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Abstract

This paper develops a threshold regression model where an unknown relationship

between two variables nonparametrically determines the threshold. We allow the

observations to be cross-sectionally dependent so that the model can be applied

to determine an unknown spatial border for sample splitting over a random

field. We derive the uniform rate of convergence and the nonstandard limiting

distribution of the nonparametric threshold estimator. We also obtain the root-n

consistency and the asymptotic normality of the regression coeffi cient estimator.

Our model has broad empirical relevance as illustrated by estimating the tipping

point in social segregation problems as a function of demographic characteristics;

and determining metropolitan area boundaries using nighttime light intensity

collected from satellite imagery. We find that the new empirical results are

substantially different from the existing studies.
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1 Introduction

Sample splitting and threshold regression models have spawned a vast literature in

econometrics and statistics. Existing studies parametrically specify the splitting cri-

teria as whether a single random variable or a linear combination of variables crosses

some unknown threshold. See, for example, Hansen (2000), Caner and Hansen (2004),

Seo and Linton (2007), Lee, Seo, and Shin (2011), Li and Ling (2012), Yu (2012), Lee,

Liao, Seo, and Shin (2018), Hidalgo, Lee, and Seo (2019), and Yu and Fan (2019). In

this paper, we study a novel extension to consider a nonparametric sample splitting

model. Such an extension leads to new theoretical results and substantially generalizes

the applicability of threshold models.

Specifically, we consider a model given by

yi = x>i β0 + x>i δ01 [qi ≤ γ0 (si)] + ui (1)

for i = 1, . . . , n, in which the marginal effect of xi to yi can be different as β0 or (β0+δ0)

depending on whether qi ≤ γ0 (si) or not. The threshold function γ0(·) is unknown,
and the main parameters of interest are β0, δ0, and γ0(·). The novel feature of this
model is that the sample splitting is determined by an unknown relationship between

two variables qi and si, and their relationship is characterized by the nonparametric

threshold function γ0(·). In contrast, the classical threshold regression models assume
γ0 (·) to be a constant or linear index. This specification can cover interesting cases
that have not been studied. For example, we can consider the model that the threshold

is heterogeneous and specific to each observation i if we see γ0 (si) = γ0i; or the

model that the threshold is determined by the direction of some moment conditions

γ0(si) = E[qi|si]. Apparently, when γ0(s) = γ0 or γ0(s) = γ0s for some parameter γ0

and s 6= 0, it reduces to the standard threshold regression model.

To illustrate the empirical significance of the nonparametric threshold model (1), we

revisit two important questions in public/labor and urban economics, respectively. The

first one is about the tipping point model proposed by Schelling (1971), who analyzes

the phenomenon that a neighborhood’s white population substantially decreases once

the minority share exceeds a certain threshold, called the tipping point. Card, Mas,

and Rothstein (2008) empirically estimate the tipping point model by considering the

constant threshold regression, yi = β10 + δ101 [qi > γ0] + x>2iβ20 + ui, where yi and qi
denote the white population change in a decade and the initial minority share in the
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ith tract, respectively. The parameters δ10 and γ0 denote the change size and the

threshold, respectively. In Section VII of Card, Mas, and Rothstein (2008), however,

they find that the tipping point γ0 varies across cities depending on the white’s attitudes

toward the minority. This finding raises the concern on the constant threshold model

and motivates the more general model (1) by specifying the tipping point γ0 as a

nonparametric function of local demographic characteristics as demonstrated in Section

6.1.

For the second application, we use model (1) to define metropolitan area boundaries,

which is a fundamental problem in urban economics. Recently, many studies propose to

use nighttime light intensity collected from satellite imagery to define the metropolitan

area. They set an ad hoc level of light intensity as a threshold and categorize a pixel

in the satellite imagery as a part of the metropolitan area if the light intensity of

that pixel is higher than the threshold. See, for example, Rozenfeld, Rybski, Gabaix,

and Makse (2011), Henderson, Storeygard, and Weil (2012), Dingel, Miscio, and Davis

(2019) and Vogel, Goldblatt, Hanson, and Khandelwal (2019). In contrast, the model

(1) can provide a guidance of choosing the intensity threshold from the econometric

perspective, if we let yi as the light intensity in the ith pixel and (qi, si) as the location

information of that pixel (more precisely, the radius and the angle relative to some

city center in the polar coordinate). In Section 6.2, we estimate the metropolitan area

of Dallas, Texas, especially its development from 1995 to 2010, and find a substantial

difference from the conventional approaches. To the best of our knowledge, this is the

first paper to nonparametrically determine the metropolitan area using a threshold

model.

We develop a two-step estimator of (1), where we estimate γ0 (·) using local constant
estimation. Under the shrinking threshold setup (e.g., Bai (1997), Bai and Perron

(1998), and Hansen (2000)) with δ0 = c0n
−ε for some c0 6= 0 and ε ∈ (0, 1/2), we show

that the nonparametric estimator γ̂(·) is uniformly consistent and (β̂
>
, δ̂
>

)> satisfies

the root-n-consistency. The uniform rate of convergence and the pointwise limiting

distribution of γ̂(·) are also derived. We also develop a pointwise specification test of
γ0(s) for any given s (i.e., a test for the null hypothesis H0 : γ0(s) = γ∗(s)).

We can highlight some novel technical features of the new estimator as follows.

First, since the nonparametric function γ0 (·) is inside the indicator function, deriv-
ing the asymptotic properties requires nonstandard proof. In particular, we establish

the uniform rate of convergence of γ̂ (·), which involves substantially more compli-
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cated derivations than the standard (constant) threshold regression model (e.g., Hansen

(2000)). Second, we find that, unlike the standard local constant estimator, γ̂(·) is as-
ymptotically unbiased even if the optimal bandwidth is used. Also, when the change

size δ0 is large (i.e., ε is close to 0), the optimal rate of convergence of γ̂(·) is close
to n−1/2. In the standard kernel regression, this root-n rate is obtained when the

unknown function is infinitely differentiable, while we only require the second-order

differentiability of γ0 (·). Third, to achieve the Neyman orthogonality in semiparamet-
ric estimation (e.g., Andrews (1994)), we propose to use the observations that are far

away from the estimated threshold function in the second step estimation. The choice

of this distance is obtained by the uniform convergence rate of γ̂ (·). Finally, we let
the variables be cross-sectionally dependent by considering the strong-mixing random

field as Bolthausen (1982). This generalization allows us to study sample splitting in

spatial data. For instance, if we let (qi, si) correspond to the geographical location (i.e.,

latitude and longitude on the map), then the threshold 1 [qi ≤ γ0 (si)] identifies the un-

known border yielding a two-dimensional sample splitting. In more general contexts,

the model can be applied to identify social or economic segregation over interacting

agents.

The rest of the paper is organized as follows. Section 2 sets up the model, previews

our estimators, and establishes the identification. Section 3 further derives the asymp-

totic properties of the estimators and develops a likelihood ratio test of the threshold

function. Section 4 describes how to extend the main model to a threshold contour.

Section 5 studies small sample properties of the proposed statistics by Monte Carlo

simulations. Section 6 applies the new method to estimate the tipping point function

and to determine metropolitan areas. Section 7 concludes this paper with some re-

marks. The main proofs are in the Appendix, and all the omitted proofs are collected

in the supplementary material.

We use the following notations. Let →p denote convergence in probability, →d

convergence in distribution, and ⇒ weak convergence of the underlying probability

measure as n→∞. Let brc denote the biggest integer smaller than or equal to r and
1[A] the indicator function of a generic event A. Let ‖B‖ denote the Euclidean norm
of a vector or matrix B, and C a generic constant that may vary over different lines.
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2 Nonparametric Sample Splitting

We consider a threshold regression model given by (1), which is

yi = x>i β0 + x>i δ01 [qi ≤ γ0 (si)] + ui

for i = 1, . . . , n, where (yi, x
>
i , qi, si)

> ∈ R1+p+1+1 are observed but the threshold

function γ0 : R→ R as well as the regression coeffi cients θ0 = (β>0 , δ
>
0 )> ∈ R2p are

unknown.1 The parameters of interest are θ0 and γ0(·). Denote Q ⊂ R and S ⊂ R as
the supports of qi and si, respectively.

We estimate this semiparametric model in two steps. First, for given s ∈ S, we fix
γ0(s) = γ and obtain β̂ (γ; s) and δ̂ (γ; s) by local least squares estimation conditional

on γ:

(β̂ (γ; s) , δ̂ (γ; s)) = arg min
β,δ

Qn (β, δ, γ; s) , (2)

where

Qn (β, δ, γ; s) =
n∑
i=1

K

(
si − s
bn

)(
yi − x>i β − x>i δ1 [qi ≤ γ]

)2
(3)

for some kernel function K (·) and a bandwidth parameter bn. Suppose the space of
γ0 (s) for any s is a compact set Γ that is strictly within Q,2 then γ0(s) is estimated

by

γ̂ (s) = arg min
γ∈Γn

Qn (γ; s)

for given s, where Γn = Γ∩{q1, . . . , qn} and Qn (γ; s) is the concentrated sum of squares

defined as

Qn (γ; s) = Qn

(
β̂ (γ; s) , δ̂ (γ; s) , γ; s

)
. (4)

The nonparametric estimator γ̂ (s) can be seen as a local version of the standard

(constant) threshold regression estimator. Comparing to local linear estimation, this

local constant estimation substantially reduces the computational burden since it re-

quires computing the criteria function for only n times. If we implement local linear

estimation by considering 1 [qi ≤ γ1 + γ2(si − s)] in (3), we have to numerically de-

1The main results of this paper can be extended to consider multi-dimensional si using multivariate
kernels. However, we only consider the scalar case for the expositional simplicity. Furthermore, the
results are readily generalized to the case where only a subset of parameters differ between regimes.

2When the space of γ0(s) varies over s, we let Γ be the smallest compact set that includes ∪s∈SΓ(s),
where γ0(s) ∈ Γ(s) for each s.
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termine γ1 and γ2 simultaneously, which is very diffi cult to solve by grid search as

illustrated by Yu and Fan (2019). Also, to avoid additional technical complexity, we

focus on estimation of γ0(s) at s ∈ S0 ⊂ S for some compact interior subset S0 of the

support, say the middle 70% quantiles.

In the second step, we estimate the parametric components β0 and δ0. Different

from existing threshold literature, we cannot treat γ̂ (·) as the known threshold and
simply regress yi on xi and xi1 [qi ≤ γ̂ (si)] because the bias of γ̂(·) in the first stage
estimation can be large. As an alternative, we estimate β0 and δ

∗
0 = β0 + δ0 using

the observations that are far away from the estimated γ0(si). This is implemented by

considering

β̂ = arg min
β

n∑
i=1

(
yi − x>i β

)2
1
[
qi > γ̂−i (si) + ∆n

]
1[si ∈ S0], (5)

δ̂
∗

= arg min
δ∗

n∑
i=1

(
yi − x>i δ∗

)2
1
[
qi < γ̂−i (si)−∆n

]
1[si ∈ S0] (6)

for some constant ∆n > 0 satisfying ∆n → 0 as n→∞, which is defined later. We use
the leave-one-out estimator γ̂−i (s) in the first step. The change size δ can be estimated

as δ̂ = δ̂
∗
− β̂.

We now introduce the conditions for identification.

Assumption ID

(i) E [uixi|qi, si] = 0.

(ii) E
[
xix
>
i

]
> E

[
xix
>
i 1 [qi ≤ γ]

]
> 0 for any γ ∈ Γ.

(iii) (βᵀ0, δ
ᵀ
0)ᵀ are in the interior of some compact subsets of R2p.

(iv) For any s ∈ S, there exists ε(s) > 0 such that ε(s) < P (qi ≤ γ0(si)|si = s) <

1− ε(s) and δ>0 E
[
xix
>
i |qi = q, si = s

]
δ0 > 0 for all (q, s) ∈ Q× S.

(v) qi is continuously distributed with its conditional density f(q|s) satisfying that
0 < C1 < f(q|s) < C2 <∞ for all (q, s) ∈ Γ×S and some constants C1 and C2.

Assumption ID is mild. In particular, the condition (i) excludes endogeneity, and

(ii) is the full rank condition. Assumption ID-(iv) restricts that the threshold γ0(s)
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lies in the interior of the support of qi for any s ∈ S and the coeffi cient change exists
(e.g., δ0 6= 0). Assumption ID-(v) requires the conditional density of qi given any si is

positive. Under these conditions, the following theorem establishes the identification

of all unknown parameters.3

Theorem 1 Under Assumption ID, the threshold function γ0 (·) and the parameters

(β>0 , δ
>
0 )> are uniquely identified.

For asymptotic derivation, we allow for cross-sectional dependence to study the

spatial sampling splitting. More precisely, we suppose
(
x>i , qi, si, ui

)>
is generated

from a strictly stationary and α-mixing random field. See, for example, pp.1047 in

Bolthausen (1982) and Assumption 1 in Jenish and Prucha (2009). We consider the

samples over a random expanding lattice Nn ⊂ R2 endowed with a metric λ (i, j) =

max1≤`≤2 |i` − j`| and the corresponding norm max1≤`≤2 |i`|, where i` denotes the `th
component of i. We denote |Nn| as the cardinality of Nn and ∂Nn = {i ∈ Nn: there

exists j 6∈ Nn with λ(i, j) = 1}. Let |Nn| = n and then the summation in (3) can be

written as
∑

i∈Nn . We also define a mixing coeffi cient:

α(m) = sup {|P (Ai ∩ Aj)− P (Ai)P (Aj)| : Ai ∈ Fi and Aj ∈ Fj with λ (i, j) ≥ m} ,
(7)

where Fi is the σ-algebra generated by
(
x>i , qi, si, ui

)>
.

The following conditions are imposed for deriving the asymptotic properties of our

two-step estimator. Let f (q, s) be the joint density function of (qi, si) and

D (q, s) = E[xix
>
i | (qi, si) = (q, s)], (8)

V (q, s) = E[xix
>
i u

2
i | (qi, si) = (q, s)]. (9)

Assumption A

(i) The lattice Nn ⊂ R2 is infinite countable; all the elements in Nn are located at

distances at least λ0 > 1 from each other, i.e., for any i, j ∈ Nn : λ (i, j) ≥ λ0;

and limn→∞ |∂Nn| /n = 0.

3Since the last condition in Assumption ID-(iv) does not require the strict positive definiteness of
E
[
xix
>
i |qi = q, si = s

]
, qi or si can be one of the elements of xi (e.g., threshold autoregressive model,

Tong (1983)) or a linear combination of xi, even when xi includes a constant term.
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(ii) δ0 = c0n
−ε for some c0 6= 0 and ε ∈ (0, 1/2);

(
c>0 , β

>
0

)>
belongs to some compact

subset of R2p.

(iii)
(
x>i , qi, si, ui

)>
is strictly stationary and α-mixing with bounded (2 + ϕ)th mo-

ments for some ϕ > 0; the mixing coeffi cient α(m) defined in (7) satisfies∑∞
m=1mα(m) <∞ and

∑∞
m=1 m

2α(m)ϕ/(2+ϕ) <∞ for some ϕ ∈ (0, 2).

(iv) 0 < E [u2
i |xi, qi, si] <∞ almost surely.

(v) Uniformly in (q, s), there exists some constant C <∞ such that E[||xi||8 |(qi, si) =

(q, s)] < C and E[||xiui||8 |(qi, si) = (q, s)] < C.

(vi) γ0 : S 7→ Γ is a twice continuously differentiable function with bounded deriva-

tives.

(vii) D (q, s), V (q, s), and f (q, s) are bounded, continuous in q, and twice continu-

ously differentiable in s with bounded derivatives.

(viii) c>0 D (γ0(s), s) c0 > 0, c>0 V (γ0(s), s) c0 > 0, and 0 < C1 < f (γ0(s), s) < C2 <

∞ for all s ∈ S and some constants C1 and C2.

(ix) As n→∞, bn → 0 and n1−2εbn →∞.

(x) K (·) is uniformly bounded, continuous, symmetric around zero, and satisfies∫
K (v) dv = 0,

∫
v2K (v) dv ∈ (0,∞),

∫
K2(v)dv ∈ (0,∞), and limv→∞ |v|K(v) =

0.

We provide some discussions about these assumptions. First, we assume that qi
and si are continuous random variables to characterize the threshold model as in the

example in Section 6.1. However, this setup can cover the two-dimensional “structural

break” model as a special case, where qi and si are non-random indices on a two-

dimensional grid, respectively, as the geographic location in Section 6.2. In this case,

we denote n1 and n2 as the numbers of rows (latitudes) and columns (longitudes) in

the grid of pixels, and we normalize q and s in the way that q ∈ {1/n1, 2/n1, . . . , 1} and
s ∈ {1/n2, 2/n2, . . . , 1}. Under similar regularity conditions as Assumption A, we can
show that the asymptotic results in the following sections are the same as if (qi, si)

>

were independently uniformly distributed over [0, 1]2. This similarity is also found in

the standard structural break and the threshold regression models (e.g., Proposition 5
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in Bai and Perron (1998) and Theorem 1 in Hansen (2000)). We provide more details

in the supplementary material.

Second, Assumption A is mild and common in the existing literature. In particular,

Assumption A-(i) is the same as in Bolthausen (1982) to define the latent random

field. Note that λ0 in Assumption A-(i) can be any strictly positive value, and hence

we can impose λ0 > 1 without loss of generality. In Assumption A-(ii), we adopt

the widely used shrinking change size setup as in Bai (1997), Bai and Perron (1998),

and Hansen (2000) to obtain a simple limiting distribution. In contrast, a constant

change size (ε = 0) leads to a complicated asymptotic distribution of the threshold

estimator, which depends on nuisance parameters (e.g., Chan (1993)). The conditions

in Assumption A-(iii) are required to establish the central limit theorem (CLT) for the

spatially dependent random field. The condition on the mixing coeffi cient is slightly

stronger than that of Bolthausen (1982), which is because we need to control for the

dependence within the local neighborhood in kernel estimation. When α(m) decays

at an exponential rate, these conditions are readily satisfied. When α(m) decays at a

polynomial rate (i.e., α(m) ≤ Cαm
−k for some k > 0), we need some restrictions on k

and ϕ to satisfy these conditions, such as k > 3(2+ϕ)/ϕ. Assumptions-(iv) to (viii) are

similar to Assumption 1 of Hansen (2000). Assumptions A-(ix) and (x) are standard

in the kernel estimation literature, except that the magnitude of the bandwidth bn
depends on both n and ε. The conditions in A-(x) hold for many commonly used

kernel functions, such as the Gaussian kernel and the uniform kernel.

Third, it is important to note that we assume γ0 to be a function from S to Γ

in Assumption A-(vi), which is not necessarily one-to-one. For this reason, sample

splitting based on 1 [qi ≤ γ0 (si)] can be different from that based on 1 [si ≥ γ̆0 (qi)]

for some function γ̆0. Instead of restricting γ0 to be one-to-one in this paper, for the

identification purpose, we presume that we know which variables should be respectively

assigned as qi and si from the context. In Section 4, however, we discuss how to relax

this point to identify a threshold contour as an extreme case.

3 Asymptotic Results

We first obtain the asymptotic properties of γ̂ (s). The following theorem derives the

pointwise consistency and the pointwise rate of convergence at the interior points of S.
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Theorem 2 For a given s ∈ S0, under Assumptions ID and A, γ̂ (s) →p γ0 (s) as

n→∞. Furthermore,

γ̂ (s)− γ0 (s) = Op

(
1

n1−2εbn

)
provided that n1−2εb2

n does not diverge.

The pointwise rate of convergence of γ̂ (s) depends on two parameters, ε and bn. It

is decreasing in ε like the parametric (constant) threshold case: a larger ε reduces the

threshold effect δ0 = c0n
−ε and hence decreases the effective sampling information on

the threshold. Since we estimate γ0(·) using the kernel estimation method, the rate of
convergence depends on the bandwidth bn as well. As in the standard kernel estimator

case, a smaller bandwidth decreases the effective local sample size, which reduces the

precision of the estimator γ̂ (s). Therefore, in order to have a suffi cient level of rate of

convergence, we need to choose bn large enough when the threshold effect δ0 is expected

to be small (i.e., when ε is close to 1/2).

Unlike the standard kernel estimator, there appears no bias-variance trade-off in

γ̂ (s) as we further discuss after Theorem 3. It thus seems like that we can improve

the rate of convergence by choosing a larger bandwidth bn. However, bn cannot be

chosen too large to result in n1−2εb2
n →∞, because otherwise n1−2εbn(γ̂ (s)− γ0 (s)) is

no longer Op(1). Therefore, we can use the restriction n1−2εb2
n → % for some % ∈ (0,∞)

to obtain the optimal bandwidth.

Under the choice that n1−2εb2
n → % ∈ (0,∞), the optimal bandwidth can be cho-

sen as b∗n = n−(1−2ε)/2c∗ for some constant 0 < c∗ < ∞. This b∗n provides the fastest
convergence rate. Using this optimal bandwidth, the optimal pointwise rate of con-

vergence of γ̂ (s) is then given as n−(1−2ε)/2. However, such a bandwidth choice is not

feasible in practice since the constant term c∗ is unknown, which also depends on the

nuisance parameter ε that is not estimable. In practice, we suggest cross-validation

as we implement in Section 6, although its statistical properties need to be studied

further.4

4If ε is close to zero, the optimal rate of convergence of γ̂ (s) is close to n−1/2 when the optimal
bandwidth b∗n is used. Such a fast convergence rate requires infinite order of smoothness in the standard
kernel regressions with the MSE-optimal bandwidth. In contrast, we only require the second-order
differentiability in this nonparametric threshold model.
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The next theorem derives the limiting distribution of γ̂ (s). We let W (·) be a
two-sided Brownian motion defined as in Hansen (2000):

W (r) = W1(−r)1 [r < 0] +W2(r)1 [r > 0] , (10)

where W1(·) and W2(·) are independent standard Brownian motions on [0,∞).

