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Abstract. Devising guidance on how to assign individuals to treatment is an important goal
of empirical research. In practice individuals often arrive sequentially, and the planner faces
various constraints such as limited budget/capacity, or borrowing constraints, or the need to
place people in a queue. For instance, a governmental body may receive a budget outlay at the
beginning of an year, and it may need to decide how best to allocate resources within the year to
individuals who arrive sequentially. In this and other examples involving inter-temporal trade-
offs, previous work on devising optimal policy rules in a static context is either not applicable,
or is sub-optimal. Here we show how one can use offline observational data to estimate an
optimal policy rule that maximizes ex-ante expected welfare in this dynamic context. We allow
the class of policy rules to be restricted for computational, legal or incentive compatibility
reasons. The problem is equivalent to one of optimal control under a constrained policy class,
and we exploit recent developments in Reinforcement Learning (RL) to propose an algorithm to
solve this. The algorithm is easily implementable and computationally efficient, with speedups
achieved through multiple RL agents learning in parallel processes. We also characterize the
statistical regret from using our estimated policy rule. To do this, we show that a Partial
Differential Equation (PDE) characterizes the evolution of the value function under each policy.
The data enables us to obtain a sample version of the PDE that provides estimates of these
value functions. The estimated policy rule is the one with the maximal estimated value function.
Using the theory of viscosity solutions to PDEs we show that the policy regret decays at a n−1/2

rate in most examples; this is the same rate as that obtained in the static case.
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1. Introduction

Consider a situation wherein a stream of individuals arrive sequentially - e.g, when they get
unemployed - to a social planner. Once each individual arrives, our planner needs to decide on
an action, i.e a treatment assignment - e.g, whether or not to offer free job training - for the indi-
vidual, taking into account the individual’s characteristics and various institutional constraints
such as limited budget/capacity, waiting times and/or borrowing constraints. The decision on
the treatment is to be taken instantaneously. It is taken without knowledge of the character-
istics of future individuals, though the planner can, and should, form expectations over these
future characteristics. Once an action is taken, the individual is assigned a specific treatment,
leading to a reward, i.e a change in the utility for that individual. The planner does not observe
these rewards directly since they may be only realized much later, but she can estimate them
using data from some past observational studies. At the same time, the action of the planner
generates an observed change to the institutional variable, such as a reduced budget or increased
wait times. The planner takes note of these changes, and waits for the next individual to arrive.
This process may repeat indefinitely, or end when some terminal constraints are hit, e.g, when
budget or capacity is depleted. In this paper, we propose a Reinforcement Learning algorithm
to obtain the welfare maximizing treatment allocation rule for this dynamic setting.

We contend that dynamical constraints are common across governmental and non-governmental
settings. The following examples serve to illustrate the generality of our approach:

Example 1.1. (Finite budget) Suppose that a social planner has received an one-off outlay of
funds to be allocated to provide treatment to individuals, for example a NGO that has received
a single large donation. The planner faces a trade-off in terms of using some of the funds to
treat an individual at the moment, or holding off until a more deserving individual arrives in the
future. The utility of future individuals is discounted. The planner would like to determine the
optimal policy rule for treating individuals. Since the budget declines to 0, the optimal policy
rule will be a function of the individual covariates and current budget (and possibly time if we
allow for the arrival rates of individuals to vary with time).

Example 1.2. (Infinite horizon and optimal control) Suppose now that the planner re-
ceives a steady flow of revenue and individuals arrive at a constant rate, drawn from some
underlying distribution that is time-invariant. Ideally, the planner would like to determine a
rule for treatment based on individual characteristics so that expected costs equal revenue and
the budget stays constant, preferably at a level that is just above 0. Somewhat surprisingly,
even in this simple context, a ‘static’ policy - i.e one which does not change with current budget
level - is unsatisfactory. Indeed, under such a policy, the budget would set off on a random walk
since the individuals are iid draws from a distribution, and the expected change to budget is
0 only on average. Consequently, the budget would eventually violate any possible borrowing
constraint. On the other hand, if the policy were allowed to change with budget, we could find
one that varies in just the right way so as to nudge the budget back onto a constant level. Thus
a well chosen policy rule allows the planner to achieve some amount of optimal control over
the budget process. In this paper we show how one can solve for such a policy rule. In fact
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we are able to do so under settings more realistic than the one described here and that allow
for: (1) the revenue to follow an exogenous process that varies with time, (2) arrival rates of
the individuals to vary with time (e.g, due to seasonality in unemployment), (3) the distribu-
tion of individuals to change with time (e.g, due to different seasonal trends in unemployment
among different groups), and (4) uncertainty in forecasts of arrival rates (e.g, uncertainty in
unemployment forecasts).

