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Abstract

A central tenet of economic theory is that market power induces deadweight
loss. This claim rests on an assumption that is difficult to verify empirically. Namely,
that dominant firms produce less than the social optimum. I provide evidence of
such restrictive behaviour using a rich dataset of Norwegian hydropower firms.
The research design exploits exogenous variation in market power, arising from
transmission bottlenecks and the formation of localized electricity markets. The
unique production traits of hydropower production further helps to avoid empir-
ical complications associated with marginal cost estimation and endogenous vari-
ation in the supply mix. This allows me to identify the causal impact of market
power on firm behaviour without imposing strong structural assumptions on the
data. I show that a firm’s gaining pivotal status may cause it to withhold produc-
tion by as much as a two to five percent. My results suggest that even nominally
competitive markets are susceptible to strategic manipulation and welfare losses.
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1 Introduction

The great recession and its aftermath have reignited concerns about market power. A
growing body of research now suggests that market power is to blame for a variety of
economic ills. These range from stagnant wages and falling labour productivity shares
(e.g. Autor et al., 2017; Azar et al., 2017; Benmelech et al., 2018), to a slowdown in
aggregate output (e.g. De Loecker et al., 2019). Moreover, high industry concentrations
and record markups are being observed at both a national and global level (Azar et al.,
2018;DeLoecker andEeckhout, 2018), aswell as in both traditional andnascentmarkets
(Benmelech et al., 2018; Dube et al., 2018).

The central mechanism by which market power induces deadweight loss to society is,
of course, a reduction in output. Economic theory tells us that dominant firms can raise
prices (and thus profits) by restricting output. Yet, as uncontroversial as this idea is
among economists, it is surprisingly hard to verify empirically. Firms do not enter,
exit or come to dominate industries by chance. Nor do they acquire or merge with
other firms at random. They do so based on their expectations about future profits and
market conditions. Because these factors are unobservable to the empirical researcher,
typically they must be modeled or assumed in a structural setting.1 All of this is to say
simply that firm behaviour is highly endogenous. We cannot measure how output or
markups respond to, say, industry concentration and naively assign a causal interpre-
tation.2

It is against this backdrop that the present paper describes a rare empirical setting in
which the causal effect of market power on firm output can be gleaned directly from the
data. In particular, I demonstrate how a large number of real-world firms respond to a
series of on-going and plausibly exogenous shocks to the competitive structure of their
industry. Moreover, that they do so in a manner that is remarkably consistent with the
predictions of economic theory. My reduced-form estimates are easily interpretable
and require minimal assumptions or imposed structure. While I will argue that my
findings are generalisable to other sectors of the economy afflicted by market power,

1The notion that dominant firms will restrict output may be regarded as a precept of the typical struc-
tural model in industrial organization (I/O). Insofar as it arises directly from assumptions about profit
maximization and equilibrium market behaviour (Reiss and Wolak, 2007).

2Even accuratelymeasuring or drawing associative links between these variablesmay be problematic;
as evidenced by a recent symposium of leading I/O scholars in the Journal of Economic Perspectives (Basu,
2019; Berry et al., 2019; Syverson, 2019).
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I rely on a fortuitous confluence of factors that are manifest in a particular industry.
Namely, the Norwegian hydropower industry.

Hydropower is the world’s foremost source of non-fossil energy. It accounts for seven
percent of global primary energy and 16 percent of global electricity generation (BP,
2016). This role is evenmore pronounced in countries likeNorway— the setting for this
paper — where it accounts for over 95 percent of national electricity generation.3 It is
hydropower’s unique combination of production traits, however, that are of special in-
terest to us here. The three traits that stand out are as follows. First, hydropower yields
a homogeneous end-good in the form of electricity. This negates potential empirical
complications related to product differentiation and branding effects. Second, unlike
other modes of electricity production, hydropower is dispatchable and load-following.
Which is to say that plants can immediately adjust output in response to market con-
ditions.4 Third, and perhaps most importantly, variable costs in hydropower produc-
tion are negligible. Water arrives exogenously from nature, while employee wages and
maintenance fees are best regarded as fixed costs independent of output. We are thus
able to abstract from the complications associated with estimating firms’ marginal cost
curves. I shall expand on and clarify these claims at various points in the text. For the
moment, though I hope to convey that hydropower presents specific empirical advan-
tages, which have the potential to simplify important general economic questions about
firm behaviour and output.

The other key component of this paper’s contribution is research design. I exploit plau-
sibly exogenous variation in local market conditions that arise due to transmission bot-
tlenecks in the Norwegian electricity grid. These transmission bottlenecks lead to the
formation of separate bidding areas, which manifest as a shock to the market power
that firms command within their assigned areas. Together with the predominance of
hydropower production in the region as a whole, it is this quasi-random allocation that
allows me to cleanly identify the causal impact of market power on firm behaviour.
Indeed, the fact that individual hydropower plants are randomly assigned to separate
bidding areas during different periods — and that these bidding areas themselves are
changing over time—means that my empirical setting constitutes a rare natural exper-

3Other prominent examples include Venezuela (70 percent of electricity generation), Brazil (65 per-
cent), Canada (60 percent), and New Zealand (55 percent).

4C.f. Non-dispatchable renewables like wind or solar, which produce energy according to environ-
mental conditions and cannot be controlled by system operators. On the other end of the scale, nuclear
or coal plants are dispatchable but are typically run at or near maximum capacity regardless of immedi-
ate market conditions.
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iment in which the actual definition of the market is constantly changing. Treatment is
varying in both frequency (how often transmission constraints are binding) and distri-
bution (how much market power is conferred to individual firms as a result).

These features allow me to make several contributions to the literature. First and fore-
most, rather than inferring noncompetitive outcomes through simulated counterfactu-
als or aggregate measures such as wholesale electricity prices, I am able to look at the
behaviour of individual hydropower firms directly. The causal relationship between
the producer’s decision and market power is therefore determined at the firm (and, in-
deed, plant) level. This refinement not only establishes a close correspondence between
the empirical set-up and underlying theory, but also permits the use of a conceptually
straightforward regression framework in the form of panel fixed effects. My analysis
imposes little-to-no structure on the data, nor does it hinge on strong assumptions about
the market relationships in question. I also consider a much longer time period than
many previous studies, with my sample running from 2000 until the end of 2013. In so
doing, I hope to shed light on the way that dominant firms strategically utilise their re-
sources, not just in the short-term, but in response to changing market conditions over
the course of months, seasons and years. To the best of my knowledge, this paper is one
of the first to provide direct empirical evidence—absent structural assumptions or sim-
ulated counterfactuals — of firm’s strategically withholding production in a dynamic
market setting.

To preview my results, I find that an increase in local market power leads to a dis-
tinctive pattern of resource shifting. Firms that gain pivotal status during the most
inelastic demand periods of the year, for example, maintain demonstrably fuller reser-
voirs than their competitors. The effect is anywhere between two and five percent, de-
pending on the econometric specification. The reverse is true during relatively elastic
demand periods. Such strategic behaviour is apiece with the predictions of economic
theory, which dictates that dominant hydropower firms will maximize profits by en-
gaging in intertemporal price discrimination. Put simply, firms can increase profits
by withholding supply in periods with relatively inelastic demand, driving up prices
when consumers are least responsive to such changes.