Theorem 3 Under Assumptions ID and A, for a given s ∈ S0, if n1−2εb2
n → % ∈

(0,∞),

n1−2εbn (γ̂ (s)− γ0 (s))→d ξ (s) arg max
r∈R

(W (r) + µ (r, %; s)) (11)

as n→∞, where

µ (r, %; s) = − |r|ψ1 (r, %; s) + %ψ2 (r, %; s) ,

ψ1 (r, %; s) =

∫ ξ(s)|r|/(%|γ̇0(s)|)

0

K (t) dt,

ψ2 (r, %; s) = ξ(s) |γ̇0(s)|
∫ ξ(s)|r|/(%|γ̇0(s)|)

0

tK (t) dt,

and

ξ (s) =
κ2c
>
0 V (γ0 (s) , s) c0(

c>0 D (γ0 (s) , s) c0

)2
f (γ0 (s) , s)

with κ2 =
∫
K(v)2dv and γ̇0 (s) is the first derivative of γ0 at s. Furthermore,

E
[
arg max

r∈R
(W (r) + µ (r, %; s))

]
= 0.

The drift term µ (r, %; s) in (11) depends on %, the limit of n1−2εb2
n = (n1−2εbn)bn,

and |γ̇0(s)|, the steepness of γ0(·) at s. Interestingly, it resembles the typical O(bn)

boundary bias of the standard local constant estimator even when s belongs to the

interior of the support of si. This bias is from the inequality restriction in the indicator

function of the threshold regression. Derivation of this result is non-standard and

substantially different from that in Hansen (2000), as presented in Lemmas A.2 and

A.13 in the Appendix.
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Figure 1: Plot of drift functions with different kernels (color online)

However, having this non-zero drift term in the limiting expression does not mean

that the limiting distribution of γ̂ (s) itself has a non-zero mean even when we use the

optimal bandwidth b∗n = O(n−(1−2ε)/2), which satisfies n1−2εb∗2n → % ∈ (0,∞). This

is mainly because the drift function µ (r, %; s) is symmetric about zero and hence the

limiting random variable arg maxr∈R (W (r) + µ (r, %; s)) is mean zero. In particular,

we can show that the random variable arg maxr∈R (W (r) + µ (r, %; s)) always has zero

mean if µ (r, %; s) is a non-random function that is symmetric about zero and monoton-

ically decreasing fast enough. This result might be of independent research interest

and is summarized in Lemma A.9 in the Appendix. Figure 1 depicts the drift function

µ (r, %; s) for various kernels when |γ̇0(s)| = ξ(s) = % = 1.

Since the limiting distribution in (11) depends on unknown components, like % and

γ̇0(s), it is hard to use this result for further inference. We instead suggest under-

smoothing for practical use. More precisely, if we suppose n1−2εb2
n → 0 as n → ∞,

then the limiting distribution in (11) simplifies to5

n1−2εbn (γ̂ (s)− γ0 (s))→d ξ (s) arg max
r∈R

(
W (r)− |r|

2

)
(12)

as n→∞, which appears the same as in the parametric case in Hansen (2000) except
for the scaling factor n1−2εbn. The distribution of arg maxr∈R (W (r)− |r| /2) is known

5We let ψ1 (r, 0; s) =
∫∞
0
K (t) dt = 1/2.
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(e.g., Bhattacharya and Brockwell (1976) and Bai (1997)), which is also described in

Hansen (2000, p.581). The term ξ (s) determines the scale of the distribution at given

s: it increases in the conditional variance E [u2
i |xi, qi, si]; and decreases in the size of

the threshold constant c0 and the density of (qi, si) near the threshold.

Even when n1−2εb2
n → 0 as n→∞, the asymptotic distribution in (12) still depends

on the unknown parameter ε (or equivalently c0) in ξ (s) that is not estimable. Thus,

this result cannot be directly used for inference of γ0 (s). Alternatively, given any

s ∈ S0, we can consider a pointwise likelihood ratio test statistic for

H0 : γ0 (s) = γ∗ (s) against H1 : γ0 (s) 6= γ∗ (s) , (13)

which is given as

LRn(s) =
n∑
i=1

K

(
si − s
bn

)
Qn (γ∗ (s) , s)−Qn (γ̂ (s) , s)

Qn (γ̂ (s) , s)
. (14)

The following corollary obtains the limiting null distribution of this test statistic that

is free of nuisance parameters. By inverting the likelihood ratio statistic, we can form

a pointwise asymptotic confidence interval of γ0 (s).

Corollary 1 Suppose n1−2εb2
n → 0 as n→∞. Under the same condition in Theorem

3, for any fixed s ∈ S0, the test statistic in (14) satisfies

LRn(s)→d ξLR (s) max
r∈R

(2W (r)− |r|) (15)

as n→∞ under the null hypothesis (13), where

ξLR (s) =
κ2c
>
0 V (γ0 (s) , s) c0

σ2(s)c>0 D (γ0 (s) , s) c0

with σ2(s) = E [u2
i |si = s] and κ2 =

∫
K(v)2dv.

When E [u2
i |xi, qi, si] = E [u2

i |si], which is the case of local conditional homoskedas-
ticity, the scale parameter ξLR (s) is simplified as κ2, and hence the limiting null dis-

tribution of LRn(s) becomes free of nuisance parameters and the same for all s ∈ S0.

Though this limiting distribution is still nonstandard, the critical values in this case can

12



Table 1: Simulated Critical Values of the LR Test (Gaussian Kernel)

P(ζ∗ > cv) 0.800 0.850 0.900 0.925 0.950 0.975 0.990
cv 1.268 1.439 1.675 1.842 2.074 2.469 2.988

Note: ζ∗ is the limiting distribution of LRn(s) under the local conditional homoskedasticity. The
Gaussian kernel is used.

be obtained using the same method as Hansen (2000, p.582) with the scale adjusted

by κ2. More precisely, since the distribution function of ζ = maxr∈R (2W (r)− |r|)
is given as P(ζ ≤ z) = (1 − e−z/2)21 [z ≥ 0], the distribution function of ζ∗ = κ2ζ

is P(ζ∗ ≤ z) = (1 − e−z/2κ2)21 [z ≥ 0], where ζ∗ is the limiting random variable of

LRn(s) given in (15) under the local conditional homoskedasticity. By inverting it,

we can obtain the asymptotic critical values given a choice of K(·). For instance,
the asymptotic critical values for the Gaussian kernel is reported in Table 1, where

κ2 = (2
√
π)−1 ' 0.2821 in this case.

In general, we can estimate ξLR (s) by

ξ̂LR (s) =
κ2δ̂

>
V̂ (γ̂ (s) , s) δ̂

σ̂2(s)δ̂
>
D̂ (γ̂ (s) , s) δ̂

,

where δ̂ is from (5) and (6), and σ̂2(s), D̂ (γ̂ (s) , s), and V̂ (γ̂ (s) , s) are the standard

Nadaraya-Watson estimators. In particular, we let σ̂2(s) =
∑n

i=1 ω1i(s)û
2
i with ûi =

yi − x>i β̂ − x>i δ̂1
[
qi ≤ γ̂−i (si)

]
,

D̂ (γ̂ (s) , s) =

n∑
i=1

ω2i(s)xix
>
i , and V̂ (γ̂ (s) , s) =

n∑
i=1

ω2i(s)xix
>
i û

2
i ,

where

ω1i(s) =
K ((si − s)/bn)∑n
j=1K ((sj − s)/bn)

and ω2i(s) =
K ((qi − γ̂ (s))/b′n, (si − s)/b′′n)∑n
j=1K ((qj − γ̂ (s))/b′n, (sj − s)/b′′n)

for some bivariate kernel function K(·, ·) and bandwidth parameters (b′n, b
′′
n).

Finally, we show the
√
n-consistency of the semiparametric estimators β̂ and δ̂

∗
in

(5) and (6). For this purpose, we first obtain the uniform rate of convergence of γ̂ (s).

13



Theorem 4 Under Assumptions ID and A,

sup
s∈S0
|γ̂ (s)− γ0 (s)| = Op

(
log n

n1−2εbn

)

provided that n1−2εb2
n does not diverge.

Apparently, the uniform consistency of γ̂ (s) follows provided log n/(n1−2εbn) → 0.

Based on this uniform convergence, the following theorem derives the joint limiting

distribution of β̂ and δ̂
∗
. We let θ̂

∗
= (β̂

>
, δ̂
∗>

)> and θ∗0 = (β>0 , δ
∗>
0 )>.

Theorem 5 Suppose the conditions in Theorem 4 hold and log n/(n1−2εbn) → 0 as

n → ∞. If we let ∆n > 0 such that ∆n → 0, {log n/(n1−2εbn)}/∆n → 0 as n → ∞,

we have
√
n
(
θ̂
∗
− θ∗0

)
→d N

(
0,Λ∗−1Ω∗Λ∗−1

)
(16)

as n→∞, where

Λ∗ =

 E [xix>i 1+
i

]
0

0 E
[
xix
>
i 1
−
i

]
 and Ω∗ = lim

n→∞
n−1V ar

 ∑n

i=1
xiui1

+
i∑n

i=1
xiui1

−
i


with 1+

i = 1[qi > γ0(si)]1[si ∈ S0] and 1−i = 1[qi < γ0(si)]1[si ∈ S0].

Note that we do not use the conventional plug-in estimator, arg minβ,δ
∑n

i=1(yi −
x>i β−x>i δ1

[
qi ≤ γ̂−i (si)

]
)21[si ∈ S0], in our second step. The reason is that this esti-

mator may not be asymptotically orthogonal to the first-step nonparametric estimator

γ̂ (s) when n1−2εb2
n → % ∈ (0,∞) as n → ∞, though they are still consistent. This is

further because γ̂ (s) could have very slow rate of convergence, and its estimation error

will affect the limiting distribution of the second step estimator. Besides, unlike the

standard semiparametric literature, the asymptotic effect of γ̂ (s) to the second step

estimation cannot be easily derived due to the discontinuity. The new estimation idea

above, however, only uses the observations that are not affected by the estimation error

in the first-step nonparametric estimator. This is done by choosing a large enough ∆n

in (5) and (6) such that the observations are outside the uniform convergence bound

of |γ̂ (s)− γ0 (s)|. Thanks to the threshold regression structure, we can estimate the
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parameters on each side of the threshold even using these subsamples. However, we

also want∆n → 0 fast enough so that more observations are included in the estimation.

The estimator (β̂
>
, δ̂
∗>

)> thus satisfies the Neyman orthogonality condition (e.g.,

Assumption N(c) in Andrews (1994)), that is, replacing γ̂ by the true γ0 in estimating

the parametric component has an effect at most op(n−1/2) in their limiting distribu-

tion. Though we lose some effi ciency in finite samples, we can derive the asymptotic

normality of (β̂
>
, δ̂
>

)> that has mean zero and achieves the same asymptotic variance

as if γ0(·) was known.
Using the delta method, we can readily obtain the limiting distribution of θ̂ =

(β̂
>
, δ̂
>

)> as
√
n
(
θ̂ − θ0

)
→d N

(
0,Λ−1ΩΛ−1

)
as n→∞, (17)

where

Λ = E
[
ziz
>
i 1 [si ∈ S0]

]
and Ω = lim

n→∞
n−1V ar

[
n∑
i=1

ziui1 [si ∈ S0]

]

with zi =
[
x>i , x

>
i 1 [qi ≤ γ0 (si)]

]>
. The asymptotic variance expressions in (16) and

(17) allow for cross-sectional dependence as they have the long-run variance (LRV)

forms Ω∗ and Ω. They can be consistently estimated by the spatial HAC estimator

of Conley and Molinari (2007) using ûi = (yi − x>i β̂ − x>i δ̂1
[
qi ≤ γ̂−i (si)

]
)1[si ∈ S0].

The terms Λ∗ and Λ can be estimated by their sample analogues.

4 Threshold Contour

When we consider sample splitting over a two-dimensional space (i.e., qi and si respec-

tively correspond to the latitude and longitude on the map), the threshold model (1)

can be generalized to estimate a nonparametric contour threshold model:

yi = x>i β0 + x>i δ01 [m0 (qi, si) ≤ 0] + ui, (18)

where the unknown function m0 : Q × S 7→ R determines the contour on a random
field. An interesting example includes identifying an unknown closed boundary over

the map, such as a city boundary relative to some city center, and an area of a disease

outbreak or airborne pollution. In social science, it can identify a group boundary
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Figure 2: Illustration of rotation (color online)

or a region in which the agents share common demographic, political, or economic

characteristics.

To relate this generalized form to the original threshold model (1), we suppose

there exists a known center at (q∗i , s
∗
i ) such that m0 (q∗i , s

∗
i ) < 0. Without loss of

generality, we can normalize (q∗i , s
∗
i ) to be (0, 0) and re-center all other observations

{qi, si}ni=1 accordingly. In addition, we define the radius distance li and angle a
◦
i of the

ith observation relative to the origin as

li =
√
q2
i + s2

i ,

a◦i = ā◦i Ii + (180◦ − ā◦i ) IIi + (180◦ + ā◦i ) IIIi + (360◦ − ā◦i ) IVi,

where ā◦i = arctan (|qi/si|), and each of (Ii, IIi, IIIi, IVi) respectively denotes the indi-

cator that the ith observation locates in the first, second, third, and forth quadrant.

We suppose that there is only one threshold at any angle and the threshold contour

is star-shaped. For each fixed a◦ ∈ [0◦, 360◦), we rotate the original coordinate counter-

clockwise and implement the least squares estimation (4) only using the observations

in the first two quadrants after rotation. Doing so ensures that the threshold mapping

after rotation is a well-defined function.

In particular, the angle relative to the origin is a◦i −a◦ after rotating the coordinate
by a◦ degrees counterclockwise, and the new location (after the rotation) is given as
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(qi (a
◦) , si (a

◦)), where

(
qi (a

◦)

si (a
◦)

)
=

(
qi cos (a◦)− si sin (a◦)

si cos (a◦) + qi sin (a◦)

)
.

After this rotation, we estimate the following nonparametric threshold model:

yi = x>i β0 + x>i δ01 [qi (a
◦) ≤ γa◦ (si (a

◦))] + ui (19)

using only the observations satisfying qi (a◦) ≥ 0, where γa◦ (·) serves as the unknown
threshold line as in the model (1) in the a◦-degree-rotated coordinate. Such reparame-

trization guarantees that γa◦ (·) is always positive and we estimate its value pointwisely
at 0. Figure 2 illustrates the idea of such rotation and pointwise estimation over a

bounded support so that only the red cross points are included for estimation at differ-

ent angles. Thus, the estimation and inference procedure developed before is directly

applicable, though we expect effi ciency loss as we only use a subsample in estimation

at each rotated coordinate.

This rotating coordinate idea can be a quick solution when we do not know which

variables should be assigned as qi versus si, in the original model (1). As an extreme

example, if γ0 is the vertical line, the original model does not work. In this case, we

can check if γ0 is (near) the vertical line by investigating the estimates among different

rotations; when γ0 is suspected as the vertical line or has a very steep slope, we can

switch qi and si in the original model (1) to improve the local constant fitting.

5 Monte Carlo Experiments

We examine the small sample performance of the semiparametric threshold regression

estimator by Monte Carlo simulations. We generate n draws from

yi = x>i β0 + x>i δ01 [qi ≤ γ0 (si)] + ui, (20)

where xi = (1, x2i)
> and x2i ∈ R. We let β0 = (β10, β20)> = 0ι2 and consider three

different values of δ0 = (δ10, δ20)> = δι2 with δ = 1, 2, 3, and 4 where ι2 = (1, 1)>.

For the threshold function, we let γ0 (s) = sin(s)/2. We consider the cross-sectional
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Table 2: Rej. Prob. of the LR Test with i.i.d. Data

s = 0.0 s = 0.5 s = 1.0
n δ = 1 2 3 4 1 2 3 4 1 2 3 4
100 0.14 0.06 0.05 0.05 0.16 0.07 0.05 0.05 0.25 0.18 0.14 0.13
200 0.08 0.03 0.02 0.02 0.08 0.04 0.02 0.02 0.15 0.10 0.06 0.06
500 0.05 0.01 0.02 0.02 0.05 0.02 0.02 0.02 0.09 0.05 0.03 0.01

Note: Entries are rejection probabilities of the LR test (14) when data are generated from (20) with

γ0 (s) = sin(s)/2. The dependence structure is given in (21) with ρ = 0. The significance level is 5%

and the results are based on 1000 simulations.

dependence structure in (x2i, qi, si, ui)
> as follows:


(qi, si)

> ∼ iidN (0, I2) ;

x2i| (qi, si) ∼ iidN (0, (1 + ρ (s2
i + q2

i ))
−1) ;

u|{(xi, qi, si)}ni=1 ∼ N (0,Σ) ,

(21)

where u = (u1, . . . , un)>. The (i, j)th element of Σ is Σij = ρb`ijnc1[`ij < m/n], where

`ij = {(si − sj)2+(qi − qj)2}1/2 is the L2-distance between the ith and jth observations.

The diagonal elements of Σ are normalized as Σii = 1. This m-dependent setup follows

from the Monte Carlo experiment in Conley and Molinari (2007) in the sense that

there are roughly at most 2m2 observations that are correlated with each observation.

Within the m distance, the dependence decays at a polynomial rate as indicated by

ρb`ijnc. The parameter ρ describes the strength of cross-sectional dependence in the way

that a larger ρ leads to stronger dependence relative to the unit standard deviation. In

particular, we consider the cases with ρ = 0 (i.e., i.i.d. observations), 0.5, and 1. We

consider the sample size n = 100, 200, and 500 and set S0 to include the middle 70%

observations of si.

First, Tables 2 and 3 report the small sample rejection probabilities of the LR test

in (14) for H0 : γ0(s) = sin(s)/2 against H1 : γ0(s) 6= sin(s)/2 at the 5% nominal

level at three different locations s = 0, 0.5, and 1. In particular, Table 2 examines the

case with no cross-sectional dependence (ρ = 0), while Table 3 examines the case with

cross-sectional dependence whose dependence decays slowly with ρ = 1 and m = 10.

For the bandwidth parameter, we normalize si and qi to have mean zero and unit

standard deviation and choose bn = 0.5n−1/2 in the main regression. This choice is for

undersmoothing as n1−2εb2
n = n−2ε → 0. To estimate D (γ0 (s) , s) and V (γ0 (s) , s),
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Table 3: Rej. Prob. of the LR Test with Cross-sectionally Correlated Data

s = 0.0 s = 0.5 s = 1.0
n δ = 1 2 3 4 1 2 3 4 1 2 3 4
100 0.19 0.10 0.07 0.03 0.20 0.10 0.08 0.07 0.28 0.19 0.17 0.11
200 0.10 0.04 0.03 0.03 0.12 0.07 0.04 0.04 0.21 0.11 0.08 0.04
500 0.05 0.02 0.02 0.02 0.06 0.03 0.02 0.02 0.14 0.05 0.03 0.03

Note: Entries are rejection probabilities of the LR test (14) when data are generated from (20) with

γ0 (s) = sin(s)/2. The dependence structure is given in (21) with ρ = 1 and m = 10. The significance

level is 5% and the results are based on 1000 simulations.

Table 4: Coverage Prob. of the Plug-in Confidence Interval

β20 β20 + δ20 δ20

n δ = 1 2 3 4 1 2 3 4 1 2 3 4
100 0.85 0.89 0.91 0.87 0.87 0.87 0.89 0.90 0.85 0.87 0.93 0.91
200 0.86 0.90 0.93 0.93 0.89 0.92 0.94 0.93 0.85 0.90 0.93 0.92
500 0.83 0.92 0.95 0.96 0.84 0.90 0.93 0.94 0.78 0.88 0.93 0.95

Note: Entries are coverage probabilities of 95% confidence intervals for β20, β20+δ20, and δ20. Data

are generated from (20) with γ0 (s) = sin(s)/2, where the dependence structure is given in (21) with

ρ = 0.5 and m = 3. The results are based on 1000 simulations.

we use the rule-of-thumb bandwidths from the standard kernel regression satisfying

b′n = O(n−1/5) and b′′n = O(n−1/6). All the results are based on 1000 simulations.

In general, the test for γ0 performs better as (i) the sample size gets larger; (ii) the

coeffi cient change gets more significant; (iii) the cross-sectional dependence gets weaker;

and (iv) the target gets closer to the mid-support of s. When δ0 and n are large, the

LR test is conservative, which is also found in the classic threshold regression case

(Hansen (2000)).

Second, Table 4 shows the finite sample coverage properties of the 95% confidence

intervals for the parametric components β20, δ
∗
20 = β20 + δ20, and δ20. The results are

based on the same simulation design as above with ρ = 0.5 and m = 3. Regarding the

tuning parameters, we use the same bandwidth choice bn = 0.5n−1/2 as before and set

the truncation parameter ∆n = (nbn)−1/2. Unreported results suggest that choice of

the constant in the bandwidth matters particularly with small samples like n = 100,

but such effect quickly decays as the sample size gets larger. For the lag number

required for the HAC estimator, we use the spatial lag order of 5 following Conley
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Table 5: Coverage Prob. of the Plug-in Confidence Interval (w/ LRV adj.)

β20 β20 + δ20 δ20

n δ = 1 2 3 4 1 2 3 4 1 2 3 4
100 0.92 0.95 0.94 0.95 0.91 0.95 0.94 0.95 0.93 0.95 0.95 0.95
200 0.93 0.95 0.97 0.96 0.94 0.94 0.95 0.96 0.90 0.93 0.97 0.94
500 0.89 0.95 0.97 0.97 0.89 0.96 0.97 0.97 0.84 0.92 0.95 0.97

Note: Entries are coverage probabilities of 95% confidence intervals for β20, β20+δ20, and δ20 with a

small sample adjustment of the LRV estimator. Data are generated from (20) with γ0 (s) = sin(s)/2,

where the dependence structure is given in (21) with ρ = 0.5 and m = 3. The results are based on

1000 simulations.

and Molinari (2007). Results with other lag choices are similar and hence omitted.

