1. We

define the Ẽ�weights as usual as

Ẽi,t�1 =
1/�2

i,t�1P
i 1/�

2

i,t�1

.

We apply the max-operator in (64) to avoid that the Ẽ�weights put too much weight on a

single country if yield spreads for that country happen to be stable and close to zero. The

main objective of adjusting for heteroskedasticity is to put less weight on extremely volatile

countries.

2. We compute řit = rit � rẼt and adjust řit for heteroskedasticity, nit =
řit

�i,t�1
. We use PCA

based on nit, nit = �̌0i⌘t + ǔit, to estimate the factors, ⌘et .

3. We estimate the multiplier M = 1

1�� via the regression

rSt = k +Mr
�̃t + �0S⌘

e
t + et. (65)

To identify the largest shocks and to verify narratively that the shocks are truly idiosyncratic, we

run the weighted panel regression

rit � rẼt = c+ �0⌘et + uit,

40Caporin et al. (2018) study spillovers in European sovereign debt markets and show that quantile regressions
can be used to test for contagion if contagion is defined as a change in interlinkages. Our definition of contagion
(captured by a nonzero � in 61) is very di↵erent from theirs.

25



Figure 1: The dynamics of sovereign yield spreads and size weights. The figure reports the yield
spreads, relative to Germany, for Italy, Spain, Greece, Ireland, Portugal, and France in the left
panel from September 2009 to May 2018. The spreads are based on 10-year zero-coupon bonds and
are constructed using data from Bloomberg. The right panel displays the size weights based on the
definition in (63) for the same countries and the same sample period.
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using the size weights. In this panel regression, ue
St is identical to the residual of the regression

r
�̃t = c+ �0

�̃
⌘et + ue

St. We discuss the largest |ue
St| in detail in Section 4.6.

4.4 Empirical results

We plot the dynamics of spreads, yit, in the left panel, and size weights, using the definition in

(63), in the right panel of Figure 1 for France, Greece, Ireland, Italy, Portugal, and Spain. The

sample is from September 2009 to May 2018. We distinguish three broad periods. First, from 2010

to 2012, the yield spread dynamics are driven by the European sovereign debt crisis. During 2015,

yield spreads in Greece widen once again, but the low-frequency dynamics in other countries are

more muted and spreads tighten in most countries. This period is characterized by political turmoil

in Greece related in part to negotiations of a bailout deal. During the last months of our sample,

there is a jump in Italian yields following political uncertainty about budget plans following the

general election. We will revisit these episodes in more detail when analyzing the largest and most

influential idiosyncratic shocks in Section 4.6.

Table 1 reports the estimates of the multiplier, M . The first column regresses rSt on Zt = r
�̃t.
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Table 1: Multiplier estimates of sovereign yield spillovers. The table reports the estimates of the
multiplier in (65). The first to the fourth column include zero to three principal components as
controls. In the final column, we re-estimate the model excluding Greece. In this table, Zt = r

�̃t and
PCit corresponds to the ith principal component that we extract based on řit

�i,t�1
. The size-weighted

average of relative yield spread changes, rSt, uses the size weights as defined in (63). The model is
estimated using daily data from July 2009 until May 2018.

rSt rSt rSt rSt rSt (excluding Greece)

Zt 1.632 1.456 1.433 1.488 1.426

(73.90) (44.09) (45.42) (46.48) (29.68)

PC1t 0.00215 0.00230 0.00192 0.00215

(7.13) (8.00) (6.67) (5.47)

PC2t -0.00332 -0.00330 -0.00160

(-14.85) (-14.95) (-6.35)

PC3t 0.00193 0.00249

(7.53) (6.50)

N 2264 2264 2264 2264 2264

R2 0.707 0.714 0.739 0.745 0.752

t statistics in parentheses

The second to the fourth column add principal components. The multiplier estimate drops after

adding the first principal component from 1.63 to 1.46, but then stabilizes and adding more principal

components does not impact the estimate of the multiplier in an economically meaningful way. In

the final column, we omit Greece, which plays an important role during this period. However, using

the shocks from other countries does not impact the estimates in an economically meaningful way.

The high R-squared in the first column does not estimate the fraction of the variation in ag-

gregate yield spread changes that is due to idiosyncratic shocks, as r
�̃t is correlated with ⌘et . To

estimate the importance of idiosyncratic shocks, we regress rSt on ue
St, which provides exactly the

same point estimate of the multiplier as in the final column of Table 1. The R-squared of this

regression is 24%, implying that a quarter of the variation in aggregate yield spread changes is due

to idiosyncratic shocks.

The idiosyncratic shocks to relative changes in yield spreads are fat-tailed, as can be seen from

the left panel of Figure 2, which plots the time series of ue
St. The right panel of the same figure

plots ue
St (horizontal axis) against rSt (vertical axis). If there are no spillovers, � = 0, then the

multiplier is zero and the points fall along the 45-degree line (the red dashed line). The fact that

the estimated slope is steeper, as indicated by the blue solid line, implies that there are significant

yield spillovers.
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Figure 2: Idiosyncratic shocks over time and aggregate yield changes. The figure shows the time-
series dynamics of ue

St in the left panel. We construct ue
St as the residual of a regression of r

�̃t on
⌘et . The right panel shows a scatter plot of ue

St (horizontal axis) against rSt (vertical axis). The
size-weighted average of relative yield spread changes, rSt, uses the size weights as defined in (63).
The series are constructed using daily data from July 2009 until May 2018.
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4.5 Interpretation of the coe�cients

We find a multiplier M = 1

1�� ' 1.5 and hence a spillover parameter � ' 1

3
.41 To interpret this

estimate, suppose that the average yield spread is 1%, and that there is a “primitive” shock to all

countries that multiplies their yields by 1.4 (so, uSt = 0.4). If there were no contagion, the average

yield would increase to 1.4%. But as there is contagion, the average yield will increase to 1.6%

(as in 0.6 = M ⇥ 0.4). At the same time, a country with 0 yield spread still still keep a 0 yield

spread (as it is and was riskless), while for a country with an initial a yield of 5%, its own yield will

increase to 8%.

To get some more intuition for the spillover, consider that Italy, near the peak of the crisis, has

a relative size of 0.4. Suppose an idiosyncratic shock to Italy makes the Italian yield double (ui = 1

for i = Italy), i.e. the Italian yield spread goes from 2% to 4%. That makes the other yields go up

by a relative value �M ⇥ Si ⇥ ui = 0.5⇥ 0.4⇥ 1 = 0.2, so that the average yield increases from 1%

to 1.20%. In other terms, as the Italian yield spread goes up by 200bp, the other countries’ yield

spread goes up by 20bp, implying a “pass-through” of 0.1.

4.6 Narrative GIVs

To further inspect the variation that the GIVs are exploiting to estimate the multiplier, we narra-

tively check the largest shocks in Table 2. In particular, we order the dates based on the size of

|ue
St|. To illustrate the relevance of the largest shocks, we re-estimate the model that includes three

41Here we use, omitting aggregate shocks, rit = �MuSt + uit, with rit =
�yit

yi,t�1
, and rSt = MuSt.
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Figure 3: Multiplier estimates using an expanding window. The figure reports the estimates of
the multiplier in (65) using three principal components as controls. We estimate the model using
an expanding sample where the data are ordered by |ue

St|, that is, the magnitude of the idiosyn-
cratic shocks. The number of dates included is depicted on the horizontal axis, starting with 15
observations. The solid blue line corresponds to the point estimate and the dashed red lines to the
95%-confidence interval. The model is estimated using daily data from July 2009 until May 2018.
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principal components, that is, the last column of Table 1, using only the days with the largest k

shocks. In Figure 3, we show the multiplier estimate, alongside the 95%-confidence interval, where

we indicate the number of dates included on the horizontal axis (starting at 15 observations). The

estimate is stable for di↵erent samples but obviously standard errors tighten as the sample expands.

Panel A in Table 2 reports the yield changes on the 10 days with the largest realization of |ue
St|.

In Panel B, we scale the yield changes by 0.01 + yi,t�1. In Panel C, we provide the narratives.

If we inspect some of the largest shocks in Table 2, then is is clear that most of them are truly

idiosyncratic shocks. Examples include the decision by Greece to close all banks or the outcome

of the referendum. There are two shocks, however, on May 10, 2010 and August 8, 2011 that

involve actions by the ECB and hence are more likely aggregate shocks as opposed to idiosyncratic

shocks. Removing these dates does not impact our estimates, but illustrates the empirical relevance

of sporadic factors during times of crisis (see Section 2.8). Most of the shocks are associated with

Greece, although the final date corresponds to Italy.42

42Also following the end of our sample, many of the idiosyncratic shocks in recent months happened in Italy.
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Table 2: Summary of the largest idiosyncratic shocks and narratives. The table reports the proper-
ties of yield spread changes, �yit, on the 10 days with the largest realization of |ue

St| in Panel A. In
Panel B, we report the corresponding relative yield changes, rit =

�yit
0.01+yi,t�1

. In Panel C, we provide
the narratives associated with these events. The series are constructed using daily data from July
2009 until May 2018.

Panel A: Unscaled idiosyncratic shocks

Date Austria Belgium Finland France Greece Ireland Italy Netherlands Portugal Slovenia Spain

10-May-10 -0.08% -0.24% -0.07% -0.08% -3.87% -1.18% -0.43% -0.06% -1.62% -0.30% -0.62%

8-Aug-11 -0.03% -0.09% 0.00% 0.08% 0.01% 0.05% -0.66% 0.00% -0.10% -0.16% -0.73%

26-Oct-11 -0.05% -0.03% -0.03% -0.09% 3.11% 0.01% -0.02% -0.03% -0.15% 0.01% -0.04%

12-Mar-12 0.04% 0.04% 0.01% 0.05% -7.32% 0.00% 0.11% 0.01% 0.06% -0.04% 0.09%

3-Feb-15 -0.01% -0.01% -0.01% 0.00% -1.21% -0.02% -0.07% -0.01% -0.12% -0.06% -0.05%

29-Jun-15 0.05% 0.07% 0.03% 0.07% 3.21% 0.13% 0.36% 0.04% 0.48% 0.11% 0.36%

6-Jul-15 0.02% 0.04% 0.01% 0.03% 2.35% 0.06% 0.16% 0.01% 0.27% 0.03% 0.18%

10-Jul-15 -0.04% -0.05% -0.03% -0.05% -3.28% -0.10% -0.21% -0.04% -0.24% -0.23% -0.22%

13-Jul-15 -0.01% 0.01% 0.00% 0.01% -1.11% 0.00% 0.02% 0.00% -0.03% -0.01% 0.02%

29-May-18 0.07% 0.04% 0.03% 0.04% 0.36% 0.08% 0.49% 0.03% 0.20% 0.08% 0.17%

Panel B: Scaled idiosyncratic shocks

Date Austria Belgium Finland France Greece Ireland Italy Netherlands Portugal Slovenia Spain

10-May-10 -5.2% -14.2% -5.2% -5.9% -41.6% -29.5% -17.5% -4.8% -38.0% -12.8% -24.1%

8-Aug-11 -1.9% -3.1% 0.2% 4.4% 0.1% 0.6% -14.4% -0.3% -1.2% -4.0% -15.9%

26-Oct-11 -2.6% -1.0% -2.1% -4.3% 19.4% 0.2% -0.5% -2.3% -1.5% 0.3% -0.8%

12-Mar-12 1.9% 1.6% 0.8% 2.5% -31.7% 0.0% 2.8% 0.9% 0.5% -0.9% 2.2%

3-Feb-15 -1.2% -0.7% -0.7% -0.1% -11.5% -1.2% -3.0% -0.7% -3.7% -2.9% -2.0%

29-Jun-15 3.8% 5.0% 2.8% 5.1% 33.4% 6.9% 16.6% 3.1% 17.4% 4.7% 16.6%

6-Jul-15 1.8% 2.5% 0.7% 2.0% 18.9% 3.3% 6.8% 1.2% 8.6% 1.1% 7.7%

10-Jul-15 -3.0% -3.5% -2.2% -3.7% -22.1% -5.0% -8.8% -3.0% -7.6% -9.1% -9.0%

13-Jul-15 -0.5% 1.0% -0.2% 1.1% -9.6% 0.1% 1.0% 0.3% -0.9% -0.5% 1.1%

29-May-18 5.2% 2.6% 2.3% 2.9% 7.2% 5.0% 14.6% 2.3% 7.3% 4.7% 7.7%

Panel C: Narrative analysis

Date Event

10-May-10 Stock markets leap across Europe as EUR750bn eurozone rescue package is agreed

8-Aug-11 ECB decides to start buying Italian and Spanish bonds as part of the Securities Markets Program

26-Oct-11 EU leaders announced an agreement, including deal with private sector investors to take a 50% loss on Greek bonds

12-Mar-12 Greece Bailout Package Signed O↵ by EU Leaders

3-Feb-15 Greek government said to retreat from a demand for a debt writedown.

29-Jun-15 Greece closes banks

6-Jul-15 Greece bailout referendum on July 5th where voters reject austerity package

10-Jul-15 The Greek government submitted its highly anticipated plan for the country’s economic overhaul to bailout authorities

13-Jul-15 Greek PM Alexis Tsipras conceded to a further swathe of austerity measures and economic reforms

29-May-18 Italian political turmoil (snap election plus new budget plan) cause largest 1-day decline in Italian bonds in 25 years
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5 Demand and supply elasticities in crude oil markets

5.1 Data

Our data construction follows the existing literature (Kilian (2009), Caldara et al. (2018), Baumeis-

ter and Hamilton (2019), henceforth BH). The data on oil supply and prices are from the U.S.

Energy Information Administration (EIA). We observe the monthly oil supply for 20 countries

(both OPEC and non-OPEC) from January 1985 until December 2015.43 As we also observe the

total non-OPEC production, we also construct a fictitious country which produces the residual non-

OPEC supply. The real oil price series is obtained based on the refiner acquisition cost of imported

crude oil and deflated using the US CPI to obtain the real price of oil as in Kilian (2009).

We focus on estimating short-run (monthly) demand and supply elasticities, consistent with

the literature. To construct innovations, we use a state vector Xt that includes lagged (i) monthly

price changes, (ii) world supply growth, (iii) changes in inventories, and (iv) growth in industrial

production.44 We use the data of BH for the latter two series.

5.2 Model

We model the supply growth of country i in period t as

�yit = �s�pt + �i⌘t + uit + �0yXt�1,

and model changes in aggregate oil demand (both in use and inventories) as

�dt = �d�pt + �0dXt�1 + ✏t.

Market clearing, �ySt = �dt, implies

�pt =
M

�d
uSt + �p0Ct,

�ySt = MuSt + �y0Ct

where

M = � �d

�s � �d
2 [0, 1]

is the multiplier, and �p, �y are loadings on Ct = (⌘t, "t, Xt�1), and whose precise value does not

matter here.
43We follow Caldara et al. (2018) and remove Gabon from the sample due to concerns about data quality. In

addition, we scale the supply of the USSR using the ratio of supply of the USSR to the supply of Russia to obtain a
continuous series and to avoid a sudden jump in the non-OPEC supply.

44The results do not change significantly if we use 12 lags instead of one lag.
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Our goal is to estimate the short-run supply and demand elasticities, �s and �d (with presumably

�d < 0 < �s). The equations for aggregate supply and price changes are part of the VAR models

that are commonly used in the recent literature on oil prices and their impact on economic growth.

5.3 GIV estimation

The supply changes in some periods are extreme for some countries during supply disruptions,

and we therefore winsorize the growth rates at 2.5% and 97.5% across all countries and periods

to estimate �yEt.45 We use �yWit to denote the winsorized supply growth. We then estimate the

model using the following steps:

1. Run a panel regression with country and time fixed e↵ects,46

�yit = ki + at + ěit.

2. Use ěit to estimate ⌘xt and ⌘PCA
t (as in Section 3.2, Step 2), using which we define a new vector

of controls Ct =
�
⌘xt , ⌘

PCA
t , Xt�1

�0
.

3. Estimate M
�d using (with Zt := �y�t which is our zt plus some linear function of Ct, which is

anyway controlled for in the regression):

�pt =
M

�d
Zt + �p0Ct + ept , (66)

and M = � �d

�s��d using

�ySt = MZt + �y0Ct + eyt . (67)

4. We can recover the supply and demand elasticities using the estimates of M
�d and M , where

�s = �d

M (M � 1). However, to get the standard errors on the elasticities as well, we use the

2SLS estimator based on the first stage, which corresponds to (66), and denote the fitted value

by �p̂t :=
⇣

M
�d

⌘e

Zt. The second stage estimator for the demand elasticity corresponds to

�ySt = �d�p̂t + �0
dCt + edt , (68)

and for the supply elasticity to

�yEt = �s�p̂t + �0
sCt + est . (69)

45To ensure growth rates are always defined, we set supply to one in case it drops to zero, which happens in seven
country-months.