The remainder of the paper is organised as follows. Section 2 provides a brief overview
of related studies and further contrasts their approaches with my own. Section 3 de-
scribes the key institutional features of theNorwegian electricitymarket, while section 4
covers the basic theoretical framework. Section 5 introduces the dataset and discusses
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how various source materials were merged into a unified set. Section 6 discusses the
econometric strategy for causal inference. Section 7 presents the empirical results and
Section 8 concludes.

2 Related literature

Electricity markets feature prominently in the literature on empirical industrial organi-
sation (e.g.Wolfram, 1999; Joskow and Tirole, 2000; Borenstein et al., 2000, 2002;Wolak,
2003; Müsgens, 2006; Sweeting, 2007; Puller, 2007; Mansur, 2007; Hortaçsu and Puller,
2008; Reguant, 2014; Davis and Hausman, 2016). In part this reflects electricity’s fun-
damental importance to the overall economy, as well as the coincident wave of market
liberalisation that swept the industry in the 1990s and 2000s (Joskow, 2008). However,
it also speaks to the specific advantages that electricity offers as a subject for economic
inquiry relative to other goods and sectors — product homogeneity, reduced compli-
cations in terms of branding, advertising, and so forth (Borenstein, 2016). Yet despite
such advantages, much of this existing literature has still had to rely on a combination
of aggregate data, simulation methods, model calibration and/or strong structural as-
sumptions to support its findings. In contrast, my purely empirical approach leverages
a mix of detailed plant-level data, hydropower’s unique production characteristics and
quasi-experimental variation in the economic parameters of interest, to identify evi-
dence of noncompetitive behaviour in a dynamic market setting.

The studies closest to the present paper in terms of data richness and approach are those
by Puller (2007), Hortaçsu and Puller (2008), Reguant (2014), andDavis andHausman
(2016). Both Puller and Davis and Hausman focus on the California electricity market,
where they use plant-level data to document noncompetitive behaviour during the re-
gion’s post-liberalisation energy crisis and following the shutdown of a major nuclear
facility, respectively. Hortaçsu and Puller tread a similar path in evaluating the restruc-
tured Texas electricity market, where they find that larger firms are closer to (static)
profit-maximising benchmarks than their smaller counterparts. In turn, Reguant uses
Spanish data to show that startup costs in electricity generation can play an important
role in rationalizing apparent deviations from optimal bidding behaviour.

Compared to these studies, the present work benefits from richer variation in market
power over a longer period of time, aswell as the specific empirical advantages afforded
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by my exclusive focus on hydropower generation. The firms in my dataset are directly
and immediately comparable since they all use the same production technology and
face the same (negligible) marginal costs. Similarly, while ignoring startup costs can
lead to biased estimates of market power as per Reguant, the inherent dispatchability of
hydropower renders such concerns moot in the present context. I would argue further
thatmy identification strategy rests upon amore fundamental change in the parameters
of interest. Rather than comparisonswith simulated pricing data (Puller; Hortaçsu and
Puller; Reguant) or a one-time shock to generation capacity (Davis and Hausman), I
exploit recurring changes in the actual definition of the market being studied.5 Despite
these differences and the fact that we focus on different regions, the present analysis is
still conducted in the same spirit as these four studies. Our collective ability to identify
noncompetitive behaviour by firms is greatly enhanced by a combination of detailed
data, quasi-experimental settings and transparent modeling approaches.

In addition to the studies named above, a number of authors have specifically exam-
ined the competitive structure of the Norwegian — and broader Nordic — electricity
market. These include Johnsen et al. (1999), Hjalmarsson (2000), Steen (2004), Kauppi
and Liski (2008), and Mirza and Bergland (2012). A review is provided by Fridolfsson
and Tangerås (2009). The general finding is one of healthy competition, but with some
scope for exercising local market power due to constraints in transmission capacities. I
too focus on local market power that arises from transmission bottlenecks.6 However,
the richness ofmydataset allowsme to gomuchdeeper by tracking firm-level responses
to changing bidding area configurations over time. These changes provide a key source
of additional variation in local market power that enable me to cleanly identify its im-
pact on hydro firm behaviour vis-à-vis the management of individual reservoirs. More-
over, all previous studies of the Nordic market rely on aggregate data. This places
strong restrictions on the methods that can be used to used to support causal inference.
For example, several studies make use of the well-known Bresnahan (1982) and Lau
(1982) framework for estimating market power in the absence of marginal cost data.
Yet the Bresnahan-Lau model ultimately presumes that firms face a static production
decision at each point in time. It is therefore of limited use for understanding the inher-
ently dynamic nature of hydropower production. As Fridolfsson and Tangerås (2009,

5This claim will be motivated in greater detail in subsequent sections of the paper.
6Theoretical contributions to this literature and related empirical applications in other electricity mar-

kets include those by Joskow and Tirole (2000), Borenstein et al. (2000), Davis andHausman (2016), and
Bigerna et al. (2016).
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p. 3689) are led to remark in their review: “A lack of firm level data may explain why
only the Bresnahan-Lau model or the even less demanding methodology proposed by
Johnsen et al. [sc. 1999] has been applied to the Nordic power market. This suggests
that more detailed data would be highly valuable for [determining] market power in
the Nordic market for wholesale electricity.”7

Finally, the empirical analyses of the Nordic and other electricity markets to date have
tended to focus on short-run deviations from competitive prices. Or, they have taken
the form of single event studies that comparemarket conditions before and after an eco-
nomic shock. Relatively little is known about the strategic behaviour of dominant firms
over the medium- to long-term, much less how they respond to changing conditions in
their markets over time. I attempt to shed light on these dynamic uncertainties in the
present paper.

3 The Norwegian electricity market

With the enactment of the Energy Act of 1990, Norway become one of the first countries
to deregulate and liberalise its electricity sector (Bye and Hope, 2005; Joskow, 2008).
The other Nordic nations would steadily follow suit. By 2000, Norway, Sweden, Fin-
land, and Denmark together formed the world’s first — and still largest — multina-
tional power exchange, Nord Pool. The primary market of the Nord Pool exchange is
Elspot, a day-ahead market for the physical delivery of electricity. Elspot functions ac-
cording to classic auction principles in which hourly supply and demand bids are first
aggregated and then matched to determine a market clearing price, also known as the
system price. In the absence of transmission constraints, all electricity is traded at the
systemprice. However, when transmission constraints are binding, the Elspotmarket is
split up into distinct bidding areas. During such periods, each bidding area effectively
becomes its own market and is typically characterised by a distinct area price. This in
turn confers potential local market power to dominant firms within those areas.

As per Figure 1, Norway is currently composed of five Elspot bidding areas: NO1 (east),
NO2 (south), NO3 (mid), NO4 (north), and NO5 (west). Importantly, this configura-

7Similarly, Kauppi and Liski (2008, p. 35): “Our approach to efficient allocations and those distorted
by imperfect competition is aggregative. Analysis exploiting more detailed information on capacities,
usage, and regional heterogeneity is therefore called for. If such data becomes available, one could po-
tentially estimate hydro usage policies directly from the data[...]”
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tion of bidding areas has been changed multiple times over the last decade and a half
(c.f. Appendix B). New bidding areas have been added or removed and the boundaries
between existing areas have been redrawn, as the Norwegian system operator, Stat-
nett, has tried to optimise electricity access under the inherent physical and technical
constraints of large-scale power grid. I will discuss this issue in more depth in the em-
pirical section of the paper. For the moment, it need simply be said that such “regime”
changes provide an additional layer of plausibly exogenous variation in local market
power and are thus highly advantageous from an empirical perspective. The evolving
configuration of bidding areas, in concert with binding transmissions constraints and
data on individual reservoirs, will ultimately allow me to identify the causal effect of
local market power on hydro firm behaviour by randomly assigning individual plants
to distinct markets.