The result suggests that the asymptotic normality is better approximated with larger

samples and larger change sizes. Table 5 shows the same results with a small sample

adjustment of the LRV estimator for Ω∗ by dividing it by the sample truncation fraction∑n
i=1(1[qi > γ̂−i(si)+∆n]+1[qi < γ̂−i(si)−∆n])1[si ∈ S0]/

∑n
i=1 1[si ∈ S0]. This ratio

enlarges the LRV estimator and hence the coverage probabilities, especially when the

change size is small. It only affects the finite sample performance as it approaches one

in probability as n→∞.

6 Applications

6.1 Tipping point and social segregation

The first example is about the tipping point problem in social segregation, which

stimulates a vast literature in labor/public and political economics. Schelling (1971)

initially proposes the tipping point model to study the fact that the white population

decreases substantially once the minority share exceeds a certain tipping point. Card,

Mas, and Rothstein (2008) empirically estimate this model and find strong evidence for

such a tipping point phenomenon. In particular, they specify the threshold regression

model as

yi = β10 + δ101 [qi > γ0] + x>2iβ20 + ui,

where for tract i in a certain city, qi denotes the minority share in percentage at the

beginning of a certain decade, yi the normalized white population change in percentage
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within this decade, and x2i denotes a vector of control variables. They apply the least

squares method to estimate the tipping point γ0. For most cities and for the periods

1970-80, 1980-90, and 1990-2000, they find that white population flows exhibit the

tipping-like behavior, with the estimated tipping points ranging approximately from

5% to 20% across cities.

In Section VII of Card, Mas, and Rothstein (2008), they also find that the location

of the tipping point substantially depends on white people’s attitudes toward the mi-

nority. Specifically, they first construct a city-level index that measures white attitudes

and regress the estimated tipping point from each city on this index. The regression

coeffi cient is significantly different from zero, suggesting that the tipping point should

be modeled as a function of the index. In this regards, a more robust model in the

tract level can be written as

yi = β10 + δ101 [qi > γ0(si)] + x>2iβ20 + ui,

where γ0(·) denotes an unknown tipping point function, and si denotes the attitude
index.

The attitude index by Card, Mas, and Rothstein (2008) is available only at the city-

level, hence we cannot use it to analyze the census tract-level observations. Instead, we

use the tract-level unemployment rate as si to illustrate the nonparametric threshold

function. We use the data provided by Card, Mas, and Rothstein (2008) and estimate

the tipping point function γ0(·) over census tracts by the method introduced in Section
2. We use five control variables as x2i, including the logarithm of mean family income,

the fractions of single-unit, vacant, and renter-occupied housing units, and the fraction

of workers who use public transport to travel to work. The bandwidth is chosen as

bn = cn−1/2, with c being obtained from the leave-one-out cross-validation. Figure

3 depicts the estimated tipping point in the years 1980-90 in Atlanta, Chicago, and

Philadelphia, where the sample sizes are relatively large. The pattern clearly shows

that the tipping point varies substantially in the unemployment rate even within the

city. Therefore, the standard constant tipping point model is insuffi cient to characterize

the segregation fully.
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Figure 3: Estimate of the tipping point as a function of the unemployment rate

Note: The figure depicts the point estimate of the tipping points as a function of the unemployment

rate, using the data in Atlanta, Chicago, and Philadelphia in 1980-1990. Data are available from

Card, Mas, and Rothstein (2008).
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Figure 4: Nighttime light intensity in Dallas, Texas, in 2010

Note: The figure depicts the intensity of the stable nighttime light in Dallas 2010. Data are available

from https://www.ncei.noaa.gov/.

6.2 Metropolitan area determination

The second application is about determining the boundary of metropolitan areas,

which is a fundamental question in urban economics. Recently, researchers propose

to use nighttime light intensity obtained by satellite imagery to define the metropoli-

tan boundary. The intuition is straightforward: metropolitan areas are bright at night

while rural areas are dark.

Specifically, the National Oceanic and Atmospheric Administration (NOAA) col-

lects satellite imagery of nighttime lights at approximately 1-kilometer resolution con-

tinuously since 1992. From there, NOAA further constructs several indices measuring

the annual light intensity. Following convention, we choose the “average visible, stable

lights” index that ranges from 0 (dark) to 63 (bright). For illustration, we focus on

Dallas, Texas, and use the data for the years 1995, 2000, 2005, and 2010. In each year,

the data are recorded as a 240×360 grid that covers the latitudes from 32◦N to 34◦N

and the longitudes from 98.5◦W to 95.5◦W. The total sample size is 240×360=86400.
These data are available at NOAA’s website and also provided on the authors’website.

Figure 4 depicts the data in 2010, which suggests a bright metropolitan area in the

center of Dallas. Let yi denote the intensity and (qi, si) the latitude and longitude of

the ith pixel (normalized into equally-spaced grids on [0, 1]).

To define the metropolitan area, existing literature in urban economics first chooses
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Figure 5: Kernel density estimate of nighttime light intensity, Dallas 2010

Note: The figure depicts the kernel density estimate of the strength of the stable nighttime light in

Dallas 2010. Data are available from https://www.ncei.noaa.gov/.

an ad hoc intensity threshold, say 95% quantile of yi, and categorizes the ith pixel as

a part of the metropolitan area if yi is larger than the threshold. For example, see

Dingel, Miscio, and Davis (2019), Vogel, Goldblatt, Hanson, and Khandelwal (2019),

and references therein. On p.3 in Dingel, Miscio, and Davis (2019), they note that

“... the choice of the light-intensity threshold, which governs the definitions of the

resulting metropolitan areas, is not pinned down by economic theory or prior empirical

research.”Such arbitrariness can be solved using our new estimator.

We first examine whether the light intensity data exhibits a clear threshold-type

pattern. To this end, we plot the kernel density estimates of yi in the year 2010 in

Figure 5. The bandwidth is the standard rule-of-thumb one. The estimated density

exhibits three peaks at around 0, 8, and 63. They respectively correspond to the rural

area, small towns, and the central metropolitan area. Therefore, the threshold model

is appropriate in characterizing such a mean-shift pattern.

Now we implement the rotation and estimation method introduced in Section 4. In

particular, we start with the center point in the bright middle area as our metropolitan

center.6 Then for each a◦ in the 500 equally-spaced grid on [0, 360◦], we rotate the

6This corresponds to the pixel in the 181st column from the left and the 100th row from the
bottom.
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Figure 6: Metropolitan area determination in Dallas (color online)

Note: The figure depicts the city boundary determined by either the new method or by taking the

0.95 quantile of nighttime light strength as the threshold, using the satellite imagery data for Dallas

in the years 1995, 2000, 2005, and 2010. Data are available from https://www.ncei.noaa.gov/.
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data by a◦ degrees counterclockwise and estimate the model (19) with xi = 1. The

bandwidth is chosen as cn−1/2 with c = 1. Other choices of c lead to almost identical

results, given the large sample size. Figure 6 presents the estimated metropolitan area

(red) and that determined by the 95% quantile of yi (black).

Several interesting findings are summarized as follows. First, the estimated bound-

ary is highly nonlinear as a function of the angle. Therefore, any parametric threshold

model could lead to a substantially misleading result. Second, our estimated area is

larger than that determined by the 95% quantile by 80.31%, 81.56%, 106.46%, and

102.09% in the years 1995, 2000, 2005, and 2010, respectively. In particular, our es-

timator tends to include some suburban areas that exhibit strong light intensity and

that are geographically close to the city center. For example, the very left stretch-out

point in the estimated boundary corresponds to Fort Worth, which is 30 miles from

downtown Dallas. Residents can easily commute by train or driving on the interstate

highway 30. It is then reasonable to include Fort Worth as a part of the metropolitan

Dallas for further economic analysis. Finally, the estimated β0 + δ0 is approximately

53, which corresponds to the 89% quantile of yi. This finding provides a rule-of-thumb

choice of the intensity threshold from the econometric point of view.

7 Concluding Remarks

This paper proposes a novel approach to conduct sample splitting. In particular, we

develop a nonparametric threshold regression model where two variables can jointly

determine the unknown splitting boundary. Our approach can be easily generalized

so that the sample splitting depends on more numbers of variables, though such an

extension is subject to the curse of dimensionality, as usually observed in the kernel

regression literature. The main interest is in identifying the threshold function that

determines how to split the sample. Thus our model should be distinguished from the

smoothed threshold regression model or the random coeffi cient regression model.

This new approach is empirically relevant in broad areas studying sample splitting

(e.g., segregations and group-formation) and heterogeneous effects over different sub-

samples. We illustrate this with the tipping point problem in social segregation and

metropolitan area determination using satellite imagery datasets.

There are theoretical extensions and empirical applications of our method, which

we suppress in the current paper due to space limitations. We list a few here. First,
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we omit an application where we use housing prices to determine the economic border

between Brooklyn and Queens boroughs in New York City. The estimated border is

substantially different from the existing administrative border, which was determined

in 1931 and cannot reflect the dramatic city development. Besides, the estimated bor-

der coincides with the Jackson Robinson Parkway and the Long Island Railroad. This

finding provides new evidence that local transportation corridors could increase com-

munity segregation (cf. Ananat (2011) and Heilmann (2018)). Second, as mentioned

in Section 2, we focus on the local constant threshold regression model for compu-

tational simplicity. A natural extension is to consider the local linear one by using

1 [qi ≤ γ1 + γ2(s− si)] in (3). Although grid search is almost infeasible in determining
the two threshold parameters (γ1 and γ2), we could use the MCMC algorithm de-

veloped by Yu and Fan (2019) and the mixed integer optimization (MIO) algorithms

developed by Lee, Liao, Seo, and Shin (2018). Besides the computational challenge,

asymptotic derivation in this setup is more involved since we need to consider higher-

order expansions of the objective function. Third, our nonparametric setup focuses on

the threshold function while some recent literature studies the model

yi =

{
m1(xi) + ui if qi ≤ γ0

m2(xi) + ui if qi > γ0,

where m1 (·) and m2 (·) are different nonparametric functions. See, for example, Hen-
derson, Parmeter, and Su (2017), Chiou, Chen, and Chen (2018), Yu and Phillips

(2018), and Yu, Liao, and Phillips (2019). One could imagine that the regression

function and the threshold function are both nonparametric to allow for more flexible

models.
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A Appendix
Throughout the proof, we denote Ki (s) = K ((si − s)/bn) and 1i (γ) = 1 [qi ≤ γ]. We let
C ∈ (0,∞) stand for a generic constant term that may vary, which can depend on the location
s. We also let an = n1−2εbn. All the additional lemmas in the proof assume the conditions
in Assumptions ID and A hold. Omitted proofs for some lemmas are all collected in the
supplementary material.

A.1 Proof of Theorem 1

Proof of Theorem 1 We first establish the identification of
(
β>0 , δ

>
0

)>
and then the

identification of γ0(s) for each s ∈ S. To this end, we consider two cases separately: (a)(
β>, δ>

)> 6= (β>0 , δ>0 )> and (b) (β>, δ>)> =
(
β>0 , δ

>
0

)>
but γ(s) 6= γ0(s).

For case (a), for any γ(s) ∈ Γ with given s ∈ S, we define

R(β, δ, γ; s) = E
[(
yi − x>i β − x>i δ1 [qi ≤ γ(si)]

)2
∣∣∣∣ si = s

]
−E

[(
yi − x>i β0 − x>i δ01 [qi ≤ γ0(si)]

)2
∣∣∣∣ si = s

]
.

Then,

R(β, δ, γ; s) =

 E
[(
x>i ((β + δ)− (β0 + δ0)

)2∣∣∣ si = s
]
on {qi ≤ γ(s)} ∩ {qi ≤ γ0(s)};

E
[(
x>i (β − β0)

)2∣∣∣ si = s
]

on {qi > γ(s)} ∩ {qi > γ0(s)}.

Therefore, by integrating over si and Assumption ID-(ii), we have

E [R(β, δ, γ; si)]

≥ ||(β + δ)− (β0 + δ0)||2 E
[
||xixᵀi ||1

[
qi ≤ γ

]]
+ ||β − β0||2 E [||xixᵀi ||1 [qi > γ]]

> 0,

where γ and γ denote the lower and upper bounds of Γ, respectively. Therefore,
(
β>0 , δ

>
0

)>
are identified as the unique minimizer of E[

(
yi − x>i β − x>i δ1 [qi ≤ γ]

)2
] for any given γ ∈ Γ.

For case (b), the function γ0 (·) is pointwisely identified as the minimizer of

E[
(
yi − x>i β0 − x>i δ01 [qi ≤ γ(si)]

)2
|si = s]

for each s ∈ S. This is because for any γ(s) 6= γ0(s) at si = s and given (β>0 , δ
>
0 )>,

R(β0, δ0, γ; s)

= E
[(
yi − x>i β0 − x>i δ01 [qi ≤ γ(si)]

)2
∣∣∣∣ si = s

]
−E

[(
yi − x>i β0 − x>i δ01 [qi ≤ γ0(si)]

)2
∣∣∣∣ si = s

]
= δ>0 E

[
xix
>
i (1 [qi ≤ γ(si)]− 1 [qi ≤ γ0(si)])

2
∣∣∣ si = s

]
δ0
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= δ>0 E
[
xix
>
i 1 [min{γ(si), γ0(si)} < qi ≤ max{γ(si), γ0(si)}]

∣∣∣ si = s
]
δ0

=

∫ max{γ(s),γ0(s)}

min{γ(s),γ0(s)}
δ>0 E

[
xix
>
i

∣∣∣ qi = q, si = s
]
δ0f(q|s)dq

≥ C(s)P (min{γ(si), γ0(si)} < qi ≤ max{γ(si), γ0(si)}| si = s)

> 0

from Assumptions ID-(i) and (iii), where C(s) = infq∈Q δ
>
0 E
[
xix
>
i

∣∣ qi = q, si = s
]
δ0 > 0.

Note that the last probability is strictly positive because we assume f(q|s) > 0 for any (q, s) ∈
Q×S and γ0(s) is not located on the boundary of Q as ε(s) < P (qi ≤ γ0(si)|si = s) < 1−ε(s)
for some ε(s) > 0. The identification follows since R(β0, δ0, γ; s) is continuous at γ = γ0(s)

from Assumption ID-(v). �

A.2 Proof of Theorem 2

For a given s ∈ S0, we define

Mn (γ; s) =
1

nbn

n∑
i=1

xix
>
i 1i (γ)Ki (s) ,

Jn (γ; s) =
1√
nbn

n∑
i=1

xiui1i (γ)Ki (s) .

Lemma A.1

sup
γ∈Γ
‖Mn (γ; s)−M (γ; s)‖ →p 0,

sup
γ∈Γ

∥∥∥n−1/2b−1/2
n Jn (γ; s)

∥∥∥→p 0

as n→∞, where
M (γ; s) =

∫ γ

−∞
D(q, s)f (q, s) dq

and
Jn (γ; s)⇒ J (γ; s)

a mean-zero Gaussian process indexed by γ.

Proof of Lemma A.1 For expositional simplicity, we only present the case of scalar xi.
We first prove the pointwise convergence of Mn (γ; s). By stationarity, Assumptions A-(vii),
(x), and Taylor expansion, we have

E [Mn (γ; s)] =
1

bn

∫∫
E[x2

i |q, v]1[q ≤ γ]K

(
v − s
bn

)
f (q, v) dqdv (A.1)

=

∫∫
D(q, s+ bnt)1[q ≤ γ]K (t) f (q, s+ bnt) dqdt

=

∫ γ

−∞
D(q, s)f (q, s) dq +O

(
b2n
)
,
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where D(q, s) is defined in (8). For the variance, we have

V ar [Mn (γ; s)] =
1

n2b2n
E

( n∑
i=1

{
x2
i1i (γ)Ki (s)− E

[
x2
i1i (γ)Ki (s)

]})2
 (A.2)

=
1

nb2n
E
[{
x2
i1i (γ)Ki (s)− E

[
x2
i1i (γ)Ki (s)

]}2
]

+
2

n2b2n

n∑
i<j

Cov
[
x2
i1i (γ)Ki (s) , x2

j1j (γ)Kj (s)
]

= O

(
1

nbn

)
+O

(
1

n
+ b2n

)
→ 0,

where the order of the first term is from the standard kernel estimation result. For the second
term, we use Assumptions A-(v), (vii), (x), and Lemma 1 of Bolthausen (1982) to obtain that∣∣∣∣∣∣ 1n

n∑
i<j

Cov
[
x2
i1i (γ)Ki (s) , x2

j1j (γ)Kj (s)
]∣∣∣∣∣∣ (A.3)

≤ 1

n

n∑
i<j

∣∣∣∣Cov [x2
i1i (γ)K

(
si − s
bn

)
, x2

j1j (γ)K

(
sj − s
bn

)]∣∣∣∣
=

b2n
n

n∑
i<j

∣∣Cov [x2
i1i (γ)K (ti) , x

2
j1j (γ)K (tj)

]
+O

(
b2n
)∣∣

≤ Cb2n

∞∑
m=1

mα (m)ϕ/(2+ϕ)
(
E
[
x4+2ϕ
i 1i (γ)K (ti)

2+ϕ
])2/(2+ϕ)

+O
(
nb4n
)

= O
(
b2n + nb4n

)
for some finite ϕ > 0, where α (m) is the mixing coeffi cient defined in (7) and the first
equality is by the change of variables ti = (si − s)/bn in the covariance operator. Hence,
the pointwise convergence is established. For given s, the uniform tightness of Mn (γ; s)

in γ follows similarly as (and even simpler than) that of Jn (γ; s) below, and the uniform
convergence follows from standard argument. For Jn (γ; s), since E [uixi|qi, si] = 0, the proof
for supγ∈Γ |(nbn)−1/2Jn (γ, s) | p→ 0 is identical as Mn (γ; s) and hence omitted.

Next, we derive the weak convergence of Jn (γ; s). For any fixed s and γ, the Theorem of
Bolthausen (1982) implies that Jn (γ; s) ⇒ J (γ; s) under Assumption A-(iii). Because γ is
in the indicator function, such pointwise convergence in γ can be generalized into any finite
collection of γ to yield the finite dimensional convergence in distribution. By theorem 15.5 of
Billingsley (1968), it remains to show that, for each positive η(s) and ε(s) at given s, there
exist $ > 0 such that if n is large enough,

P

(
sup

γ∈[γ1,γ1+$]
|Jn (γ; s)− Jn (γ1; s)| > η(s)

)
≤ ε(s)$

for any γ1. To this end, we consider a fine enough grid over [γ1, γ1 + $] such that γg =
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γ1 +(g−1)$/g for g = 1, . . . , g+1, where nbn$/2 ≤ g ≤ nbn$ and max1≤g≤g
(
γg − γg−1

)
≤

$/g. We define hig(s) = xiuiKi (s)1
[
γg < qi ≤ γg+1

]
and Hng(s) = n−1b−1

n

∑n

i=1
|hig(s)|

for 1 ≤ g ≤ g. Then for any γ ∈
[
γg, γg+1

]
,∣∣Jn (γ; s)− Jn

(
γg; s

)∣∣ ≤ √
nbnHng(s)

≤
√
nbn |Hng(s)− E [Hng(s)]|+

√
nbnE [Hng(s)]

and hence

sup
γ∈[γ1,γ1+$]

|Jn (γ; s)− Jn (γ1; s)|

≤ max
2≤g≤g+1

∣∣Jn (γg; s)− Jn (γ1; s)
∣∣

+ max
1≤g≤g

√
nbn |Hng(s)− E [Hng(s)]|+ max

1≤g≤g

√
nbnE [Hng(s)]

≡ Ψ1(s) + Ψ2(s) + Ψ3(s).