46Note that the time fixed e↵ects absorb the controls, Xt�1, in this case.
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Table 3: Multiplier estimates in the oil market. The first column reports the estimate of M , see
(66), and the second column of M

�d , see (67). The third column reports the Two Stage Least Square

(2SLS) estimate of the demand elasticity �d, see (68), and the fourth column the 2SLS estimate of
the supply elasticity �s, see (69). We suppress the coe�cients on the controls, Xt�1, that include
lagged (i) monthly price changes, (ii) world supply growth, (iii) changes in inventories, and (iv)
growth in industrial production. The t-statistics, which are reported in parentheses, are based on
OLS and 2SLS standard errors. The sample is from January 1985 to December 2015.

ySt �pt ySt yEt

Zt 0.878 -2.328

(15.12) (-4.42)

⌘PCA,t -0.117 0.176 -0.0508 -0.126

(-13.84) (2.29) (-1.58) (-12.54)

⌘OPEC,t 0.391 -0.188 0.320 0.401

(12.91) (-0.69) (2.99) (11.97)

�pt -0.377 0.0524

(-4.30) (1.91)

N 370 370 370 370

R2 0.542 0.263

5.4 Empirical results

We report the estimation results of the multipliers M = 0.88 and M
�d = �2.3 in Table 3 alongside

both elasticities. We estimate a demand elasticity of �d = �38% (with a standard error of 9%)

and a supply elasticity of �s = 5% (with a standard error of 3%). Changes in demand also include

changes in inventories, which respond more elastically to changes in prices (Kilian and Murphy

(2014)).

To put these estimates in perspective, we compare them to recent estimates in the literature.

Baumeister and Hamilton (2019) use sign restrictions in combination with a Bayesian estimator to

find supply and demand elasticities of 15% and -35%, respectively, with 68% credibility intervals

of (9%, 22%) for the supply elasticity and (-51%, -24%) for the demand elasticity. Caldara et al.

(2018) use a narrative approach and estimate a supply elasticity of 8% (with a standard error of

3.7%) and a demand elasticity of -8% (with a standard error of 8%). Kilian and Murphy (2014)

also combine sign restrictions and a Bayesian estimator with short-run supply elasticities bounded

at 2.5%, 5%, and 10%, and corresponding demand elasticities range from -44% to -47%.

We construct our instrument as the residual from a regression of y�t on Xt�1 and the two factors

and refer to it as u�t. If we regress it on the instrument of Caldara et al. (2018), which is non-zero

only during 14 months in this sample, we get a slope coe�cient of 0.93, with a t-statistic of 12.7

and an R-squared of 93%. Moreover, if we restrict ourselves to more extreme episodes by only
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using data when u�t, in absolute value, exceeds a threshold of 0.5% (370 observations), 0.75%,

..., 1.25% (19 observations), then the first-stage estimate declines monotonically from -2.3, with a

t-statistic of -4.4, to -5.2, with a t-statistic of 3.5. This highlights that by focusing on the more

extreme events, M
�d becomes more negative. Intuitively, in case of more extreme shocks, the role of

inventories diminishes and the demand curve becomes more inelastic. This reconciles our estimates

with those of Caldara et al. (2018).

If we inspect the largest shocks in terms of contribution to the instrument, Si,t�1uit, then many

of the extreme shocks are as described in Caldara et al. (2018). However, in some cases, the GIV

identifies shocks that are not included in the narrative approach. An example includes a reduction

in supply by Saudi Arabia in January 1989. Per the description of Caldara et al. (2018), OPEC

agreed upon a reduction in supply in November of 1988 but reports in subsequent months were

interpreted as “indicating that the OPEC member country was seriously attempting to cut back

production based on the new agreement.” One possible interpretation of this shock is that markets

learn about the exposure to the common OPEC shock, ⌘OPEC,t. In January 1989, the real price of

oil jumped up by 13.2%. In the context of GIV, those are valid idiosyncratic shocks that can be

used as instruments.

In summary, the GIV estimator results in estimates that are in the range of estimates docu-

mented in the recent literature, thereby providing some external validation of GIVs as an approach

to estimating demand and supply elasticities. At the same time, the GIV procedure arguably

requires less domain-specific ingenuity than the previous studies we mentioned.

In future work, granular country-level data on (net) imports and oil consumption can be used

to construct a second instrument that can be used to both sharpen the estimates and to test

for overidentifying restrictions. This instrument may be particularly powerful given the apparent

importance of demand shocks during the last 15 years.

6 Discussion and extensions of the framework

6.1 Extensions

There are many ways to increase the number of setups in which the GIV idea can be applied.

Multidimensional GIV One can handle multidimensional “actions”: for instance, a firm could

have a shock that a↵ects both productivity and labor demand. A country could have a shock

that a↵ects both productivity and oil demand. Formally, the actions yit and shocks uit are now

multidimensional. The GIV idea goes through, and this is developed in Section 12.1. We have

seen that with one GIV, we can estimate 1 + dF parameters (M , M↵f ), where dF is the number of

endogenous, observed factors. With q-dimensional actions, we have q GIVs, and we can estimate
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q2 + qdF parameters, which correspond to M and ↵f .47 So, potentially many parameters can be

recovered with multidimensional “actions” by firms or countries.

GIV with di↵erent size weights This framework can be extended with size weights that vary

across factors, F f
t = ⌘ft + ↵fySf ,t + kf + �fCF

t . Then, we can identify more parameters, as each

zSf t = ySf t�yEt is an instrument (see Section 12.2), for each distinct and useful weight Sf . Indeed,

then we can not only identify M and M↵f as in the regular GIV, but also all the �f .48

GIV with a more complex matrix of influences The GIV can also be extended to non-

homogeneous influences in the context of loops. Suppose a model:

yit = �
X

j

Gijyjt + �i⌘t + uit, (70)

i.e., in vector form

yt = �Gyt + ⇤⌘t + ut, (71)

with a given “influence” matrix G (in our baseline model, G = ◆S 0). We’d like to identify �, the

strength of linkages.

A simple generalization of our GIV is to define a “size” vector S := G0E. Then, left-multiplying

(71) by E 0, we get

yEt = �ySt + ⇤S⌘t + uSt.

The key moment is still E [(yEt � �ySt) zt] = 0, where the GIV is again zt = ySt � yEt in the simple

case where ⇤ = ◆ and G◆ = ◆; see Section 12.6 for the general case. Hence, GIV generalizes to

“spatial” models with common shocks (most spatial models do not have latent common shocks).

Bayesian GIV Another extension is a Bayesian interpretation of the GIVs. This way, we can

interpret GIVs in a Bayesian framework – see Section 14. In particular, this opens the possibility

of marrying GIV estimation with priors on other parameters. In the simplest cases with Gaussian

shocks, the maximum likelihood estimate is our GIV – confirming its optimality properties. At the

same time, the basic GIV doesn’t actually use normality assumptions.

Furthermore, many econometric extensions might be useful, e.g. with stochastic volatility, and

various dimensions of autocorrelations. We leave those extensions to future research.

47As uSt and ySt are q-dimensional, M = dyst

duSt
q⇥q dimensional, and each of the dF f

t
duS

= M↵f is also q-dimensional.
48On the other hand, the di↵erence between di↵erent size weights may be small to the estimation will be more

fragile.
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6.2 Comparison with Bartik instruments and other procedures

Comparison with Bartik instruments The GIV estimator shares some similarities with Bartik

instruments, also known as “shift-share estimators,” that were first introduced in Bartik (1991).

To put it simply, Bartik instruments allow to estimate the cross-sectional (or micro) sensitivities

to shocks, but not aggregate sensitivities; whereas GIVs are mostly designed to estimate aggregate

(or macro) elasticities. Hence, they are complementary.

To see this, let us use the notation established earlier. Shift-share estimators aim to estimate

the coe�cients �f
1
in the structural equation yit =

P
f (�

f
0
+ �f

1
xit)F

f
t + ⌘yt + uit using xitg

f
t as an

instrument for xitF
f
t . In this notation, the “shares” are xit and the “shifters” are gft (for instance

gft could be the China shock, and be correlated with ⌘yt ). Shift-share estimators have been the

study of much recent econometric work including Goldsmith-Pinkham et al. (2018); Adao et al.

(2018b); Borusyak et al. (2018). Borusyak et al. (2018) lay out su�cient identifying conditions

for the shift-share estimator to estimate the structural parameter of interest �f
1
and show that the

key orthogonality condition is that the shifters gft are orthogonal to the share-weighted structural

disturbances. That is, the shifters are as-good-as-randomly assigned. Goldsmith-Pinkham et al.

(2018) provide alternative identifying conditions for shift-shares but these are less relevant for the

GIV estimator.

Returning to the GIV estimator and the notation we established earlier, recall that the shares Si

are either held fixed throughout the analysis or set in the previous period, e.g. Si = Si,t�1 provided

that the previous period shares are orthogonal to uit. Therefore, a critical orthogonality condition

for the GIV estimator is that the idiosyncratic errors uit are orthogonal to the disturbances in the

structural equation of interest. In this sense, the orthogonality condition for the GIV estimator is

similar to the condition provided in Borusyak et al. (2018), where we now think of the idiosyncratic

errors uit as the shifters. The GIV estimator then provides a very general strategy for constructing

valid instruments based upon the underlying granular economic structure and as shown earlier, these

granular instruments are optimal instruments. However, this does not fully capture the contribution

of the GIV estimator. Shift-share estimators are unable to estimate the mean e↵ect �f
0
. Moreover, as

we also show earlier, the GIV approach identifies multiple parameters in a system of simultaneous

equations (Mt,Mt↵f ) and therefore it additionally enables the researcher to identify multipliers.

This is generally not true in shift-share settings, which typically consider single-equation systems.

Procedures containing elements of GIVs A few papers have explored the idea of using id-

iosyncratic shocks as instruments to estimate spillover e↵ects, such as Leary and Roberts (2014b)

in the context of firms’ capital structure choice and Amiti et al. (2019) in the context of firms’ price

setting decisions. The structure of the estimating equations in these papers is similar to the model
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that we consider here:49

yt = �ywt +mCt + ut,

where ywt = w0yt can be equally-weighted (Leary and Roberts (2014b)) or size-weighted (Amiti et

al. (2019)), depending on the weights w. Both papers use industry and/or year fixed e↵ects, which

can be viewed as a choice of controls or exogenous factors, ⌘t, to which all firms in a given industry

have the same exposure.

There are two main di↵erences compared to GIV. First, both papers use idiosyncratic shocks

to another variable than yt, say gt, to construct an instrument for ywt. Leary and Roberts (2014b)

use idiosyncratic stock returns and Amiti et al. (2019) use shocks to competitors’ marginal cost,

exchange rates, or export prices. We, instead, propose to use idiosyncratic shocks to yt rather than

another instrument (this way requiring fewer times series). Second, and related, we control for

heterogeneous exposures to common factors to extract the idiosyncratic shocks, which is important

in asymptotic theory and in practice in realistic samples (see Section 7).

A third di↵erence is specific to Leary and Roberts (2014b). GIVs crucially depend on the

di↵erence between size- and equal-weighted averages of variables. If the estimating equation depends

on equal-weighted averages, GIV cannot be applied. In most models, however, not all competitors

receive equal weight and larger firms, or perhaps firms that are closer in product space, receive a

larger weight.

Lastly, the use of model-based idiosyncratic shocks has some similarities with Amiti and We-

instein (2018), who extract bank supply shocks from Japanese data using a panel of fixed e↵ects,

and then estimate the sensitivity of aggregate investment to these shocks. However, unlike our

model, Amiti and Weinstein (2018) assume a uniform sensitivity to the aggregate shocks (�i⌘t with

�i = 1 for all i), and do not allow for feedback loops: shocks to banks a↵ect aggregate investment,

but aggregate investment does not circle back around to a↵ect individual bank behavior (so, they

assume ↵f = 0 in our notations). This is the key source of endogeneity in many of the models we

consider, and by tackling it we are able to estimate a richer set of parameters.

Other methods to estimate aggregate elasticities Rigobon (2003) introduces another method

that can be used to estimate spillover e↵ects and aggregate multipliers using time-variation in sec-

ond moments. If shocks are heteroskedastic and the structural parameters are stable across regimes,

then the di↵erent volatility regimes add additional equations to the system so that the structural

parameters can be identified. GIV does not require heteroskedasticity, but can accommodate it,

and is therefore complementary to identification methods that rely on heteroskedasticity.

49Amiti et al. (2019) study the price setting decision of firms. In their model, the pricing equation features two
endogenous variables, namely the same firm’s marginal cost and the size-weighted average of competitors’ prices. We
focus on the spillover e↵ects of competitors’ prices in our discussion in this section.
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Influence and the “reflection problem” We finish with another example, known as “conta-

gion” or the “reflection problem” (Manski (1993); Kline and Tamer (Forthcoming)). Suppose that

actions follow:

yit = �ySt + ⌘t + uit, (72)

where ⌘t is uncorrelated with the uit. This equation means that yit is influenced by the aggregate

action of other agents (�ySt), and in addition by the usual aggregate shocks ⌘t, and idiosyncratic

shocks uit (which we assume to be uncorrelated to ⌘t). The “influence” or “contagion” parameter

� is of high interest.

The GIV approach works as follows. Taking the size-weighted average of (72), we have ySt =

�ySt + ⌘t + uSt, so that

ySt = M (⌘t + uSt) , M =
1

1� �
. (73)

We form zt := y�t, which by (72) will give y�t = u�t. Hence, if we estimate M e by OLS:

ySt = M ey�t + "yt ,

then we have a consistent estimator of the multiplier M , and therefore of �.50 We have a simple GIV

approach to the “reflection problem”. To the best of our knowledge, this approach is new. Indeed, it

may seem to contradict earlier impossibility results. Section 12.7 solves the apparent contradiction.

The short summary is that Manski (1993) and Bramoullé et al. (2009) do not consider anything like

a GIV, as they immediately reason on averages based on observables, eschewing any exploration of

the noise.51 In contrast, GIVs are all about exploring some structure in the noise – the idiosyncratic

shocks of large entities.52

In a tangentially related recent paper, Sarto (2018) uses factor analysis to extract values of ⌘f

(much as we do when we “recover” a factor ⌘f ). Take the basic example in our paper. Then, Sarto

does not identify ↵: even if ⌘ (the aggregate shock to demand) were perfectly identified, that would

not allow to estimate p. In the supply and demand example, Sarto would identify the demand

elasticity �d, but not the supply elasticity �s.

Spatial econometrics. In some applications of GIVs we have considered separately, growth in

a region a↵ects that of the other regions. So there is a similarity between our setup and that of

spatial econometrics (e.g. Kelejian and Prucha (1999); Blasques et al. (2016); Shi and Lee (2017);

Kuersteiner and Prucha (2018)). However, the estimators are quite di↵erent. The reason is that

spatial econometrics studies the “local” influence (e.g. of neighboring cities on a city), while GIVs

50And we will have "yt = ⌘t + uEt.
51Somewhat related, Graham (2008) explores the identification of peer e↵ects using conditional variance restrictions

on the outcomes by exploiting di↵erences in the sizes of the peer group. Intuitively, smaller peer group sizes lead to
a larger contribution of each individual peer on the peer component.

52Economically, the idiosyncratic shocks to “big influencers” (e.g. large firms, or perhaps famous people in the
networks) a↵ect the aggregate, hence they allow to estimate the social or economic multiplier. This is why they can
be handled with GIVs.
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study the global influence. Hence, the sources of variation, identifiability conditions and methods

are quite di↵erent. Certainly, the spatial literature has not identified, as we do, the GIVs as a

simple way to estimate elasticities in contexts such as supply and demand problems, and models

with feedback loops from banks to sovereign yields (and vice versa). Still, some of the sophisticated

techniques of the spatial literature might be used one day to enrich a GIV-type analysis.

6.3 GIV for di↵erentiated product demand systems

We develop the basic ideas for the logit demand model and extend these ideas to the random-

coe�cients logit model as in Berry et al. (1995a) in the next subsection.

6.3.1 Logit demand

The utility that household h derives from product i, for i = 0, ..., N, is given by53

Uhit = �it + ehit,

�it = ��pit + �0xit + ↵i + ⇠it,

where ehit follows a Type-1 extreme-value distribution, pit denotes the log price, xit observable

characteristics, and E [⇠it] = 0. We refer to i = 0 as the outside option and normalize �0t = 0. This

model implies that the probability that a given household selects product i is

P (Vhit > Vhjt, 8j 6= i) =
exp(�it)

1 +
PN

j=1
exp(�jt)

,

which in this case also equals the market share, sit. Firms set prices to maximize profits and we

assume that each product is produced by a single firm, which solves

max
Pit

Qit (Pit � Cit) ,

where Cit equals marginal cost and Qit = sitQt with Qt the total size of the market. The firm

optimally sets the price to

Pit =

✓
1� 1

✏it

◆�1

Cit,

where ✏it = � @ ln sit
@ ln pit

, that is, the negative of the price elasticity of demand. The goal is to estimate

✓ = (�, �).

53We use log price, pit, instead of the price, Pit, in the formulation of �it to simplify some of the expressions, but
the basic logic extends to the case where �it depends on Pit.
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It is convenient to rewrite the model as

log

✓
sit
s0t

◆
= ↵i � �pit + �0xit + ⇠it.

To identify �, it is commonly assumed that E [xit⇠it] = 0 and we maintain this assumption. However,

as prices respond to demand shocks, ⇠it, we cannot assume E [pit⇠it] = 0. There are three common

approaches to create instrumental variables in the demand estimation literature. First, variables

that capture variation in marginal cost, Cit, that is unrelated to demand shocks. Second, Berry et

al. (1995a) suggest to use the average of characteristics of other firms

zBLP
it =

1

N � 1

X

j,j 6=i

xjt,

which results in valid instruments under some assumptions (see Nevo (2000) and the references

therein).54 Third, one can use panel data for the same firm that operates in di↵erent locations. Un-

der the assumption that demand shocks are uncorrelated across locations, prices in other locations

of the same firm will be valid instruments. The intuition is that prices across locations share the

same marginal cost but the demand shocks are, by assumption, uncorrelated, see Nevo (2001).