Turning to the broader characteristics of the Norwegian electricity market, hydropower
dominates at both the national and regional level. Norwegian reservoirs generated
around 130 TWh of electricity in 2013. This corresponds to over 95 percent of national
electricity generation and more than a third of the 380 TWh generated in the Nordic
region as a whole (NordREG, 2014; SSB, 2015). For its part, Norwegian electricity de-
mand tends to fluctuate significantly depending on the time of day, the day of week,
and, indeed, the time of year. While large portions of this demand are not substitutable,
the Norwegian electricity sector is designed to foster consumer responsiveness when-
ever conditions allow. Most buildings are equipped with in-house electricity meters
that provide real-time information on consumption. Moreover, approximately 85–90%
of end-user contracts are either tied directly to the spot price, or come in the form of
variable price contracts that are highly-correlatedwith the spot price andmay be termi-
nated at short notice (Bye and Hansen, 2008). Norwegian consumers are thus directly
exposed to the changes in the spot prices and can be expected to react accordingly.

The principal focus of this paper is strategic behaviour among hydropower firms over
longer periods of time. It thereforemakes sense to abstract from short-termfluctuations
(e.g. day versus night, weekdays versus weekends) and concentrate on variations in
demand over the course of months and seasons. With that in mind, winter electric-
ity demand in Norway is approximately double that of summer, primarily because of
indoor heating requirements. However, electrical heating is relatively easy to substi-
tute with indoor fireplaces, fuel-burning heaters, warmer clothing, better insulation,
etc. This permits greater flexibility among consumers, whereas summer electricity de-
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Figure 1: Norwegian hydropower reservoirs

Notes: Elspot bidding area configuration as of 2 December 2013 (i.e. regime Q).

mand is dominated by technical end-uses that do not allow for easy substitution. These
seasonal differences in substitution and adjustment possibilities contribute to a perhaps
surprising finding: Demand elasticities are significantly higher during the Norwegian
winter than they are during summer (Johnsen, 2001; Hansen, 2004; Bye and Hansen,
2008).8 I confirm this finding using detailed bid curve data in Section 5.2. However, it
is first useful to cover the theoretical basis of dominant hydro firm behaviour, and why

8The phenomenon of a relatively more elastic winter electricity demand is quite common in high-
latitude countries, where substitutable heating requirements account for a large portion of overall energy
consumption. For example, Genc (2016) shows that this is true for Canada.

9



seasonal variations in demand elasticities are fundamental to their strategy.

4 Theoretical framework

As described in the introduction, variable costs are negligible in a hydropower system.
Instead, production is largely determined by the opportunity cost of water — the so-
called water value. Water inflows in a country like Norway are highly seasonal. Most
reservoirs fill up rapidly from the endApril as the result of glacialmelt and spring rains.
To a first approximation, however, water is a durable good that can be stored for long
periods of time. The producer’s decision thus collapses into one of how much water
to use today versus save for tomorrow? Faced with this kind of dynamic allocation
problem, let us consider how dominant firms might act strategically.

Førsund (2015) outlines the various ways in which market power affects producer be-
haviour in a hydropower system. The general result is to incentivise a reallocation of
water from periods with relatively inelastic demand to periods with relatively more
elastic demand. The contribution of this paper is empirical and, as such, I will not
describe these theoretical permutations in detail. However, it will be useful to recapit-
ulate a version of the simplest case — i.e. monopoly with no uncertainty, outside trade
or reservoir constraints — to get a sense of the underlying intuition.

Consider the profit maximization problem of a hydropower monopoly in a two period
setting,

max
2

∑
t=1

pt (qt) · qt

s.t.
2

∑
t=1

qt ≤ W,

(1)

where pt (qt) is an inverse demand function with standard properties (e.g. price de-
creasing in quantity), qt is the quantity of electricity demanded by consumers (or, more
precisely, its water equivalent), and W is the known water endowment for the monop-
olist’s reservoir. Let us further assume that period 1 is summer and period 2 is winter.
This assumption has no bearing on the theoretical results, but will become useful as a
reference for the empirical setup later in the paper.
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The necessary first order conditions for profit maximization are

∂L
∂qt

= pt
′ (qt) · qt + pt (qt)− λ ≤ 0

( = 0 for qt > 0)
(2)

and

λ ≥ 0

( = 0 for
2

∑
t=1

qt < W).
(3)

The parameter λ denotes the shadow price on stored water, i.e. positive if the resource
constraint in equation (1) is binding and zero otherwise. Without loss of generality, let
us assume that the shadow price is positive and that the monopolist also produces in
both periods.9 The first order conditions may then be written as

p1 (q1)

(
1 +

1
ε1

)
= p2 (q2)

(
1 +

1
ε2

)
= λ, (4)

where εt =
pt
qt

∂qt
∂pt

< 0 is the price elasticity of demand. Rearranging equation (4), it is
easy to see that prices depend on the relative demand elasticities in each period. For
example, we would have

p1 (q1) > p2 (q2) if |ε1 (q1)| < |ε2 (q2)| . (5)

Since we have assumed a downward-sloping demand curve, the above corresponds to

q1 < q2 if |ε1 (q1)| < |ε2 (q2)| . (6)

The monopolist solution thus involves a reallocation of production across periods, con-
tingent on the elasticity of demand. This contrasts with the social solution that arises

9If we instead assumed that the shadow price is zero (due to a non-binding resource constraint), then
the ensuing results are largely unchanged but for some fraction of water that remains unused.
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under perfect competition, where production and prices are equalised across periods.10

We can further generalise the difference between monopoly and perfect competition in
this simple setup as

qM
t < qC

t and qM
t̂ > qC

t̂ if |εt (qt)| < |εt̂ (qt̂)| , (7)

where the M and C superscripts denote the monopolist and competitive outcomes, re-
spectively. The monopolist is able to recoup higher profits by withholding supply —
hence driving up the electricity price — during the relatively inelastic period when
consumers are least responsive to such changes. Market power not only causes elec-
tricity prices and quantities to diverge from their social optimums, but also implies an
observable difference in the way that reservoirs are managed. Reservoirs belonging to
dominant firmswill tend to be relatively fuller during inelastic periods than theywould
otherwise have been under competition. The reverse is true duringmore elastic periods.

The generalized version of the above model with more than two periods follows the
same pattern. Producers maximize profits by reallocating production away from rel-
atively inelastic demand periods. Moreover, the theoretical extensions that Førsund
(2015) and others (e.g. Hansen, 2009; Mathiesen et al., 2013) explore beyond the simple
case presented heremay be regarded as variations on a theme. While each variation has
the ability to ameliorate or exacerbate market distortions in its own way, the substan-
tive result is largely unchanged.11 Market power leads to a strategy of shifting water
use away from relatively inelastic demand periods to relatively elastic ones. Moreover,
as described in Section 3, electricity demand in Norway is relatively more inelastic dur-
ing the summer months. Our testable hypothesis is therefore that dominant firms will
tend to maintain fuller reservoirs in summer and lower reservoirs in winter.

10By definition, the price elasticity of demand facing a competitive firm is always perfectly elastic, i.e.
ε → ∞. That competition leads to equal prices and quantities across periods is easily shown by solving
the above set-up as a social optimisation problem that maximizes total welfare. See Førsund (2015).