Example 1.3. (Finite horizon) As a third possibility, suppose that the planner receives an
operating budget for each period, e.g a year. Any unused funds will be sent back at the end of the
year. Stylized as it is, this setup could serve as a good approximation for how some governmental
programs are run in real life, with a budget outlay that is determined by the legislature at the
beginning of each financial year. As in the previous example, a static policy is unsatisfactory
since it would now lead to the budget process following a random walk with drift.1 On the other
hand, a policy that changes with budget or time allows for the possibility to re-optimize when
the budget falls lower or higher than expected, and will thus increase overall welfare. We show
how to solve for such a policy. We do this even while allowing for the distribution of individuals
to change with time, and while also accounting for uncertainty in the forecasts for the arrival
rates. Both situations are again ones in which a static policy would be sub-optimal.

Example 1.4. (Queues) In some situations the planner is constrained not by budget or ca-
pacity, but by the amount of time individuals have to wait before getting treatment. This is
because the planner needs to expend time to treat an individual, which is much longer than the
average time between the arrivals of two individuals. For instance, the treatment could be a
medical procedure that takes time, or an unemployment service that requires the individual to
meet with a case-worker to help with job applications. In such cases, individuals selected for
treatment would be placed in a queue. But waiting is usually costly, and the impact of treatment
a decreasing function of the waiting times. Therefore the planner may decide to turn people
away from treatment if the length of the queue is too long. As long as the cost of waiting is
known or could be estimated using the data, we can use the methods in this paper to determine
the optimal rule for whether or not to place an individual in a queue.2 Such a rule will be a
function of the individual characteristics and current length of the queue.

For a related example, suppose there are now two queues, and individuals may be placed
in either one depending on their characteristics.3 The planner could reserve the shorter queue
for individuals deemed to be more at risk. She would therefore like a rule to determine which
queue to place an individual in, as a function of individual characteristics and the length of both
queues. One could again solve for this using our techniques as long as there is some information
on the effect of waiting times on different individuals.

1So the planner may run out of budget too soon, or is left with too large a budget surplus at the end of the year.
2For instance, in many administrative datasets, it is possible to find the duration of the unemployment spell
immediately preceding the enrollment into a labor market program, see the analyses of Crepon et al (2009),
Lechner & Wunsch (2013) and Vikstrom (2017). This duration can be used as a proxy for waiting time.
3Something akin to this happens in hospital emergency rooms, though the exact mechanism - whether to use
more than two queues etc - is different, see Woodworth and Holmes (2018).

3



Example 1.5. (Capacity constraints) For our final example, consider capacity constraints.
The treatment program might require caseworkers to do home visits, and there are only a fixed
number of them who are employed.4 The planner is thus forced to turn away individuals when
the capacity is full.5 However people finish treatment at some (known or estimable) rate which
frees up capacity. The planner would then like to find a treatment rule that allocates individuals
to treatment as a function of current capacity and individual covariates.6

In all these examples, we show how one can leverage observational data to estimate the
optimal policy function that maximizes ex-ante expected welfare. We do this under both full
and partial compliance to the policy. Furthermore, we propose algorithms to solve for the
optimum within a pre-specified policy class. As explained by Kitagawa and Tetenov (2018),
one may wish to restrict the policy class for computational or legal reasons. Another reason
is incentive compatibility, e.g, the planner may want the policy to change slowly with time to
prevent individuals from manipulating arrival times. The key assumption that we do impose is
that the environment, i.e the arrival rates and distribution of individuals, is not affected by the
policy. This is a reasonable assumption in settings like unemployment, arrivals to emergency
rooms, childbirth (e.g, for provision of daycare) etc., where either the time of arrival is not in
complete control of the individual, or it is determined by factors exogenous to the provision
of treatment. Alternatively, the planner can employ techniques such as queues that discourage
individuals from delaying arrival times. Finally, even where this assumption is suspect, most of
our results will continue to apply if we have a model of response to the policy (see Section 6.5).