GIV provides an alternative by exploiting exogenous variation in markups due to idiosyncratic

demand shocks to large firms. We assume that demand shocks follow a factor model,

⇠it = log

✓
sit
s0t

◆
� ↵i + �pit � �0xit = ⌘t + uit,

which can be extended to allow for heterogeneous exposures, �n⌘t. Also, we assume for simplicity

that ⌘t and uit are i.i.d. over time, but the logic in this section can be extended to persistent demand

shocks (see also Sweeting (2013)).

Recall that in this simple model

✏it = �(1� sit),

which implies that the direct impact of all idiosyncratic demand shocks to other companies on sit,

and hence ✏it, is
NX

j,j 6=i

@sit
@ujt

ujt = �sit

NX

j,j 6=i

sjtujt.

Hence, shocks to companies with larger market shares have a larger impact. This suggests a GIV

instrument

zGIV
it = s̄i,t�1

NX

j,j 6=i

s̄j,t�1ujt,

54If a firm o↵ers multiple products, the average of characteristics of other products produced by the same firm can
be used as well.
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where s̄j,t�1 is the average market share for product j up to time t � 1. This allows us to add a

moment condition E
⇥
zGIV
it ⇠it

⇤
= 0, which identifies �.

6.3.2 Random coe�cients logit as in Berry, Levinsohn and Pakes (1995a)

Berry, Levinsohn and Pakes (1995a) extend the standard logit model by allowing for random vari-

ation in the preference parameters

✓h = ✓ + ⌫h,

where ⌫v =
⇣
⌫�h , ⌫

�
h

⌘
and ⌫h ⇠ F⌫ (✓2). The market share equation modifies to

sit =

Z

⌫

shitdF⌫ (✓2) ,

where

shit =
exp

⇣
�it � ⌫�hpit + ⌫�0h xit

⌘

1 +
PN

j=1
exp

⇣
�jt � ⌫�hpjt + ⌫�0h xjt

⌘ .

To estimate the model, Berry (1994) suggests to recover �it from the market shares using a contrac-

tion mapping (see Nevo (2000) for an introduction). With �it in hand, we form moment conditions

as before to estimate (✓1, ✓2).

To construct a GIV instrument in this model, we can recompute the total impact of idiosyncratic

shocks to other firms on the demand elasticity, which is now slightly more involved. The negative

of the demand elasticity, which enters into the pricing equation via the markup, is given by

✏it =

Z

⌫

�h
shit
sit

(1� shit) dF⌫ (✓2) .

An approximation of the model around ✓h = ✓ yields the same weights as before, although it is

feasible to numerically calculate the optimal weights by computing

X

j,j 6=i

@✏it
@ujt

ujt.

6.4 When aggregate shocks are made of idiosyncratic shocks

We now discuss how GIVs extend to economies where aggregate shocks ⌘t are themselves made of

idiosyncratic shocks uit. Take the basic supply and demand model of Section 2.2. In the case without

loops, we achieved identification provided that u�t ? "t: we do not need u�t ? ⌘t, so aggregate

demand shocks can be influenced by idiosyncratic shocks, but not aggregate supply shocks.

If aggregate supply shocks are a↵ected by idiosyncratic shocks, the elementary strategy does

not work, but a variant does work. We suppose disaggregated supply and demand data (for the
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commodity in question, e.g. oil) is available, at least for large countries. We model country i’s

supply and demand with the following the factor model:

ykit = �kpt + �ki ⌘
k
t + uk

it, (74)

where k = s, d indicates supply or demand, respectively. We allow E
⇥
us
itu

d
it

⇤
to be nonzero: for

instance, if the US has a “fracking shock” that a↵ects both supply and demand, it will be captured

by both us
it and ud

it for i = USA. This is a concrete case in which supply and demand shocks are

correlated: this happens via the correlations in country-level shocks. Suppose that this correlation

captures the common shocks, so that ⌘st ? ud
�dt (where �

d are the residual granular weights given

by the demand-side relative size): then, we can identify the elasticity of supply, via ud
�dt. Likewise,

if ⌘st ? us
�st then the GIV us

�st allows to estimate the supply elasticity �s. Section 12.5 details this,

and gives more variants.

One can also consider an economy as a network. The general GIV for that would be a whole

topic – Sections 6.1 and 12.6 detail this. In some cases, one can obviate the network structure, e.g.

via aggregation theorems such as Hulten’s theorem. This is developed in Section 12.12.

In conclusion, one can often handle cases where aggregate shocks are made of idiosyncratic

shocks: then, some more disaggregated data and economic reasoning allows to use a GIV to estimate

macro parameters of interest.

7 Simulations

We illustrate the precision of granularly identified parameters depending on the size of the sample

(both N and T ), the degree of concentration, and the volatility of idiosyncratic shocks relative to

aggregate shocks.

7.1 Model

We start from the standard supply, ysit, and demand, ydt , model

ysit = �spt + �0i⌘t + uit, ydt = �dpt + ✏t,

where �d < 0 < �s, implying, with M = � �d

�s��d ,

pt =
M

�d
(uSt + �0S⌘t � ✏t) , ysSt = MuSt +M�0S⌘t + (1�M) ✏t.
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7.2 Estimators and standard errors

To estimate M and M
�d , we can use standard OLS. To estimate M , we use

ysSt = a+My�t + ✓0⌘et + et, (75)

and to estimate M
�d , we use

pt = ap +
M

�d
y�t + ✓0p⌘

e
t + ept . (76)

All standard OLS results apply if we observe the factors, ⌘t. However, we often do not directly

observe all factors. We consider the case in which we know the factor loadings, �⌘i , and where the

loadings are unobserved and estimated using PCA. To provide a point of reference, we also consider

the case where we do not control for factors and impose that ✓ = ✓p = 0. In all cases, we report the

OLS standard errors to assess to what extent the OLS standard errors need to be adjusted for the

fact that we use ⌘et instead of ⌘t.

To estimate the demand and supply elasticities, we can recover them from the estimates of M

and M
�d . However, as discussed before, this is equivalent to a 2SLS estimator using y�t as instrument

for price, while controlling in this case for the factors. Hence, the first stage corresponds to

pt = ap + ⇠y�t + ✓0p⌘
e
t + et,

and the second stage to estimate the demand elasticity is, with p̂t = aep + ⇠ey�t + ✓0p⌘
e
t ,

ydt = ad + �dp̂t + ✓0d⌘
e
t + edt ,

and for the supply elasticity

ysEt = as + �sp̂t + ✓0s⌘
e
t + est .

The standard weak instrument tests can be used to assess whether y�t is a su�ciently strong

instrument for price (Section 2.3). In this case, we report the 2SLS standard errors to assess

whether their accuracy is impacted by the fact that we estimate the common factors.

7.3 Calibration

In calibrating the model, we target (i) concentration, as measured by the excess Herfindahl, h =pP
i S

2

i � 1/N , and (ii) the ratio of the volatility of idiosyncratic shocks to the volatility of aggre-

gate supply shocks. In all cases, we estimate the number of common factors using the procedure in

Bai and Ng (2002) by minimizing their ICp2(k) criterion.

We set �d = �0.3, �s = 0.1, and �✏ = 3%. The size weights are generated as ki = i�1/⇣ ,
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Table 4: Cases considered in simulations. We calibrate the supply-and-demand model in Section
7 under seven alternative parameterizations. The parameters are the following: N is the cross-
sectional sample size; T is the number of simulated i.i.d. time periods; h is the excess Herfindahl that
we target in our simulation of the size weights (as described in Section 7.3); ⌧ is the targeted ratio
of the volatility of idiosyncratic shocks to the volatility of aggregate supply shocks; the multipliers
M = � �d

�s��d and M
�d are functions of the elasticities �d and �s of demand and supply with respect to

price. The final column reports the share of the price volatility that is due to idiosyncratic shocks
under each of the seven parameterizations.

Case N T h ⌧ M M
�d

% price vol. idiosyncratic

1 25 360 0.2 3 0.75 -2.5 12.6%

2 25 360 0.2 4 0.75 -2.5 20.4%

3 25 360 0.3 3 0.75 -2.5 19.1%

4 25 360 0.3 4 0.75 -2.5 29.5%

5 25 120 0.2 4 0.75 -2.5 20.4%

6 50 120 0.2 4 0.75 -2.5 16.1%

7 50 360 0.2 4 0.75 -2.5 16.1%

Si = ki/
P

i ki, where ⇣ is chosen so that h 2 {0.2, 0.3}.55 In the benchmark case, we assume

a single common factor, which follows a standard normal distribution, and uniformly distributed

loadings. We consider two cases, namely where Corr (�, S) = 0 and Corr (�, S) = �20%. We scale

the loadings so that the variance of aggregate supply shocks follows V (�0S⌘t) = �2S = 0.032. Lastly,

we select �u = ⌧ (�0S�S)
1/2 to target the ratio ⌧ of idiosyncratic shock volatility to aggregate shock

volatility. We vary ⌧ 2 {3, 4} , N 2 {25, 50}, and T 2 {120, 360}.
The cases considered are summarized in Table 4. The final column reports the fraction of price

volatility that is due to idiosyncratic shocks, which ranges approximately from 10% to 30%, in line

with the recent literature on granularity in terms of how much of aggregate fluctuations can be

traced back to idiosyncratic shocks.

7.4 Simulation results

The simulation results when Corr (�, S) = 0 are reported in Table 5. We consider four estimators.

In the case of M1, we assume that the loadings are known in estimating the factors; this is an

ideal case taken as a benchmark. In the case of M2, we use PCA to estimate the factors. In the

case of M3, we control for the factors estimated using the known loadings and PCA. In the case of

M4, we use no factors and just use ys
�t without any factors. Note that we do not advocate M4 in

practice: M4 is there simply to illustrate what goes wrong if we don’t control for factors. The first

four columns correspond to the estimates of M , the next four columns to estimates of M
�d , the next

four columns to estimates of �d, and the last four columns to estimates of �s.

55Here ⇣ is the power law exponent of the size distribution. See Gabaix (2009) and Section 12.4.
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Table 5: Simulation results when Corr (�, S) = 0 based on 10,000 replications. The parameters
used in the di↵erent cases are summarized in Table 4. In particular, the data are generated from
a model in which M = 0.75, M

�d = �2.5, �d = �0.3, and �s = 0.1. GIV estimators M1,..., M4 are
described at the beginning of Section 7.4. For each estimator, we report the median, the mean, and
percentiles 2.5% (P2.5) and 97.5% (P97.5) in the simulated distribution of estimates. “Coverage” is
the fraction of estimates falling within the 95% confidence intervals constructed using OLS standard
errors (columns 1 through 8) or the 2SLS standard errors (columns 9 through 16).

M M

�d �d �s

Case Statistic M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

Median 0.75 0.75 0.75 0.75 -2.50 -2.50 -2.50 -2.49 -0.30 -0.30 -0.30 -0.30 0.10 0.10 0.10 0.10

Mean 0.75 0.75 0.75 0.75 -2.50 -2.50 -2.50 -2.50 -0.33 -0.34 -0.32 -0.34 0.11 0.12 0.11 0.11

1 P2.5 0.53 0.49 0.52 0.51 -3.81 -3.90 -3.86 -3.83 -0.65 -0.67 -0.67 -0.65 0.01 0.00 0.00 0.00

P97.5 0.98 1.01 0.99 0.99 -1.20 -1.11 -1.15 -1.17 -0.17 -0.17 -0.17 -0.17 0.27 0.32 0.28 0.30

Coverage 0.95 0.93 0.95 0.95 0.95 0.94 0.95 0.95 0.93 0.93 0.93 0.93 0.96 0.94 0.95 0.96

Median 0.75 0.75 0.75 0.75 -2.51 -2.50 -2.51 -2.51 -0.30 -0.30 -0.30 -0.30 0.10 0.10 0.10 0.10

Mean 0.75 0.75 0.75 0.75 -2.51 -2.51 -2.51 -2.51 -0.31 -0.31 -0.32 -0.31 0.10 0.11 0.10 0.10

2 P2.5 0.60 0.56 0.59 0.58 -3.48 -3.54 -3.50 -3.52 -0.52 -0.52 -0.53 -0.52 0.04 0.02 0.04 0.03

P97.5 0.90 0.94 0.90 0.92 -1.54 -1.47 -1.51 -1.49 -0.20 -0.19 -0.19 -0.19 0.19 0.22 0.19 0.21

Coverage 0.95 0.90 0.95 0.95 0.95 0.93 0.95 0.95 0.94 0.94 0.94 0.94 0.96 0.91 0.96 0.95

Median 0.75 0.75 0.75 0.75 -2.51 -2.50 -2.51 -2.51 -0.30 -0.30 -0.30 -0.30 0.10 0.10 0.10 0.10

Mean 0.75 0.75 0.75 0.75 -2.51 -2.51 -2.51 -2.51 -0.31 -0.31 -0.31 -0.31 0.10 0.10 0.10 0.10

3 P2.5 0.62 0.59 0.62 0.61 -3.27 -3.34 -3.29 -3.29 -0.44 -0.45 -0.45 -0.44 0.05 0.03 0.04 0.04

P97.5 0.88 0.92 0.88 0.89 -1.74 -1.68 -1.72 -1.72 -0.22 -0.22 -0.21 -0.22 0.17 0.21 0.18 0.18

Coverage 0.95 0.90 0.95 0.95 0.94 0.93 0.95 0.94 0.94 0.94 0.95 0.95 0.95 0.90 0.95 0.95

Median 0.75 0.75 0.75 0.75 -2.50 -2.50 -2.50 -2.51 -0.30 -0.30 -0.30 -0.30 0.10 0.10 0.10 0.10

Mean 0.75 0.75 0.75 0.75 -2.51 -2.50 -2.51 -2.51 -0.31 -0.31 -0.31 -0.31 0.10 0.10 0.10 0.10

4 P2.5 0.65 0.63 0.65 0.64 -3.15 -3.18 -3.17 -3.18 -0.42 -0.42 -0.42 -0.42 0.06 0.05 0.06 0.05

P97.5 0.85 0.87 0.85 0.87 -1.86 -1.81 -1.84 -1.84 -0.22 -0.22 -0.22 -0.22 0.15 0.17 0.15 0.16

Coverage 0.95 0.90 0.95 0.95 0.94 0.93 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.89 0.95 0.95

Median 0.75 0.75 0.75 0.75 -2.51 -2.50 -2.50 -2.50 -0.30 -0.30 -0.30 -0.30 0.10 0.10 0.10 0.10

Mean 0.75 0.75 0.75 0.75 -2.50 -2.50 -2.50 -2.50 -0.30 -0.30 -0.30 -0.30 0.10 0.10 0.10 0.10

5 P2.5 0.66 0.64 0.66 0.66 -3.01 -3.05 -3.02 -3.02 -0.38 -0.38 -0.39 -0.38 0.06 0.05 0.06 0.06

P97.5 0.84 0.86 0.84 0.84 -1.99 -1.95 -1.99 -1.98 -0.24 -0.24 -0.24 -0.24 0.14 0.16 0.15 0.15

Coverage 0.95 0.90 0.95 0.95 0.94 0.93 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.89 0.95 0.95

Median 0.75 0.75 0.75 0.75 -2.50 -2.50 -2.50 -2.50 -0.30 -0.30 -0.30 -0.30 0.10 0.10 0.10 0.10

Mean 0.75 0.75 0.75 0.75 -2.50 -2.49 -2.50 -2.50 -0.32 -0.33 -0.33 -0.33 0.11 0.11 0.11 0.11

6 P2.5 0.56 0.52 0.55 0.52 -3.71 -3.78 -3.74 -3.77 -0.64 -0.66 -0.65 -0.64 0.02 0.01 0.02 0.01

P97.5 0.94 0.98 0.95 0.97 -1.24 -1.16 -1.24 -1.20 -0.17 -0.17 -0.17 -0.17 0.22 0.26 0.22 0.26

Coverage 0.95 0.93 0.95 0.95 0.95 0.95 0.95 0.95 0.93 0.93 0.93 0.93 0.96 0.95 0.96 0.96

Median 0.75 0.75 0.75 0.75 -2.50 -2.50 -2.50 -2.50 -0.30 -0.30 -0.30 -0.30 0.10 0.10 0.10 0.10

Mean 0.75 0.75 0.75 0.75 -2.50 -2.50 -2.50 -2.50 -0.31 -0.31 -0.31 -0.31 0.10 0.10 0.10 0.10

7 P2.5 0.64 0.62 0.64 0.62 -3.21 -3.27 -3.23 -3.24 -0.44 -0.44 -0.45 -0.44 0.06 0.05 0.06 0.05

P97.5 0.86 0.88 0.86 0.88 -1.78 -1.75 -1.77 -1.75 -0.22 -0.22 -0.22 -0.22 0.15 0.17 0.16 0.17

Coverage 0.95 0.91 0.95 0.95 0.95 0.94 0.95 0.95 0.94 0.95 0.95 0.95 0.95 0.91 0.95 0.95
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Table 6: Simulation results when Corr (�, S) = �20% based on 10,000 replications. The parameters
used in the di↵erent cases are summarized in Table 4. In particular, the data are generated from
a model in which M = 0.75, M

�d = �2.5, �d = �0.3, and �s = 0.1. GIV estimators M1,..., M4 are
described at the beginning of Section 7.4. For each estimator, we report the median, the mean, and
percentiles 2.5% (P2.5) and 97.5% (P97.5) in the simulated distribution of estimates. “Coverage” is
the fraction of estimates falling within the 95% confidence intervals constructed using OLS standard
errors (columns 1 through 8) or the 2SLS standard errors (columns 9 through 16).