11For example, trade with outside regions can moderate the intertemporal disparities yielded by the
standard monopoly model. However, accounting for transmission constraints brings us back towards
the original result.
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Table 1: Summary of data sources

Data Description Period Frequency Source

Reservoirs Volumes and levels for the 500
largest reservoirs in Norway.

2000–2013 Daily NVEa

Plants & firms Regulatory limits, GIS data, etc. N/A N/A NVEb

Elspot areas Bidding area divisions and changes. N/A N/A NVEc, Nord Poold
Electricity (I) Prices, flows and transmission ca-

pacities.
2000-2013 Hourly Nord Poole

Electricity (II) Bid curve data. 2014–2017 Hourly Nord Poolf
Weather Meteorological station data. 2000–2013 Hourly NCDCg

a Available upon request. See: http://api.nve.no/doc/hydrologiske-data (Norwegian).
b http://gis3.nve.no/link/?link=vannkraft
c http://gis3.nve.no/link/?link=nettanlegg
d http://nordpoolspot.com/globalassets/download-center/elspot/elspot-area-change-log.pdf
e Proprietary. See: https://www.nordpoolgroup.com/services/Power-data-services/Product-details.
f https://www.nordpoolgroup.com/elspot-price-curves
g ftp://ftp.ncdc.noaa.gov/pub/data/noaa/

5 Data

This paper uses a novel dataset of Norwegian hydropower firms, reservoirs and elec-
tricity data. The data have been constructed from a variety of sources — both public
and proprietary — and are summarised in Table 1. Below I describe the original data
sources in greater detail, as well as the methods that have been used to merge these
disparate parts into a unified dataset.

5.1 Hydropower reservoirs, plants and firms

Time series data for a large number of Norwegian hydropower reservoirs — repre-
senting approximately 90 percent of total system capacity — were obtained from the
Norwegian Water and Energy Directorate (NVE). Most reservoirs are observed at a
daily resolution from January 2000 to December 2013, and contain water readings in
terms of both volumes (million m3) and levels (m). The reservoirs in my dataset are
subject to regulation regarding their maximum and minimum holding capacities. Op-
erating firms are legally required to keep their reservoirs within these limits so as to
guard against flooding and environmental degradation. To ensure comparability be-
tween the different reservoir sizes in my dataset, the reservoir data are therefore nor-
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malised as percentages of their respectivemaximum regulated capacities. After various
data cleaning steps described in Appendix A, I am left with a panel dataset of 500 Nor-
wegian hydropower reservoirs that comprises nearly 2million daily observations. Each
reservoir in my dataset is furthermore linked to a set of relevant covariates, including
details about the specific hydropower plant that it supplies, the plant’s average annual
output, the operating firm in question, and various pieces of geographic information.
These data were also obtained from the NVE.12

Tracing the evolution of local market structure over time requires that each power plant
and its associated reservoir(s) are mapped to the correct Elspot bidding areas at every
point in time. The information needed to do perform this mapping does not readily
exist. However, using the current Elspot allocation as a fixed starting point — together
with coordinate information contained in my dataset, the Elspot change log document
hosted by Nord Pool13, a map of the Norwegian electricity grid components14, and sev-
eral other sources — I am able to manually back out the divisions of 16 earlier regimes
going back to the beginning of 2000. These are depicted in Appendix B and denoted
by the capitalised letters A to Q for convenience. The most recent Elspot regime, which
went into effect on 2 December 2013, has already been highlighted in Figure 1.

At this juncture, it is worth pointing out something that is evident from the the maps
in Appendix B. Namely, bidding areas are not consistently defined under the different
regimes, even if they have been assigned the same area ID. For example, bidding area
NO1 under regime A differs substantially in size and network coverage to bidding area
NO1 under regime Q. In contrast, bidding area NO3 under regime B is exactly the same
as bidding area NO4 under regimes M through Q. To ensure consistency, I henceforth
adopt the term zone to describe a unique (and potentially reoccurring) Elspot footprint.
All told, there are 23 such zones. These will serve as key fixed effects units in the esti-
mation procedure and are summarised in Table C.1 in the appendices.

5.2 Electricity prices, flows and transmission constraints

All electricity data are obtained from Nord Pool. Electricity flows from one Elspot area
to others via defined corridors and is limited by the capacity constraints of the trans-

12For example: http://gis3.nve.no/link/?link=vannkraft
13http://nordpoolspot.com/globalassets/download-center/elspot/elspot-area-change-log.pdf
14http://gis3.nve.no/link/?link=nettanlegg
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mission lines that make up those corridors. Similarly, a bidding area can have several
corridors attached to it, depending on the number of neighbouring areas that it shares
borders with. I use the phrase “in-use hours” as a shorthand for the total number of
hours that electricity was flowing to or from a bidding area, across all of its corridors,
in a single day. Consequently, it is possible for an area to experience more than 24 in-
use hours during a day if it is connected via several corridors.

Electricity flow data for the individual Norwegian bidding areas are available at an
hourly level, by corridor, from November 2000 onwards.15 I match these flows to the
maximum transmission capacities for the relevant corridors at each hour. I then de-
fine the transmission constraint on a corridor as binding whenever the hourly flows
— whether importing or exporting — are equal to the maximum transmission capac-
ity. It is furthermore possible to infer binding transmission constraints during the nine
months prior to November 2000 by looking at differences in spot prices between neigh-
bouring regions. For instance, if the price in NO2 is higher than NO1, then it is reason-
able to infer that NO2 is importing electricity fromNO1 and the transmission constraint
is moreover binding. If the spot price between two regions is equal during this period,
then I cannot infer much beyond the fact that the constraint is not binding. I cannot re-
liably say which area is exporting to which.

All told, binding transmission constraints are a common occurrence. Figure 2 presents
a normalized measure of constraint severity: The fraction of daily in-use hours that are
constrained for individual bidding areas, expressed as a cumulative distribution. To
summarize, just over a quarter of daily exporting periods (and a third of daily import-
ing periods) in the sample experience no binding constraint. However, the severity rate
rises to 50 percent — one constrained hour for every two in-use hours — for at least
half the sample. Moreover, a full quarter of daily exporting periods (and 15 percent of
daily importing periods) are completely constrained. That is to say, the transmission
capacities available to bidding areas in this category were always binding, so that elec-
tricity flows along all corridors were constrained during every single hour of the day
that they were in use.

15Real-time flows can be viewed on the Statnett website: http://www.statnett.no/en/Market-and-
operations/Data-from-the-power-system/Nordic-power-flow
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Figure 2: Cumulative distribution of transmission constraint severity

Notes: Severity reflects how often electricity flows to or from a bidding area were con-
strained by maximum transmission capacities.

5.3 Residual Supply Index (RSI)

Having established the institutional features underlying the reservoir and electricity
data of this paper, we are now in a position to define a relevant measure of market
power. Market power in a liberalised electricity sector is typically measured by the
Residual Supply Index (RSI). Originally developed by the California Independent Sys-
tem Operator in the early 2000s, RSI is intended to overcome the shortcomings of tradi-
tionalmarket power indicators— such as theHerfindahl Index and other concentration
measures — as they apply to electricity markets.16 It is formally defined as

RSI f =
Total capacity− Firm f ’s capacity

Total Demand , (8)

where total production capacity is the total regional supply capacity less net imports,
and the other variables are self-explanatory. RSI thus captures the extent to which sup-
ply can meet demand, absent the supply of any one firm. Note that it is measured in-
versely to market power, such that a smaller RSI indicates greater market power. Sim-
ilarly, an RSI less than one implies that a firm is pivotal. If RSI f < 1, then the market

16See Sheffrin (2002), Twomey et al. (2005), and Newbery (2009).
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cannot be satiated without f ’s production.