If the dynamic aspect can be ignored, there exist a number of methods to estimate an optimal
policy function that maximizes social welfare, starting from the seminal contribution of Manski
(2004), and further extended by Hirano and Porter (2009), Stoye (2009, 2012), Chamberlain
(2011), Bhattacharya and Dupas (2012) and Tetenov (2012), among others. More recently,
Kitagawa and Tetenov (2018), and Athey and Wager (2018) proposed using Empirical Welfare
Maximization (EWM) in this context. While these papers address the question of optimal
treatment allocation under co-variate heterogeneity, the resulting treatment rule is static in that
it is determined ex-ante, before observing the data on which it will be applied. It does not
change with time, nor with current values of institutional constraints. In fact, in some of our
examples - Examples 1.1, 1.4, 1.5 - EWM is not even applicable. This is so even if we restricted
ourselves to using a static policy. For instance, with budget constraints, the EWM rule requires
one to specify the fraction of population that can be treated, but in our dynamic environment
the number of individuals the planner faces is endogenous to the policy.

There also exist a number of methods for estimating the optimal treatment assignment policy
using ‘online’ data. This is known as the contextual bandit problem, and there is a large
literature on this, see e.g, Dudik et al (2011), Agarwal et al (2014), Russo and van Roy (2016)

4Some examples of programs that require home visits include child FIRST, and the Nurse-Family partnership.
5We could consider other alternatives to turning people away, e.g the planner may place individuals in queues.
Or, she could hire more caseworkers on a temporary basis, but this comes with some cost.
6However, our methods only allow for finite dimensional states. Therefore we are not currently able to accommo-
date situations wherein the time at which people leave the treatment depends on when they first arrived, since
the (infinite dimensional) history of arrivals now becomes a relevant state variable.
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and Dimakopoulou et al (2017). However, bandit algorithms do not have a forward looking
nature; the eventual policy function that is learnt is still static in that it does not take into
account the effect of current actions on future states or rewards. By contrast, our primary goal
in this paper is to use ‘offline’, i.e historical data, to estimate a policy rule that is optimal under
such inter-temporal trade-offs. But as a by-product, our algorithms can also be applied in a
completely offline manner in infinite-horizon Markov Decision Process settings, such as Example
1.1, where the usual bandit algorithms do not apply.7 In these settings, we can guarantee that
our algorithm will eventually learn the optimal policy function, but we do not claim it is welfare-
optimal in the interim; see Section 6.4 for more details.

Another close set of results to our work is from the literature on Dynamic Treatment Regimes
(DTRs). We refer to Laber et al (2014) and Chakraborty and Murphy (2014) for an overview.
DTRs consist of a sequence of individualized treatment decisions for health related interventions.
These are typically estimated from sequential randomized trials (Murphy, 2005; Lei et al., 2012),
where participants move through different stages of treatment, which is randomized in each stage.
By contrast, we only make use of a single set of observational data, and this data itself does not
come in a dynamic form. Each individual in our setup is only exposed to treatment once. The
dynamics are faced not by the individual, but by the social planner. Additionally, in DTRs the
number of stages or decision points is quite small, typically between 1 and 5. By contrast, the
number of decision points, i.e the rate of arrivals, in our setting is very high, and we will find it
more convenient to formulate the model as a differential equation.

In this paper we propose techniques for estimating an optimal policy function that maps the
current state variables of observed characteristics and institutional constraints to probabilities
over the set of actions. We treat the class of policy functions as given. Then for any policy
from that class, we can write down a Partial Differential Equation (PDE) that characterizes the
expected value function under that policy, where the expectation is taken over the distribution
of the individual covariates. Using the data, we can similarly write down a sample version of the
PDE that provides estimates of these value functions. The estimated policy rule is the one that
maximizes the estimated value function at the start of the program. By comparing the PDEs,
we can uniformly bound the difference in their corresponding solutions, i.e the value functions.
This enables us to bound the welfare regret from using the estimated policy rule relative to the
optimal policy in the candidate class. We find that the regret is of the (probabilistic) order n−1/2

in many cases (Examples 1.1-1.3 & 1.5); this is also the minimax rate for the regret in the static
case (see, Kitagawa & Tetenov, 2018). An important requirement for obtaining the n−1/2 rate
is to employ doubly robust estimates for calculating the rewards (see, Athey and Wager, 2018).
As in both these papers, the rate further depends on the complexity of the policy function class
being considered, as indexed by its VC dimension.