M M

�d �d �s

Case Statistic M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

Median 0.75 0.69 0.75 0.56 -2.49 -2.29 -2.50 -1.85 -0.30 -0.30 -0.30 -0.30 0.10 0.13 0.10 0.24

Mean 0.75 0.69 0.75 0.56 -2.50 -2.30 -2.50 -1.85 -0.33 -0.34 -0.33 -0.30 0.11 0.16 0.11 0.21

1 P2.5 0.52 0.41 0.51 0.29 -3.84 -3.72 -3.87 -3.23 -0.66 -0.74 -0.67 -0.97 0.01 0.01 0.00 0.07

P97.5 0.98 0.97 0.99 0.82 -1.17 -0.88 -1.13 -0.50 -0.17 -0.16 -0.17 -0.14 0.28 0.47 0.29 0.96

Coverage 0.95 0.88 0.95 0.67 0.95 0.93 0.95 0.84 0.93 0.93 0.93 0.92 0.96 0.97 0.95 1.00

Median 0.75 0.74 0.75 0.42 -2.51 -2.46 -2.51 -1.38 -0.30 -0.30 -0.30 -0.30 0.10 0.11 0.10 0.42

Mean 0.75 0.74 0.75 0.41 -2.51 -2.47 -2.51 -1.39 -0.31 -0.32 -0.32 0.00 0.10 0.11 0.10 -0.12

2 P2.5 0.60 0.56 0.59 0.19 -3.51 -3.50 -3.54 -2.48 -0.52 -0.53 -0.54 -1.05 0.04 0.03 0.04 0.17

P97.5 0.90 0.92 0.91 0.63 -1.52 -1.43 -1.49 -0.30 -0.19 -0.19 -0.19 -0.12 0.19 0.23 0.19 1.86

Coverage 0.95 0.91 0.95 0.08 0.94 0.94 0.95 0.41 0.93 0.93 0.94 0.92 0.96 0.94 0.96 0.72

Median 0.75 0.73 0.75 0.56 -2.51 -2.43 -2.51 -1.86 -0.30 -0.30 -0.30 -0.30 0.10 0.11 0.10 0.24

Mean 0.75 0.73 0.75 0.56 -2.51 -2.43 -2.51 -1.86 -0.31 -0.31 -0.31 -0.31 0.10 0.12 0.10 0.26

3 P2.5 0.62 0.56 0.61 0.39 -3.29 -3.26 -3.31 -2.68 -0.44 -0.45 -0.45 -0.52 0.04 0.04 0.04 0.12

P97.5 0.88 0.89 0.89 0.72 -1.73 -1.59 -1.69 -1.02 -0.22 -0.21 -0.21 -0.19 0.18 0.23 0.18 0.51

Coverage 0.95 0.88 0.95 0.29 0.94 0.93 0.94 0.62 0.94 0.94 0.94 0.94 0.95 0.92 0.95 0.55

Median 0.75 0.74 0.75 0.51 -2.50 -2.48 -2.51 -1.69 -0.30 -0.30 -0.30 -0.30 0.10 0.10 0.10 0.29

Mean 0.75 0.74 0.75 0.51 -2.51 -2.48 -2.51 -1.69 -0.31 -0.31 -0.31 -0.31 0.10 0.11 0.10 0.32

4 P2.5 0.65 0.62 0.64 0.34 -3.17 -3.16 -3.19 -2.44 -0.42 -0.42 -0.43 -0.51 0.06 0.05 0.06 0.16

P97.5 0.85 0.86 0.86 0.66 -1.85 -1.79 -1.82 -0.93 -0.22 -0.22 -0.22 -0.20 0.15 0.18 0.16 0.64

Coverage 0.95 0.91 0.95 0.07 0.94 0.94 0.95 0.36 0.94 0.95 0.95 0.94 0.95 0.92 0.95 0.11

Median 0.75 0.74 0.75 0.61 -2.50 -2.45 -2.50 -2.03 -0.30 -0.30 -0.30 -0.30 0.10 0.11 0.10 0.19

Mean 0.75 0.74 0.75 0.61 -2.51 -2.46 -2.51 -2.03 -0.30 -0.30 -0.30 -0.30 0.10 0.11 0.10 0.20

5 P2.5 0.66 0.62 0.66 0.49 -3.03 -3.02 -3.04 -2.59 -0.39 -0.39 -0.39 -0.41 0.06 0.06 0.06 0.12

P97.5 0.84 0.85 0.84 0.72 -1.98 -1.89 -1.96 -1.46 -0.24 -0.24 -0.24 -0.23 0.15 0.18 0.15 0.32

Coverage 0.95 0.88 0.95 0.25 0.95 0.93 0.95 0.57 0.95 0.95 0.95 0.95 0.95 0.89 0.95 0.29

Median 0.75 0.71 0.75 0.46 -2.49 -2.36 -2.50 -1.53 -0.30 -0.30 -0.30 -0.30 0.10 0.12 0.10 0.35

Mean 0.75 0.71 0.75 0.46 -2.50 -2.35 -2.50 -1.53 -0.33 -0.34 -0.33 -0.25 0.11 0.14 0.11 0.27

6 P2.5 0.55 0.47 0.55 0.21 -3.73 -3.64 -3.76 -2.84 -0.65 -0.71 -0.67 -1.27 0.02 0.03 0.02 0.12

P97.5 0.95 0.94 0.95 0.71 -1.22 -1.00 -1.21 -0.21 -0.17 -0.16 -0.17 -0.10 0.22 0.34 0.23 1.84

Coverage 0.95 0.90 0.95 0.35 0.95 0.94 0.95 0.68 0.93 0.93 0.93 0.91 0.96 0.97 0.96 0.97

Median 0.75 0.74 0.75 0.46 -2.50 -2.45 -2.50 -1.54 -0.30 -0.30 -0.30 -0.30 0.10 0.11 0.10 0.35

Mean 0.75 0.74 0.75 0.46 -2.50 -2.45 -2.50 -1.53 -0.31 -0.31 -0.31 -0.31 0.10 0.11 0.10 0.35

7 P2.5 0.64 0.61 0.64 0.30 -3.23 -3.21 -3.24 -2.31 -0.45 -0.45 -0.45 -0.61 0.05 0.05 0.05 0.19

P97.5 0.86 0.87 0.87 0.62 -1.77 -1.70 -1.76 -0.74 -0.22 -0.21 -0.21 -0.18 0.16 0.18 0.16 0.82

Coverage 0.95 0.91 0.95 0.03 0.95 0.94 0.95 0.29 0.95 0.94 0.95 0.93 0.96 0.93 0.95 0.16
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For each of the estimators, we report the median, the mean, and the 2.5% and 97.5% percentiles.

We also compute the fraction of estimates that fall within the 95% confidence intervals constructed

using OLS standard errors (columns 1 to 8) or the 2SLS standard errors (columns 9 to 16). We

refer to this as the “coverage.”

As is clear from all cases, the estimators are mean- and median-unbiased. Moreover, confidence

intervals tighten when concentration increases (case 3 relative to case 1 and case 4 relative to case 2)

and when the volatility of idiosyncratic shocks increases (case 2 relative to case 1 and case 4 relative

to case 3). Naturally, the confidence interval tightens when we increase N and T . The coverage is

generally accurate and OLS standard errors only slightly overstate the precision in the case of M2

in estimating M ; the 2SLS standard errors are somewhat small in small samples in estimating �s.

It is tempting to conclude that using ys
�t as instrument, even without estimating the factors,

results in accurate and unbiased estimates of the parameters of interest. However, this is only the

case when Corr (�, S) = 0. To illustrate this, we consider a negative correlation between size and

exposures, Corr (�, S) = �20%.

The results are presented in Table 6. Now we find a large bias in case of M4, both in terms of the

mean and median. The coverage estimates are also heavily distorted. Intuitively, ys
�t does not filter

out aggregate shocks and the exogeneity restriction is violated. This is why factor estimates are

required when loadings may be correlated with size. Even in the case where we have no information

about factor loadings (in the case of M2, which relies only on PCA), accounting for common

factors removes most of the bias and leads to much improved coverage estimates. When we know

the factor loadings (in case of M1), there is no bias and the coverage estimates are accurate. In

addition, combining the PCA estimate and the estimate using the known loadings results in almost

the same accuracy as M1. This simulation illustrates the importance of accounting for factors in

using GIV when loadings correlate with size.

8 Conclusion

We developed granular instrumental variables (GIVs): we remark that idiosyncratic shocks o↵er a

rich source of instruments, and we lay out econometric procedures to optimally extract them from

aggregate shocks.

We provided two empirical applications. We plan to put on our web page a series of GIVs, and

their control shocks ⌘t’s. They might be useful for empirical work.

Many more applications seem within reach — the introduction listed some. We hope that GIVs

will help identifications in new settings and help researchers investigate and understand causal

relationships in the economy.
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9 Appendix: Proofs omitted in the paper

Variance facts We will repeatedly use the fact that if (ui)i=1...N is a series of uncorrelated random

variables with mean 0 and common variance �2

u, then

E [u�uE] = 0, (77)

and

E
⇥
u2

�

⇤
= E [uSu�] = h2�2

u. (78)

Hence, the standard deviation of the granular residual u�t is proportional to the Herfindahl. In the

general heteroskedastic case, the quasi-equal weight vector is

Ẽ =
(V u)�1 ◆

◆ (V u)�1 ◆
.

Then, for any � such that ◆0� = 0, we have:56

E [u�uẼ] = 0. (79)

Proof of Proposition 2 The proof is quite elementary, and uses well-known ingredients. We

have

↵e
T � ↵ =

ET [(↵ySt + "t) u�t]

ET [yStu�t]
� ↵ =

ET ["tu�t]

ET [yStu�t]
=

AT

DT
.

Next, the law of large number gives:

DT = ET [yStu�t] !a.s. D,

with

D = E [yStu�t] = E [(⌘t + uSt) u�t] = E [uStu�t] = E [(u�t + uEt) u�t] = E
⇥
u2

�t

⇤
= �2

u�
.

For the numerator, the central limit theorem gives the convergence in distribution:

p
TAT !d N

�
0, �2

A

�
,

56Here is the proof. We have Ẽ = k (V u)�1 ◆ for k = 1
◆(V u)�1◆

. So

E [u�uẼ ] = E
h⇣

Ẽ0u
⌘
(u0�)

i
= Ẽ0E [uu0]� = Ẽ0V u� = k◆0 (V u)�1 V u� = k◆0� = 0,

as ◆0� = 0.
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where

�2

A = E
⇥
"2tu

2

�t

⇤
= E

⇥
"2t
⇤
E
⇥
u2

�t

⇤
= �2

"�
2

u�
,

so that
�A
D

=
�"�u�

�2
u�

=
�"
�u�

=: �↵.

Hence, p
T (↵e

T � ↵) !d N
�
0, �2

↵

�
.

Then the u0
it are i.i.d. across i’s, then �u� = h�u, see (78).

Proof of Proposition 3 We have

↵e
T � ↵ =

ET [(↵ySt + "t) zt]

ET [yStzt]
� ↵ =

ET ["tzt]

ET [yStzt]
,

so the same proof as for Proposition 2 yields the asymptotic error

�↵ (�) =
�"�z

|E [yStzt]|
=

�"�z
|E [uStzt]|

=
�"

�yS |corr (uSt, zt)|
.

So, the best estimator zt = u�t maximizes the squared correlation C (�) := corr (uSt, u�t)
2:

max
�

C (�) subject to ◆0� = 0.

We next solve this problem.

Call V the variance covariance matrix of the ui. We have:

C2var (uSt) =
E [uStu�t]

2

var (u�t)
=

(S 0V �)2

�V �
.

The problem is invariant to changing � into �� for a non-zero �. So, we can fix say S 0V � at some

value. Given this, we want the minimum value of �V �. So, we minimize over � the Lagrangian

L =
1

2
�0V �� b�0◆� c�0V S (80)

with some Lagrange multipliers b, c. The first order condition in �0 is: 0 = V �� b◆� cV S, i.e.

� = cS + bV �1◆.

Now, using ◆0� = 0 gives 0 = c+ b◆0V �1◆, i.e., with Ẽ := V �1◆
◆0V �1◆ ,

� = c
⇣
S � Ẽ

⌘
.
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The factor c doesn’t a↵ect the results, (as � and c0� give the same estimator ↵e
T ), so we may choose

c = 1.

Proof of Proposition 4: Sketch The full proof is in the online appendix (Section 13.1). Here

we provide a proof sketch. For simplicity, we omit the controls Ct. We use a projection matrix Q

(defined in (23) with W = (V u)�1) satisfying:

Q⇤ = 0, (81)

QV u (I �Q0) = 0. (82)

Then, premultiplying (54) by Q, we have Qyt = Qut. Next, we define � := Q0S, and the GIV

as the scalar:

zt := �
0yt, (83)

i.e. zt = S 0Qyt = S 0Qut = �0ut, i.e.

zt = u�t. (84)

Assumption 1 ensures � 6= 0. Assumption 2 ensures that V u can be recovered from the knowledge

of Qut.

Recall that we have (56),

ySt = MuSt + "t

for "t a shock correlated with the ⌘t but not with the uit’s. Finally, we have

uSt = S 0ut = S 0Qut + S 0 (I �Q) ut = zt + vt,

with vt = S 0 (I �Q) ut. Now, (82) ensures E [ztvt] = 0. Then, we can write:

ySt = Mzt + "ySt ,

with "ySt := Mvt + "t orthogonal to zt. Hence, we can estimate the multiplier M by OLS.

Likewise, we have (via (56) and (58))

F f
t = ↵fMzt + "ft

for some shock "ft orthogonal to zt. Hence, we can estimate ↵fM by regressing F f
t on zt.

In both regressions, we can add the estimated common shocks ⌘et as controls, which improves

the precision. The full proof shows that ⌘et is orthogonal to zt, so those controls still lead to a

consistent estimators of M and ↵fM .
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10 Appendix: Complements and extensions

10.1 The model with heterogeneous loadings on endogenous and ex-

ogenous factors

In the main text, we assume for simplicity a homogeneous or parametric sensitivity on endogenous

factors, e.g. on the price in the simple supply and demand example. We show how our framework

generalizes easily.

The model of Section 3.1 implies the representation:

yit = ✓iuSt + �i⌘t + uit, (85)

where ✓i =
P

f
�f
i
↵f

1�
P

f
�f
S
↵f

is the sensitivity to endogenous factors, ⌘t is a vector of exogenous factors,

and �i is a vector of factor loadings, both r�dimensional. The new di�culty is to estimate a

heterogeneous set of ✓i — in our more basic case we considered the case of a common ✓i. We focus

on the case where the shocks are homoskedastic, V u = �2I.

To motivate the procedure, assume that we know ⇤ = (�, ✓) and we estimate the residuals,

vt = Qut, where Q = Q⇤,W was defined in (23), with W = (V u)�1 = ��2I. Then it holds57

yit = ✓iv
e
St + �i⌘

e
t + vit, (86)

with ⌘et the estimate of ⌘t. Then define

zt = vSt, zit = zt � �u
i vit, (87)

where

�u
i :=

E [vitzt]

E [v2it]

which in this case equals

�u
i =

�i

Qii
(88)

where we define � := Q0S. This implies that E [vitzit] = 0. So zit is like the traditional GIV, but it

is uncorrelated with vit. Morally (and in the case where the ujt are uncorrelated), it is made of the

idiosyncratic shocks of the actors (e.g. firms of countries) other than i.

Then, given (86), it holds

yit = ✓izit + �i⌘t + (1 + ✓i�
u
i ) vit, (89)

57Note that (veSt, ⌘
e
t )

0 = (⇤0⇤)�1 ⇤0yt = (uSt, ⌘t)
0 + (⇤0⇤)�1 ⇤0ut.
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and we can estimate ✓i via OLS of yit on zit. We rewrite this equation as

yit � ✓i�
u
i vit = ✓izit + �i⌘t + vit.

This suggests the following iterative procedure. We call the set of parameters to be estimated

! = (⌘t,�i, ✓i)i,t. At round 0, before any estimation, we initialize v(0)it = yit � yEt. At round n � 1

of estimation, we define:

we
it (!) := yit � ✓i�

u
i v

(n�1)

it � ✓iz
(n�1)

it � �i⌘t, (90)

and want to minimize

min
!

X

t

X

i

we
it (!)

2 . (91)

More concretely, empirically, we first estimate ✓i using OLS regression

yit � ✓i�
u
i v

(n�1)

it = ✓iz
(n�1)

it + e(n)it , (92)

and then estimate � and ⌘ via PCA on the residuals from the OLS regression, e(n)it . The residuals

from the PCA step, e(n)t � �(n)⌘(n)t , is an estimate of the idiosyncratic shocks, v(n)t . We iterate until

convergence.

Once the model is estimated, we can get zt and use it to estimate the sensitivity ↵f of the

endogenous factors via OLS on zt, like in the GIV with homogeneous sensitivity to endogenous

factors F f
t = ↵fMzt + �f⌘t + "f .