I calculate RSIs for every firm by estimating the daily output for each plant and then
matching this to the observed electricity demand, supply, and net import values of the
relevant market areas. While I do not observe (non-anonymous) daily bids of individ-
ual firms, I do know the average annual production of each plant. This allows me to
obtain a daily equivalent by downscaling the annual numbers. Because this step in-
volves some subjectivity, I construct four separate RSI measures that — taken together
— should provide a robust insight into firm market power. The distinction between
these fourmeasures is a function of (i) how the relative competitive area is determined,
and (ii) how average annual production is downscaled to the daily level.

1. Constraint-weighted RSI: Weights local RSI (i.e. in a firm’s immediate bid area
only) and system-wide RSI according to the relative frequency with which trans-
mission constraints were binding for that day. For example, if the transmission
corridors attached to a particular bidding area were constrained for 50 percent of
the time, then a firm’s constraint-weighted RSI is calculated as the simple mean
of its local RSI and that which it commands within the Norwegian system as
a whole. Similarly, if the electricity flows that day were entirely unconstrained,
then a firm’s weighted RSI is exactly equal to its system-wide RSI. As for down-
scaling, the daily GWh of each plant i is assumed to be the simple mean of its the
annual production (i.e. GWhi,d = GWhi,y/365).

2. Constraint-weighted (seasonally-adjusted) RSI: Follows the same approach as
the above, but adjusts the downscaling step to account for observed seasonal fluc-
tuations in output. In other words, it suggests that daily production for all plants
is higher during winter than it is in summer.

3. Price-basedRSI:Thismeasure treads a similar path to the first constraint-weighted
approach above. However, rather than a weighted average of a firm’s RSI in its
local bidding area and the system as a whole, it is based on the actual formation
of common price markets. These may comprise one or several bidding areas, or
even the system as a whole when there are no transmission constraints. Such an
approach has the advantage of accounting for constrained periods thatmay not be
obvious when comparing electricity flows and capacities at a bidding area’s im-
mediate borders. For example, a bidding area may be part of a larger segmented
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market arising from a bottleneck elsewhere in the system, even though electricity
is freely flowing across its own corridors.

4. Price-based (seasonally-adjusted) RSI: As per the previous price-based mea-
sure, but GWh adjusted to reflect seasonal fluctuations.

The distribution for each of these four RSI measures, over all regimes, is plotted in
Figure 3. We see that there is generally strong agreement between all of them. However,
the seasonally-adjusted and price-based measures tend to be more conservative, with
fewer observations crossing the pivotal (RSI < 1) threshold.

5.4 Elasticity of electricity demand and implied reservoir volumes

A great advantage of working with market-based electricity data in recent years is the
availability of detailed bid curve histories. Recovering demand and supply elasticities
directly from the data is then a simple matter of estimating the relevant arc elasticities
(e.g.Wolak, 2003; Bigerna et al., 2016). Which is to say, we needmerely trace deviations
from a clearing price along the demand (supply) curve and calculate the resulting slope
changes as per any introductory economics textbook. The arc elasticity approach not
only benefits from being relatively easy to execute, but should also yield more precise
estimates than alternative approaches.17

Nord Pool has made anonomized bid curve data available since mid-2014 and I have
obtained the hourly bid sheets until mid-2017.18 While this three-year period falls after
my primary study period (i.e. 2000-2013), the fact that I am interested in persistent
differences in seasonal elasticities allows me to proceed apace. I begin by defining an
arbitrary arc segment of 5 EUR on either side of the hourly clearing prices.19 I then
calculate the corresponding arc elasticity of demand (εD) for each hour and aggregate
these up into daily means. Finally, I regress these daily elasticities on month dummies

17To the best of my knowledge, existing estimates of the elasticity of electricity demand in Norway
— and, indeed, the wider Nordics — rely on indirect approaches such as instrumental variables, model
simulation, and parameterization (e.g. Johnsen, 2001; Hansen, 2004; Bye and Hansen, 2008). Likely, this
is because the availability of detailed bid curve data is a relatively new advent.

18https://www.nordpoolgroup.com/elspot-price-curves. See Figure D.1 in the appendices for a de-
tailed comparison of hourly bid curve data across two representative summer and winter dates.

19Experimenting with different segment lengths yields very similar answers to the ones presented
here. As a reference, the average Nord Pool clearing price over 2014–2017 was 25 EUR.
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Figure 3: Distribution of RSI measures

Notes: The black vertical line denotes an RSI value of 1. Observations to the left of this
(i.e. < 1) are regarded as pivotal. The x-axis is truncated at an upper value of 5 and
each facet represents a different Elspot regime.

and various other calendar effects. The key finding from this regression is summarized
in Figure 4. The predicted demand elasticities exhibit a clear seasonal trend, with εD at
its smallest absolute value in June and largest absolute value inNovember. These results
correspond closely to the general finding of previous studies, which rely on alternate
methods for estimating Norwegian electricity demand elasticities (e.g. Johnsen, 2001;
Hansen, 2004; Bye and Hansen, 2008). We can therefore say with some confidence that
electricity demand in Norway is at its most inelastic in the early summer months and
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Figure 4: Demand elasticity estimates

Notes: Estimates are obtained by regressing daily arc elasticity values, obtained from
bid curve data over 2014–2017, onmonthly dummies and other control variables. Dots
denote point estimates and error bars denote 95 percent confidence intervals. The
orange horizontal line highlights the median estimate and, following equation (6),
serves as a reference case for periods when dominant firms would withold theoreti-
cally production (above the line) or oversupply (below the line) relative to the com-
petitive outcome.

at its most elastic in the early winter months (or, late autumn months).

Importantly, these elasticity estimates provide the empirical link to a theory-motivated
prediction ofwhen (andhow) variations inmarket powerwill cause deviations in reser-
voir management. Following equation (6), dominant hydropower firms will reallocate
their water resources so as to withhold production during the relatively inelastic peri-
ods of the year. The opposite is true during the relatively elastic periods of the year. All
other things being equal, the cumulative effect of this (proportional) production real-
location should lead dominant Norwegian firms to maintain relatively higher reservoir
volumes in the summer months and relatively lower reservoir volumes in the winter
months. Figure 5 maps out these implied deviations in production and reservoir vol-
umes in stylised fashion, taking the theory of Section 4 and my empirical εD estimates
here as given. The figure encapsulates the testable hypothesis that I shall subject my
data to. If the theory about market power in a hydropower setting is correct, then my
main regression analysis should yield coefficients that look roughly similar to the sinu-
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(b) Implied deviation in reservoir volume

Figure 5: Stylised implications of market power

Notes: Implied deviations are relative to a competitive outcome (orange lines) and
based upon the empirical demand elasticity estimates shown in Figure 4. Panel (A)
assumes that production follows a dominant hydropower firm’s optimal allocation
rule as per equation (6). Panel (B) takes this production allocation as given andmaps
it to reservoir volumes, assuming an approximate May-April hydro year.
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soidal shape of Figure 5(B).