In what follows, we simply denote hi(s) = xiuiKi (s)1
[
γg < qi ≤ γk

]
for any given 1 ≤ g <

k ≤ g and for fixed s. First, for Ψ1(s), we have

E
[∣∣Jn (γg; s)− Jn (γk; s)

∣∣4]
=

1

n2b2n

n∑
i=1

E
[
h4
i (s)

]
+

1

n2b2n

n∑
i 6=j

E
[
h2
i (s)h

2
j (s)

]
+

1

n2b2n

n∑
i 6=j

E
[
h3
i (s)hj(s)

]
+

1

n2b2n

n∑
i 6=j 6=k 6=l

E [hi(s)hj(s)hk(s)hl(s)] +
1

n2b2n

n∑
i 6=j 6=k

E
[
h2
i (s)hj(s)hk(s)

]
≡ Ψ11(s) + Ψ12(s) + Ψ13(s) + Ψ14(s) + Ψ15(s),

where each term’s bound is obtained as follows. For Ψ11(s), a straightforward calculation and
Assumptions A-(v) and (x) yield Ψ11(s) ≤ C1(s)n−1b−1

n + O(bn/n) = O(n−1b−1
n ) for some

constant 0 < C1(s) <∞. For Ψ12(s), similarly as (A.3),

Ψ12(s) ≤ 2

n2b2n

n∑
i<j

(
E
[
h2
i (s)

]
E
[
h2
j (s)

]
+
∣∣Cov [h2

i (s), h
2
j (s)

]∣∣) (A.4)

≤ 2
(
E
[
h̃2
i

])2
+

2

nb2n

{
Cb2n

∞∑
m=1

mα (m)ϕ/(2+ϕ)
(
E
[
h̃4+2ϕ
i

])2/(2+ϕ)
+O

(
nb4n
)}

for some ϕ > 0 that depends on s, where we let h̃i = xiuiK (ti)1
[
γg < qi ≤ γk

]
from the

change of variables ti = (si − s)/bn. Then, by the stationarity, Cauchy-Schwarz inequality,
and Lemma 1 of Bolthausen (1982), we have

Ψ12(s) ≤ C ′
(
γk − γg

)2
+O(n−1) +O(b2n).

for some constant 0 < C ′ <∞. Using the same argument as the second component in (A.4),
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we can also show that Ψ13(s) = O(n−1) +O(b2n). For Ψ14(s), by stationarity,

Ψ14(s) ≤ 4!n

n2b2n

n∑
1<i<j<k

|E [h1(s)hi(s)hj(s)hk(s)]|

≤ 4!

nb2n

n∑
i=1

∑
j,k≤i
|Cov [h1(s), hi+1(s)hi+j+1(s)hi+j+k+1(s)]| (A.5)

+
4!

nb2n

n∑
j=1

∑
i,k≤j

|Cov [h1(s)hi+1(s), hi+j+1(s)hi+j+k+1(s)]|

+
4!

nb2n

n∑
k=1

∑
i,j≤k

|Cov [h1(s), hi+1(s)hi+j+1(s), hi+j+k+1(s)]|

similarly as Billingsley (1968), p.173. By Assumptions A-(v), (vii), (x), and Lemma 1 of
Bolthausen (1982),

|Cov [h1(s), hi+1(s)hi+j+1(s)hi+j+k+1(s)]|
≤ Cα (i)ϕ/(2+ϕ)

×
(
E
[
h1(s)2+ϕ

])1/(2+ϕ)
(
E
[
(hi+1(s)hi+j+1(s)hi+j+k+1(s))2+ϕ

])1/(2+ϕ)

= Cα (i)ϕ/(2+ϕ)

×
(
bn

{
E
[
h̃2+ϕ

1

]
+O

(
b2n
)})1/(2+ϕ)

(
b3n

{
E
[(
h̃i+1h̃i+j+1h̃i+j+k+1

)2+ϕ
]

+O
(
b2n
)})1/(2+ϕ)

= Cb4/(2+ϕ)
n α (i)ϕ/(2+ϕ)

×
{(
E
[
h̃2+ϕ

1

])1/(2+ϕ)
(
E
[(
h̃i+1h̃i+j+1h̃i+j+k+1

)2+ϕ
])1/(2+ϕ)

+O
(
b2n
)}
,

where the first equality is by the change of variables ti = (si− s)/bn. It follows that the first
term in (A.5) satisfies

4!

nb2n

n∑
i=1

∑
j,k≤i
|Cov [h1(s), hi+1(s)hi+j+1(s)hi+j+k+1(s)]|

≤ C4!

nb
2−(4/(2+ϕ))
n

∞∑
i=1

i2α (i)ϕ/(2+ϕ)

×
{(
E
[
h̃2+ϕ

1

])1/(2+ϕ)
(
E
[(
h̃i+1h̃i+j+1h̃i+j+k+1

)2+ϕ
])1/(2+ϕ)

+O
(
b2n
)}

= O

(
1

nb
2ϕ/(2+ϕ)
n

)
+O

(
b
4/(2+ϕ)
n

n

)
(A.6)

by Assumption A-(iii). However, we select ϕ small enough such that

2ϕ

2 + ϕ
≤ 1

1− 2ε
, (A.7)
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which holds for ϕ ∈ (0, 2) in Assumption A-(iii). Then (A.6) becomes o(1) because nb2ϕ/(2+ϕ)
n =

(n1−2εb
(2ϕ/(2+ϕ))(1−2ε)
n )1/(1−2ε) → ∞ by Assumption A-(ix). Using the same argument, we

can also verify that the rest of terms in (A.5) are all o(1) and hence Ψ14(s) = o(1). For
Ψ15(s), we can similarly show that it is o(1) as well because

Ψ15(s) ≤ 3!

nb2n

n∑
i=1

∑
j≤i

∣∣Cov [h2
1(s), hi+1(s)hi+j+1(s)

]∣∣
+

3!

nb2n

n∑
j=1

∑
i≤j

∣∣Cov [h2
1(s)hi+1(s), hi+j+1(s)

]∣∣ .
By combining these results for Ψ11(s) to Ψ15(s), we thus have

E
[∣∣Jn (γg; s)− Jn (γk; s)

∣∣4] ≤ C1(s)
(
γk − γg

)2
for some constant 0 < C1(s) <∞ given s, and Theorem 12.2 of Billingsley (1968) yields

P
(

max
1≤g≤g

∣∣Jn (γg; s)− Jn (γ1; s)
∣∣ > η(s)

)
≤ C1(s)$2

η4(s)bn
, (A.8)

which bounds Ψ1(s).
To bound Ψ2(s), the standard result of kernel estimation yields that E

[
h2
ik

]
≤ C2(s)bn

by Assumption A-(x) for some constant 0 < C2(s) < ∞ given s. Then by Lemma 1 of
Bolthausen (1982), we have

E
[(√

nbn |Hng(s)− E [Hng(s)]|
)2
]

=
1

nbn
V ar

[
n∑
i=1

|hig(s)|
]

≤ 1

bn
E
[
h2
ig(s)

]
+

2

nbn

∑
i<j

|Cov (|hig(s)| , |hjg(s)|)|

≤ C2(s)$/g

and hence by Markov’s inequality,

P
(

max
1≤g≤g

√
nbn |Hng(s)− E [Hng(s)]| > η(s)

)
≤ C2(s)$

η2(s)
. (A.9)

Finally, to bound Ψ3(s), note that√
nbnE [Hng(s)] =

√
nbnC3(s)$/g ≤ 2C3(s)/

√
nbn (A.10)

for some constant 0 < C3(s) < ∞ given s, where $/g ≤ 2/nbn. So tightness is proved by
combining (A.8), (A.9), and (A.10), and hence the weak convergence follows from Theorem
15.5 of Billingsley (1968). �

Lemma A.2 Uniformly over s ∈ S0,

∆Mn (s) ≡ 1

nbn

n∑
i=1

xix
>
i {1i (γ0 (si))− 1i (γ0 (s))}Ki (s) = Op (bn) . (A.11)
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Lemma A.3 For a given s ∈ S0, γ̂(s)→p γ0(s) as n→∞.

Proof of Lemma A.3 For given s ∈ S0, we let ỹi(s) = Ki(s)
1/2yi, x̃i(s) = Ki(s)

1/2xi,
ũi(s) = Ki(s)

1/2ui, x̃i(γ; s) = Ki(s)
1/2xi1i (γ), and x̃i(γ0(si); s) = Ki(s)

1/2xi1i (γ0(si)); we
denote ỹ(s), X̃(s), ũ(s), X̃(γ; s), and X̃(γ0(si); s) as their corresponding matrices of n-stacks.
Then θ̂(γ; s) = (β̂(γ; s)>, δ̂(γ; s)>)> in (2) is given as

θ̂(γ; s) = (Z̃(γ; s)>Z̃(γ; s))−1Z̃(γ; s)>ỹ(s), (A.12)

where Z̃(γ; s) = [X̃(s), X̃(γ; s)]. Therefore, since ỹ(s) = X̃(s)β0 + X̃(γ0(si); s)δ0 + ũ(s) and
X̃(s) lies in the space spanned by Z̃(γ; s), we have

Qn (γ; s)− ũ(s)>ũ(s) = ỹ(s)>
(
In − PZ̃(γ; s)

)
ỹ(s)− ũ(s)>ũ(s)

= −ũ(s)>P
Z̃

(γ; s)ũ(s) + 2δ>0 X̃(γ0(si); s)
> (In − PZ̃(γ; s)

)
ũ(s)

+δ>0 X̃(γ0(si); s)
> (In − PZ̃(γ; s)

)
X̃(γ0(si); s)δ0,

where P
Z̃

(γ; s) = Z̃(γ; s)(Z̃(γ; s)>Z̃(γ; s))−1Z̃(γ; s)> and In is the identity matrix of rank
n. Note that P

Z̃
(γ; s) is the same as the projection onto [X̃(s) − X̃(γ; s), X̃(γ; s)], where

X̃(γ; s)>(X̃(s)−X̃(γ; s)) = 0. Furthermore, for γ ≥ γ0(si), x̃i(γ0(si); s)
>(x̃i(s)−x̃i(γ; s)) = 0

and hence X̃(γ0(si); s)
>X̃(γ; s) = X̃(γ0(si); s)

>X̃(γ0(si); s). Since

Mn(γ; s) =
1

nbn

n∑
i=1

x̃i(γ; s)x̃i(γ; s)> and

Jn(γ; s) =
1√
nbn

n∑
i=1

x̃i(γ; s)ũi(s),

Lemma A.1 yields that

Z̃(γ; s)>ũ(s) = [X̃(s)>ũ(s), X̃(γ; s)>ũ(s)] = Op

(
(nbn)1/2

)
Z̃(γ; s)>X̃(γ0(si); s) = [X̃(s)>X̃(γ0(si); s), X̃(γ; s)>X̃(γ0(si); s)]

= [X̃(s)>X̃(γ0(si); s), X̃(γ0(si); s)
>X̃(γ0(si); s)] = Op (nbn)

for given s. It follows that

1

an

(
Qn (γ; s)− ũ(s)>ũ(s)

)
(A.13)

= Op

(
1

an

)
+Op

(
1

a
1/2
n

)
+

1

nbn
c>0 X̃(γ0(si); s)

> (In − PZ̃(γ; s)
)
X̃(γ0(si); s)c0

=
1

nbn
c>0 X̃(γ0(si); s)

> (I − P
Z̃

(γ; s)
)
X̃(γ0(si); s)c0 + op(1)

for an = n1−2εbn →∞ as n→∞. Moreover, we have

Mn (γ0(si); s) =
1

nbn

n∑
i=1

x̃i(γ0(si); s)x̃i(γ0(si); s)
> (A.14)

34



= Mn (γ0(s); s) + ∆Mn (s)

= Mn (γ0(s); s) +Op (bn)

from Lemma A.2, where ∆Mn (s) is defined in (A.11). It follows that

1

nbn
c>0 X̃(γ0(si); s)

> (In − PZ̃(γ; s)
)
X̃(γ0(si); s)c0 (A.15)

→p c
>
0 M(γ0(s); s)c0 − c>0 M(γ0(s); s)>M(γ; s)−1M(γ0(s); s)c0 ≡ Υ(γ; s) <∞

uniformly over γ ∈ Γ∩ [γ0(s),∞), from Lemma A.1 and Assumptions ID-(ii) and A-(viii), as
bn → 0 as n→∞. However,

dΥ(γ; s)/dγ = c>0 M(γ0(s); s)>M(γ; s)−1D(γ, s)f(γ, s)M(γ; s)−1M(γ0(s); s)c0 ≥ 0

and
dΥ(γ0(s); s)/dγ = c>0 D(γ0(s), s)f(γ0(s), s)c0 > 0

from Assumption A-(viii), which implies that Υ(γ; s) is continuous, non-decreasing, and
uniquely minimized at γ0(s) given s ∈ S0.

We can symmetrically show that the probability limit of (A.15) for γ ∈ Γ∩ (−∞, γ0(s)] is
continuous, non-increasing, and uniquely minimized at γ0(s) as well. Therefore, given s ∈ S0,
uniformly over Γ, the probability limit of a−1

n

(
Qn (γ; s)− ũ(s)>ũ(s)

)
in (A.13) is continuous

and uniquely minimized at γ0(s). Since γ̂(s) is the minimizer of a−1
n

(
Qn (γ; s)− ũ(s)>ũ(s)

)
,

the pointwise consistency follows as the proof of Lemma A.5 of Hansen (2000). �

We let φ1n = a−1
n , where an = n1−2εbn and ε is given in Assumption A-(ii). For a given

s ∈ S0, we define

Tn (γ; s) =
1

nbn

n∑
i=1

(
c>0 xi

)2
|1i (γ (s))− 1i (γ0 (s))|Ki (s) ,

Tn(γ, s) =
1

nbn

n∑
i=1

‖xi‖2 |1i (γ (s))− 1i (γ0 (s))|Ki (s) ,

Ln (γ; s) =
1√
nbn

n∑
i=1

c>0 xiui {1i (γ (s))− 1i (γ0 (s))}Ki (s)

Ln (γ; s) =
1√
nbn

n∑
i=1

‖xiui‖ {1i (γ (s))− 1i (γ0 (s))}Ki (s) .

Lemma A.4 For a given s ∈ S0, for any η(s) > 0 and ε(s) > 0, there exist constants
0 < CT (s), CT (s), C(s), r(s) <∞ such that for all n,

P

(
inf

r(s)φ1n<|γ(s)−γ0(s)|<C(s)

Tn (γ; s)

|γ (s)− γ0 (s)| < CT (1− η(s))

)
≤ ε(s), (A.16)

P

(
sup

r(s)φ1n<|γ(s)−γ0(s)|<C(s)

Tn (γ; s)

|γ (s)− γ0 (s)| > CT (1 + η(s))

)
≤ ε(s), (A.17)

35



P

(
sup

r(s)φ1n<|γ(s)−γ0(s)|<C(s)

Ln (γ; s)
√
an |γ (s)− γ0 (s)| > η(s)

)
≤ ε(s), (A.18)

P

(
sup

r(s)φ1n<|γ(s)−γ0(s)|<C(s)

Ln (γ; s)
√
an |γ (s)− γ0 (s)| > η(s)

)
≤ ε(s), (A.19)

if n1−2εb2n → % <∞.

For a given s ∈ S0, we let θ̂(γ̂(s)) = (β̂(γ̂(s))>, δ̂(γ̂(s))>)> and θ0 = (β>0 , δ
>
0 )>.

Lemma A.5 For a given s ∈ S0, nε(θ̂(γ̂(s))− θ0) = op(1).

Proof of Theorem 2 The consistency is proved in Lemma A.3 above. For given s ∈ S0,
we let

Q∗n(γ(s); s) = Qn(β̂ (γ̂ (s)) , δ̂ (γ̂ (s)) , γ(s); s) (A.20)

=
n∑
i=1

{
yi − x>i β̂ (γ̂ (s))− x>i δ̂ (γ̂ (s))1i(γ(s))

}2
Ki (s)

for any γ(·), where Qn(β, δ, γ; s) is the sum of squared errors function in (3). Consider γ(s)

such that γ (s) ∈
[
γ0 (s) + r(s)φ1n, γ0 (s) + C(s)

]
for some 0 < r(s), C(s) < ∞ that are

chosen in Lemma A.4. We let ∆i(γ; s) = 1i (γ (s)) − 1i (γ0 (s)); ĉj(γ̂ (s)) and c0j be the jth
element of ĉ(γ̂ (s)) ∈ Rp and c0 ∈ Rp, respectively. Then, since yi = β>0 xi + δ>0 xi1i (γ0 (si)) +

ui,

Q∗n(γ(s); s)−Q∗n(γ0(s); s)

=

n∑
i=1

(
δ̂ (γ̂ (s))> xi

)2
∆i(γ; s)Ki (s)

−2

n∑
i=1

(
yi − β̂ (γ̂ (s))> xi − δ̂ (γ̂ (s))> xi1i (γ0 (s))

)(
δ̂ (γ̂ (s))> xi

)
∆i(γ; s)Ki (s)

=

n∑
i=1

(
δ>0 xi

)2
∆i(γ; s)Ki (s) +

n∑
i=1

{(
δ̂ (γ̂ (s))> xi

)2
−
(
δ>0 xi

)2
}

∆i(γ; s)Ki (s)

−2

n∑
i=1

δ>0 xiui∆i(γ; s)Ki (s)− 2

n∑
i=1

(
δ̂ (γ̂ (s))− δ0

)>
xiui∆i(γ; s)Ki (s)

−2

n∑
i=1

(
β̂ (γ̂ (s))− β0

)>
xix
>
i δ̂ (γ̂ (s)) ∆i(γ; s)Ki (s)

−2

n∑
i=1

δ>0 xix
>
i δ0 {1i (γ0 (si))− 1i (γ0 (s))}∆i(γ; s)Ki (s) (A.21)

−2
n∑
i=1

δ>0 xix
>
i

(
δ̂ (γ̂ (s))− δ0

)
{1i (γ0 (si))− 1i (γ0 (s))}∆i(γ; s)Ki (s) (A.22)
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−2

n∑
i=1

(
δ̂ (γ̂ (s))− δ0

)>
xix
>
i δ̂ (γ̂ (s))1i (γ0 (s)) ∆i(γ; s)Ki (s) , (A.23)

where the absolute values of the last two summations (A.22) and (A.23) are bounded by

n∑
i=1

δ>0 xix
>
i

(
δ̂ (γ̂ (s))− δ0

)
|∆i(γ; s)|Ki (s) and

n∑
i=1

(
δ̂ (γ̂ (s))− δ0

)>
xix
>
i δ̂ (γ̂ (s)) |∆i(γ; s)|Ki (s) ,

respectively, since |1i (γ0 (s))| ≤ 1 and |1i (γ0 (si))− 1i (γ0 (s))| ≤ 1. Moreover, for the term
in (A.21), we have

1

an

n∑
i=1

δ>0 xix
>
i δ0 {1i (γ0 (si))− 1i (γ0 (s))}∆i(γ; s)Ki (s)

≤ 1

an

n∑
i=1

δ>0 xix
>
i δ0 |1i (γ0 (si))− 1i (γ0 (s))|Ki (s) = C∗(s)bn

for some C∗(s) = Op(1) as in (A.14). It follows that

Q∗n(γ(s); s)−Q∗n(γ0(s); s)

an(γ(s)− γ0(s))
(A.24)

≥ Tn (γ; s)

γ(s)− γ0(s)
− ‖ĉ (γ̂ (s))− c0‖ ‖ĉ (γ̂ (s)) + c0‖

Tn(γ, s)

γ(s)− γ0(s)

−2
Ln (γ; s)

√
an(γ(s)− γ0(s))

− 2 max
1≤j≤p

|ĉj(γ̂ (s))− c0j |
Ln (γ; s)

√
an (γ(s)− γ0(s))

−2
∥∥∥nε(β̂ (γ̂ (s))− β0)

∥∥∥ ‖ĉ(γ̂ (s))‖ Tn(γ, s)

γ(s)− γ0(s)

−2
C∗(s)bn

γ(s)− γ0(s)

−2 ‖c0‖ ‖ĉ (γ̂ (s))− c0‖
Tn(γ, s)

γ(s)− γ0(s)

−2
∥∥∥nε(δ̂ (γ̂ (s))− δ0)

∥∥∥ ‖ĉ(γ̂ (s))‖ Tn(γ, s)

γ(s)− γ0(s)

=
Tn (γ; s)

γ(s)− γ0(s)
− 2Ln (γ; s)
√
an (γ(s)− γ0(s))

− 2C∗(s)bn
γ(s)− γ0(s)

+ op(1),

where the last line follows from Lemma A.5. Then given Lemma A.4 and the Markov’s
inequality, there exist 0 < C(s), C(s), r(s), η(s), ε(s) <∞ such that

P

(
inf

r(s)φ1n<|γ(s)−γ0(s)|<C(s)

Tn (γ; s)

|γ (s)− γ0 (s)| < (1− η(s))C(s)

)
≤ ε(s)

3
,
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P

(
sup

r(s)φ1n<|γ(s)−γ0(s)|<C(s)

2Ln (γ; s)
√
an |γ (s)− γ0 (s)| > η(s)

)
≤ ε(s)

3
.

In addition, for γ (s) ∈
[
γ0 (s) + r(s)φ1n, γ0 (s) + C(s)

]
, since

sup
r(s)φ1n<|γ(s)−γ0(s)|<C(s)

C∗(s)bn
γ(s)− γ0(s)

<
C∗(s)bn
r(s)φ1n

= anbn
C∗(s)

r(s)
<∞

provided n1−2εb2n → % <∞, we also have

P

(
sup

r(s)φ1n<|γ(s)−γ0(s)|<C(s)

2C∗(s)bn
|γ(s)− γ0(s)| > η(s)

)
≤ ε(s)

3

by choosing r(s) large enough. Thus for any ε(s) > 0 and η(s) > 0, we have

P

(
inf

r(s)φ1n<|γ(s)−γ0(s)|<C(s)
{Q∗n(γ(s); s)−Q∗n(γ0(s); s)} > η(s)

)
≥ 1− ε(s),

which yields P (Q∗n(γ(s); s)−Q∗n(γ0(s); s) > 0) → 1 as n → ∞. We can similarly show
the same result when γ (s) ∈

[
γ0 (s)− C(s), γ0 (s)− r(s)φ1n

]
. Therefore, with probabil-

ity approaching to one, it should hold that |γ̂ (s) − γ0 (s) | ≤ r(s)φ1n since Q
∗
n(γ̂(s); s) −

Q∗n(γ0(s); s) ≤ 0 for any s ∈ S0 by construction. �

A.3 Proof of Theorem 3 and Corollary 1

For a given s ∈ S0, we let γn (s) = γ0 (s) + r/an with some |r| <∞, where an = n1−2εbn and
ε is given in Assumption A-(ii). We define

A∗n (r, s) =
n∑
i=1

(
δ>0 xi

)2
|1i (γn (s))− 1i (γ0 (s))|Ki (s) ,

B∗n (r, s) =
n∑
i=1

δ>0 xiui {1i (γn (s))− 1i (γ0 (s))}Ki (s) .

Lemma A.6 If n1−2εb2n → % <∞,

A∗n (r, s)→p |r| c>0 D (γ0 (s) , s) c0f (γ0 (s) , s)

and
B∗n (r, s)⇒W (r)

√
c>0 V (γ0 (s) , s) c0f (γ0 (s) , s)κ2

as n → ∞, where κ2 =
∫
K(v)2dv and W (r) is the two-sided Brownian Motion defined in

(10).