Remarks Empirically, a more accurate approach to introduce heterogeneity in loadings is to

model ✓i = ⇥0xit for some vector xit of characteristics. Then, we estimate ⇥ in the PCA-OLS step.

In the presence of heteroskedasticity, or correlated innovations, there are two potential ap-

proaches. First, it may be possible to directly estimate �u
i = E[vitzt]

E[v2it]
. Second, call V = V u the

variance-covariance matrix of the uit, and we may take the theoretical value:

�u
i =

(QV �)i
(QV Q0)ii

, (93)
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where we define:58

� := Q0S, Q = Q⇤,W . (94)

10.2 When the influence matrix is not proportional to size

10.2.1 Position of the problem

Suppose a model

yit = �
X

j

Gijyjt + �i⌘t + uit, (95)

i.e.

yt = �Gyt + ⇤⌘t + ut, (96)

with a given “influence” matrix G. For instance, if we have an “industrial similarity” matrix H

with entries Hij, we might set

Gij =
HijSjP
k HikSk

.

In our basic “reflection problem”, G = ◆S 0.

We’d like to identify �. With V = E[utu0
t], we define Ẽ = V �1◆

◆V �1◆ , and the “generalized size

vector”:

S := G0Ẽ, (97)

which is the analogue of “size” in our simpler setup where G = ◆S 0.

10.2.2 A simple approach, when the loading on common shocks if uniform

In this subsection we assume that

G◆ = ◆, (98)

which is satisfied in many examples (Section 12.6 has the general case). Consider some vector E ,
and define:

zt := E 0 (G� I) yt. (99)

58The justification for (93) is as follows. As vt = Qut,

E [vtv
0
t] = E [Qutu

0
tQ

0] = QV Q0

E [vtvSt] = E [vtv
0
t]S = QV Q0S = QV �

so that �u
i := E[vitvSt]

E[v2
it]

=
(QV �)i
(QVQ0)ii

. When we take W = (V u)�1, we have the relation QV Q0 = V Q0 (see (177)), which

implies
E [vtv

0
t] = QV Q0 = V Q0, E [vtvSt] = E [vtv

0
t]S

0 = V Q0S = V �,

so that �u
i :=

(V �)i
(V Q0)ii

.
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Then, we have the key relation:

E [zt (yẼt-�ySt)] = 0, (100)

which allows to identify � by � =
E[ztyẼt]
[ztySt]

.

Relation (100) works for any zt of the type (99). It is sensible to take E = Ẽ (one can show

that this is the optimum choice in the sense of minimizing the asymptotic error). Then, the GIV is

again: zt = ySt � yẼt.

Derivation of (100) Indeed,

yẼt � �ySt = Ẽ 0 (I � �G) yt = Ẽ 0 (ut + ⌘t◆) .

Given G◆ = ◆, and (G� I) and (I � �G)�1 commute, we have the useful relation:

(G� I) (I � �G)�1 ◆ = 0. (101)

As a result,

zt = E 0 (G� I) yt = E 0 (G� I) (I � �G)�1 (ut + ⌘t◆) = E 0 (G� I) (I � �G)�1 ut.

Hence,

a := E [zt (yẼt � �ySt)] = E
h
E 0 (G� I) (I � �G)�1 ut (ut + ⌘t◆)

0 Ẽ
i

= E 0 (G� I) (I � �G)�1 V Ẽ = E 0 (G� I) (I � �G)�1 ◆

◆V �1◆
= 0.
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Online Appendix for

“Granular Instrumental Variables”

Xavier Gabaix and Ralph S.J. Koijen

July 30, 2019

This online appendix gives complements to the theory, the underlying models, and the empirical

examples. It gives also additional proofs.

11 Microfoundations for the model of sovereign spillovers

In this model, spillovers happens because debt defaults are partially mutualized. This is a stand-in

for potentially much richer economics. For instance, contagion might work via GDP spillovers, or

the limited risk capacity of specialized arbitrageurs. Still, the specification that this model delivers

might be broadly similar, as we shall see.

11.1 Model setup

We make a number of simplifying assumptions. The safe interest rate is normalized to 0, and pricing

is risk neutral. Time is continuous in [0, T ]. We neglect the O (dt) terms, which are irrelevant for

the regression analysis we are interested in, i.e. will write df (Xt) = f 0 (Xt) dXt.59,60

Payo↵s are realized at a date T , which should be thought about as faraway. Country i’s out-

standing debt is Bi, and the value of the debt (per unit of face value) is thus:

Qit = Et

⇥
1� L+

iT

⇤
= e�(T�t)yit , (102)

where x+ := max (x, 0), yit is the yield spread over the the safe interest rate (which we normalized

to 0), and LiT is the relative “vulnerability” of the government’s bonds, defined as

LiT =
FiT

Bi
, (103)

where FiT is the value of potential losses from government defaults (in euros). We assume that FiT

follows:
59Formally, we write all the di↵erential expressions dYt = atdZt modulo an equivalence by terms btdt (or, to be

pedantic, we quotient by the ring of expressions of the type btdt where bt is an adapted function). So, df (Xt) =
f 0 (Xt) dXt modulo dt, where we keep the “modulo dt” implicit.

60We only care, for the regressions, about the “dZt” terms, that depends on innovation to underlying Brownian
shocks dZt, as those are the loading detected by the regressions.
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FiT =  iTGiT , (104)

where  iT 2 [0, 1] is a propensity to pass on raw government fiscal losses GiT to bondholders. A

financially virtuous country (say Germany) has  iT close to 0, and a laxer country has a high  iT .

To gain intuition, it is useful to think that most variation in yield spreads comes from the political

willingness to not pay bondholders,  iT .

This raw position GiT is in turn:

GiT = ViT � �F+

iT + �miFT , (105)

where ViT is a stochastic “latent loss”, and the total amount lost on bonds is:

FT =
X

i

F+

iT . (106)

Debts are partially mutualized with intensity � 2 [0, 1]: a fraction � of the loss F+

it is passed on to

other countries, with a share mi to country i (
P

i mi = 1, mi � 0). This mutualization creates the

sovereign yield spillovers.

To simplify the analysis, we assume that ViT is strictly positive with probability 1, so that FiT ,

GiT and LiT are all strictly positive with probability 1. This is less restrictive that it may appear:

losses could be very small. This is simply to make the analysis very tractable.

11.2 Model solution

Solving the model,

LiT =
 iT

Bi
(ViT � �FiT + �miFT )

=
 iT

Bi
(ViT � �BiLiT + �miBLT ) ,

with B =
P

i Bi and LT = FT

B , i.e.

LT =
X

i

Bi

B
LiT . (107)

We call ⇢i =
mi

Bi/B
, the ratio between country i’s mutualization share mi and its debt share.61,62.

61The ECB’s capital key, which defines the equity shares of member states in the ECB, is defined using 50% of
GDP shares and 50% of population shares. However, we do not focus exclusively on spillovers that operate via the
ECB and there may be other e↵ects via trade linkages, demand shocks from investors, et cetera. We maintain the
assumption that the losses, or exposures, to Eurozone-wide losses are proportional to GDP. Alternatively, we could
change the measure mi to be a function of both population and GDP shares.

62One can imagine ⇢i ' 1 as a simple baseline where most variations come from the political willingness  it.
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This leads to:

LiT =
 iT

1 + � iT

✓
ViT

Bi
+ �

mi

Bi
BLT

◆
.

So, if we define

 iT =
 iT

1 + � iT
, (108)

we have:

LiT =  iT

✓
ViT

Bi
+ �⇢iLT

◆
. (109)

This shows the “contagion” in the space of vulnerabilities, LiT .

To move to yields, we do a Taylor expansion for small yield spreads, so that (102) gives:

yit = atEt [LiT ] , (110)

where

at =
1

T � t
(111)

is a slowly-varying parameter (as T is far from the interval of times t under study – so we’ll take

the approximation dat ' 0). We define  it = Et [ iT ], vit = atEt

h
ViT

Bi

i
. Also, we place ourselves

in the “quasi-static” regime, where all noises are small—see Section 11.3 for details. Hence, (109)

becomes, in yield space:

yit =  it (vit + �⇢iySt) , (112)

where

ySt =

P
i Biyit
B

. (113)

This shows that the yield spread depends on a country-specific fundamental vit and a “spillover”

proportional to �. At the same time, for a very financially virtuous country with  it ' 0, the yield

spread is close to 0, so that yield contagion is close to 0: as the country is quite safe anyway, external

disruptions cannot move the yield much away from 0.

We have

dyit
yit

=
d it

 it
+

dvit
vit + �⇢iySt

+
�⇢iySt

vit + �⇢iySt

dySt
ySt

,

hence
dyit
yit

= dwit + �it
dySt
ySt

(114)

for dwit :=
d it

 it

+ dvit
vit+�⇢iySt

and for a coe�cient �it :=
�⇢iySt

vit+�⇢iySt

2 [0, 1]. In the simple benchmark

where all countries have a similar vit (fundamental government finances) but di↵er mostly in  it

(the propensity to absorb the shocks rather than pass it on to debt holders by defaulting) and

⇢i = 1, we have �it =
�ySt

vt+�ySt

.
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Written another way, call

ỹit := ln yit. (115)

Then, we have

dỹit = dwit + �itdỹS̃t, (116)

where

S̃it =
BiyitP
j Bjyjt

, (117)

dỹS̃t =
X

i

S̃itdỹit =
X

i

Biyit
dyit
yitP

j Bjyjt
=

dySt
ySt

. (118)

Hence, if we reason in “log yield spread” space, the proper weights are proportional to Biyit, i.e.

debt value times yield spread. This is the formulation that motivates our empirical specification

(61). In particular, if  it = 0, then the change is dyit = 0 always. The importance of the spillovers

is given by
P

j Bjdyjt, the change in the yield weighted by debt value, summed over all countries.

11.3 Quasi-static regime of stochastic processes

Suppose a stochastic process, governed by some noise size �, as in dYt = µ (Yt) dt + �v (Yt) dBt,

where Bt is a Brownian motion. The “quasi-static” regime is the one where � is very close to 0.

Then, things are much simpler to analyze, especially for non-linear processes, provided we accept

O (�2) approximations.

Indeed, consider that vector-valued process Yt (for t  T )

Xt = Et [F (YT )] (119)

where F is a C2 function. Then, in the quasi-static regime, we can write

Xt = F (Et [YT ]) +O
�
�2
�

(120)

i.e. we swap Et and F .63 So, that, assuming now that Yt is a martingale,

Xt = F (Yt) +O
�
�2
�

(121)

and

dXt = F 0 (Yt) dYt +O
�
�2
�

(122)

63We do not formally prove this, as this is purely mathematical as opposed to economic. One could presumably
do it, e.g. using the Clark-Ocone formula from the Malliavin calculus.
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Table 7: Bloomberg identifiers of countries included in the sovereign yield model.

Country Government bond ticker ID Country Government bond ticker ID

Austria G0063Z BLC2 Curncy Ireland G0062Z BLC2 Curncy

Belgium G0006Z BLC2 Curncy Italy G0040Z BLC2 Curncy

Finland G0081Z BLC2 Curncy Netherlands G0020Z BLC2 Curncy

France G0014Z BLC2 Curncy Portugal G0084Z BLC2 Curncy

Germany G0016Z BLC2 Curncy Slovenia G0259Z BLC2 Curncy

Greece G0156Z BLC2 Curncy Spain G0061Z BLC2 Curncy

or, more informally (as we do in the economic part of this section),

dXt ' F 0 (Yt) dYt. (123)

To work out a concrete example, take Yt = �Bt,and Xt = Et

⇥
eYT

⇤
. The exact values are:

Xt = eYt+
�
2

2 (T�t), dXt = XtdYt (124)

and the quasi-static approximation gives

Xt = eYt +O
�
�2
�
, dXt = eYtdYt +O

�
�2
�
. (125)

This is particularly useful when Yt is multidimensional, as in Section 11.2.

11.4 Details on the data

Table 7 describes the tickers of the yields that we use in our empirical analysis.

12 Complements

12.1 Multi-dimensional actions

Suppose now that the action yit is q�dimensional, for some q � 1. For instance, yit’s components

might be the growth rate, and the labor share of firms of firm i, and then q = 2. Then, the general

GIV procedure extends well, as we shall now see.

We call a 2 {1, . . . , q} (as in action) a component of y. The model is:

ySat =
X

f

�aSa,fF
f + ua

Sat,

F f
t = ⌘ft +

X

a

↵f
ay

a
Sa,t,
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Here uit is q dimensional, ↵ is q ⇥ r dimensional matrix, and � is r ⇥ q dimensional matrix.

We can also estimate M (hence
P

f ↵
f�f ), the ↵f . For "t a composite of aggregate shocks,

ySt = HySt + uSt + "t,

where

H = ⇤A =
X

f

↵f�f ,

with ⇤af = �aSa,f and Afa = ↵f
a matrices with dimensions q ⇥ r and r⇥ q respectively, so that H is

q ⇥ q, and

uSt = (ua
Sat)a=1...q .

This implies

ySt = M (uSt + "t) , (126)

there the multiplier M is now a q ⇥ q matrix:

M = (I �H)�1 .

We will form a GIV:

zt = u�t,

which is q�dimensional:

u� = (ua
�a
)a=1...q .

We want, with Ea = Sa � �a,

E [uEtu
0
�t] = 0

i.e., for all Qab = 0, where

Qab := E
⇥
ua
Eatu

b
�bt

⇤
.

Let us focus on the case where uit, ujt are uncorrelated for i 6= j, but for a given i, ua
it, u

b
it can be

correlated (if a firm have a investment boom, it will likely hire more labor, so that the components

of its idiosyncratic shock in yit 2 Rq will be correlated.

We have:

Qab =
X

i

Ea
i �

b
iv

ab
i , vabi := E

⇥
ua
itu

b
it

⇤
. (127)

For simplicity, we will suppose that that there are vab and �2

i such that

vabi = �2

i v
ab. (128)

Hence, we can simply take Ei =
k
�2
i

with k = 1P
j
1/�2

j

and set, for all a, Ea
i = Ei and �a = Sa � Ea.
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Then,

Qab =
X

i

k

�2

i

�b
i�

2

i v
ab = kvab

X

i

�b
i = 0,

so that we have achieved our goal that E [uEtu0
�t] = 0. In the more general case, other �a

i can

probably be found.

Given (126), we have

ySt = M (uSt + "t) = M (u�t + uEt + "t) ,

so

E [yStz
0
t] = ME [ztz

0
t] ,

hence our estimator is

M = E [yStz
0
t]E [ztz

0
t]
�1 . (129)

Finally, we can also estimate ↵fM by regressing on zt:

F f
t = ⌘ft +

X

a

↵f
ay

a
Sa,t = ⌘ft + ↵fySt = ⌘ft + ↵fM (u�t + uEt + "t) ,

so �f = ↵fM (a row vector) obtains by simply regressing

F f
t = �fzt + "ft ,

and get �f = ↵fM , �f = E
h
F f
t z

0
t

i
E [ztz0t]

�1.

Extension: causal estimation of the actor-specific multiplier The following is a refinement.

We can also identify causally µi := �i↵ =
P

f �
f
i ↵

f . Indeed, use

u�t,�i := u�t � Su
i uit, (130)

which is the granular shock purged of a correlation with uit. Then, a shock uSt creates an impact
dFt

duSt

= M↵, hence an impact
dyit
duSt

= M�i↵.

Hence, we can identify µi, by regression

yit = µiMu�t,�i + �iCt+"yit, (131)

with some noise "yit. This is the average impact of a causal impact of idiosyncratic shocks of the

other entities on entity i.
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12.2 Full recovery when di↵erent factors have di↵erent “size” weights

In the basic model, we can identify ↵f , M = 1

1�
P

f
�f↵f , but not �f .

We give some conditions under which we can actually also identify the �f (in addition to ↵f

and M). We show here that this is the case if we assume that the size Sf di↵ers across all factors

f , and this knowledge is given to us (from a model).

Here we take the basic set up as in Section 3.1, in the simplified case where �fi = �f for all

“endogenous” factors, i.e. for the factors f such that ↵f 6= 0, the other exogenous factors ⌘ all have

an impact of 1:

yit = uit +
X

f

�fF f
t + ⌘yt , (132)

F f
t = ↵fySf ,t + ⌘ft . (133)

This implies

yt = ut + ◆
X

f

�fF f
t + ◆⌘yt = ut + ◆

X

f

�f
⇣
⌘ft + ↵fSf 0

yit
⌘
+ ◆⌘yt .

Noting “"k” some combination of the various ⌘’s, and as usual M = 1

1�
P

f
↵f�f ,

yt =

 
I � ◆

X

f

�f↵fSf 0

!�1 �
ut + ◆"1t

�

=

 
I +M ◆

X

f

�f↵fSf 0

!
�
ut + ◆"1t

�

yt = ut +M ◆
X

f

�f↵fuSf ,t + ◆"yt , (134)

i.e., since that F f
t = ⌘ft + ↵fySf ,t this gives:

F f
t = ↵f

 
uSf ,t +M

X

g

�g↵guSg ,t

!
+ "ft . (135)

Hence, suppose that we extracted the ǔit = uit � uEt (following our usual procedure). Then, we

form

z�f t := Sf 0
ǔt = uSf t � uEt. (136)

Then, regressing F f
t on the various z�gt

F f
t =

X

g

bfgz�gt + "f,1t (137)
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(for "f1 some residual noise) yields a regression coe�cient:

bfg = ↵f (1f=g +M�g↵g) . (138)

This allows to recover everything, and with several overidentifying restrictions. Indeed,

bf :=
X

g

bfg = ↵f

 
1 +M

X

g

�g↵g

!
= ↵fM,

which identifies ↵fM . Next, for f 6= g,
bfg
bf

= �g↵g,

which gives �g↵g (and should be equal for all f), hence M . Hence, we obtained ↵fM , M and �g↵g

— hence all quantities: ↵f ,�f ,M .