5.5 Weather data

Weather data are obtained from the National Climate Data Center (NCDC).20 In order
to derive a vector of daily weather data that is unique to each reservoir in my dataset,
I follow a simple inverse-distance rule. Each reservoir is matched to its three nearest
meteorological stations and weather conditions are assumed to be a weighted average
of the conditions at these three stations. While this “nearest neighbours” approach is
conceptually straightforward, there are two additional points worth noting. First, while
snow depth and glacial melt are potentially valuable data for understanding Norwe-
gian reservoir dynamics, these series are only available for a small subset (both tem-
porally and spatially) of the meteorological stations that I have access to. I have thus
excluded them from the analysis and focus predominantly on temperature and rainfall
data. Second, the meteorological station dataset is unbalanced, with new stations com-
ing into operation during the study period and others falling out of the NCDC records.
Appendix A describes this issue in more depth, as well as the approach that I favour in
dealingwith the unbalanced station data. The upshot is that I determine the three near-
est neighbours for each station on a per-year basis, according to which stations were
operational during that year. This yields a dataset of 201 stations from which I derive
the reservoir-specific weather data. A map showing the relative geographic distribu-
tion of these meteorological stations, as well as their years of availability relative to the
full study period, is shown in Figure E.1.

6 Empirical strategy

6.1 Identification

A key assumption of my empirical framework is that changes to Norway’s Elspot bid-
ding areas over time provide a plausibly exogenous source of variation in local mar-
ket power. My identification strategy thus relies on the fact that (i) the Elspot area
divisions are determined by outside factors, and (ii) they affect a hydropower firm’s

20ftp://ftp.ncdc.noaa.gov/pub/data/noaa/
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production decision only via changes in market share. It is relatively straightforward
to argue for the former. The reason that separate bidding areas exist in the first place
is that geographical and technical constraints limit the flow of electricity that is phys-
ically possible between two regions (Steen, 2004; Mirza and Bergland, 2012; ENTSOE,
2015, etc.). That these bidding areas have been redrawn over time is in of itself testa-
ment to the underlying physical constraints, as Statnett (the system operator) seeks to
best manage internal congestion problems, outages and scheduled maintenance peri-
ods, litigation procedures, and the laying out of new cables.21

The second component of my identification strategy — i.e. changes to the Elspot bid-
ding areas only affect producer behaviour through changes in market share — is po-
tentially complicated by the fact that the demand will also change with the redrawing
of bidding areas. Yet, the demand complication is ultimately dealt with fairly easily
through the inclusion of zone fixed effects.22 This allows us to control for demand
by grouping reservoirs at the zone level. Any residual differences between otherwise
similar reservoirs can thus be interpreted as a causal result of market power, since pro-
ducers within the same zone will always face the same demand, irrespective of whether
transmission constraints are binding or not.

It is worth emphasizing that this latter claimwould not necessarily hold true if we were
to compare plants with different production technologies (e.g. hydro versus nuclear).
Electricity in modern power systems is dispatched according to the merit order of pro-
duction, with plants ranked in ascending order of their marginal costs. Depending on
the supply characteristics of the redrawn bidding areas, the relative positions that two
plants occupy along the merit curve would likely change if they did not have the same
production technology. In other words, the probability of a producer serving a partic-
ular consumer — or, at least, the relative probability — would change and we would
not be able to control for demand effectively. Fortunately, my exclusive focus on hy-
dropower plants means that I am able to neatly sidestep this problem.23 Not only am I

21The abuse of market power is not listed by Statnett as a reason for the redrawing of bidding areas.
Instead, their communications to Nord Pool participants makes it clear that their decisions are based on
exogenous factors like climate (e.g. drought) and the gradual completion of long-term grid connectivity
objectives (e.g. subsea cables to new regions).

22Recall that a zone denotes a bidding area under a particular Elspot regime.
23At the very least, other studies that do not benefit from this unique institutional setting must con-

trol for varying plant types and bidding curves explicitly. For example, Puller (2007), Mansur (2007),
Hortaçsu and Puller (2008), and Davis and Hausman (2016) rely on marginal cost estimates for differ-
ent generation technologies to infer bidding behaviour.
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always comparing like with like, but recall that the marginal costs of hydropower pro-
duction are negligible. These plants occupy the lower rungs of themerit curve irrespec-
tive of other production technologies. Such factors further help to simplify the econo-
metric analysis and again speak to the unique empirical advantages of hydropower in
general and this research setting in particular.

6.2 Regression specification

Consider a fixed effects model that estimates water volumes in reservoir i (i, ..., N), be-
longing to hydropower firm f ( f = 1, ..., F), at time t (t = 1, ..., T). The primary obser-
vation unit is the reservoir, while the secondary observation unit is the firm. Following
the notation of Abowd et al. (2008), the reservoir–firm relationship may be conceptu-
alised through a link function, f = F(i, t), which indicates that firm f is managing
reservoir i at time t. The regression model may thus be written as

Vit =
12

∑
m=1

βmMmt +
12

∑
m=1

γmMmt ·
(
−RSIit,F(it)

)
+
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∑
z=1

ηzZit + XβX + ai + vit, (9)

where V is reservoir volume as a percentage of maximum regulated capacity, Mm is a
set ofmonth dummies, and RSI is ameasure of themarket powerwielded by each firm.
(The negative representation is used here to reflect an increase in market power.) The
matrix X represents a set of additional controls such as (price-)zone dummies, as well
as temperature and precipitation data. The model is completed by a composite error
term, ai + vit, with the former component denoting an unobservable reservoir-specific
effect — e.g. idiosyncratic operating characteristics or hydrological conditions — that
we eliminate from the model via within group transformation.

The key parameters of interest in the above regression model are the γm coefficients
pertaining to the interacted market power terms. By interacting RSI with Mm, we are
allowing for the fact that market power can have a differential effect on reservoir vol-
umes, depending on how the price elasticity of demand varies by period.24 Given the

24Following Balli and Sørensen (2013), I demean the reservoir-specific RSI terms prior to actually run-
ning any regressions on my computer. That is, the estimated model becomes Vit = ∑12

m=1 βm Mmt +

∑12
m=1 γm Mmt · (RSIit,F(it) − RSIi) + XβX + ai + εit . This helps to safeguard against possibly spurious
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observed variations in Norwegian demand elasticities (Johnsen, 2001; Hansen, 2004;
Bye and Hansen, 2008), we would expect a positive sign on these coefficients during
the summer months, as dominant producers withhold their production in the face of
relatively more inelastic demand. Similarly, we expect these coefficients to then turn
negative during the winter months as demand elasticities increase.

Finally, note that all of a firm’s reservoirs in a realized (price-)zone share a common
treatment; namely the same shock to local market power. I will therefore be double
clustering my standard errors at the firm and (price-)zone level.

7 Results

My primary regression results are presented in Table 2. A visual equivalent in the form
of faceted coefficient plots is presented in Figure 6. While each column in the table de-
picts a different model specification, the highlighted coefficients may all be interpreted
in the same way. These correspond to the γm parameters described in regression equa-
tions (9) and show themarginal effect of increasingmarket power on reservoir volumes,
contingent onmonth. Economic theory, together with my estimates of Norwegian elec-
tricity demand elasticities in Section 5.4, suggests that the sign on these variables should
be positive during the summer months and negative during the winter months. More-
over, since both reservoir volume and market share are measured in percentages, these
coefficients should be read as elasticities.