Proof of Lemma A.6 Let ∆i(γn; s) = 1i (γn (s)) − 1i (γ0 (s)). First, for A∗n (r, s), con-
sider the case with r > 0. Note that δ0 = c0n

−ε = c0(an/ (nbn))1/2. By change of variables
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and Taylor expansion, Assumptions A-(v), (viii), and (x) imply that

E [A∗n (r, s)] =
an
nbn

n∑
i=1

E
[(
c>0 xi

)2
∆i(γn; s)Ki (s)

]
(A.25)

= an

∫∫ γ0(s)+r/an

γ0(s)
E
[(
c>0 xi

)2
|q, s+ bnt

]
K (t) f (q, s+ bnt) dqdt

= rc>0 D (γ0 (s) , s) c0f (γ0 (s) , s) +O

(
1

an
+ b2n

)
,

where the third equality holds under Assumption A-(vi). Next, we have

V ar [A∗n (r, s)] =
a2
n

n2b2n
V ar

[
n∑
i=1

(
c>0 xi

)2
∆i(γn; s)Ki (s)

]
(A.26)

=
a2
n

nb2n
V ar

[(
c>0 xi

)2
∆i(γn; s)Ki (s)

]
+

2a2
n

n2b2n

n∑
i<j

Cov

[(
c>0 xi

)2
∆i(γn; s)Ki (s) ,

(
c>0 xj

)2
∆j(γn; s)Kj (s)

]
≡ ΨA1(r, s) + ΨA2(r, s).

Similarly as (A.25), Taylor expansion and Assumptions A-(vii), (viii), and (x) lead to

ΨA1(r, s) =
an
nbn

(
an
bn
E
[(
c>0 xi

)4
∆i(γn; s)K2

i (s)

])
− 1

n

(
an
bn
E
[(
c>0 xi

)2
∆i(γn; s)Ki (s)

])2

= O

(
n−2ε +

1

n

)
since {∆i(γn; s)}2 = ∆i(γn; s) for r > 0. Furthermore, by change of variables ti = (si− s)/bn
in the covariance operator and Lemma 1 of Bolthausen (1982),

ΨA2(r, s) ≤ 2a2
n

n2

n∑
i<j

Cov

[(
c>0 xi

)2
∆i(γn; s)K (ti) ,

(
c>0 xj

)2
∆j(γn; s)K (tj)

]

≤ 2a2
n

n

∞∑
m=1

mα (m)ϕ/(2+ϕ)

(
E

[∣∣∣∣(c>0 xi)2
∆i(γn; s)K (ti)

∣∣∣∣2+ϕ
])2/(2+ϕ)

= O(a2−2/(2+ϕ)
n n−1) = O(n−2ε),

where the last line follows from the conditions that ϕ ∈ (0, 2) in Assumption A-(iii) and
n1−2εb2n → % < ∞. Hence, the pointwise convergence of A∗n (r, s) is obtained. Since
rc>0 D (γ0 (s) , s) c0f (γ0 (s) , s) is strictly increasing and continuous in r, the convergence
holds uniformly on any compact set. Symmetrically, we can show that E [A∗n (r, s)] =

−rc>0 D (γ0 (s) , s) c0f (γ0 (s) , s) + O
(
a−1
n + b2n

)
when r < 0. The uniform convergence also
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holds in this case using the same argument as above, which completes the proof for A∗n (r, s).
For B∗n (r, s), Assumption ID-(i) leads to E [B∗n (r, s)] = 0. Then, similarly as for A∗n (r, s),

for any i 6= j, we have

Cov
[
c>0 xiui∆i(γn; s)Ki (s) , c>0 xjuj∆j(γn; s)Kj (s)

]
≤ Cb2na−1

n (A.27)

for some positive constant C <∞, by the change of variables in the covariance operator and
Lemma 1 of Bolthausen (1982). It follows that, similarly as (A.25),

V ar[B∗n (r, s)] =
an
bn
V ar

[
c>0 xiui∆i(γn; s)Ki (s)

]
+O (bn)

= |r| c>0 V (γ0 (s) , s) c0f (γ0(s), s)κ2 + o (1) ,

where κ2 =
∫
K(v)2dv. Then by the CLT for stationary and mixing random field (e.g.

Bolthausen (1982); Jenish and Prucha (2009)), we have

B∗n (r, s)⇒W (r)
√
c>0 V (γ0 (s) , s) c0f (γ0 (s) , s)κ2

as n → ∞, where W (r) is the two-sided Brownian Motion defined in (10). This pointwise
convergence in r can be extended to any finite-dimensional convergence in r by the fact
that for any r1 < r2, Cov [B∗n (r1, s) , B

∗
n (r2, s)] = V ar [B∗n (r1, s)] + o (1), which is because

(1i (γ0 + r2/an)− 1i (γ0 + r1/an))1i (γ0 + r1/an) = 0 and (A.27). The tightness follows from
a similar argument as Jn(γ; s) in Lemma A.1 and the desired result follows by Theorem 15.5
in Billingsley (1968). �

For a given s ∈ S0, we let θ̂ (γ0 (s)) = (β̂ (γ0 (s))> , δ̂ (γ0 (s))>)>. Recall that θ0 =

(β>0 , δ
>
0 )> and θ̂ (γ̂ (s)) = (β̂ (γ̂ (s))> , δ̂ (γ̂ (s))>)>.

Lemma A.7 For a given s ∈ S0,
√
nbn(θ̂ (γ̂ (s)) − θ0) = Op(1), if n1−2εb2n → % < ∞ as

n→∞.

Proof of Theorem 3 From Theorem 2, we define a random variable r∗(s) such that

r∗(s) = an(γ̂ (s)− γ0 (s)) = arg max
r∈R

{
Q∗n(γ0(s); s)−Q∗n

(
γ0(s) +

r

an
; s

)}
,

where Q∗n(γ(s); s) is defined in (A.20). We let ∆i(s) = 1i (γ0 (s) + (r/an)) − 1i (γ0 (s)). We
then have

∆Q∗n(r; s) (A.28)

= Q∗n(γ0(s); s)−Q∗n
(
γ0(s) +

r

an
; s

)
= −

n∑
i=1

(
δ̂ (γ̂ (s))> xi

)2
|∆i(s)|Ki (s)

+2

n∑
i=1

(
yi − β̂ (γ̂ (s))> xi − δ̂ (γ̂ (s))> xi1i (γ0 (s))

)(
δ̂ (γ̂ (s))> xi

)
∆i(s)Ki (s)
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≡ −An(r; s) + 2Bn(r; s).

For An(r; s), Lemmas A.6 and A.7 yield

An(r; s) (A.29)

=
n∑
i=1

((
δ0 + n−1/2b−1/2

n Cδ(s) + op(n
−1/2b−1/2

n )
)>

xi

)2

|∆i(s)|Ki (s)

= A∗n (r, s) +
1

n1−2εbn

n∑
i=1

(
n−εCδ(s)

)>
xix
>
i

(
n−εCδ(s)

)
|∆i(s)|Ki (s) + op

(
a−1
n

)
= A∗n (r, s) +Op(a

−1
n )

for some p× 1 vector Cδ(s) = Op(1), since
∑n

i=1
n−2εC>δ (s)xix

>
i Cδ(s) |∆i(s)|Ki (s) = Op(1)

from Lemma A.6 and an = n1−2εbn → ∞. Note that δ̂ (γ̂ (s)) − δ0 = Op((nbn)−1/2) from
Lemma A.7. Similarly, for Bn(r; s), since yi = β>0 xi + δ>0 xi1i (γ0(si)) + ui, we have for some
p× 1 vector Cβ(s) = Op(1),

Bn(r; s) (A.30)

=

n∑
i=1

(
ui + δ>0 xi {1i (γ0 (si))− 1i (γ0 (s))} −

(
β̂ (γ̂ (s))− β0

)>
xi

−
(
δ̂ (γ̂ (s))− δ0

)>
xi1i (γ0 (s))

)
δ̂ (γ0 (s))> xi∆i(s)Ki (s)

=

n∑
i=1

(
ui + δ>0 xi {1i (γ0 (si))− 1i (γ0 (s))} − n−1/2b−1/2

n C>β (s)xi

− n−1/2b−1/2
n C>δ (s)xi1i (γ0(s))

)(
δ0 + n−1/2b−1/2

n Cδ(s)
)>

xi∆i(s)Ki (s) + op(1)

= B∗n (r, s)

+
1√

n1−2εbn

n∑
i=1

uixi
(
n−εCδ(s)

)
∆i(s)Ki (s)

+
n∑
i=1

δ>0 xix
>
i δ0 (∆i(s) {1i (γ0 (si))− 1i (γ0 (s))})Ki (s) (A.31)

+
1√

n1−2εbn

n∑
i=1

δ>0 xix
>
i

(
n−εCδ(s)

)
(∆i(s) {1i (γ0 (si))− 1i (γ0 (s))})Ki (s)

+
1√

n1−2εbn

n∑
i=1

δ>0 xix
>
i

(
n−εCβ(s)

)
∆i(s)Ki (s)

+
1

n1−2εbn

n∑
i=1

(
n−εCβ(s)

)>
xix
>
i

(
n−εCδ(s)

)
∆i(s)Ki (s)

+
1√

n1−2εbn

n∑
i=1

δ>0 xix
>
i

(
n−εCδ(s)

)
{∆i(s)1i (γ0(s))}Ki (s)
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+
1

n1−2εbn

n∑
i=1

(
n−εCδ(s)

)>
xix
>
i

(
n−εCδ(s)

)
{∆i(s)1i (γ0(s))}Ki (s)

+op(
(
n1−2εbn

)−1/2
),

where all the terms are Op
(
(n1−2εbn

)−1/2
) = Op(a

−1/2
n ) except for the first term B∗n (r, s) and

the third term in the line of (A.31) that we denote B∗n3(r, s). In Lemma A.8 below, we show
that, if n1−2εb2n → % ∈ (0,∞),

B∗n3(r, s)→p |r| c>0 D (γ0 (s) , s) c0f (γ0 (s) , s)

{
1

2
−K0 (r, %; s)

}
+ %c>0 D (γ0 (s) , s) c0f (γ0 (s) , s) |γ̇0(s)| K1 (r, %; s)

as n→∞, where γ̇0 (·) is the first derivatives of γ0(·) and Kj (r, %; s) =
∫ |r|/(%|γ̇0(s)|)

0 tjK (t) dt

for j = 0, 1.
From Lemma A.6, it follows that

∆Q∗n(r; s) = −A∗n (r, s) + 2B∗n3(r, s) + 2B∗n (r, s)

= − |r| c>0 D (γ0 (s) , s) c0f (γ0 (s) , s)

+ |r| c>0 D (γ0 (s) , s) c0f (γ0 (s) , s) {1− 2K0 (r, %; s)}
+2%c>0 D (γ0 (s) , s) c0f (γ0 (s) , s) |γ̇0(s)| K1 (r, %; s)

+2W (r)
√
c>0 V (γ0 (s) , s) c0f (γ0 (s) , s)κ2 +Op(a

−1/2
n + bn),

= −2 |r| `D(s)ψ̃1 (r, %; s) + 2%`D(s)ψ̃2 (r, %; s)

+2W (r)
√
`V (s) +Op(a

−1/2
n + bn),

where

`D(s) = c>0 D (γ0 (s) , s) c0f (γ0 (s) , s) ,

`V (s) = c>0 V (γ0 (s) , s) c0f (γ0 (s) , s)κ2,

ψ̃1 (r, %; s) = K0 (r, %; s) ,

ψ̃2 (r, %; s) = |γ̇0(s)| K1 (r, %; s) .

However, if we let ξ(s) = `V (s)/`2D(s) and r = ξ(s)ν, we have

arg max
r∈R

(
2W (r)

√
`V (s)− 2 |r| `D(s)ψ̃1 (r, %; s) + 2%`D(s)ψ̃2 (r, %; s)

)
= ξ(s) arg max

ν∈R

(
W (ξ(s)ν)

√
`V (s)− |ξ(s)ν| `D(s)ψ̃1 (ξ(s)ν, %; s) + %`D(s)ψ̃2 (ν, %; s)

)
= ξ(s) arg max

ν∈R

(
W (ν)

`V (s)

`D(s)
− |ν| `V (s)

`D(s)
ψ̃1 (ξ(s)ν, %; s) + %

`V (s)

`D(s)
ξ(s)ψ̃2 (ξ(s)ν, %; s)

)
= ξ(s) arg max

ν∈R

(
W (ν)− |ν| ψ̃1 (ξ(s)ν, %; s) + %ξ(s)ψ̃2 (ξ(s)ν, %; s)

)
similar to the proof of Theorem 1 in Hansen (2000). By Theorem 2.7 of Kim and Pollard
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(1990), it follows that (rewriting ν as r)

n1−2εbn (γ̂ (s)− γ0 (s))→d ξ (s) arg max
r∈R

(W (r)− |r|ψ1 (r, %; s) + %ψ2 (r, %; s))

as n→∞, where

ψ1 (r, %; s) = ψ̃1 (ξ(s)r, %; s) =

∫ ξ(s)|r|/(%|γ̇0(s)|)

0
K (t) dt,

ψ2 (r, %; s) = ξ(s)ψ̃2 (ξ(s)r, %; s) = ξ(s) |γ̇0(s)|
∫ ξ(s)|r|/(%|γ̇0(s)|)

0
tK (t) dt.

Note that when % = 0, we let ψ1 (r, 0; s) =
∫∞

0 K (t) dt = 1/2. Finally, letting

µ (r, %; s) = − |r|ψ1 (r, %; s) + %ψ2 (r, %; s) , (A.32)

E [arg maxr∈R (W (r) + µ (r, %; s))] = 0 follows from Lemmas A.9 and A.10 below. �

Lemma A.8 For a given s ∈ S0, let r be the same term used in Lemma A.6. If n1−2εb2n →
% ∈ (0,∞),

B∗n3(r, s) ≡
n∑
i=1

(
δ>0 xi

)2
{1i (γ0 (s) + r/an)− 1i (γ0 (s))} {1i (γ0 (si))− 1i (γ0 (s))}Ki (s)

→p |r| c>0 D (γ0 (s) , s) c0f (γ0 (s) , s)

{
1

2
−K0 (r, %; s)

}
+ %c>0 D (γ0 (s) , s) c0f (γ0 (s) , s) |γ̇0(s)| K1 (r, %; s)

as n→∞, where γ̇0 (·) is the first derivatives of γ0(·) and

Kj (r, %; s) =

∫ |r|/(%|γ̇0(s)|)

0
tjK (t) dt

for j = 0, 1.

Lemma A.9 Let τ = arg maxr∈R (W (r) + µ(r)), where W (r) is a two-sided Brownian mo-
tion in (10) and µ(r) is a continuous drift function satisfying: µ(0) = 0, µ(−r) = µ(r), µ(r)

is monotonically decreasing on R\[−r, r] for some r > 0, and lim|r|→∞ |r|−((1/2)+ε)µ(r) = −∞
for some ε > 0. Then, E[τ ] = 0.

Lemma A.10 For given (%, s), µ (r, %; s) in (A.32) satisfies conditions in Lemma A.9

Proof of Corollary 1 From (A.13) and (A.15), we have

1

nbn
Qn (γ̂ (s) , s) =

1

nbn

n∑
i=1

u2
iKi (s) + op(1)→p E

[
u2
i |si = s

]
fs (s) ,

where fs (s) is the marginal density of si. In addition, from Theorem 3 and the proof of
Lemma A.7, we have

Qn (γ0 (s) , s)−Qn (γ̂ (s) , s) = Q∗n (γ0 (s) , s)−Q∗n (γ̂ (s) , s) + op(1)
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since θ̂ (γ̂ (s))− θ̂ (γ0 (s)) = op((nbn)−1/2). Similar to Theorem 2 of Hansen (2000), the rest of
the proof follows from the change of variables and the continuous mapping theorem because
(nbn)−1

∑n

i=1
Ki (s)→p fs (s) by the standard result of the kernel density estimator. �

A.4 Proof of Theorem 4

We let φ2n = log n/an, where an = n1−2εbn and ε is given in Assumption A-(ii).

Lemma A.11 For a given s ∈ S0, let γ(s) = γ0(s)+r(s)φ2n for some continuously differen-
tiable r(s) satisfying 0 < r = infs∈S0 r(s) ≤ sups∈S0 r(s) = r <∞. Then there exist constants
0 < CT , CT <∞ such that for any η > 0,

P
(

sup
s∈S0
|Tn (γ; s)− E [Tn (γ; s)]| > η

)
≤ CT

η

(
φ2n

log n

nbn

)1/2

,

P
(

sup
s∈S0

∣∣Tn (γ; s)− E
[
Tn (γ; s)

]∣∣ > η

)
≤

CT
η

(
φ2n

log n

nbn

)1/2

if n is large enough.

Lemma A.12 For a given s ∈ S0, let γ(s) = γ0(s)+r(s)φ2n, where r(s) is defined in Lemma
A.11. Then there exists a constant 0 < CL, CL <∞ such that for any η > 0,

P
(

sup
s∈S0
‖Ln (γ; s)‖ > η

)
≤ CL

η
(φ2n log n)1/2 ,

P
(

sup
s∈S0

∥∥Ln (γ; s)
∥∥ > η

)
≤

CL
η

(φ2n log n)1/2

if n is large enough.

Lemma A.13 For any η > 0 and ε > 0, there exist constants 0 < C, r, CT , CT < ∞ such
that

P

(
inf

rφ2n<sups∈S0 |γ(s)−γ0(s)|<C

sups∈S0 Tn (γ; s)

sups∈S0 |γ (s)− γ0 (s)| < CT (1− η)

)
≤ ε, (A.33)

P

 sup
rφ2n<sups∈S0 |γ(s)−γ0(s)|<C

sups∈S0 Tn (γ; s)

sups∈S0 |γ (s)− γ0 (s)| > CT (1 + η)

 ≤ ε, (A.34)

P

 sup
rφ2n<sups∈S0 |γ(s)−γ0(s)|<C

sups∈S0 ‖Ln (γ; s)‖
√
an sups∈S0 |γ (s)− γ0 (s)| > η

 ≤ ε, (A.35)

P

 sup
rφ2n<sups∈S0 |γ(s)−γ0(s)|<C

sups∈S0
∥∥Ln (γ; s)

∥∥
√
an sups∈S0 |γ (s)− γ0 (s)| > η

 ≤ ε, (A.36)

if n1−2εb2n → % <∞.

Lemma A.14 nε sups∈S0

∥∥∥θ̂(γ̂(s))− θ0

∥∥∥ = op(1).
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Proof of Theorem 4 Since sups∈S0 (Q∗n(γ̂(s); s)−Q∗n(γ0(s); s)) ≤ 0 by construction,
where Q∗n(γ(s); s) is defined in (A.20), it suffi ces to show that as n→∞,

P
(

sup
s∈S0
{Q∗n(γ(s); s)−Q∗n(γ0(s); s)} > 0

)
→ 1

for any γ (s) such that sups∈S0 |γ (s)− γ0 (s)| > rφ2n where r is chosen in Lemma A.13.
To this end, consider γ such that rφ2n ≤ sups∈S0 |γ (s)− γ0 (s)| ≤ C for some 0 < r,C <

∞. Then, using (A.24) and Lemma A.14, we have

Q∗n(γ(s); s)−Q∗n(γ0(s); s)

an sups∈S0 |γ(s)− γ0(s)|

≥ Tn (γ; s)

sups∈S0 |γ(s)− γ0(s)| − 2
2Ln (γ; s)

√
an sups∈S0 |γ(s)− γ0(s)| −

2C∗(s)bn
sups∈S0 |γ(s)− γ0(s)| + op(1)

for some C∗(s) = Op(1). Furthermore, Lemma A.2 gives that sups∈S0 C
∗(s) is also Op(1),

and hence

sup
rφ2n<|γ(s)−γ0(s)|<C

sups∈S0 C
∗(s)bn

sups∈S0 |γ(s)− γ0(s)| <
sups∈S0 C

∗(s)bn
rφ2n

=
sups∈S0 C

∗(s)

r

(
anbn
log n

)
= Op(1)

given anbn → % <∞. Thus, we have

P

(
sup

rφ2n<|γ(s)−γ0(s)|<C

2 sups∈S0 C
∗(s)bn

sups∈S0 |γ (s)− γ0 (s)| > η(s)

)
≤ ε

3

when n is suffi ciently large. Therefore, Lemma A.13 yields that, for ε > 0 and η > 0,

P

(
inf

rφ2n<sups∈S0 |γ(s)−γ0(s)|<C
sup
s∈S0
{Q∗n(γ(s); s)−Q∗n(γ0(s); s)} > η

)
≥ 1− ε,

which completes the proof by the same argument as Theorem 2. �

A.5 Proof of Theorem 5

Proof of Theorem 5 We simply denote the leave-one-out estimator γ̂−i (si) as γ̂ (si) in
this proof. We let 1S0 = 1[si ∈ S0] and consider a sequence ∆n > 0 such that ∆n → 0 as
n→∞. Then,

√
n
(
β̂ − β0

)
=

(
1

n

n∑
i=1

xix
>
i 1 [qi > γ̂ (si) + ∆n]1S0

)−1

×
{

1√
n

n∑
i=1

xiui1 [qi > γ0 (si) + ∆n]1S0
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+
1√
n

n∑
i=1

xiui {1 [qi > γ̂ (si) + ∆n]− 1 [qi > γ0 (si) + ∆n]}1S0

}

+
1√
n

n∑
i=1

xix
>
i δ01 [qi ≤ γ0 (si)]1 [qi > γ̂ (si) + ∆n]1S0

}
≡ Ξ−1

n00 {Ξn01 + Ξn02 + Ξn03} (A.37)

and

√
n
(
δ̂
∗ − δ∗0

)
=

(
1

n

n∑
i=1

xix
>
i 1 [qi < γ̂ (si)−∆n]1S0

)−1

×
{

1√
n

n∑
i=1

xiui1 [qi < γ0 (si)−∆n]1S0

+
1√
n

n∑
i=1

xiui {1 [qi < γ̂ (si)−∆n]− 1 [qi < γ0 (si)−∆n]}1S0

}

+
1√
n

n∑
i=1

xix
>
i δ01 [qi ≤ γ0 (si)]1 [qi < γ̂ (si)−∆n]1S0

}
≡ Ξ−1

n10 {Ξn11 + Ξn12 + Ξn13} , (A.38)

where Ξn02, Ξn03, Ξn12, and Ξn13 are all op(1) from Lemma A.15 below. Therefore,

√
n
(
θ̂
∗ − θ∗0

)
=

(
Ξ−1
n00Ξn01

Ξ−1
n10Ξn11

)
+ op (1) =

(
Ξn00 0

0 Ξn10

)−1(
Ξn01

Ξn11

)
+ op (1)

and the desired result follows since

Ξn00 →p E
[
xix
>
i 1 [qi > γ0 (si)]1S0

]
, (A.39)