In the static setting there is a close connection between optimal treatment rules and classifica-
tion that can be exploited for proving theoretical results and for proposing practical algorithms.
In our dynamic setting, the relevant connection is to optimal control. This requires new theoret-
ical methods since there is heavy dependence on the state variables between current and future
7See Sutton and Barto (2018, Chapter 3) on the difference between Markov Decision and bandit problems.
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periods (e.g, as in Example 1.2, the budget could follow a random walk). Our theory is thus
based on exploiting the properties of the PDEs for the expected value functions. Due to the
nonlinear nature of the PDEs in our setting, our analysis will be based on the concept of viscos-
ity solutions that allows for non-differentiable solutions, see Crandall, Ishii and Lions (1992) for
a survey. This concept has been recently used to analyze heterogeneous agent macroeconomic
models in continuous time (Achdou et al, 2018).

In terms of computation, we approximate the PDEs with suitable dynamic programming
problems by discretizing the number of arrivals. We then propose a modified Reinforcement
Learning algorithm that can be applied on the latter and that achieves the best value in a pre-
specified class of policy rules. Previous work in this literature in economics has used Generalized
Policy Iteration (e.g, Benitez-Silva et al, 2000). While this method works well with discrete
states, there are three major drawbacks: First, and most importantly, it does not allow for
restricting the solution to a pre-specified class of policy rules. Second, the algorithm becomes
cumbersome even with a few continuous states, and a few thousand decision points.8 Third,
it cannot be directly applied to our setup without incorporating a regularization parameter
to avoid over-fitting the value function (and it is not obvious how such a regularization may
be employed). This is because standard reward estimates (inverse propensity weighting, doubly
robust etc.) are direct functions of the outcome variables from the observational data. Hence the
usual policy iteration algorithm would overfit the estimate of the value function to this data. In
this paper, we propose a modified Reinforcement Learning (RL) algorithm that solves all these
issues.9 We adapt the Actor-Critic algorithm (e.g Sutton et al, 2000; Bhatnagar et al, 2009)
that has been applied recently to great effect in applications as diverse as playing Atari games
(Mnih et al, 2015), image classification (Mnih et al, 2014) and machine translation (Bahdanau
et al, 2016). Our algorithm avoids the over-fitting issue by working with the expected value
function that integrates over the rewards at each step. The integration is implicit since we use
stochastic gradient descent, so the computational complexity is not affected.

Our Reinforcement Learning algorithm appears to be a novel approach to the solution of
Hamilton-Jacobi-Bellman type PDEs. In addition to possessing strong convergence properties,
it is also parallelizable, which translates to very substantial computational gains. We also
outline the computational and numerical properties of our algorithm. On the computational
side, we prove that it converges to a well defined optimum. This is based on the convergence of
stochastic gradient descent, and we are able to directly employ theorems from the RL literature
to this effect. On the numerical approximation side, we use results from the theory of viscosity
solutions to provide conditions on the level of discretization so that the numerical error from
this is negligible compared to the statistical error in the regret bounds.

We illustrate the feasibility of our algorithm using data from the Job Training Partnership
Act (hereafter JTPA). We incorporate dynamic considerations into this setting in the sense that

8Continuous states may be handled through discretization or parametric policy iteration. The former is typically
slower and suffers from a strong curse of dimensionality (see Benitez-Silva et al, 2000, Section 2.5); while the
latter requires numerical integration which is also very demanding with more than a few states. Also, there is no
proof of convergence for parametric policy iteration, and it is known that it fails to converge in some examples.
9We refer to Sutton and Barto (2018) for a detailed comparison of recent RL algorithms with policy iteration.
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the planner has to choose whether to send individuals for training as they arrive sequentially.
The planner faces a budget constraint, and the population distribution of arrivals is also allowed
to change with time. We consider policy rules composed of 5 continuous state variables (3
individual covariates along with time and budget), to which we add some interaction terms. We
then apply our Actor-Critic algorithm to estimate the optimal policy rule.