All four models exhibit a clear sinusoidal pattern. Increased market power generally
leads to higher reservoir volumes— i.e. lower production—during the summermonths
and the opposite during the winter months. Taking Model (3) as a benchmark, a one
unit decrease in RSI (i.e. increase onmarket power) corresponds to an approximate two
percent increase in reservoir volumes during the peak summer months. Conversely,
the same change in RSI yields a two percent decrease in volumes during the peak win-
ter month of February. Again, this is all in accordance with our theoretical predictions
from earlier; e.g. Figure 5b.

I run various alternate specifications to confirm the robustness of my results.25 One

results due to unit-varying slopes. However, given that the underlying logic of the model is unchanged,
I shall continue using the notation of equation (9) for simplicity.

25An earlier version of this paper used market share — the proportion of total production controlled
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Table 2: Regression results (RSI)

Dependent variable: Reservoir volume (% of maximum capacity)
Constraint-weighted Price-based

(1) (2) (3) (4)

Summer months
−RSI × May 2.727 (4.020) -4.754*** (0.583) -0.526 (0.835) -2.493** (1.167)
−RSI × Jun 8.295*** (2.836) 1.661** (0.744) 1.625** (0.781) 0.777 (0.807)
−RSI × Jul 9.241*** (3.222) 1.980* (1.185) 1.516*** (0.521) 0.524 (0.591)
−RSI × Aug 9.919** (3.872) 2.256*** (0.871) 1.790*** (0.589) 1.107* (0.591)
−RSI × Sep 8.633** (3.461) 1.454 (0.998) 1.979*** (0.474) 1.210*** (0.406)
−RSI × Oct 7.106*** (2.281) -0.250 (1.300) 0.633 (0.420) -0.183 (0.326)

Winter months
−RSI × Nov 6.816*** (1.408) -1.155 (2.300) 0.718 (0.636) -0.532 (0.668)
−RSI × Dec 4.770*** (1.619) -1.850 (1.386) 0.304 (0.948) -0.643 (0.815)
−RSI × Jan 2.549 (2.470) -1.236 (1.164) -0.702 (0.787) -0.686 (0.596)
−RSI × Feb 0.627 (3.500) -2.730*** (0.834) -1.928** (0.908) -1.887** (0.898)
−RSI × Mar 0.616 (4.279) -3.870*** (1.260) -0.822 (0.764) -1.616** (0.785)
−RSI × Apr 3.353 (4.884) -3.175*** (0.955) -1.039*** (0.395) -1.415* (0.781)

Fixed-Effects:
Reservoir ✓ ✓ ✓ ✓
Month ✓ ✓ ✓ ✓
Hydro year ✓ ✓ ✓ ✓
Zone ✓ ✓ × ×
Price Zone × × ✓ ✓

Observations 1,755,247 1,755,247 1,790,699 1,790,699
R2 0.50818 0.5065 0.51098 0.51076
Within R2 0.32963 0.32735 0.26059 0.26026

Notes: The table shows the effect of increasing market power (decreasing RSI) on reservoir levels. In
particular, the coefficients on the key −RSI × month interaction terms denote the marginal effect of a
one percent decrease in producer RSI on reservoir levels, conditional on month of year. A positive co-
efficient indicates withholding of supply as a producer gains market power, and vice versa. In addition
to various fixed effects, the models control for local weather conditions via a group of temperature and
precipitation covariates. These are of the expected sign and jointly significant, but omitted for brevity.
Models (1) and (2) weight local RSI and system-wide RSI according to the severity of transmission
constraints, with the latter adjusting for observed seasonal variations in output. Models (3) and (4)
measure RSI according to the formation of common price zones, with the latter again adjusting for
observed variations in seasonal output. Standard errors in parentheses are two-way clustered at the
producer & (price-)zone level. * p < 0.1, ** p < 0.05, *** p < 0.01

variation of interest is a discrete measure of market power. Namely, how does a firm’s
“pivotal” status (RSI < 1) impact its production profile? The results from this set of
regressions are presented in Table 4. As before, we see the same sinusoidal pattern

by a firm — instead of RSI, and the qualitiative results are very similar.
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Figure 6: Change in reservoir volume due to increased market power

Notes: Marginal effect of a one percent decrease in producer RSI on reservoir volumes
by month. Dots denote point estimates and the error bars show 95 percent confidence
intervals. See Table 2 and the text for details.

reflective of strategic resource shifting. Firms that gain pivotal status clearly tend to
keep higher reservoir volumes in summer and lower reservoir levels in winter.

While the remaining coefficients and controls have been omitted from the tables for
brevity, these are all jointly significant and, where applicable, of the expected sign and
magnitude. It should also be said that the comparative impact of market power on
reservoir volumes is modest next to the role of other factors like snow-melt runoff and
changes in aggregate electricity demand. Reservoir volumes typically vary over a range
of 70 to 85 percent of maximum regulated capacity as one moves from the pre-melt
trough in early spring to the autumn peak. Yet, it still suggests that firms within the
same bidding area will operate their reservoirs in meaningfully distinct ways when the
differences in local market share are large enough.
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Table 4: Regression results (pivotal producers)

Dependent variable: Reservoir volume (% of maximum capacity)
Constraint-weighted Price-based

(5) (6) (7) (8)

Summer months
Pivotal × May -5.881** (2.768) -4.391** (2.204) -0.996 (1.250) -5.252*** (2.037)
Pivotal × Jun 1.169** (0.485) 2.608 (1.833) 1.854 (1.294) 0.007 (1.185)
Pivotal × Jul 2.666 (1.699) 4.499* (2.435) 2.683** (1.224) 1.764 (1.222)
Pivotal × Aug 3.128 (1.939) 5.570** (2.385) 3.635** (1.652) 2.750 (1.820)
Pivotal × Sep 2.787 (2.116) 4.883*** (1.884) 4.347** (1.788) 3.526** (1.738)
Pivotal × Oct 0.294 (1.847) 0.166 (1.466) 0.836 (1.485) -0.781 (1.363)

Winter months
Pivotal × Nov -0.126 (1.473) 1.230 (1.633) 0.132 (1.297) -1.419 (1.033)
Pivotal × Dec -0.594 (0.568) -0.158 (0.988) 0.189 (1.137) -1.134 (0.939)
Pivotal × Jan -0.356 (1.275) 0.744 (1.291) -0.533 (0.773) -1.786** (0.785)
Pivotal × Feb 0.041 (1.231) 0.998 (0.735) 0.471 (1.076) -1.607 (1.670)
Pivotal × Mar 1.408 (1.796) 2.625*** (0.975) 2.479 (2.334) 0.264 (2.359)
Pivotal × Apr 1.338 (3.209) 3.091** (1.482) 2.909 (1.978) 1.118 (2.177)

Seasonal RSI × ✓ × ✓
Weather controls ✓ ✓ ✓ ✓

Fixed-Effects:
Reservoir ✓ ✓ ✓ ✓
Month ✓ ✓ ✓ ✓
Hydro year ✓ ✓ ✓ ✓
Zone ✓ ✓ × ×
Price Zone × × ✓ ✓

Observations 1,755,247 1,755,247 1,790,699 1,790,699
R2 0.50534 0.50587 0.51049 0.51066
Within R2 0.32576 0.32648 0.25984 0.2601

Notes: The table shows the effect of becoming a pivotal producer (RSI < 1) on reservoir levels. Models
5 through 8 thus represent discrete equivalents of Models 1 through 4, respectively, from Table 2. The
same notes and general interpretations apply. Standard errors in parentheses are again two-way clus-
tered at the producer & (price-)zone level. * p < 0.1, ** p < 0.05, *** p < 0.01

8 Concluding remarks

How does market power affect firm behaviour? Microeconomic theory provides the
answer familiar to every economist: Dominant firms will produce less than the social
optimum (thereby raising prices and ensuring themselves higher profits). However,
this fundamental tenet is surprisingly hard to verify with empirical data. A host of
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complications — from the unobserved factors underlying the decision to enter or exit a
market, to uncertainties about marginal cost curves — prohibit us from causally iden-
tifying such behaviour among real-world firms. In the specific case of a hydro-based
electricity system, theory tells us that dominant hydropower firms will reallocate their
water resources away fromperiodswith relatively inelastic demand for electricity to pe-
riodswith relatively elastic demand. This would allow them to recoup higher profits by
restricting supply when consumers are least responsive to the resulting price increase.