Ξn10 →p E
[
xix
>
i 1 [qi < γ0 (si)]1S0

]
, (A.40)

and (
Ξn01

Ξn11

)
→d N

(
0, lim
n→∞

1

n
V ar

[
n∑
i=1

(
xiui1 [qi > γ0 (si)]1S0
xiui1 [qi < γ0 (si)]1S0

)])
(A.41)

as n→∞.
First, by Assumptions A-(v) and (ix), (A.39) can be readily verified since we have

1

n

n∑
i=1

xix
>
i 1 [qi > γ̂ (si) + ∆n]1S0

=
1

n

n∑
i=1

xix
>
i 1 [qi > γ0 (si) + ∆n]1S0

+
1

n

n∑
i=1

xix
>
i {1 [qi > γ̂ (si) + ∆n]− 1 [qi > γ0 (si) + ∆n]}1S0
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=
1

n

n∑
i=1

xix
>
i 1 [qi > γ0 (si) + ∆n]1S0 +Op (φ2n)

with∆n → 0 as n→∞. More precisely, given Theorem 4, we consider γ̂ (s) in a neighborhood
of γ0 (s) with distance at most rφ2n for some large enough constant r. We define a non-random
function γ̃ (s) = γ0 (s)+rφ2n and ∆̃i (si) = 1 [qi > γ̃ (si) + ∆n]−1 [qi > γ0 (si) + ∆n]. Then,
on the event E∗n = {sups∈S0 |γ̂ (s)− γ0 (s)| ≤ rφ2n},

E
[
xix
>
i ∆̂i (si)1S0

]
≤ E

[
xix
>
i ∆̃i (si)1S0

]
(A.42)

=

∫
S0

∫ γ̃(v)+∆n

γ0(v)+∆n

D (q, v) f (q, v) dqdv

=

∫
S0
{D (γ0 (v) , v) f (γ0 (v) , v) (γ̃ (v)− γ0 (v)) + op (φ2n)} dv

≤ rφ2n

∫
D (γ0 (v) , v) f (γ0 (v) , v) dv

= Op (φ2n) = op (1)

from Theorem 4, Assumptions A-(v), (vii), and (ix). (A.40) can be verified symmetrically. Us-
ing a similar argument, since E [xiui1 [qi > γ0 (si)]1S0 ] = E [xiui1 [qi < γ0 (si)]1S0 ] = 0 from
Assumption ID-(i), asymptotic normality in (A.41) follows by the Theorem of Bolthausen
(1982) under Assumption A-(iii), which completes the proof. �

Lemma A.15 When φ2n → 0 as n→∞, if we let ∆n > 0 such that ∆n → 0 and φ2n/∆n →
0 as n→∞, then it holds that Ξn02, Ξn03, Ξn12, and Ξn13 in (A.37) and (A.38) are all op(1).
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Supplement Material to “Nonparametric Sample Splitting”

By Yoonseok Lee and Yulong Wang

This supplementary material contains omitted proofs of some lemmas in Section
S.1 and more details about the case where qi and si are non-random in Section
S.2 as noted in Section 2.

S.1 Omitted Proofs of Lemmas

Proof of Lemma A.2 We first show the pointwise convergence. For expositional sim-
plicity, we only present the case of scalar xi. Similarly as (A.1), we have

E [∆Mn (s)]

=

∫∫
D(q, s+ bnt)f(q, s+ bnt) {1 [q < γ0 (s+ bnt)]− 1 [q < γ0 (s)]}K(t)dqdt,

which is non-zero only when (i) γ0 (s) < q < γ0 (s+ bnt) if γ0 (s) < γ0 (s+ bnt); or (ii)
γ0 (s+ bnt) < q < γ0 (s) if γ0 (s) > γ0 (s+ bnt). We suppose γ0 (·) is increasing around s.
Then, for the case (i), since 0 < γ0 (s+ bnt) − γ0 (s), it restricts t > 0. For the case (ii),
however, it restricts t < 0. Therefore, if we let m(q, s) = D(q, s)f(q, s) < ∞, by Taylor
expansion,

E [∆Mn (s)]

=

∫ ∞
0

∫ γ0(s+bnt)

γ0(s)
m(q, s+ bnt)K(t)dqdt+

∫ 0

−∞

∫ γ0(s)

γ0(s+bnt)
m(q, s+ bnt)K(t)dqdt

= m(γ0 (s) , s)γ̇0 (s) bn

∫ ∞
0

tK(t)dt−m(γ0 (s) , s)γ̇0 (s) bn

∫ 0

−∞
tK(t)dt+O

(
b2n
)

= m(γ0 (s) , s)γ̇0 (s) bn +O
(
b2n
)
,

where
∫∞

0 tK(t)dt = −
∫ 0
−∞ tK(t)dt and γ̇0 (s) = dγ0 (s) /ds > 0 in this case.

Symmetrically, we can also derive E [∆Mn (s)] = −m(γ0 (s) , s)γ̇0 (s) bn + O
(
b2n
)
when

γ0 (·) is decreasing around s. Therefore, E [∆Mn (s)] = m(γ0 (s) , s) |γ̇0 (s)| bn = O (bn) be-
cause m(γ0 (s) , s) |γ̇0 (s)| <∞ from Assumptions A-(vi) and (vii). The desired result follows
since V ar [∆Mn (s)] ≤ 2V ar [Mn (γ0 (si) ; s)] + 2V ar [Mn (γ0 (s) ; s)] = o (1) from (A.2).

Given the pointwise rate, it suffi ces to show ∆Mn (s) is uniformly tight. This is implied
by the tightness of Mn(s) in Lemma A.1 since γ0(·) is continuous. The proof is complete. �

Proof of Lemma A.4 We first show (A.16). We consider the case with γ(s) > γ0(s), and
the other direction can be shown symmetrically. In this case, since Tn (γ; s) = c>0 (Mn (γ(s); s)−
Mn (γ0(s); s))c0 where ∂E [Tn (γ; s)] /∂γ(s) = c>0 D(γ(s), s)c0f (γ(s), s) is continuous at γ0(s)

1



and c>0 D(γ0(s), s)c0f (γ0(s), s) > 0 from Assumptions A-(vii) and (viii), there exists a suffi -
ciently small C(s) > 0 such that

`D(s) = inf
|γ(s)−γ0(s)|<C(s)

c>0 D(γ(s), s)c0f (γ(s), s) > 0.

By Taylor expansion, we have

E [Tn (γ; s)] =

∫ ∫ γ(s)

γ0(s)
E
[(
c>0 xi

)2
|q, s+ bnt

]
f(q, s+ bnt)K (t) dqdt

= {γ(s)− γ0(s)}
{
c>0 D(γ, s)c0f (γ, s) + C1(s)b2n

}
for some C1 (s) <∞, which yields

E [Tn (γ; s)] ≥ {γ (s)− γ0 (s)} (`D(s) + C1(s)b2n), (B.1)

since E [Tn (γ0; s)] = 0. Furthermore, if we let ∆i(γ; s) = 1i (γ (s))−1i (γ0 (s)) and Zn,i(s) =(
c>0 xi

)2
∆i(γ; s)Ki (s)−E[

(
c>0 xi

)2
∆i(γ; s)Ki (s)], using a similar argument as (A.2), we have

E
[
(Tn (γ; s)− E [Tn (γ; s)])2

]
(B.2)

=
1

n2b2n

n∑
i=1

E
[
Z2
n,i(s)

]
+

1

n2b2n

∑
i 6=j

Cov[Zn,i(s), Zn,j(s)]

≤ C2(s)

nbn
{γ (s)− γ0 (s)}

for some C2(s) ∈ (0,∞) since ϕ ∈ (0, 2) in Assumption A-(iii).
We suppose n is large enough so that r(s)φ1n ≤ C(s). Similarly as Lemma A.7 in Hansen

(2000), we set γg for g = 1, 2, ..., g+1 such that, for any s ∈ S0, γg (s) = γ0 (s)+2g−1r(s)φ1n,
where g is the integer satisfying γg (s)− γ0 (s) = 2g−1r(s)φ1n ≤ C(s) and γg+1 (s)− γ0 (s) =

2gφ1n > C(s). Then Markov’s inequality and (B.2) yield that for any fixed η(s) > 0,

P

(
max

1≤g≤g

∣∣∣∣∣ Tn
(
γg; s

)
E
[
Tn
(
γg; s

)] − 1

∣∣∣∣∣ > η(s)

)
(B.3)

≤ P

(
max

1≤g≤g

∣∣∣∣∣Tn
(
γg; s

)
− E

[
Tn
(
γg; s

)]
E
[
Tn
(
γg; s

)] ∣∣∣∣∣ > η(s)

)

≤ 1

η2(s)

g∑
g=1

E
[(
Tn
(
γg; s

)
− E

[
Tn
(
γg; s

)])2]∣∣E [Tn (γg; s)]∣∣2
≤ 1

η2(s)

g∑
g=1

C2(s)r(s)φ1n (nbn)−1

|r(s)φ1n(`D(s) + C1(s)b2n)|2

≤ 1

η2(s)

g∑
g=1

C2(s) (nbn)−1

2g−1`2D(s)r(s)φ1n

2



≤ C2(s)

η2(s)r(s)`2D(s)

∞∑
g=1

1

2g−1
× 1

n2ε

≤ ε(s)

for any ε(s) > 0. From eq. (33) of Hansen (2000), for any γ (s) such that r(s)φ1n ≤ γ (s) −
γ0 (s) ≤ C(s), there exists some g satisfying γg (s)−γ0 (s) < γ (s)−γ0 (s) < γg+1 (s)−γ0 (s),
and then

Tn (γ; s)

|γ (s)− γ0 (s)| ≥
Tn
(
γg; s

)
E
[
Tn
(
γg; s

)] × E
[
Tn
(
γg; s

)]∣∣γg+1 (s)− γ0 (s)
∣∣

≥
{

1− max
1≤g≤g

∣∣∣∣∣ Tn
(
γg; s

)
E
[
Tn
(
γg; s

)] − 1

∣∣∣∣∣
}

E
[
Tn
(
γg; s

)]∣∣γg+1 (s)− γ0 (s)
∣∣ .

Hence, we can find CT (s) <∞ such that

P

(
inf

r(s)φ1n<|γ(s)−γ0(s)|<C(s)

Tn (γ; s)

|γ (s)− γ0 (s)| < CT (s)(1− η(s))

)

≤ P

(
Tn
(
γg; s

)
E
[
Tn
(
γg; s

)] × E
[
Tn
(
γg; s

)]∣∣γg+1 (s)− γ0 (s)
∣∣ < CT (s)(1− η(s))

)

≤ P

({
1− max

1≤g≤g

∣∣∣∣∣ Tn
(
γg; s

)
E
[
Tn
(
γg; s

)] − 1

∣∣∣∣∣
}

E
[
Tn
(
γg; s

)]∣∣γg+1 (s)− γ0 (s)
∣∣ < CT (s)(1− η(s))

)
≤ ε(s),

where the last line follows from (B.1) and (B.3). The proof for (A.17) is similar to that for
(A.16) and hence omitted.

For (A.18), E [Ln (γ; s)] = 0 and we have

E
[
|Ln (γ; s)|2

]
≤ φ1nC3(s) (B.4)

for some C3(s) ∈ (0,∞) similarly as (B.2). By defining γg in the same way as above, the
Markov’s inequality and (B.4) get us that for any fixed η(s) > 0,

P

(
max

1≤g≤g

∣∣Ln (γg; s)∣∣√
an
(
γg (s)− γ0 (s)

) > η(s)

)
(B.5)

≤ 1

η2(s)

∞∑
g=1

E
[
Ln
(
γg, s

)2]
an
∣∣γg (s)− γ0 (s)

∣∣2
≤ 1

η2(s)

∞∑
g=1

φ1nC3(s)

an
∣∣γg (s)− γ0 (s)

∣∣2
≤ C3(s)

η2(s)r(s)

∞∑
g=1

1

2g−1
.

3



This probability is arbitrarily close to zero if r(s) is chosen large enough. It is worth
to note that (B.5) provides the maximal (or sharp) rate of φ1n as a

−1
n because we need

φ1n/an
∣∣γg (s)− γ0 (s)

∣∣2 = O(φ1nan) = O(1) but φ1n → 0 as n → ∞. This φ1nan = O(1)

condition also satisfies (B.3).
Finally, for a given g, we define Γg(s) as the collection of γ (s) satisfying r(s)2g−1φ1n <

γ (s)− γ0 (s) < r(s)2gφ1n for each s ∈ S. Then,

P

(
sup

r(s)φ1n<|γ(s)−γ0(s)|<C(s)

|Ln (γ; s)|
√
an |γ (s)− γ0 (s)| > η (s)

)
(B.6)

= P

(
max

1≤g≤g
sup

γ∈Γg(s)

|Ln (γ; s)|
√
an (γ (s)− γ0 (s))

> η (s)

)

≤ P

(
max

1≤g≤g

∣∣Ln (γg; s)∣∣√
an
(
γg+1 (s)− γ0 (s)

) > η (s)

)

≤ C4(s)

η2 (s) r(s)

for some C4(s) ∈ (0,∞). Combining (B.5) and (B.6), we thus have

P

(
sup

r(s)φ1n<|γ(s)−γ0(s)|<C(s)

∣∣Ln (γg; s)∣∣√
an (γ (s)− γ0 (s))

> η (s)

)

≤ 2P

(
max

1≤g≤g

∣∣Ln (γg; s)∣∣√
an
(
γg (s)− γ0 (s)

) > η (s)

)

+2P

(
max

1≤g≤g
sup

γ∈Γg(s)

|Ln (γ; s)|
√
an (γ (s)− γ0 (s))

> η (s)

)
≤ ε(s)

for any ε(s) > 0 if we pick r(s) suffi ciently large. The proof for (A.19) is similar to that for
(A.18) and hence omitted. �

Proof of Lemma A.5 Using the same notations in Lemma A.3, (A.12) yields

nε
(
θ̂(γ̂(s))− θ0

)
(B.7)

=

{
1

nbn
Z̃(γ̂(s); s)>Z̃(γ̂(s); s)

}−1

×
{
nε

nbn
Z̃(γ̂(s); s)>ũ(s)− nε

nbn
Z̃(γ̂(s); s)>

(
Z̃(γ̂(s); s)− Z̃(γ0(si); s)

)
θ0

}
≡ Θ−1

A1(s) {ΘA2(s)−ΘA3(s)} .

For the denominator ΘA1(s), we have

ΘA1(s) =

(
(nbn)−1

∑n
i=1 xix

>
i Ki(s) Mn (γ̂(s); s)

Mn (γ̂(s); s) Mn (γ̂(s); s)

)
(B.8)
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→p

(
M(s) M (γ0(s); s)

M (γ0(s); s) M (γ0(s); s)

)
,

where Mn (γ̂(s); s) →p M (γ0(s); s) < ∞ from Lemma A.1 and the pointwise consistency of
γ̂(s) in Lemma A.3. In addition, (nbn)−1

∑n

i=1
xix
>
i Ki (s)→p M(s) =

∫∞
−∞D(q, s)f (q, s) dq <

∞ from the standard kernel estimation result. Note that the probability limit is positive def-
inite since both M(s) and M (γ0(s); s) are positive definite and

M(s)−M (γ0(s); s) =

∫ ∞
γ0(s)

D(q, s)f (q, s) dq > 0

for any γ0(s) ∈ Γ from Assumption A-(viii).
For the numerator part ΘA2(s), we have ΘA2(s) = Op(a

−1/2
n ) = op(1) because

1√
nbn

Z̃(γ̂(s); s)>ũ(s) =

(
(nbn)−1/2

∑n
i=1 xiuiKi(s)

Jn (γ̂(s); s)

)
= Op (1) (B.9)

from from Lemma A.1 and the pointwise consistency of γ̂(s) in Lemma A.3. Note that the
standard kernel estimation result gives (nbn)−1/2

∑n

i=1
xiuiKi (s) = Op(1). Moreover, we

have

ΘA3(s) =

 (nbn)−1
∑n

i=1
c>0 xix

>
i {1i (γ̂(s))− 1i (γ0 (si))}Ki (s)

(nbn)−1
∑n

i=1
c>0 xix

>
i 1i (γ̂(s)) {1i (γ̂(s))− 1i (γ0 (si))}Ki (s)

 (B.10)

and

1

nbn

n∑
i=1

c>0 xix
>
i {1i (γ̂(s))− 1i (γ0 (si))}Ki (s) (B.11)

≤ ‖c0‖ ‖Mn (γ̂(s); s)−Mn (γ0(si); s)‖
≤ ‖c0‖ {‖Mn (γ̂(s); s)−Mn (γ0(s); s)‖+Op(bn)}
= op(1),

where the second inequality is from (A.14) and the last equality is because Mn (γ; s) →p

M (γ; s) is continuous in γ and γ̂(s)→p γ0(s) in Lemma A.3. Since

1

nbn

n∑
i=1

c>0 xix
>
i 1i (γ̂(s)) {1i (γ̂(s))− 1i (γ0 (si))}Ki (s) (B.12)

≤ ‖c0‖ ‖Mn (γ̂(s); s)−Mn (γ0(si); s)‖ = op(1)

from (B.11), we have ΘA3(s) = op(1) as well, which completes the proof. �

Proof of Lemma A.7 Using the same notations in Lemma A.3, we write√
nbn

(
θ̂ (γ̂ (s))− θ0

)
=

{
1

nbn
Z̃(γ̂(s); s)>Z̃(γ̂(s); s)

}−1

5



×
{

1√
nbn

Z̃(γ̂(s); s)>ũ(s)− 1√
nbn

Z̃(γ̂(s); s)>
(
Z̃(γ̂(s); s)− Z̃(γ0(si); s)

)
θ0

}
≡ Θ−1

B1(s) {ΘB2(s)−ΘB3(s)}

similarly as (B.7). For the denominator, since ΘB1(s) = ΘA1(s) in (B.7), then Θ−1
B1(s) =

Op(1) from (B.8). For the numerator, we first have ΘB2(s) = Op(1) from (B.9). For ΘB3(s),
similarly as (B.10),

ΘB3(s) =

 a
−1/2
n

∑n

i=1
n−εδ>0 xix

>
i {1i (γ̂(s))− 1i (γ0 (si))}Ki (s)

a
−1/2
n

∑n

i=1
n−εδ>0 xix

>
i 1i (γ̂(s)) {1i (γ̂(s))− 1i (γ0 (si))}Ki (s)

 .
However, since γ̂(s) = γ0(s) + r(s)φ1n for some r(s) < ∞ from Theorem 2, similarly as
(A.25), we have

E

[
n∑
i=1

n−εδ>0 xix
>
i {1i (γ̂(s))− 1i (γ0 (si))}Ki (s)

]

≤ an

∣∣∣∣∣
∫∫ γ0(s)+r(s)φ1n

γ0(s+bnt)
c>0 E

[
xix
>
i |q, s+ bnt

]
K (t) f (q, s+ bnt) dqdt

∣∣∣∣∣
≤ an

∣∣∣∣∣
∫∫ γ0(s)+r(s)φ1n

γ0(s)
c>0 E

[
xix
>
i |q, s+ bnt

]
K (t) f (q, s+ bnt) dqdt

∣∣∣∣∣
+an

∣∣∣∣∣
∫∫ γ0(s+bnt)

γ0(s)
c>0 E

[
xix
>
i |q, s+ bnt

]
K (t) f (q, s+ bnt) dqdt

∣∣∣∣∣
= anφ1n |r(s)|

∣∣∣c>0 D (γ0 (s) , s)
∣∣∣ f (γ0 (s) , s) +O(anbn)

= O(1)

as anφ1n = 1 and anbn = n1−2εb2n → % <∞. We also have

V ar

[
n∑
i=1

n−εδ>0 xix
>
i {1i (γ̂(s))− 1i (γ0 (si))}Ki (s)

]
= O(n−2ε) = o(1),

similarly as (A.26). Therefore, from the same reason as (B.12), we haveΘB3(s) = Op(a
−1/2
n ) =

op(1), which completes the proof. �

Proof of Lemma A.8 First consider the case with r > 0. In this case, we have

{1[q ≤ γ0 (s) + r/an]− 1[q ≤ γ0 (s)]} {1[q ≤ γ0 (s+ bnt)]− 1[q ≤ γ0 (s)]}
= 1 [γ0 (s) < q ≤ γ0 (s+ bnt) < γ0 (s) + r/an]

+1 [γ0 (s) < q ≤ γ0 (s) + r/an < γ0 (s+ bnt)] .

Therefore, if we denote g(q, s) = c>0 D(q, s)c0f (q, s),

E [B∗n3(r, s)]

6



= an

∫∫
c>0 D(q, s+ bnt)c0 {1[q ≤ γ0 (s) + r/an]− 1[q ≤ γ0 (s)]}

×{1[q ≤ γ0 (s+ bnt)]− 1[q ≤ γ0 (s)]}K (t) f (q, s+ bnt) dqdt

= an

∫
T1(r;s)

∫ γ0(s+bnt)

γ0(s)
g(q, s+ bnt)K (t) dqdt

+an

∫
T2(r;s)

∫ γ0(s)+r/an

γ0(s)
g(q, s+ bnt)K (t) dqdt

≡ Bn31(r, s) +Bn32(r, s),

where

T1(r; s) = {γ0 (s) < γ0 (s+ bnt)} ∩ {γ0 (s+ bnt) < γ0 (s) + r/an} ,
T2(r; s) = {γ0 (s) < γ0 (s+ bnt)} ∩ {γ0 (s) + r/an < γ0 (s+ bnt)} .