12.3 Complements to the general procedure

The procedure can be simplified in some cases. When we have a long time-series. Recall

that

ySt =
X

f

�fStF
f
t + uSt. (139)

Hence, if all factors with �fSt possibly non-zero are observables and exogenous, we can measure the

�fSt by OLS with the regression above, and get uSt to be the residual. This is useful when we have

high-frequency data (e.g. daily financial returns), which can give an acceptably small error.64

We can aggregate entities into categories . For this discussion, we replace “entity” by “firm”.

We could aggregate the firms into K > 1 sub-categories (e.g. industries – or even an arbitrary

categorization like “blue firms” and “red firms”) — then the above works, but interpreting the

partition i as “aggregate firm category i” rather than “firm i”. Indeed, (49) aggregates without

problem: if aggregate k is made of firm i 2 Ik, we just define the aggregate size of category k as

S[k] :=
P

i2Ik Si, the relative weight of firm i in category k as ![k]i =
Si1i2Ik

S[k]
, and the action factor

loading as value-weighted averages (y[k],t =
P

i ![k]i,trit, ↵
f
[k] =

P
i ![k]i↵

f
i ). Then, the model works,

using those aggregated categories. What we do need is that categories have non-trivial idiosyncratic

shock (so that a “very small firms” category would not be valid, as it would have var (uit) ' 0).

64Indeed, this time-series regressions gives an O
⇣

1p
T

⌘
error, which is good enough for large T . Using the cross

section, as in the basic procedure, gives an O
⇣

1p
TN

⌘
error.
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12.4 Typical size of Herfindahls

The GIV instrument is valid as long as h > 0, i.e. as long as there is heterogeneity. However, for it

to be strong, we need high Herfindhals. In estimates for firms, we typically have h 2 [0.02, 0.5]. One

can have an a priori estimate of its size (for theory purposes). In practice, many size distributions

follow a power law with fat tails, P (S > x) ⇠ kx�⇣ for large x, with ⇣ 2 (1, 2] — something also

explained via random growth behavior. In that case one can show that (as in ?, Proposition 2)

h ⇠ k0N� ,  = 1� 1

⇣
2 (0,

1

2
] (140)

for k0 a non-zero random variable independent of N . The traditional variance case corresponds to

⇣ = 2, which confirms h ⇠ k0N�1/2 (and then k0 is a constant), a very weak instrument. But when

⇣ 2 (1, 2), we have a decay in N� with  2
�
0, 1

2

�
. A fatter tail in the distribution of large firms

(lower ⇣) creates scaling in N that decays more slowly ( is lower) as N grows large. In the limit

of Zipf’s law (i.e., ⇣ ! 1), we find  ! 0 (indeed, one can show that we have h ⇠ k0

logN ), a stronger

instrument.

To simulate sizes from a power law distribution with exponent ⇣, we can take Vi = i�1/⇣ , and

Si =
ViP
j
Vj

.65 In the case of Zipf’s law, that yields h ⇠ ↵
lognwith ↵ = ⇡p

6
' 1.3.

12.5 When we have disaggregated data for both the demand and the

supply side

When we have disaggregated data for both the demand and the supply side, we can refine the

“exclusion restriction”. So far we assumed that E [uit"t] = 0, i.e. no covariance between idiosyncratic

demand and supply shock. If that’s not the case, we can also decompose each supply with a factor

model:

ykit = �kpt + �ki ⌘
k
t + uk

it, (141)

for type k = s, d for supply and demand. We allow E
⇥
us
itu

d
it

⇤
to be nonzero: for instance, if the US

has a “fracking shock” that a↵ects both supply and demand, it will be captured by both us
it and

ud
it for i = USA.

The price pt adjusts so that supply equals demand, ysSst = ydSdt (where Sd
i (resp. Ss

i ) is the

average fraction of demand (resp. supply) accounted by country i), i.e.

pt =
ud
Sd � us

Ss + �dSd⌘dt � �sSs⌘st
�s
Ss � �d

Sd

(142)

65More refined, we can simulate n i.i.d. uniform variables Ui, order them U(1)  · · ·  U(n), and take Vi = U�1/⇣
(i) .
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Then, we have two GIVs, based on supply and demand respectively:

zkt := �k0ykt = uk
�kt, (143)

for k = s, d (with �k = Sk � Ek in the basic case �k = ◆, and �k = Q�kSk in the general case). We

can also form the di↵erence:

zd�s
t := zdt � zst . (144)

Now, assume E
⇥
uk
it⌘

k0
t

⇤
= 0 for k, k0 in {s, d}. Then we have E

⇥�
ykEt � �kpt

�
zt
⇤
= 0 for zt equal

to either zst or zdt , or some combination of them. The optimal instrument is zt = zdt � zst , as this is

the most correlated with the price (142) (this generalizes the reasoning of Proposition 3). We can

also use an overidentification test like in Section 2.6, based on the those two GIVs based on supply

and demand.

If we assume only that E
⇥
zkt ⌘

`
t

⇤
= 0 for some (k, `), we can identify �kvia E

⇥�
ykEt � �kpt

�
z`t
⇤
= 0.

12.6 When the influence matrix is not proportional to size: When the

loading on common shocks is not necessarily uniform

Here we complete our discussion in Section 10.2. We now study the more general case where:

yt = �Gyt + ⇤⌘t + ut, (145)

where the factor loading ⇤ (an N ⇥ r matrix) is not necessarily equal to ◆ (but we keep imposing

that the ⇤ spans ◆, i.e. there is a q such that ◆ = ⇤q). As before, ⌘t is a low-dimensional vector of

factors. However, we do not assume anymore that G◆ = ◆.

First, we suppose that we have a first estimate of �, which we call �e. We will later iterate on

it. Then, we form:

ỹt (�
e) = (I � �eG) yt. (146)

If �e = �, then

ỹt (�) = ⇤⌘t + ut. (147)

Hence, we run a factor analysis on ỹt (�e), which recovers ⇤ and W = (V u)�1. We introduce Q

as in (176) so that Q⇤ = 0 and set

ǔe = Qỹt (�
e) ,

so that at �e = �,

ǔe
t = Qut. (148)
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Then, we define (with E = W ◆
◆0W ◆), with S := G0E,66,67

zt = S 0Q (1� �eG)�1 ǔe
t (149)

= S 0Q (1� �eG)�1 Q (I � �eG) yt. (150)

Our key moment is as before, equation (100):68

E [zt (yẼt-�ySt)] = 0. (152)

This yields an estimate of �. Hence, we simply replace the definition of the GIV (99) by (150). In

fact, we can show that when ⇤ = ◆, the estimator (150) is equal to the estimator (99). In that sense

it is its natural generalization.69

We note that we have a fixed point: an initial �e gives an estimate of �; that’s then the new

estimate �e, and we re-iterate the process, until convergence.

66A variant is:
zt = S0 (1� �eG)�1 ǔe

t = S0 (1� �eG)�1 Q (I � �eG) yt.

The advantage of formulation (99) is that in the simple case of the previous subsection (with ⇤ = ◆), then it recovers
the estimator of that subsection.

67The proof shows that this choice works. This particular choice is heuristically motivated by the analogy with
(183) and (97), and the fact that when ⌘t = 0, yt = (I � �G)�1 ut, so that ySt = S0yt = �S0 (1� �eG)�1 ut. Hence
in some loose sense zt is a good idiosyncratic-based approximation of ySt.

68Here is the proof. At the right estimator � = �e,

zt = S0Q (1� �eG)�1 Qut = c0Qut, (151)

with c0 := S0Q (1� �eG)�1. We also have

yẼt � �ySt = E0 (I � �G) yt = E0 (⇤⌘t + ut) .

This implies that

E [(yẼt � �ySt) zt] = E [E0utu
0
tQ

0c] = E0V Q0c =
1

◆0W ◆
◆0Q0c = 0,

as Q◆ = 0.
69In the case ⇤ = ◆, then Q = I � ◆E0, so

E0GQ = E0G (I � ◆E0) = E0G� E0 = E0 (G� I) ,

so that the estimator in (150) can be written:

zt = E0 (G� I) yt = E0GQyt.

On the other hand,

A := GQ (1� �eG)�1 Q (I � �eG) = GQ (1� �eG)�1 (I � ◆E0) (I � �eG)

= GQ (1� �eG)�1 (I � �eG)�GQ (1� �eG)�1 ◆E0 (I � �eG)

= GQ� 0 as G◆� ◆ and Q◆ = 0

= GQ,
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Suppose that instead we use70

Zt = S 0 (1� �eG)�1 ǔe
t . (153)

Suppose that �e = �. Then we can write:71

ySt = Zt + "t, E ["tZt] = 0, (154)

for "t = S 0 (I � �eG)�1 ((I �Q) ut + ⇤⌘t). Also, we have:

yEt = �ySt + E 0⇤⌘t + uEt.

Hence, we can estimate � by OLS:

yEt = �Zt + �0⌘t + "yEt . (155)

This consistently estimates �.

Calling zt the GIV in the basic models (with G = ◆0S), Zt =
zt

1��e .

12.7 Identification of social interactions and the reflection problem

There seems to be a contradiction between Section 6.2’s finding that we do achieve identification, and

?’s Proposition 2 and ?’s Proposition 1, which seem also to state the impossibility of identification.

? analyze social interactions of the type:

yt = �Gyt + �xt + yGxt + "t (156)

so that the estimator in (150) can be written:

zt = E0GQ (1� �eG)�1 Q (I � �eG) yt = E0Ayt = E0GQyt = E0 (G� I) yt.

Hence, when ⇤ = ◆, the estimators in (99) and (150) are identical.
70Note that the �e in the definition of Zt need not be the same �e used above to construct the ǔe

t ; i.e., we could

have Zt = S0 �1� �e,2G
��1

ǔe
t for some other �e,2. There is still a fixed point though, and in the limit the estimated

� in (155) should also be equal to the �e and �e,2.
71Here is the proof. We saw that ǔe

t = Qut, so,

Zt = S0 (I � �eG)�1 Qut,

while, with a0 := S0 (I � �eG)�1,

ySt = S0 (I � �eG)�1 (Qut + (I �Q)ut + ⇤⌘t) = Zt + a0 (I �Q)ut + a0⇤⌘t.

From (177), we have E [a0 (I �Q)utzt] = 0. Hence we have E ["tZt] = 0.
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with E ["t|xt] = 0. In their main result, they conclude that if the matrices I,G,G2 are not linearly

independent, then the system is not identified. However, in our setup G = ◆S 0 (where ◆ is a vector

of 1’s) so that G2 = G and we satisfy ?’s condition that seems to guarantee the impossibility of

identification. However, we can identify the parameters, as we saw in Section 6.2. How do we solve

that seeming contradiction?

The short answer is that ? and ? do not consider anything like a GIV, as they immediately

reason on averages based on observables, eschewing any exploration of the noise. In contrast, GIVs

are all about exploring some structure in the noise — the idiosyncratic shocks of large entities. For

instance Manski considers something akin to:

E [yt|xt] = �GE [yt|xt] + �xt + yGxt, (157)

where all the noise has been averaged out.

Indeed, we do impose some structure, namely:

"it = ⌘t + uit, uit i.i.d., orthogonal to ⌘t, (158)

and that was helpful to derive the GIV estimator (Section 6.2).

It would be interesting to show weaker conditions, or even necessary and su�cient conditions.

We leave a full treatment of that to future research. Still, we o↵er a few remarks with more general

su�cient conditions for identification via GIV.

We can generalize the noise condition (158) (while staying with our setup G = ◆S 0) to the more

general condition:

"it = �i⌘t + �ivit, (159)

where �i are scalar and ⌘t, vit all uncorrelated (including across i0s). More generally, a “low rank”

representation where ⌘t 2 Rk with a low k is admissible too.72

Second, we can generalize to the case where G2 = G (the case where G2 is a linear combination

of G and I is similar73), which seems to leads to the impossibility of identification in ?. This is

formalized here (and proved in Section 13, with a constructive identification procedure).

Proposition 5 (Identification achieved in the ? setup). Suppose that G2 = G, which is satisfied

in our basic setup, but leads to the impossibility of identification in the ? setup without further as-

sumptions. Suppose also the “simple noise structure” assumption (158). Suppose also the existence

of two n-dimensional vectors S and � satisfying

G0S = S, G0� = 0, ◆0S 6= 0, �0S 6= 0. (160)

72Informally, this generates 2n unknowns (�i, �it), while the variance-covariance matrix has dimensions n(n�1)
2 .

73It can be reduced to that case by rescaling H = b0 + b1G with the right coe�cient, with H2 = H.
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Then GIV is possible in that setup, i.e. with the GIV zt = �0yt, we can identify the coe�cients

(�, �, y) (and indeed �, as it was assumed that � = y = 0).

In our basic setup, we had Si the relative sizes, and G = ◆S 0, � = S � ◆
N . Hence (160) is an

abstract generalization of our concrete conditions.

Hence, in many situations of interest we can be quite confident that condition (160) is satisfied.74

In conclusion: our GIV approach gives some renewed hope for identification in the context of

social influence and reflection problems. Indeed, it provides a way to achieve identification where

it seemed impossible. Informally, this is by exploiting the idiosyncratic noise of “large players”.

Formally, and less intuitively, it is by exploiting a little bit of structure in the noise (so that there

is a low-dimensional common noise). Future research might profitably firm up the exact necessary

and su�cient conditions for this.

12.8 When only some shocks are kept in the GIV

If we truncate the residuals, i.e. use

zt =
X

i

⌧ (Si (uit � uEt))

for the hard thresholding function

⌧ (x) = x1|x|�b

for some b > 0, then everything works too. Indeed, we have that ǔit := uit � uEt is orthogonal

to uEt. Let us assume that it is independent. In our basic example of Section 2.2, we still have

E [(pt � ↵ySt) zt] = 0, so that the IV procedure (16) still works. Likewise, in the more complex

supply and demand case, the IV relations (34) and (36) still hold.

Furthermore, the OLS estimates still hold. The key is that we can write:

u�t = zt + z<t ,

where ⌧< (x) = x1|x|<b, and z<t =
P

i ⌧
< (Siǔit), so that zt ? z<t . Hence, regressing u�t on this

truncated zt gives a coe�cient of 1, and all the analysis goes through.

12.9 When the researcher assumes too much homogeneity

Take the supply and demand example, and imagine that the econometrician assumes a homogeneous

elasticity of demand �d, even though there are in fact heterogeneous elasticities �d
i . What happens

then?
74As G2 = G, one can always find vectors �, S satisfying the first 3 conditions (provided n is big enough and G is

not the identity nor 0), and the last one is rather “generically” easy to satisfy.
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The model (26)-(27) becomes, for the demand:

yit = �d
i pt + �i⌘t + uit,

and for the supply

st = �spt + "t.

As supply equals demand, ySt = st, which gives the price

pt =
uSt + �S⌘t � "t

�s � �d
S

. (161)

In this thought experiment, the econometrician assumes �d
i = �i. He runs a panel model for

yit � yEt, and we assume that it’s large enough that he can extract ⌘t, successfully.75 The GIV (we

use the notation Zt rather than zt to denote the GIV before controls by ⌘t) is then

Zt := y�t = �d
�
pt + ��⌘t + u�t =

✓
1 +

�d
�

�s � �d
S

◆
u�t + �Z ⌘̃t =

1

 
u�t + �Z ⌘̃t,

so

Zt =
1

 
u�t + �Z ⌘̃t,

1

 
=
�s � �d

E

�s � �d
S

, (162)

where 1

 = 1 in the common-elasticity case, ⌘̃t = (⌘t, "t, uEt) gathers the common shocks, and �Z is

a vector of loadings.

Hence, when we run the first stage

pt = bpZt + �p⌘t + "pt ,

we will gather

bp =
1

�s � �d
E

.

If we run

st = bsZt + �s⌘t + "st ,

we will estimate

bs =
�s

�s � �d
E

.

The ratio of the two coe�cients still gives �s. Likewise, the IV on the elasticity of demand will give

�d
E.

In the polar opposite case where ⌘t cannot be estimated or controlled for, then the simple

procedure becomes biased, however, as (162) shows. To fix it, one can estimate the model with

75One of the factors, formally, will be pt. We assume that it is not included in the vector of factors ⌘t.
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non-parametric coe�cients (Section 10.1).

12.10 Simple GIV example without feedback loop: estimation by OLS

We go back to the example of Section 2.2.1,

yit = �i⌘t + uit, pt = ↵ySt + "t. (163)

and derive the OLS estimation via GIV,

zt = y�t = u�t.

OLS estimator version One can use a plain OLS estimator with our instrument u�t.76 Assume

for simplicity that the uit’s are uncorrelated and have the same variance (Section 28.17 shows how

to relax these assumptions). Given that

pt = ↵uSt + ↵⌘t + "t,

we can simply estimate ↵ by OLS:

pt = ↵zt + "0t , (164)

with "0t := ↵⌘t + "t + ↵uEt (indeed, we have E [u�tuEt] = 0). Call ↵G,OLS0 that estimator.