I test this hypothesis using a novel data set of Norwegian hydropower reservoirs, power
plants and electricity flows. Changes to bidding area divisions and binding transmis-
sion constraints provide the additional layers of exogenous variation that allow me
to cleanly identify the causal impact of market power on firm behaviour. Consistent
with the predictions of theory, I find that increased market power leads to a modest,
yet definitive, intertemporal shifting of water resources. Taking Model (3) as a bench-
mark, a one percent decrease in producer RSI yields a 1–2 increase in reservoir volumes
during summer and a similar percent decrease during winter. This market share effect
is distinct from the regular seasonal patterns in reservoir volumes that arise from an-
nual snow-melt inflows and so forth. The qualitative results are also robust to various
specifications and model formulations.

Constructing a large dataset such as this fromdisparate sources entails numerous choices
in how one compiles the data. For instance, an implicit simplifying assumption in my
empirical analysis has been that firm ownership of reservoirs remains constant over
the review period. This may not be an entirely benign assumption and could mask
some important results if there was significant merger and acquisition activity during
that time. On the other hand, the Norwegian electricity sector had already been lib-
eralised for nearly two decades by the start of my review period. The maturity of the
market should give us at least some confidence regarding its stability and competitive
structure. In a similar vein, the effects of partial- and cross-ownership have not been
considered (c.f. Amundsen and Bergman, 2002). Fully accounting for these issues is a
potentially fruitful topic for future research.

Such caveats notwithstanding, the results of this paper may be interpreted as empiri-
cal vindication of the underlying theory. More to the point, they can help guide com-
petition authorities in effectively regulating electricity markets like the Nordic system,
where hydropower comprises amajor share of generation. Or, where transmission con-
straints create opportunities for producers to exercise local market power. To the best of

29



my knowledge, this paper is one of the first studies to provide direct empirical evidence
— absent structural assumptions or simulated counterfactuals— of noncompetitive be-
haviour in a dynamic market setting. While the magnitude of the effects that I identity
here are modest, it is worth remembering that the Nordic system is generally regarded
as a paragon among liberalised electricity markets. I therefore interpret my results as a
lower bound on the extent to which market power is being exercised more generally in
the economy. Any empirical advantages provided by the institutional features of this
particular market should be tempered by these considerations. A larger lesson is that
even our most advanced markets may be susceptible to the abuse of market power un-
der relatively common conditions.
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Appendices

A Data cleaning and and merging

A.1 Hydropower reservoirs, plants and firms

As noted in the main text, reservoir data are normalised in terms of their maximum
regulated capacities. While this normalisation procedure is generally straightforward,
a number of reservoirs in the dataset suffer fromdiscrete jumps inmeasurement values,
while others have conflicting regulatory limits ascribed to them. These anomalies may
reflect adjustments to the basemeasurement value (e.g., metres above sea level versus a
local reference point), regulatory changes, and, in some rare cases, building out of extra
capacity. To account and correct for such anomalies, the data are filtered to detect large,
discrete jumps in measurement values and other outliers. These are then corrected
as best as possible by reconciling the data with the various regulatory limits, and by
comparing the volume and levels series for consistency.26

A related problem is that some reservoirs exhibit distinctly unnatural trends. Most
obviously, long streaks of the same recurring value. This issue is effectively limited
to small reservoirs in the dataset and almost certainly constitutes measurement error.
Streaks extending over 10 ormore consecutive observations are thus discarded from the
analysis. As a final check, time-series plots of all 500 individual reservoirs are examined
manually to check for abnormalities that the automated filtersmay havemissed, leaving
a handful of cases to be corrected as per the above. Any remaining data anomalies that
could not be reconciled in a satisfactory manner, or rationally accounted for, have been
dropped from the analysis.

A.2 Weather data

The major issue with respect to the weather data used in this study is the fact that the
NCDC panel dataset is unbalanced. While some Norwegian meteorological stations
in the dataset are operational over the entire 2000–2013 study period, others come in

26While the data analysis part of this study does not utilise the levels series, it nonetheless provides a
very useful counterpoint to the volumes series for this reason.
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and out of existence. This presents a challenge insofar as I have to decide between
two contrasting approaches for determining the (three) nearest neighbour stations to
each reservoir, which are in turn used for calculating a reservoir’s weather data vector
via the inverse-distance weighted average rule. The first approach is to consider only
meteorological stations that are available over the full 14-year study period. However,
this excludes approximately 90 percent of the stations that would qualify as a “nearest
neighbour” during the period when they were operational. I therefore favour a second
approach, which is to proceed year-by-year and base the nearest neighbour rule on the
stations that were operational for that particular year. This latter approach ensures that
as much useful information is retained as possible and that the weather data for every
reservoir in my dataset is as accurate as it can be. Experimentation shows that this
choice has a negligible effect on the main findings.
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B Previous Elspot regimes
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C Elpsot zones

Table C.1: Elspot zones

Zone First instance Repeat instances
1 A (NO1) B (NO1); C (NO1); E (NO1); G (NO1); I

(NO1); J (NO1); K (NO1); L (NO1)
2 A (NO2) C (NO2); E (NO2); G (NO2); I (NO2); K

(NO2)
3 J (NO2) L (NO2); M (NO3)
4 B (NO3) D (NO3); J (NO3); L (NO3); M (NO4); N

(NO4); O (NO4); P (NO4); Q (NO4)
5 D (NO1) –
6 D (NO2) –
7 F (NO1) –
8 F (NO3) –
9 F (NO2) H (NO3)

10 F (NO4) –
11 H (NO1) –
12 H (NO2) –
13 M (NO1) –
14 M (NO2) –
15 N (NO1) O (NO1); P (NO1)
16 N (NO3) O (NO3); P (NO3); Q (NO3)
17 N (NO2) –
18 N (NO5) –
19 O (NO2) P (NO2)
20 O (NO5) P (NO5)
21 Q (NO1) –
22 Q (NO5) –
23 Q (NO2) –

Notes: Zones describe particular geographic and network extents, which may be
common to multiple Elspot bidding areas under different regimes A–Q. See main
text for additional details.
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D Bid curves
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Figure D.1: Hourly Elspot bid curves

Notes: June 1st (red) and November 1st (blue) are selected as representative days from
themonthswhere electricity demand is respectively at its themost inelastic and elastic.
The y-axes have been truncated at 0 and 50 EUR/MWh to aid visual inspection.
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E Meteorological stations
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Figure E.1: Meteorological stations

Notes: Stations are colour-coded by years of availability relative to the full study period
of 2000–2013. A station with 100% availability thus provides weather records for all
14 years, while a station with 50% availability only provides records for seven years.
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