Note that γ0 (s) < γ0 (s) + r/an always holds for r > 0. However, similarly as in the
proof of Lemma A.2, when γ0(·) is increasing around s, γ0 (s) < γ0 (s+ bnt) restricts that
t > 0. Furthermore, γ0 (s+ bnt) < γ0 (s) + r/an implies that t < r/ (anbnγ̇0(s)), where
0 < r/ (anbnγ̇0(s)) < ∞. Therefore, T1(r; s) = {t : t > 0 and t < r/ (anbnγ̇0(s))}. Sim-
ilarly, since γ0 (s) + r/an < γ0 (s+ bnt) implies t > r/ (anbnγ̇0(s)), we have T2(r; s) =

{t : t > 0 and t > r/ (anbnγ̇0(s))}. It follows that, by Taylor expansion,

Bn31(r, s) = an

∫ r/(anbnγ̇0(s))

0

∫ γ0(s+bnt)

γ0(s)
g(q, s+ bnt)K (t) dqdt

= anbng(γ0(s), s)γ̇0(s)

∫ r/(anbnγ̇0(s))

0
tK (t) dt+ anbnO (bn)

= %g(γ0(s), s)γ̇0(s)K1 (r, %; s) +O (bn)

as anbn = n1−2εb2n → % ∈ (0,∞), and

Bn32(r, s) = an

∫ ∞
r/anbnγ̇0(s)

∫ γ0(s)+r/an

γ0(s)
g(q, s+ bnt)K (t) dqdt

= rg(γ0(s), s)

∫ ∞
r/(anbnγ̇0(s))

K (t) dt+O (bn)

= rg(γ0(s), s)

{
1

2
−K0 (r, %; s)

}
+O (bn)

as |K0 (r, %; s)| ≤ 1/2 and |K1 (r, %; s)| ≤ 1/2.
When γ0(·) is decreasing around s, −∞ < r/ (anbnγ̇0(s)) < 0 and we can also derive

Bn31(r, s) = an

∫ 0

r/(anbnγ̇0(s))

∫ γ0(s+bnt)

γ0(s)
g(q, s+ bnt)K (t) dqdt

= −%g(γ0(s), s)γ̇0(s)K1 (r, %; s) +O (bn) ,

Bn32(r, s) = an

∫ r/(anbnγ̇0(s))

−∞

∫ γ0(s)+r/an

γ0(s)
g(q, s+ bnt)K (t) dqdt

7



= rg(γ0(s), s) {(1/2)−K0 (r, %; s)}+O (bn) ,

because, when γ̇0(s) < 0, we have
∫ 0
r/(anbnγ̇0(s)) tK (t) dt = −

∫ r/(anbn(−γ̇0(s)))
0 tK (t) dt and∫ r/(anbnγ̇0(s))

−∞ K (t) dt =
∫∞
r/(anbn(−γ̇0(s)))K (t) dt with γ̇0(s) < 0. It follows that, by combining

these results, we have

E [B∗n3(r, s)] = |r| g(γ0(s), s)

{
1

2
−K0 (r, %; s)

}
+ %g(γ0(s), s) |γ̇0(s)| K1 (r, %; s) +O (bn) .

Furthermore, since |B∗n3(r, s)| ≤
∑n

i=1
(δ>0 xi)

2 |1i (γ0 (s) + r/an)− 1i (γ0 (s))|Ki (s), we have

V ar [B∗n3(r, s)] = O(n−2ε) = o(1) from (A.26) in Lemma A.6, which completes the proof. �

Proof of Lemma A.9 Define Wµ(r) = W (r) + µ(r), τ+ = arg maxr∈R+Wµ(r), and
τ− = arg maxr∈R−Wµ(r). The process Wµ(·) is a Gaussian process, and hence Lemma 2.6
of Kim and Pollard (1990) implies that τ+ and τ− are unique almost surely. Recall that we
define W (r) = W1(−r)1[r < 0] +W2(r)1[r > 0], where W1(·) and W2(·) are two independent
standard Wiener processes defined on R+. We claim that

E[τ+] = −E[τ−] <∞, (B.13)

which gives the desired result.
The equality in (B.13) follows directly from the symmetry (i.e., P(Wµ(τ+) > Wµ(τ−)) =

1/2) and the fact that W1 is independent of W2. Now, we focus on r > 0 and show that
E[τ+] <∞. First, for any r > 0,

P (Wµ(r) ≥ 0) = P (W2(r) ≥ −µ(r)) = P
(
W2(r)√

r
≥ −µ(r)√

r

)
= 1− Φ

(
−µ(r)√

r

)
,

where Φ(·) denotes the standard normal distribution function. Since the sample path ofWµ(·)
is continuous, for some r > 0, we then have

E[τ+] =

∫ ∞
0

{
1− P

(
τ+ ≤ r

)}
dr

=

∫ r

0
P
(
τ+ > r

)
dr +

∫ ∞
r
P
(
τ+ > r

)
dr

≤ C1 +

∫ ∞
r
P
(
Wµ(τ+) ≥ 0 and τ+ > r

)
dr

≤ C1 +

∫ ∞
r
P (Wµ(r) ≥ 0) dr

= C1 +

∫ ∞
r

(
1− Φ

(
−µ(r)√

r

))
dr (B.14)

for some C1 <∞, where the first inequality is because Wµ(τ+) = maxr∈R+Wµ(r) ≥ 0 given
Wµ(0) = 0, and the second inequality is because P (Wµ(r) ≥ 0) is monotonically decreasing
to zero on R+. The second term in (B.14) can be shown bounded as follows. Using change
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of variables t = rε, integral by parts, and the condition that limr→∞ r−((1/2)+ε)µ(r) = −∞
for some ε > 0 in turn, we have∫ ∞

r

(
1− Φ

(
−µ(r)√

r

))
dr ≤ C2

∫ ∞
r

(1− Φ (rε)) dr

= C2

∫ ∞
r1/ε

(1− Φ (t)) dt1/ε

= C2 + C3

∫ ∞
r1/ε

t1/εφ(t)dt <∞

for some C2, C3 < ∞ if r is large enough, where φ(·) denotes the standard normal density
function and we use limt→∞ t1/ε (1− Φ (t)) = 0. The same result can be obtained for r < 0

symmetrically, which completes the proof. �

Proof of Lemma A.10 For given (%, s), we simply let µ(r) = µ (r, %; s). Then, for the
kernel functions satisfying Assumption A-(x), it is readily verified that µ(0) = 0, µ(r) is
continuous in r, and µ(r) is symmetric about zero. To check other conditions, for r > 0, we
first write

µ(r) = −r
∫ rC1

0
K(t)dt+ C2

∫ rC1

0
tK(t)dt,

where C1 and C2 are some positive constants depending on (%, |γ̇0(s)| , ξ(s)). We consider the
two possible cases.

First, if K(·) has a bounded support, say [−r, r], then µ(r) = −rC3 + C4 for r > r

and some 0 < C3, C4 < ∞. Thus, µ(r) is monotonically decreasing on R\[−r, r] and
limr→∞ r−((1/2)+ε)µ(r) = −∞ for any ε > 0.

Second, if K(·) has an unbounded support, we have

∂µ(r)

∂r
= −

∫ rC1

0
K(t)dt− rC1K(C1r) + rC2

1C2K(C1r)

by the Leibniz integral rule. However, for r > r for some large enough r, it is strictly
negative because

∫ rC1
0 K(t)dt > 0 and limr→∞ rK(r) = 0. This proves µ(r) is monotonically

decreasing on R\[−r, r]. In addition, limr→∞ r−((1/2)+ε)µ(r) = −∞ for any ε > 0 because∫ rC1
0 K(t)dt <

∫∞
0 K(t)dt < ∞,

∫ rC1
0 tK(t)dt <

∫∞
0 tK(t)dt < ∞. The r < 0 case follows

symmetrically using the identical argument. �

Proof of Lemma A.11 We only present the argument for Tn (γ; s) as the proof for
Tn (γ; s) is identical. Let τn be some large truncation parameter to be chosen later, satisfying
τn →∞ as n→∞. Define 1τn = 1[

(
c>0 xi

)2
< τn] and

T τn (γ, s) =
1

nbn

n∑
i=1

(
c>0 xi

)2
|∆i(γ; s)|Ki (s)1τn ,

9



where ∆i(γ; s) = 1i (γ (s))− 1i (γ0 (s)). The triangular inequality gives that, for any η,

P
(

sup
s∈S0
|Tn (γ; s)− E [Tn (γ; s)]| > η

)
(B.15)

≤ P
(

sup
s∈S0
|T τn (γ; s)− Tn(γ; s)| > η/3

)
+P
(

sup
s∈S0
|E [T τn (γ; s)]− E [Tn (γ; s)]| > η/3

)
+P
(

sup
s∈S0
|T τn (γ; s)− E [T τn (γ; s)]| > η/3

)
≡ PT1n + PT2n + PT3n.

For the first one, since r(s) > 0 for all s, γ (s) > γ0 (s) and

E
[

sup
s∈S0
|T τn (γ; s)− Tn(γ; s)|

]
≤ E

[∣∣∣∣∣ 1

nbn

n∑
i=1

(
c>0 xi

)2
1

[
inf
s∈S0

γ0(s) ≤ qi ≤ sup
s∈S0

γ0(s) + rφ2n

]
Ki (s) (1− 1τn)

∣∣∣∣∣
]

≤ 1

bn
E
[∣∣∣∣(c>0 xi)2

1

[
inf
s∈S0

γ0(s) ≤ qi ≤ sup
s∈S0

γ0(s) + rφ2n

]
Ki (s) (1− 1τn)

∣∣∣∣]
= τ−1

n

∫ ∫ sups∈S0 γ0(s)+rφ2n

infs∈S0 γ0(s)
E
[(
c>0 xi

)4
|q, s+ bnt

]
f(q, s+ bnt)K (t) dqdt

≤ C1φ2nτ
−1
n

for some C1 ∈ (0,∞), where we use the fact that∫
|a|>τn

|a| fA(a)da ≤ τ−1
n

∫
|a|>τn

|a|2 fA(a)da ≤ τ−1
n E[A2]

for a generic random variable A. Hence, Markov’s inequality yields that PT1n ≤ Cφ2n/(ητn).
Next, to bound PT2n, note that

E [T τn (γ; s)]− E [Tn (γ; s)]

= b−1
n E

[∣∣∣∣(c>0 xi)2
1 [γ0(s) ≤ qi ≤ γ(s)]Ki (s) (1− 1τn)

∣∣∣∣]
≤ τ−1

n

∫ ∫ γ(s)

γ0(s)
E
[(
c>0 xi

)4
|q, s+ bnt

]
f(q, s+ bnt)K (t) dqdt

≤ C2φ2nτ
−1
n

for some C2 ∈ (0,∞). By Assumptions A-(v), (vii), and (viii), the above bound is uniform in
s. Hence Markov’s inequality yields that PT2n ≤ C2φ2n/(ητn) as well.

Now we bound PT3n and then specify the choice of τn. Since S0 is compact, we can find
mn intervals centered at s1, . . . , smn with length CS/mn that cover S0 for some CS ∈ (0,∞).
We denote these intervals as Ik for k = 1, . . . ,mn and choose mn later. The triangular

10



inequality yields
sup
s∈S0
|T τn (γ; s)− E [T τn (γ; s)]| ≤ T ∗1n + T ∗2n + T ∗3n,

where

T ∗1n = max
1≤k≤mn

sup
s∈Ik
|T τn (γ; s)− T τn (γ; sk)|

T ∗2n = max
1≤k≤mn

sup
s∈Ik
|E [T τn (γ; s)]− E [T τn (γ; sk)]|

T ∗3n = max
1≤k≤mn

|T τn (γ; sk)− E [T τn (γ; sk)]| .

We first bound T ∗3n. Let

Zτn,i(s) = (nbn)−1
{

(c>0 xi)
2∆i(γ; s)Ki (s)1τn − E[(c>0 xi)

2∆i(γ; s)Ki (s)1τn ]
}

and

Un(s) = T τn (γ; s)− E [T τn (γ; s)] =

n∑
i=1

Zτn,i(s).

Note that sups∈S0 |
(
c>0 xi

)2
∆i(γ; s)Ki (s)1τn | is bounded by C3τn for some constant C3 ∈

(0,∞) and hence
∣∣∣Zτn,i(s)∣∣∣ ≤ 2C3τn/(nbn) for all i = 1, . . . , n. Define λn = (nbn log n)1/2/τn.

Then λn

∣∣∣Zτn,i(s)∣∣∣ ≤ 2C3(log n/(nbn))1/2 ≤ 1/2 for all i = 1, . . . , n when n is suffi ciently

large. Using the inequality exp(v) ≤ 1 + v + v2 for |v| ≤ 1/2, we have exp(λn

∣∣∣Zτn,i(s)∣∣∣) ≤
1 + λn

∣∣∣Zτn,i(s)∣∣∣+ λ2
n

∣∣∣Zτn,i(s)∣∣∣2. Hence
E[exp(λn

∣∣Zτn,i(s)∣∣)] ≤ 1 + λ2
nE
[
(Zτn,i(s))

2
]
≤ exp

(
λ2
nE
[
(Zτn,i(s))

2
])

(B.16)

since E
[
Zτn,i(s)

]
= 0 and 1 + v ≤ exp(v) for v ≥ 0. Using the fact that P(X > c) ≤

E[exp(Xa)]/ exp(ac) for any random variable X and nonrandom constants a and c, we have
that

P
(
|Un(s)| > φ

1/2
2n ηn

)
= P

(
φ
−1/2
2n Un(s) > ηn

)
+ P

(
−φ−1/2

2n Un(s) > ηn

)
≤

E
[
exp

(
λnφ

−1/2
2n

∑n

i=1
Zτn,i(s)

)]
+ E

[
exp

(
−λnφ−1/2

2n

∑n

i=1
Zτn,i(s)

)]
exp(λnηn)

≤ 2 exp(−λnηn) exp

(
λ2
nφ
−1
2n

n∑
i=1

E
[
(Zτn,i(s))

2
])

(by (B.16))

≤ 2 exp(−λnηn) exp
(
λ2
nC4τ

2
n/ (nbn)

)
for some sequence ηn → 0 as n→∞, where the last inequality is from

E
[
(Zτn,i(s))

2
]
≤ (nbn)−2E

[(
c>0 xi

)4
∆i(γ; s)2K2

i (s)1τn

]
≤ C4τ

2
n(n2bn)−1φ2n(1 + o(1))

11



for some C4 ∈ (0,∞). However, this bound is independent of s given Assumptions A-(v) and
(x), and hence it is also the uniform bound, i.e.,

sup
s∈S0

P
(
|Un(s)| > φ

1/2
2n ηn

)
≤ 2 exp

(
−λnηn + λ2

nC4τ
2
n/ (nbn)

)
. (B.17)

Now given τn, we need to choose ηn → 0 as fast as possible, and at the same time we let
λnηn →∞ at a rate that ensures (B.17) is summable and λnηn > λ2

nτ
2
n/ (nbn). This is done

by choosing λn = (nbn log n)1/2/τn and ηn = C∗λ−1
n log n = C∗τn((log n)/ (nbn))1/2 for some

finite constant C∗. This choice yields

−λnηn + λ2
nC4τ

2
n/nbn = −C∗ log n+ C4 log n = −(C∗ − C4) log n.

Therefore, by substituting this into (B.17), we have

P
(
T ∗3n > φ

1/2
2n ηn

)
= P

(
max

1≤k≤mn
|Un(sk)| > φ

1/2
2n ηn

)
≤ mn sup

s∈S0
P
(
|Un(s)| > φ

1/2
2n ηn

)
≤ 2

mn

nC∗−C4
.

Now, we can choose C∗ suffi ciently large so that
∑∞

n=1
P
(
T ∗3n > φ

1/2
2n ηn

)
is summable, from

which we have

T ∗3n = Oa.s.(φ
1/2
2n ηn) = Oa.s.

((
φ2n

log n

nbn

)1/2
)

by the Borel-Cantelli lemma.
Next, we consider T ∗1n. Note that

T τn (γ; s)− T τn (γ; sk) =
1

nbn

n∑
i=1

(
c>0 xi

)2
∆i(γ; s) (Ki (s)−Ki (sk))1τn (B.18)

+
1

nbn

n∑
i=1

(
c>0 xi

)2
(∆i(γ; s)−∆i(γ; sk))Ki (sk)1τn .

For the first item in (B.18), using a similar derivation as Lemma A.6 yields that if n is
suffi ciently large,

E

[∣∣∣∣∣ 1

nbn

n∑
i=1

(
c>0 xi

)2
∆i(γ; s) (Ki (s)−Ki (sk))1τn

∣∣∣∣∣
]

≤ b−1
n τnE [|∆i(γ; s) (Ki (s)−Ki (sk))|]

≤ C5CSτnφ2n/ (mnbn) .

for some constant C5 <∞. For the second item in (B.18), without loss of generality, consider
that γ(s) < γ(sk) and γ0(s) < γ0(sk). Then by choosing the covering interval length CS/mn

smaller than φ2n, we have

E

[
sup
s∈Ik

∣∣∣∣∣ 1

nbn

n∑
i=1

(
c>0 xi

)2
(∆i(γ; s)−∆i(γ; sk))Ki (sk)1τn

∣∣∣∣∣
]

12



≤ 2C6τn

(
sup
s∈S0

K(s)

)
E

[
sup
s∈Ik

∣∣∣∣∣ 1n
n∑
i=1

1 (γ0(s) < qi ≤ γ0(sk))

∣∣∣∣∣
+ sup
s∈Ik

∣∣∣∣∣ 1n
n∑
i=1

1 (γ(s) < qi ≤ γ(sk))

∣∣∣∣∣
]

≤ C6τnP

(
inf
s∈Ik

γ0(s) < qi ≤ sup
s∈Ik

γ0(s)

)
+ C6τnP

(
inf
s∈Ik

γ(s) < qi ≤ sup
s∈Ik

γ(s)

)
≤ C6CSτn/mn,

where the last line follows from Taylor expansion and Assumption A-(vi). This bound does
not depend on k and hence T ∗1n = Op(τn/mn). Similarly for T ∗2n, Taylor expansion yields
that

|E [T τn (γ; s)]− E [T τn (γ; sk)]| ≤ b−1
n τnE [∆i(γ; s)Ki (s)−∆i(γ, sk)Ki (sk)]

≤ b−1
n τnE [∆i(γ; s) (Ki (s)−Ki (sk))]

+b−1
n τnE

[(
c>0 xi

)2
(∆i(γ; s)−∆i(γ; sk))Ki (sk)

]
≤ C7τn/mn

for some C7 <∞, where the last line follows by choosing the covering interval length CS/mn

smaller than φ2n. This bound is also uniform in k and hence T ∗2n = O(τn/mn) as well.
Therefore, by choosing mn = [(φ2n(log n)/nbn)1/2/τn]−1, we have that T ∗1n and T

∗
2n are both

the order of (φ2n(log n)/nbn)1/2. It follows that PT3n ≤ η−1C(φ2n(log n)/nbn)1/2 for some
C ∈ (0,∞) by Markov’s inequality.

Finally, if we choose τn such that τn = O(φ
1/2
2n ((log n)/nbn)−1/2), we have both PT1n and

PT2n are also bounded by η−1C(φ2n(log n)/nbn)1/2. A possible choice of τn is nε or larger.
This completes the proof. �

Proof of Lemma A.12 Since the proof is similar as that in Lemma A.11, we only
highlight the different part. We only present the argument for Ln (γ; s) as the proof for
Ln (γ; s) is identical. We now define 1τn = 1[

∣∣c>0 xiui∣∣ < τn] for some truncation parameter
satisfying τn → ∞ as n → ∞, which can be different from the one chosen in Lemma A.11
above. We let

Lτn (γ; s) =
1√
nbn

n∑
i=1

c>0 xiui∆i(γ; s)Ki (s)1τn ,

and write

P
(

sup
s∈S0
|Ln (γ; s)| > η

)
≤ P

(
sup
s∈S0
|Lτn (γ; s)− Ln(γ; s)| > η/2

)
+ P

(
sup
s∈S0
|Lτn (γ; s)| > η/2

)
≡ PL1n + PL2n,

13



where E[Lτn(γ, s)] = 0.
To bound PL1n, similarly as PT1n in the proof of Lemma A.11, note that

E
[

sup
s∈S0
|Lτn (γ; s)− Ln(γ; s)|

]
≤ E

[
1√
nbn

n∑
i=1

∣∣∣c>0 xiui∣∣∣1 [ inf
s∈S0

γ0(s) ≤ qi ≤ sup
s∈S0

γ0(s) + rφ2n

]
Ki (s) (1− 1τn)

]

≤ (nbn)1/2 τ−1
n

∫ sups∈S0 γ0(s)+rφ2n

infs∈S0 γ0(s)
E
[(
c>0 xiui

)2
|q, s+ tbn

]
f(q, s+ tbn)K (t) dqdt

≤ C1φ2n (nbn)1/2 τ−1
n

for some C1 ∈ (0,∞) and hence PL1n ≤ η−1C1φ2n (nbn)1/2 τ−1
n by Markov’s inequality.