An enriched OLS estimator version We can improve the e�ciency of the OLS estimator. We

assume E [uit⌘t] = 0 for all i and t. We use

⌘et = yEt

as an estimator of ⌘t. We have ⌘et = ⌘t + uEt, and uEt = O
⇣

1p
N

⌘
can be expected to be small.

Hence, regress:

pt = ↵̂u�t + �̂⌘et + "pt , (165)

which will yield in the limit of large T a consistent estimate of ↵. 77 In addition, it turns out that

it is a more precise estimator (when N is large enough), as we control for ⌘t.

Precision of GIV estimators The next proposition states when we have a precise estimator.

76In estimator 17, the denominator could be of either sign, and close to 0 in finite sample, leading to some instability
in the estimate.

77However, we will discard �̂ as it does not estimate � : it is polluted by the correlation with measurement error.
Indeed, � = ↵+ b+O

�
1
N

�
with a bias b = E["t⌘t]

E[⌘2t ]
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Proposition 6 (Precision of the GIV estimators in this example). We assume that the ui are

uncorrelated but possibly heteroskedastic. The above estimators based on the granular instrument

variable (GIV) �� all achieve identification of the reaction parameter ↵. The GIV and two G-OLS

estimators have standard errors

p
T (↵̂q

T � ↵) ⇠ N
�
0, �2

↵q

�
,

where the standard error of estimator q (equal to GIV, G-OLS0 or G-OLS1) has the form

�↵q =
�"(q)

�u�

(166)

with78

�2

"(G�OLS0) = var ("+ ↵⌘ + ↵uE) , �2

"(IV ) = var (") , �2

"(G�OLS1) := var
�
"?
�

We always have �↵G�OLS > �↵IV , and, if corr (", ⌘) 6= 0 and N is large enough, we have �↵IV >

�↵G�OLS0 .

When the ui’s are IID, we have

�u� = h�u. (167)

So to have a precise estimate (low �↵) we need: a few large firms (to have a large excess herfindahl

h), and that demand shocks do a↵ect the price importantly, compared to aggregate shocks (large

�u/�").

12.10.1 Proofs

Simple OLS estimator The proof is very similar as in the basic case – and indeed, it is the

standard proof of the standard error of the OLS regression (164), pt = ↵zt+"0t , gives �↵G�OLS0 = �"
�z
.

We use zt = u�t and

�u� = h�u. (168)

Enriched OLS estimator We have

pt = ↵uSt + ↵⌘t + "t = ↵u�t + ↵ (⌘t + uEt) + ("t � ↵uEt) .

Now, project "t � ↵uEt on ⌘et := ⌘t + uEt and call "?t the residual from projecting "t � ↵uEt on

⌘t + uEt

"t � ↵uEt = �⌘et + "?t .

78Here "? is the residual from projecting "� ↵uE on ⌘ + uE . It is detailed in the proof.
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We have

pt = ↵u�t + (↵ + �) ⌘et + "?t . (169)

Note also that u�t, ⌘et and "?t are all uncorrelated. Hence, the OLS formula for standard errors

apply: �↵G�OLS1 =
�
"?
�u�

, and we use �u� = h�u.

Ranking of precisions We have �2

"(G�OLS1) := var
�
"?t
�
. As var (uEt) = �2

N , in the large N

limit, �2

"(G�OLS1) ! var
�
e?t
�
, where e?t is the residual from projecting "t on ⌘t (e?t = "t� cov("t,⌘t)

var⌘ ⌘t).

Its variance is less than var ("t), unless "t and ⌘t are uncorrelated.

Proof of Proposition 7 The proof is very much like that of Proposition 2. We have,

�̂T � � =
1

T

P
t yEtzt

1

T

P
t ptzt

� � =
ET [(�pt + ⌘t + uEt) u�t]

ET [ptu�t]
� � =

ET [(⌘t + uEt) u�t]

ET [ptu�t]
=

AT

DT
. (170)

Next,

DT = ET [ptu�t] !a.s. D,

where, calling ⇠ = 1

µ��

D = E [ptu�t] = E
✓

uSt + ⌘t � "t
µ� �

◆
u�t

�
= ⇠E [uStu�t] = ⇠h2�2

u.

For the numerator, in the limit of large sample sizes T ! 1,

T 1/2AT !d N
�
0, �2

A

�
,

where

�2

A = E
⇥
(⌘t + uEt)

2 u2

�t

⇤
= E

⇥
(⌘t + uEt)

2
⇤
E
⇥
u2

�t

⇤
= �⌘+uE

h2�2

u,

where �2

⌘+uE
= �2

⌘ +
�2
u

N .
�A
D

=
�⌘+uE

h�u
⇠h2�2

u

=
�⌘+uE

⇠h�u
=: ��.

Hence, p
T
⇣
�̂T � �

⌘
⇠ N

�
0, �2

�

�
.

The proof for µ is exactly along the same lines, as µe
T � µ = ET ["tzt]

ET [ptzt]
.

12.11 Link between our initial examples and the general framework

Let us make the link between our initial examples and the general setup of Section 3.1.
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The basic example of Section 2.2 was:

yit = ⌘t + uit, pt = ↵ySt + "t.

The factors are pt and ⌘t:

F 1

t = pt, ↵1 = ↵, �1 = 0, ⌘1t = "t,

F 2

t = ⌘t, ↵2 = 0, �2 = 1, ⌘2t = ⌘t.

Factor F 1

t is endogenous, factor F 2

t is exogenous. They are both observable (via yEt = ⌘t+O
⇣

1p
N

⌘
).

So the set of controls Ct is Ct = {⌘t}. The multiplier is M = 1.

Let us next make the link with supply-and-demand example of Section 2.3, which was:

yit = �dpt + ⌘t + uit, pt =
ySt
�s

� "t
�s

.

The factors are also pt and ⌘t:

F 1

t = pt, ↵1 =
1

�s
, �1 = �d, ⌘1t = � "t

�s
,

F 2

t = ⌘t, ↵2 = 0, �2 = 1, ⌘2t = ⌘t.

Here F 1

t is exogenous and hidden, while F 2

t is endogenous and observable. So, Ct is empty.79 The

multiplier is M = 1

1�↵1�1 = �s

�s��d , as was estimated in (39).

12.12 Identification of the TFP to GDP multiplier in a production

network economy

Suppose a two-period model with a production network, as in ?????. There are both idiosyncratic

TFP shocks ⇤̂it and a government reform that creates correlated shocks ⌘t to TFP and change in

labor supply L̂t. Utility is Ct � e⌘
L
t L1+1/�

t , so that � is the Frisch elasticity of labor supply. So, as

Ct = ⇤tLt, labor supply is L̂t = �
⇣
⇤̂t � ⌘Lt

⌘
,80 and GDP is Ŷt = L̂t + ⇤̂t, i.e.

Ŷt = m⇤̂t � �⌘Lt , m = 1 + � (171)

We seek to find the “GDP multiplier” m = 1+�, so that a TFP of 1 percent translates into a GDP

increase of m percent.81

79This is why we could do only plain OLS regression in (39), without any controls like yEt, unlike in the very
simple initial example of Section 2.2

80The problem is maxLt ⇤tLt�e⌘
L
t L1+1/�

t , which leads to
⇣
1 + 1

�

⌘
L1/�
t = ⇤te�⌘

L
t ,hence the announced expression.

81If more than one factor change, m has the broader interpretation of a multiplier between TFP and GDP.
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This is potentially a complicated problem, as for instance, in the ? case, outputs are ŷt =

(I � A)�1 ⇤̂ + L̂, where A is a the input-output matrix, so that output changes are correlated in

complicated ways. However, one can sidestep using this disaggregated production data. We assume

that TFP change in industry i is:

⇤̂it = �i⌘
⇤

t + uit. (172)

In the neoclassical equilibrium, TFP follows Hulten’s theorem, so is ⇤̂t =
P

i si⇤̂itwhere si is the

Domar weight (sales of industry i over GDP).

In the simplest case, we assume that industry-level productivities are available, and we get the

residuals ue
it. But the same procedure works (with less e�ciency) if our data is made of proxies for

productivities ˆ̃⇤it growth (where the tilde indicates that we deal with a proxy). An example could

be growth of sales per employee, or even the growth rate of sales. We assume a factor model

ˆ̃⇤it = �̃i⌘̃
⇤

t + ũit. (173)

The proxy is of better quality when the proxy’s idiosyncratic shock ũit has a high correlation with

the true idiosyncratic shock uit.

Then, we extract the ũe
it from a factor model, form zt = ũe

St � ũe
Et (with Si =

siP
j
sj
), and use

the moment E
h⇣

Ŷt �m⇤̂t

⌘
zt
i
= 0, which identifies the TFP to GDP multiplier m. Using more

general models (e.g. taking into account imperfections as in ?) would be very interesting, but

would be a new paper by itself. Indeed, even in that case zt is likely to be a useful instrument,

even though it won’t be the optimal one. In any case, those examples show how GIV, with some

economic reasoning, translate to more complex economies where aggregate shocks can be made of

idiosyncratic shocks.

13 Proofs omitted in the paper

13.1 Proof of Proposition 4

13.1.1 Parametric identification

We start with the parametric case, deferring the semi-parametric case.

The solution is, with �S = S 0⇤ a 1⇥ r vector, M = 1

1��S↵ ,

ySt = M (uSt + �S⌘t + CStm) , (174)

yt = ut + ⇤ [↵M (uSt + �S⌘t + CStm) + ⌘t] + Ctm. (175)

We take the parametric case (the semi-parametric case will then an easy corollary). This is, we

have some characteristics xit of actors (e.g. countries or and firms), and a priori knowledge that
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�it = XitR for some r�dimensional vector Xit = (1, xit) where xit is a r � 1 dimensional vector,

and R is a r⇥ r matrix. By rotation-invariance of the ⌘t (which is an r dimensional vector), we can

take the case where R = I. Hence, in that sense we know the loadings �it = xit – but don’t know

the variance-covariance matrix V ⌘ of the ⌘t.

Given a symmetric matrix W of size N ⇥ N (which, later, will optimally be W = (V u)�1, but

we don’t use that here yet) we define another N ⇥N matrix:82

Q⇤,W = I � ⇤ (⇤0W⇤)�1 ⇤0W, (176)

so that Q = Q⇤,W satisfies:

Q⇤ = 0, Q0W⇤ = 0, (I �Q)W�1Q0 = 0, Q2 = Q. (177)

Roughly, Q is the projection on the space orthogonal to the ⇤, but with a scalar product that

depends on W . Hence, (175) implies:

Qyt = Qut +QCtm. (178)

Defining, for a vector Yt,

Y̌t := QYt, (179)

we have

y̌t = ǔt + Čtm. (180)

The controls Ck
t are all assumed to have non-zero cross-sectional variation: this is what allows to

identify their m. A variable that’s an “aggregate control” without cross-sectional variation (e.g. a

time fixed e↵ect, or maybe the world price of oil if we study the macroeconomics of a small country

not a↵ecting it) will be classified as an F f
t – it’s in FExo,O, the set of observable, exogenous factors.

13.1.2 Estimating multipliers ↵f ,M by GIV

We assume that we have identified V (up to a multiplicative factor), either because we know for

instance that V u = �2

uI, or because of the material in Section 13.1.4.

We treat now the more GIV-specific topic of how to estimate the ↵f and M . We set Q = Q⇤,W
u

as in (176). Then, (178) gave

Qyt = Qut +QCtm. (181)

Let us define

� := Q0S, (182)

82For instance, in our basic example with uniform loading ⇤ = ◆, Q = I � ◆E0, where E = W ◆
◆0W ◆ .
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and define the GIV to be z�t := �0 (yt � Ctm), which gives:

z�t := �0 (yt � Ctm) = �0ut = u�t. (183)

This relation means that we identify u�t exactly, even though we estimate the ⌘t with errors.83

The GIV is possible if and only if

� 6= 0. (184)

This is exactly what motivated Assumption 1 mentioned in Proposition 4.84

We define E = S � � = (I �Q0)S, so that

uSt = u�t + uEt,

then (177) implies that E [uEtu�t] = S 0 (I �Q)V uQ0S = 0, so that we have the relation:85,86

E [uEtu�t] = 0. (187)

Hence, (174) reads:

ySt = M (uSt + �S⌘t + CStm) = (u�t + uEt + �S⌘t + CStm) = Mzt + "ySt (188)

for "ySt = M (uEt + �S⌘t) uncorrelated with zt. Hence,M will be consistently estimated by regressing

ySt:

E [(ySt �Mzt) zt] = 0. (189)

Likewise, for f an observable, endogenous control (i.e., one such that ↵f need not be 0 a priori), we

can regress:

F f
t = ↵fMzt + "F

f

t

with "Ft = ⌘t + ↵M"ySt so that we can estimate ↵M consistently by the OLS regression of Ft on zt.

83This may be surprising, but consider the following simple case to see how this is true: if yit = �pt+⌘t+uit, then
as �0◆ = 0, y�t = u�t. So we perfectly measure the u�t. This relation with the Q generalizes that simple example
with more complex factors.

84If V uS was spanned by the ⇤, we could write S = W⇤b for some vector b, and we’d have Q0S = 0, by (177).
Conversely, if S is not spanned by the V uS, then it is easy to check that � 6= 0.

85In addition, the value
zCt := CStm (185)

is also a valid instrument. Hence, the following is an instrument:

zt = z�t + zCt. (186)

In this paper we mostly use z�t as an instrument though, to insist on what is GIV-specific.
86As always in this paper, this relation leads to clean relations with finite N , but it relies on doing “generalized

least squares” with the proper weight matrix W = (V u)�1. In the general case, E [uEtu�t] = O
⇣

1p
N

⌘
, so that this

relation is likely to be approximately true in most cases of interest.
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This shows identification even when we do not control for estimated factors ⌘et . To gain statistical

power, it is useful to control for estimated ⌘et . We go on to this topic now.

13.1.3 Controlling for other estimated exogenous factors ⌘et

If we have a cross-sectionally important factor ⌘ft , we may want to control for it to gain statistical

precision. To do so, we first want to extract the factor. For notational simplicity, we assume that

we removed all the controls Ctm (i.e., we replace yt by yt � Ctm).

We define the r ⇥N matrix87

Lt := (⇤0
tW⇤t)

�1 ⇤0
tW, (190)

so that

Lt⇤t = Ir. (191)

Next, using Q⇤t = 0 in the factor structure (54) gives:

(I �Q) yt = ⇤tFt + (I �Q) ut.

Premultiplying this by Lt gives:

Lt (I �Q) yt = Ft + Lt (I �Q) ut.

Hence, an estimate of the Ft is

F e
t := Lt (I �Q) yt. (192)

Indeed, we will have

F e
t = Ft + "F

e

t ,

where "F
e

t = �Lt (I �Q) ut is a small error. In addition, this error is orthogonal to z�t:88

E [F e
t z�t] = 0, (193)

so that the measurement error in the factors does not introduce a bias when estimating M .

Given our assumptions with ⇤it = (1, xit), with yt = ⇤tFt + ut + Cy
t m, we can write Ft =

(F 1

t , F
x
t ), where F 1

t is the factor multiplying the “1” and F x
t is the factor multiplying the xit, so

that ⇤itFt = F 1

t + xitF x
t . Given this, decompose Ft =

�
F endo

t , F exo

t

�
= (F 1

t , F
x
t ) with endogenous

factors (i.e., a↵ected by uit) and exogenous factors. So here, F x
t = F endo

t .

87We might also take Lt := (⇤0
t⇤t)

�1 ⇤0
t.

88Indeed, (183) gives

�E [F e
t zt] = L (I �Q)V uQ0S = L (I �Q)W�1Q0S = 0,

using (177), (I �Q)W�1Q0 = 0.
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We keep ⌘et := F exo,e
t as use it as a control, as it satisfies (193). Note that the standard errors

returned by OLS will be trustworthy, because of (193) again.

This is all a bit abstract, so to get a concrete sense of the situation, let us take the main

example, where ⇤it = (1, xit) with xEt = 0 and yit = �pt+ "t+xi⌘t+uit, and W = I��2

u . So factors

are: Ft =
�
F endo

t , F exo

t

�
= (�pt + "t, ⌘t), we have I � Q = ⇤L, so L (I �Q) = L⇤L = L, hence

Lyt =
⇣
yEt,

x0
t
yt

kxtk2

⌘
, so that the error is

F e
t � Ft = "F

e

t = �L (I �Q) ut =

✓
uEt,

x0
tut

kxtk2

◆
, (194)

and the standard deviation of its components are �up
N

⇣
1, 1

�x

⌘
. The factor analysis recovers (up to

that error) Ft =
�
F endo

t , F exo

t

�
= (�pt + "t, ⌘t), so it recovers

⌘et = ⌘t +
x0
tut

kxtk2
(195)

but not "t. We can use that ⌘et as a control in the regression.

In conclusion, with a factor model (with known factor loadings ⇤, but unknown factor covariance

matrix V ⌘), we have identified V u, and gotten a GIV, which gave M , ↵M .

Even though all worked with finite N (but as always, T ! 1), and we don’t consistently

estimate ⌘t, we still have a consistent estimator for the GIV.