To bound PL2n, similarly as PT3n in the proof of Lemma A.11, we write

sup
s∈S0
|Lτn (γ; s)| ≤ L∗1n + L∗2n,

where

L∗1n = max
1≤k≤mn

sup
s∈Ik
|Lτn (γ; s)− Lτn (γ; sk)|

L∗2n = max
1≤k≤mn

|Lτn (γ; sk)|

and {Ik}mnk=1 denote mn intervals centered at s1, . . . , smn with length CS/mn that cover
S0 for some CS ∈ (0,∞). (The choices of mn and CS can be different from the ones in
Lemma A.11 above.) The bound of L∗1n can be obtained similarly as T

∗
3n above by letting

Zτn,i(s) = (nbn)−1/2 c>0 xiui∆i(γ; s)Ki (s)1τn . In particular, with
∣∣∣Zτn,i(s)∣∣∣ ≤ C2τn/(nbn)1/2

for all i = 1, . . . , n and Lτn (γ; s) =
∑n

i=1
Zτn,i(s), we have

sup
s∈S0

P
(
|Lτn (γ; s)| > φ

1/2
2n ηn

)
≤ 2 exp(−λnηn + λ2

nτ
2
nC3) (B.19)

for some C3 ∈ (0,∞). By choosing λn = (log n)1/2/τn and ηn = C∗τn(log n)1/2 for some
finite constant C∗, we get

−λnηn + λ2
nτ

2
nC3 = −(C∗ − C3) log n.

Substituting this into (B.19) gives us

sup
s∈S0

P
(
|Lτn (γ; s)| > φ

1/2
2n ηn

)
≤ 2

mn

nC∗−C3
,

and hence by choosing C∗ suffi ciently large

L∗2n = Oa.s.(φ
1/2
2n ηn) = Oa.s.

(
(φ2n log n)1/2

)
by the Borel-Cantelli lemma. Regarding L∗1n, we choose mn = [(φ2n log n)1/2/τn]−1 and use

14



the same argument as bounding T ∗1n above to get

E [L∗1n] = O
(

(φ2n log n)1/2
)
.

Therefore, by combining L∗1n and L∗2n and using Markov’s inequality, we have PL2n ≤
η−1C(φ2n log n)1/2 for some C ∈ (0,∞).

Finally, if we choose τn such that τn = O(φ
1/2
2n ((log n)/ (nbn))−1/2), we have PL1n ≤

η−1C(φ2n log n)1/2 as well. A possible choice of τn is nε or larger. This completes the proof.
�

Proof of Lemma A.13 We first show (A.33). Consider the case with γ (s) − γ0 (s) ∈
[r(s)φ2n, C(s)], where 0 < r = infs∈S0 r(s) ≤ sups∈S0 r(s) = r < ∞ and C = sups∈S0 C(s) <

∞; the other direction can be shown symmetrically. Let

`D(s) = inf
|γ(s)−γ0(s)|<C(s)

c>0 D(γ(s), s)c0f (γ(s), s) > 0 and ` = inf
s∈S0

`D(s) > 0

from Assumptions A-(vii) and (viii). Then, from (B.1), we get

sup
s∈S0

E [Tn (γ; s)] ≥ sup
s∈S0

(γ (s)− γ0 (s)) (`+ C1(s)b2n) (B.20)

≥ ` sup
s∈S0

(γ (s)− γ0 (s)) = `rφ2n

because 0 < C1(s) < ∞ for all s ∈ S0 from Assumptions A-(vii) and (viii). Furthermore,
Lemma A.11 implies that

P
(

sup
s∈S0
|Tn (γ; s)− E [Tn (γ; s)]| > η

)
≤ C2η

−1

(
φ2n

log n

nbn

)1/2

(B.21)

for some C2 ∈ (0,∞).
We now set γg for g = 1, . . . , g+ 1 such that, for any s ∈ S0, γg (s) = γ0 (s) + 2g−1r(s)φ2n

where g is the integer satisfying γg (s) − γ0 (s) = 2g−1r(s)φ2n ≤ C and γg+1 (s) − γ0 (s) =

2gr(s)φ2n > C. Then, (B.20) and (B.21) yield that for any fixed η > 0,

P

(
max

1≤g≤g

∣∣∣∣∣ sups∈S0 Tn
(
γg; s

)
sups∈S0 E

[
Tn
(
γg; s

)] − 1

∣∣∣∣∣ > η

)
(B.22)

≤ P

(
max

1≤g≤g

∣∣sups∈S0 Tn
(
γg; s

)
− sups∈S0 E

[
Tn
(
γg; s

)]∣∣∣∣sups∈S0 E
[
Tn
(
γg; s

)]∣∣ > η

)

≤ P

(
max

1≤g≤g

sups∈S0
∣∣Tn (γg; s)− E [Tn (γg; s)]∣∣∣∣sups∈S0 E

[
Tn
(
γg; s

)]∣∣ > η

)

≤
g∑
g=1

P
(

sup
s∈S0

∣∣Tn (γg; s)− E [Tn (γg; s)]∣∣ > η

∣∣∣∣sup
s∈S0

E
[
Tn
(
γg; s

)]∣∣∣∣)
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≤
g∑
g=1

C1 (φ2n(log n)/nbn)1/2

2g−1η`rφ2n

≤ C1

η`r

∞∑
g=1

1

2g−1
× 1

nε

≤ ε

for any ε > 0. Then from eq. (33) of Hansen (2000), for any γ (s) such that rφ2n ≤
sups∈S0 (γ (s)− γ0 (s)) ≤ C, there exists some g such that γg (s) − γ0 (s) < γ (s) − γ0 (s) <

γg+1 (s)− γ0 (s). This implies that

sups∈S0 Tn (γ; s)

sups∈S0 |γ (s)− γ0 (s)|

≥
sups∈S0 Tn

(
γg; s

)
sups∈S0 E

[
Tn
(
γg; s

)] × sups∈S0 E
[
Tn
(
γg; s

)]
sups∈S0

∣∣γg+1 (s)− γ0 (s)
∣∣

=

(
1 +

(
sups∈S0 Tn

(
γg; s

)
sups∈S0 E

[
Tn
(
γg; s

)] − 1

))
×

sups∈S0 E
[
Tn
(
γg; s

)]
sups∈S0

∣∣γg+1 (s)− γ0 (s)
∣∣ ,

and for any η > 0,

P

(
inf

rφ2n<sups∈S0 |γ(s)−γ0(s)|<C

sups∈S0 Tn (γ; s)

sups∈S0 |γ (s)− γ0 (s)| < C(1− η)

)

≤ P

((
1−

∣∣∣∣∣ max
1≤g≤g

sups∈S0 Tn
(
γg; s

)
sups∈S0 E

[
Tn
(
γg; s

)] − 1

∣∣∣∣∣
)

sups∈S0 E
[
Tn
(
γg; s

)]
sups∈S0

∣∣γg+1 (s)− γ0 (s)
∣∣ < C(1− η)

)
≤ ε,

where the last line follow from (B.20) and (B.22). The proof for (A.34) is similar to that for
(A.33) and hence omitted.

For (A.18), Lemma A.12 yields that, for a large enough n,

P
(

sup
s∈S0
|Ln (γ; s)| > η

)
≤ η−1C2φ

1/2
2n (log n)1/2 (B.23)

for some C2 ∈ (0,∞) similarly as above. Using a similar approach as (B.22), for any fixed
η > 0,

P

(
max

1≤g≤g

sups∈S0
∣∣Ln (γg; s)∣∣√

an sups∈S0
(
γg (s)− γ0 (s)

) > η

)
(B.24)

≤
∞∑
g=1

P

(
sups∈S0

∣∣Ln (γg; s)∣∣√
an sups∈S0

(
γg (s)− γ0 (s)

) > η

)

≤
∞∑
g=1

C2 (φ2n log n)1/2

η
√
an2g−1µrφ2n
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≤ C2

ηµr

∞∑
g=1

1

2g−1
.

from (B.20) and (B.23). This probability is arbitrarily close to 0 if r is large enough. Following
a similar discussion after (B.5), this result also provides the maximal (or sharp) rate of φ2n as
log n/an because we need (log n/an)/φ2n = O(1) but φ2n → 0 as log n/an → 0 with n→∞.

Finally, for a given g, we define Γg as the collection of γ (s) satisfying r2g−1φ2n < γ (s)−
γ0 (s) < r2gφ2n for all s ∈ S. By a similar argument as (B.24), we have

P

(
max

1≤g≤g
sup
γ∈Γg

sups∈S0 |Ln (γ; s)|
√
an sups∈S0 (γ (s)− γ0 (s))

> η

)
≤ C3

ηr̄
(B.25)

for some constant C3 <∞. Combining (B.24) and (B.25), we thus have

P

 sup
rφ2n<sups∈S0 |γ(s)−γ0(s)|<C

sups∈S0
∣∣Ln (γg; s)∣∣√

an sups∈S0 (γ (s)− γ0 (s))
> η


≤ 2P

(
max

1≤g≤g

sups∈S0
∣∣Ln (γg; s)∣∣√

an sups∈S0
(
γg (s)− γ0 (s)

) > η

)

+2P

(
max

1≤g≤g
sup
γ∈Γg

sups∈S0 |Ln (γ; s)|
√
an sups∈S0 (γ (s)− γ0 (s))

> η

)
≤ ε

for any ε > 0 if r is suffi ciently large. The proof for (A.36) is similar to that for (A.35) and
hence omitted. �

Proof of Lemma A.14 For a given γ, since all the convergence results in Lemma A.5
hold uniformly by Lemma A.1, we only need to show sups∈S0 |γ̂(s)− γ0(s)| →p 0. To this end,
denote Γ and Γ as the upper and lower bounds of Γ, respectively, and let dΓ = Γ−Γ. Since S0

is compact, it can be covered by the union of a finite number of intervals {Ik}mk=1 with length
dΓ/m and center points {sk}mk=1. On the event E

∗
n that γ̂(s) is continuous with probability

approaching to one, we can choose a large m such that sups∈Ik |γ̂(s)− γ̂(sk)| ≤ η for any
η and all k. Such a choice is also valid for γ0(·) since it is also continuous by Assumption
A-(vi). Then on the event E∗n, using triangular inequality and Lemma A.3, for any η > 0

and any ε > 0, there is a large enough m such that

P
(

sup
s∈S0
|γ̂(s)− γ0(s)| > η

)
≤ P

(
max

1≤k≤m
sup
s∈Ik
|γ̂(s)− γ̂(sk)| > η/3

)
+ P

(
max

1≤k≤m
sup
s∈Ik
|γ0(s)− γ0(sk)| > η/3

)

+P
(

max
1≤k≤m

|γ̂(sk)− γ0(sk)| > η/3

)
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≤ 2 (1− P(E∗n)) +

m∑
k=1

P (|γ̂(sk)− γ0(sk)| > η/3)

≤ ε,

where the last line follows from that P(E∗n) > 1− ε for any ε. This is because γ̂(·) is a step
function taking values in {qi}ni=1 ∩ Γ and hence is piecewise continuous with countable jump
points. �

Proof of Lemma A.15 We prove Ξn02 = op(1) and Ξn03 = op(1). The results for Ξn12

and Ξn13 can be shown symmetrically. As in the proof of Theorem 5, we denote the leave-
one-out estimator γ̂−i (si) as γ̂ (si) in this proof. For expositional simplicity, we only present
the case of scalar xi.

First, for any continuous function γ (·) : S → Γ, we define

Gn(γ) =
1√
n

n∑
i=1

xiui1 [qi > γ(si) + ∆n]1S0 .

For any fixed γ(·), Gn(γ) converges to a Gaussian random variable by the random field
CLT, where E [xiui1 [qi > γ(si) + ∆n]1S0 ] = 0 and E

[
x2
iu

2
i1 [qi > γ(si) + ∆n]1S0

]
<∞ from

Assumptions ID-(i) and A-(v). Moreover, the convergence holds for any finite collection of
γ (·) and the processGn(γ) is uniformly tight by a similar argument as Lemma A.1. Therefore,
we have Gn(γ) ⇒ G(γ) as n → ∞, where G(γ) is a Gaussian process with almost surely
continuous paths (cf. Lemma A.4 in Hansen (2000)). It follows that, for any γ(s) such that
sups∈S0 |γ(s)− γ0(s)| ≤ rφ2n for some r > 0, we have

Gn(γ)−Gn(γ0)→p 0

as Gn(γ) − Gn(γ0) ⇒ G(γ) − G(γ0). We now denote Γn as the set of continuous functions
{γ(·) : sups∈S0 |γ(s)− γ0(s)| ≤ rφ2n}. If we choose r large enough so that P(γ̂ 6∈ Γn) < ε/2,
then for any ε > 0 and η > 0, we have

P (|Ξn02| > η)

= P (|Gn(γ̂)−Gn(γ0)| > η)

= P
(
|Gn(γ̂)−Gn(γ0)| > η and γ̂ ∈ Γn

)
+ P

(
|Gn(γ̂)−Gn(γ0)| > η and γ̂ ∈ Γ

c
n

)
≤ P

(
sup
γ∈Enγ

|Gn(γ)−Gn (γ0)| > η

)
+ P(γ̂ 6∈ Γn)

≤ ε,

which gives the desired result.
Second, we consider ∆n > 0. On the event E∗n that sups∈S0 |γ̂(s)− γ0(s)| ≤ φ2n, we have

E [|Ξn03|] =
1√
n

n∑
i=1

E
[∣∣x2

i δ0

∣∣1 [qi ≤ γ0(si)]1 [qi > γ̂(si) + ∆n]1S0
]
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≤ n1/2−εCE [1 [qi ≤ γ0(si)]1 [qi > γ̂(si) + ∆n]1S0 ]

≤ n1/2−εCE [1 [qi ≤ γ0(si)]1 [qi > γ0(si)− φ2n + ∆n]1S0 ]

= n1/2−εC

∫
S0

∫
I(q;s)

f(q, s)dqds

for some constant 0 < C < ∞, where I(q; s) = {q : q ≤ γ0(s) and q > γ0(s) − φ2n + ∆n}.
However, since we set ∆n > 0 such that φ2n/∆n → 0, then ∆n − φ2n > 0 holds with a
suffi ciently large n. Therefore, I(q; s) becomes empty for all s when n is suffi ciently large.
The desired result follows from Markov’s inequality and the fact that P (E∗n) > 1− ε for any
ε > 0. �

S.2 For Non-random qi and si

The main analysis of the paper assumes that (qi, si)
> are continuous random variables. It

can be easily modified to cover the case where qi and si are non-random integer indices. To
fix idea, consider the metropolitan area determination problem where qi and si denote the
latitude and longitude, respectively, on an equi-spaced grid in N2. Denote n1 and n2 as the
numbers of elements in the latitudes and longitude so that n = n1 × n2 is the total sample
size. Without loss of generality, we normalize qi and si so that qi ∈ {1/n1, 2/n1, . . . , 1} and
si ∈ {1/n2, 2/n2, . . . , 1}. We claim that under the following conditions, which are simplified
version of Assumptions ID and A, key results in the main context remain unchanged if we
treat (qi, si)

ᵀ as if they were uniformly distributed over [0, 1]2. Accordingly, the density f in
Theorem 3 is simply 1. Note that, under strict stationarity, the conditional moments D (·)
and V (·) are simplified as D̄ = E [xix

ᵀ
i ] and V̄ = E

[
xix

ᵀ
i u

2
i

]
, respectively.

Assumption ID′

(i) E [uixi] = 0.

(ii) E
[
xix
>
i

]
> E

[
xix
>
i 1 [qi ≤ γ]

]
> 0 for any γ ∈ Γ.

(iii) (βᵀ0 , δ
ᵀ
0)ᵀ are in the interior of some compact subsets of R2p.

(iv) γ0 (s) is in the interior of Γ for all s ∈ S, where Γ is a compact subset of (0, 1), and
δ0 6= 0.

Assumption A′

(i) The lattice Nn ⊂ R2 is infinite countable; all the elements in Nn are located at dis-
tances at least λ0 > 1 from each other, i.e., for any i, j ∈ Nn : λ (i, j) ≥ λ0; and
limn→∞ |∂Nn| /n = 0. limn1→∞,n→∞ n1/n ∈ (0, 1).

(ii) δ0 = c0n
−ε for some c0 6= 0 and ε ∈ (0, 1/2);

(
c>0 , β

>
0

)>
belongs to some compact subset

of R2p.
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(iii)
(
x>i , ui

)>
is strictly stationary and α-mixing with bounded (2 + ϕ)th moments for

some ϕ > 0; the mixing coeffi cient α(m) defined in (7) satisfies
∑∞

m=1mα(m) < ∞
and

∑∞
m=1m

2α(m)ϕ/(2+ϕ) <∞ for some ϕ ∈ (0, 2).

(iv) 0 < E
[
u2
i |xi

]
<∞ almost surely.

(v) γ0 : S 7→ Γ is a twice continuously differentiable function with bounded derivatives.

(vi) c>0 D̄c0 > 0, c>0 V̄ c0 > 0.

(vii) As n→∞, bn → 0 and n1−2εbn →∞.

(viii) K (·) is uniformly bounded, continuous, symmetric around zero, and satisfies
∫
K (v) dv =

0,
∫
v2K (v) dv ∈ (0,∞),

∫
K2(v)dv ∈ (0,∞), and limv→∞ |v|K(v) = 0.

We first establish the identification.

Theorem 1′ Under Assumption ID ′, the threshold function γ0 (·) and the parameters
(β>0 , δ

>
0 )> are uniquely identified.

Proof of Theorem 1′ The proof is very similar to that of Theorem 1. First, since qi
and si are non-random and take values on equally-spaced grids on [0, 1], we can treat them
as independently multinomial distributed random variables. Then asymptotically, qi and si
are independent and standard uniformly distributed over [0, 1]2. Then, the case (a) can be
verified from the same argument, directly using

R(β, δ, γ; s) = E
[(
yi − x>i β − x>i δ1 [qi ≤ γ(s)]

)2
]

−E
[(
yi − x>i β0 − x>i δ01 [qi ≤ γ0(s)]

)2
]

in this case. For the case (b), for any γ(s) 6= γ0(s) at si = s and given (β>0 , δ
>
0 )>,

R(β0, δ0, γ; s) = δ>0 E
[
xix
>
i

]
δ0 |γ (s)− γ0(s)| > 0.

Hence, we obtain the identification since R(β0, δ0, γ; s) is continuous at γ = γ0(s). �

Now we establish Lemma A.1, which is the fundamental building block of Theorems 2
and 3.

Lemma A.1′ Under Assumptions ID ′ and A′, for any fixed s ∈ S0 ⊂ (0, 1),

sup
γ∈Γ
‖Mn (γ; s)−M (γ; s)‖ →p 0,

sup
γ∈Γ

∥∥∥n−1/2b−1/2
n Jn (γ; s)

∥∥∥→p 0
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as n → ∞, where M (γ; s) = γD̄ and Jn (γ; s) ⇒ J (γ; s), a mean-zero Gaussian process
indexed by γ.

Proof of Lemma A.1′ In view of the proof of Lemma A.1, the key difference lies on
that (qi, si) are now non-random, and hence Taylor expansion in f (q, v) is no longer needed.
Alternatively, we use the following two ideas: First, we decompose the summation

∑n

i=1
into

the double summation
∑n1

i1=1

∑n2

i2=1
, where n = n1n2; second, we use the Taylor expansion

and Assumption A′-(viii) to obtain (n2bn)−1
∑n2

j=1
K ((j/n2 − s) /bn) = O

(
b2n
)
.

Then, we have

E [Mn (γ; s)] = E[x2
i ]

(
1

n1

n1∑
i=1

1[i/n1 ≤ γ]

)(n2bn)−1
n2∑
j=1

K ((j/n2 − s) /bn)


= D̄

(
γ +O

(
1

n1

))
O
(
b2n
)

= γD̄ +O
(
n−1

)
+O

(
b2n
)

and

V ar [Mn (γ; s)] =
1

n2b2n
E

( n∑
i=1

{
x2
i1i (γ)Ki (s)− E

[
x2
i1i (γ)Ki (s)

]})2


=
1

n2b2n

n∑
i=1

E
[{
x2
i1i (γ)Ki (s)− E

[
x2
i1i (γ)Ki (s)

]}2
]

+
2

n2b2n

n∑
i<j

Cov
[
x2
i1i (γ)Ki (s) , x2

j1j (γ)Kj (s)
]

≡ Vn1 + Vn2.

To bound Vn1, we use the strict stationarity and the aforementioned two ideas to obtain that

Vn1 =
1

n2b2n

n∑
i=1

(
E
[
x4
i1i (γ)Ki (s)

]
−
{
E
[
x2
i1i (γ)Ki (s)

]}2
)

=
1

nbn

(
E
[
x4
i

] 1

n2bn

n2∑
i2=1

K

(
i2/n2 − s

bn

)
− D̄2 1

n2bn

n2∑
i2=1

K2

(
i2/n2 − s

bn

))

×
(

1

n1

n1∑
i1=1

1 [i1/n1 ≤ γ]

)
= O (1/ (nbn)) .

We also bound Vn2 as

|Vn2| ≤

∣∣∣∣∣∣ 1

n2b2n

n∑
i<j

Cov
[
x2
i , x

2
j

]
1i (γ)K

(
si − s
bn

)
1j (γ)K

(
sj − s
bn

)∣∣∣∣∣∣
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≤ 1

n2b2n

n∑
i=1

1i (γ)K

(
si − s
bn

) ∣∣∣∣∣
n−i∑
m=1

Cov
[
x2
i , x

2
i+m

]
1m (γ)K

(
sm − s
bn

)∣∣∣∣∣
≤ 1

n2b2n

n1∑
i1=1

1 [i1/n1 ≤ γ]

n2∑
i2=1

K

(
i2/n2 − s

bn

) ∞∑
m=1

mα (m)ϕ/(2+ϕ)
(
E
[
x4+2ϕ
i

])2/(2+ϕ)

= O (1/ (nbn)) .

Then the pointwise convergence of Mn(γ; s) is established. The rest of the proof follows from
very similar derivations as in Lemma A.1 and repeatedly using the two ideas aforementioned.
�

Lemma A.1′ establishes the uniform law of large numbers and the central limit theorem
required in the rest of the proofs. Using this lemma, we can show that γ̂ (·) has the same
asymptotic distribution as in Theorem 3 with ξ (s) = κ2c

>
0 V̄ c0/

(
c>0 D̄c0

)2
for all s ∈ S0. The

proof is again similar as in the main context and hence suppressed to save the space. It is
available upon request.
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