13.1.4 Estimating the variance-covariance matrix of the residuals, V u

First, we estimate m, using (180) Basically, we can estimate m by OLS. It’s pretty easy, as

we have (N � r)⇥ T e↵ective values to use (where r is the number of factors):

me = ET

⇥
Č 0

tWČt

⇤�1 ET

⇥
Č 0

tWy̌t
⇤
. (196)

Next, we estimate V u. We have ǔt := Q (yt � Ctme) = Qut, so that:

V ǔ = E [ǔtǔ
0
t] = QE [utu

0
t]Q. (197)

We consider the case where we have a priori knowledge that V u is diagonal. Let us call Du =

(V u
ii )i=1...N and similarly for Dǔ = (V ǔ

ii )i=1...N (so they are vectors of dimension N) and a new matrix

Rij :=
�
QW

ij

�2
. Then:

Dǔ
i := V ǔ

ii =
X

j

QW
ij V

u
jjQ

W
ij =

X

j

RijDj,

i.e., Dǔ = RDu so we recover

Du,e = R�1Dǔ. (198)
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Parametric variant We can do a parametric variant. We parametrize ln�2

ui
= ��x�i for some

vector of characteristics x�i , e.g. log size or log volatility (and x�i has 1 as the first component) —

� is just a superscript here, not an exponent. So, we estimate �� by regressing the log estimated

variance from (198) on the characteristics:

lnDu,e
i = ��x�i + "i,

and take the fitted values for the diagonal covariance matrix of the ui’s:

Du
i = e�

�x�

i . (199)

Loop over W This gives a consistent estimate of Du, for any W . Now, Bayesian considerations

indicate that the optimum W is

W = (V u)�1 . (200)

So, we can loop: a good initial W is probably 1/var (yi). This gives an estimate of Du, and a new,

better estimate of W = diag (1/Du
i ). We keep looping until convergence. We have consistently

estimated the variance matrix of V u.

13.1.5 Semi-parametric case

Suppose now the semi-parametric case

�fit = �f
0
+ �f

1
xf
it + ⇣fi ,

and the we apply the above parametric procedure. For notational simplicity, we assume that all

the control and constants are 0, as they are inessential. So, with Xit = (1, xit) and �
f
X =

⇣
�f
0
,�f

1

⌘

we have:

⇤t = Xt�X + ⇣ (201)

and

yt = (Xt�X + ⇣)Ft + ut.

Recall also that we use Q = QX,W , so QX = 0. Then, the GIV will be as in (183)

z�t := �
0yt = S 0Q [(Xt�X + ⇣)Ft + ut] = S 0Q [⇣Ft + ut] ,

z�t = u�t + ⇣�⌘t. (202)

Hence, our GIV is partially polluted by a small ⇣�⌘t. However, as we will control for ⌘et in the

regression, this part ⇣�⌘t will be largely controlled for, and will not impact the results.
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We sometimes use the close cousin

Zt := y�t = u�t + ��⌘t. (203)

Then again, it will be controlled for in the regression, as we control for ⌘et .

Note that there are two “�” here. The plain one is �0 = S � E (with Ei =
1

N , if we stay in the

homoskedastic case). The other, elaborated in this section, is �Q = Q0S, where Q = QX,W (with

W = I in the homoskedastic case) as given by (23). In principle, it is better to use �Q than �0, as

it “fully purges” the parametric factor in the purely parametric case. By extension it should also

be a bit better in the semi-parametric case (as we need to purge a “small” ⇣� — which is 0 in the

parametric case – rather than a “potentially big” ��). We advocate the �Q, but in practice using

�0 gives similar results.

If we use � = �Q, then �� = ⇣�Q so that

Zt = u�t + ⇣�Q⌘t = zt. (204)

13.2 Other proofs

Proof of Proposition 5 The identification goes as follows. By rescaling S, we impose ◆0S = 1.

Define E := S � � (which is 1

N ◆ in our framework), and form

yEt = E 0yt, ySt := S 0yt,

which are our generalized “equal weighted” and “value weighted” averages – for more abstract

setting. Then, premultiplying (156) by �0 and S 0 gives:

zt := �
0yt = �x�t + u�t.

Hence, estimating this by OLS we can obtain �, and var (u�t), so that we obtain also �2

u. Next,

yE = �yS + �xE + yxS + ⌘ + uE,

so that

E
⇥
(yEt � �ySt � �xEt � yxSt)

0 (z, xSt)
⇤
= (EuEtu�t, 0) . (205)

The right-hand side is known, as EuEtu�t = E 0��2

u, which is known. So, we have two unknowns �,

y and 2 equations: we can solve the system. The condition �0S = 0 ensures that E [yStzt] 6= 0.
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14 A Bayesian perspective on GIVs

We will see that, under conditions of Gaussianity, our estimators are basically the MLE. As variables

may not be Gaussian, we keep the general exposition (showing identification) free of distributional

assumptions. If we assume that variables (uit, ⌘t) are Gaussian, then a Bayesian analysis can be

performed. We detail it here.

14.1 The general model: Bayesian version

Here we treat the general model of Section 3.1, in the case where the �it are the same, and equal

to 1, and all factors are observed (except the ⌘yt , as in yit =
P

f �
fF f

t + uit + ⌘yt ). The general case

with heterogeneous loadings is done later, in Section 14.5, and uses much the same ideas.

The data D is D =
⇣
yt, F

f
t

⌘

f=1...dF ,t=1...T
, made of i.i.d. draws from a fixed distribution. To

simplify the notations, we’ll just denote by f the collection of all variables corresponding to factors

(without explicitly mentioning that f = 1 . . . dF ).

The solution of the system features:

ySt �My�t = by"t,

F f
t � ↵fMy�t = bf"t,

for some vector by, bf , and "t :=
⇣
uEt + ⌘yt , ⌘

f
t

⌘
.

Hence, we form: ✓ =
�
M,↵fM

�
; W a parametrization of the relevant variance matrices;

E (W ) = V u
(W )

�1◆

◆0V u(W )
�1◆

the corresponding quasi-equal weights vector, ! = (✓,W ), and form the key

quantities:

Yt (!) :=
⇣
ySt �My�(W ),t, F

f
t � ↵fMy�(W ),t

⌘
. (206)

We also keep track of

y̌it (!) = yit � yE(W ),t (207)

and stack those two vectors together as Xt (!), which contains all our information:

Xt (!) = (Yt (!) , y̌t (!)) . (208)

The key “trick to tractability” is to transform the data into that Xt.

There is an invertible matrix A (✓) such thatDt = A (✓)Xt. Hence, there is no loss of information

in usingXt as “conveniently processed” data, rather than the “unprocessed” dataDt. Hence, instead

of lnP (Dt|!), we’ll consider

lnP (Xt|!) = lnP (Dt|!) + ln |A (✓)| . (209)
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The Jacobian |A (✓)| := detA is independent of all parameters !.89 Hence it can be discarded as a

constant in the calculations.

The key simplifying observation is that (under the correct model), Ey̌tyEt = 0, so that Yt (!)

and y̌t (!) have zero covariance. Hence, the log likelihood decouples, and we have

� 2 lnP (Dt|!) = Y 0
t (!)V

Y (W )�1 Yt (!) + y̌t (!)
0 �V y̌ (!)

��1
y̌t (!) + ln

��V Y (W )
��+ ln

��V y̌
�� . (210)

As y̌t lives in a space of dimension N � 1 (as E 0y̌t = 0), the value of V y̌ is understood as being of

the corresponding dimensions, (N � 1)⇥ (N � 1).

Now, imagine that W has already been estimated, and do only the optimization w.r.t. ✓. That

gives:

min
✓

ET

⇥
Y 0
t (✓,W )V Y (W )�1 Yt (✓,W )

⇤
. (211)

The first order conditions are:

ET

⇥
(y�t, 0)

�
V Y

� �1Yt

⇤
= 0, ET

⇥
(0, y�t)

�
V Y

� �1Yt

⇤
= 0,

i.e. (given that 0 = ET

⇥
y�t

�
V Y

� �1Yt

⇤
=
�
V Y

� �1ET [y�tYt]) we have ET [y�tYt] = 0, yielding

ET

h
y�t

⇣
ySt �My�t, F

f
t � ↵fMy�t

⌘i
= 0. (212)

Those are precisely the first order conditions of the OLS estimation:

min
M

ET

⇥
(ySt �My�t)

2
⇤
, min

↵fM
ET

⇣
F f
t � ↵fMy�t

⌘2
�
. (213)

Hence, our GIV is also the MLE estimator of M,M↵f , when we have Gaussian distributions.

We can also go beyond MLE, and calculate full Bayesian posteriors. Then, the GIV gives an

easy way to do finite-sample Bayesian updating. Assuming again for simplicity that we know the

variance matrices, we have

lnP (✓|D) = lnP (✓)� 1

2

X

t

Yt (✓)
�
V Y

��1

Yt (✓) +K (D) , (214)

where K (D) ensures that the probability sums to 1.

The rest of this section examines instantiations and variants of the general idea we just saw.

89First, go from Xt to D̃t = (Ft, yEt, y̌t), which is upper triangular with 1 on the diagonals, so has determinant 1;
second, go from D̃ to D, which is independent of the !.
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14.2 The supply and demand model of Section 2.3

This model corresponds exactly to the general case, with a factor F f
t = pt, pt = ↵fySt + ⌘ft with

↵f = 1

µ and ⌘f = � "
µ . Then, everything goes through.

14.3 The basic example with self-loop of Section 6.2

We give a Bayesian treatment of this model of Section 6.2:

yit = �ySt + ⌘t + uit.

We are given Dt = yt. We wish to estimate M = 1

1�� . The vector of parameters of interest is

✓ = M :

Yt (!) = ySt �My�(W ),t.

As in the general procedure, we set:

y̌it (!) = yit � yE(W ),t (215)

and

Xt (!) = (Yt (!) , y̌t (!)) . (216)

In the true model, we have Yt = M (uEt + ⌘t), so

�2 lnP (Dt|!) =
Y 2

t (!)

�2

Y

+ y̌t (!)
0 V y̌y̌t (!) + ln �2

Y + ln
��V y̌

�� .

Suppose first that we know the variance terms. Then, the MLE is simply to do

max
M

ET

⇥
Yt (!)

2
⇤
,

which is the identification condition we used, and it corresponds to running the OLS

min
M

ET

�
ySt �My�(W )t

�2
.

Next, for the estimation of the variance terms, we optimize on �2

Y , V
y̌. Asymptotically, that gives

the true values.

14.4 The basic example without loop of Section 2.2.

We now detail the Bayesian version of our example in Section 2.2:

yit = ⌘t + uit, pt = ↵ySt + "t.
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We’d like to estimate ↵ especially (or, in a Bayesian context, update our prior on ↵). This example

is actually a bit non-generic, as it endows the economist with a knowledge that �f = 0, which

creates some subtle changes: it features the “recovered” factor yEt, used as a regressor.

The data D is a set of D = (yt, pt)t=1...T , assumed to be i.i.d. draws from a fixed distribution.

We call ✓ = (↵, �) the set of “key” model parameters, and W , the variance-covariance matrix

V (u+⌘◆,") (or, it could be some parametrization of it, e.g. if we assume that u is diagonal), the

auxiliary parameter, and ! = (✓,W ) the full set of parameters. The correct value is !⇤.

Given yt, pt, we form

Yt (✓) = pt � (↵y�t + �yEt)

and Xt (✓) = (Yt (✓) , yt). At the correct parameter !⇤,

Yt (✓
⇤) = "?t ,

which is defined in the analysis is the “enriched OLS estimator” (Section 13). Hence, at the correct

value, Yt and yt are uncorrelated. Call V X (!) the variance-covariance matrix of Xt.

We can start the Bayesian analysis:

P (!|D) / P (D|!)P (!)

and

lnP (D|!) =
X

t

lnP (Dt|!)

with

� 2 lnP (Dt|!) =
Yt (✓)

2

�2

"?
+ y

0

tV
y (W ) yt + ln �2

"? + ln |V y (W )| , (217)

where here |A| is the determinant of a matrix A.

Hence, the MLE estimator maximizes
P

t lnP (Dt|!) over ! = (✓,W ) . The problem for ✓ sepa-

rates as:

min
↵,�

X

t

Yt (✓)
2 ,

i.e.

min
↵,�

X

t

(pt � (↵y�t + �yEt))
2 ,

which is the “enriched GIV-OLS estimator” of Section 12.10. This shows that, with Gaussian

distributions, the MLE is just our enriched GIV-OLS estimator.

Maximizing over the other parameters W will allow to recover the variance matrix (including

that of "t, ⌘t).

If we have a small sample, we can just update rather than do MLE. The above shows that the

“simplifying trick” is to form that statistic Yt (✓), which allows for an interpretable updating of the
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parameters. For simplicity, suppose that we know the value of V y (W ) , and �2

"? .
90 However, we

have a prior on ✓ = (↵, �), perhaps Gaussian. Then, our posterior after observing the data D is:

lnP (✓|D) = lnP (✓)�
X

t

Yt (✓)
2

2�2

"?
+K (D) ,

where K (D) ensures that the probability sums to 1.

14.5 Heterogeneous loadings

14.5.1 Bayesian model with heterogeneous loadings

Here we extend the basic model of this section to heterogeneous, nonparametric loadings. The

model is

yit =
X

f

�fF f
t + ⌘yt +

KX

k=1

�ki ⌘
k
t + uit, (218)

where now there are K unobserved factors, with unknown factors ⌘kt , and non-uniform loadings �ki .

As in the more basic Section 14.1, we assume the existence of a factor ⌘yt with uniform loadings

(which can be taken to be uncorrelated with ⌘t), and factors F f
t are endogenous and observed. More

compactly, we can write the model as:

yt = �FFt + ◆⌘yt + �⌘t + ut. (219)

We will now see how this case can be reduced to the one of Section 14.1. We define the theoretical

object:

ỹit := yit �
KX

k=1

�ki ⌘
k
t . (220)

Then, the results of Section 14.1 apply to ỹt, conditional on (�, ⌘t). Equation (210) becomes:

� 2 lnP (Dt|!,�, ⌘t) = Ỹ 0
t (!)V

Ỹ (W )�1 Ỹt (!) + ˇ̃yt (!)
0
⇣
V

ˇ̃y (!)
⌘�1

ˇ̃yt (!) + ln
���V Ỹ (W )

���+ ln
���V ˇ̃y

���
(221)

with

Ỹt (!) :=
⇣
ỹSt �Mỹ�(W ),t, F

f
t � ↵fMỹ�(W ),t

⌘
, (222)

ˇ̃yit (!) = ỹit � ỹE(W ),t. (223)

So, given �, ⌘t, the procedure is as in Section 14.1, applied to the tilde variables. In turn, suppose

that we have some priors on � (we’ll take them to be di↵use) and on ⌘t (we’ll normalize them to

90Otherwise, we can update our knowledge of those, which is standard though tedious to lay out.
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be independent standard normals). Then, the full likelihood is:

P (Dt|!) = P (Dt|!,�, ⌘t)P (�, ⌘t) , P (�, ⌘t) = (2⇡)�K/2 e�
1
2⌘t⌘

0
t . (224)

So, we can estimate � and ⌘t by Bayesian methods, e.g the E-M method summarized in Section

14.5.2.

What the MLE gives It is worth pausing to see what the MLE does. Consider the MLE

estimator of M (keeping the ↵fM constant). It is as the analysis of (212) but in ỹt space, i.e. it is

equivalent to running the OLS regression:

ỹSt = Mỹ�t + et, (225)

i.e.,

ySt � �S⌘T = Mzt + et, (226)

where

zt := z�t + z⌘t, z�t := u�t, z⌘t := ��t⌘t. (227)

This means that the MLE uses two primitive sources of shocks for identification (i) z�t := u�t,

which is the “pure” GIV, and (ii) z⌘t := ��t⌘t, which traces the ripple e↵ects of the aggregate shocks

⌘t on the aggregate action ySt, after controlling for the “direct” e↵ects (this is why ySt � �S⌘T is

on the left-hand side of (226)). Those are two economically very di↵erent styles of identification.

For economic clarity we find it useful to single out solely the “pure” GIV identification (i.e. regress

only on z�t rather than on z�t + z⌘t).

14.5.2 Maximum likelihood estimation with heterogeneous loadings

We consider the model with heterogeneous loadings

yt = �ySt◆+ �⌘t + ut,

where ut ⇠ N (0, Vu) and ⌘t ⇠ N (0, 1). Define �t(�) = yt � �ySt◆ = �⌘t + ut and note that the log

likelihood contribution of yt is

P (yt) = P (�t) + ln (1� �) .

The likelihood of �t can be computed e�ciently using the expectation-maximization (EM) algorithm.

The steps are as follows, and we refer to ? for details, where subscripts (n) refer to the n-th iteration

of the algorithm.

• Expectation step

– E(n) [⌘t | �t] = �(n)�t,where �(n) = �0⌃�1 and ⌃(n) = �(n)�0(n) + Vu(n).
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– E(n) [⌘2t | �t] = 1� �(n)�(n) +
�
E(n) [⌘t | �t]

�2
.

• Maximization step

– �(n+1) =
�P

t E(n) [⌘2t | �t]
��1P

t �tE(n) [⌘t | �t].

– Vu(n+1) =
1

T diag
�P

t �t�
0
t � �(n+1)E(n) [⌘t | �t] �0t

 
.

The log likelihood can be computed as (omitting constants that do not depend on the parameters)

P(n) (�t) = �1

2
ln
��⌃(n)

��� 1

2
�0t⌃

�1

(n)�t,

and we iterate until convergence. To initialize the algorithm, we start from estimates of � and Vu

based on PCA.
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