2. An illustrative example: Dynamic treatment allocation with a finite budget
constraint

To illustrate our setup and methods consider the following simplified version of Example 1:
A social planner wants to provide training to unemployed people. The planner starts with a
fixed budget that she can use to fund the training. Individuals arrive sequentially when they
get unemployed, and the planner is required to provide an instantaneous decision on whether to
provide training to the current individual, or to to hold off for a more eligible applicant at the
risk of losing some utility due to discounting. The decision may be based on the current budget
and the characteristics of the individual. To help with the decision, the planner can draw on
information from a historical Randomized Control Trial (RCT) on the effect of training, along
with data on unemployment dynamics. The program ends when the budget is depleted. We
assume in this section that the waiting time between arrivals is drawn from an exponential
distribution with a constant parameter (i.e the unemployment rates are assumed to not change
with time), and also that the cost of training is the same for all individuals. This allows us
to characterize the problem in terms of Ordinary Differential Equations (ODEs), which greatly
simplifies the analysis. We consider more general setups and other examples, leading to Partial
Differential Equations (PDEs), in the next section.

Formally, let x denote the vector of characteristics of an individual, based on which the
planner makes a decision on whether to provide training (a = 1) or not (a = 0). The current
budget is denoted by z. Once an action, a, has been chosen, the planner affects an increase in
social welfare by the quantity Y (a) that is equivalent to the potential outcome of the individual
under action a. We shall assume for this section that Y (a) is affected by the covariates x but
not the budget. Define r(x, a) = E[Y (a)|x] as the expected (instantaneous) reward for the
social planner when the planner chooses action a for an individual with characteristics x. Since
we only consider additive welfare criteria in this paper, we may normalize r(x, 0) = 0, and set
r(x, 1) = E[Y (1)− Y (0)|x]. Note that we can accommodate various welfare criteria, as long as
they are utilitarian, by redefining the potential outcomes.

If the planner takes action a = 1, her budget is depleted by c, otherwise it stays the same. The
next individual arrives after a waiting time ∆t drawn from an exponential distribution Exp(N).
Note that N is the expected number of individuals in a time interval of length 1 (one could
alternatively use this as the definition of N itself). We shall use N to rescale the budget so that
c = 1/N . With this, we reinterpret the budget as the fraction of people in a unit time period
that can be treated. Each time a new individual arrives, the covariates for the individual are
assumed to be drawn from a distribution F that is fixed but unknown. The utility from treating
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successive individuals is discounted exponentially by e−β∆t. Note that the expected discount
factor is given by E[e−β∆t] = 1− β̃

N where β̃ = β +O(N−1). For simplicity, we shall let β̃ = β.
The planner chooses a policy function π(a|x, z) that maps the current state variables x, z to

a probabilistic choice over the set of actions:

π(.|x, z) : (x, z) −→ [0, 1].

The aim of the social planner is to determine a policy rule that maximizes expected welfare
after discounting. Let vπ(x, z) denote the value function for policy π, defined as the per-person
expected welfare from implementing policy π(·|x, z) starting from the state (x, z). In other
words,

vπ(x, z) = E

[
1
N

∞∑
i=1

e−βTir(xi, 1)π(1|xi, zi)I(zi > 0)
∣∣∣∣∣x, z

]
,

where the expectation is joint over the times of arrival Ti of each individual, covariates x ∼ F

and zi which evolves according to the distribution of x and the randomization of the policy π(.).
We can also represent vπ(z, t) in a recursive form as the fixed point to the equations10

vπ(x, z) = r(x, 1)
N

π(1|x, z) +
(

1− β

N

)
Ex′∼F

[
vπ

(
x′, z − 1

N

)
π(1|x, z) + vπ(x′, z)π(0|x, z)

]
for z > 1/N

vπ(x, 0) = 0.

To obtain a more insightful expression, we can integrate out x. This motivates the integrated
value function:

hπ(z) := Ex∼F [vπ(x, z)].

Define π̄(a|z) = Ex∼F [π(a|x, z)] and r̄π(z) = Ex∼F [r(x, 1)π(1|x, z)]. We can then characterize
hπ(.) as the solution to the recursive equations

hπ(z) = r̄π(z)
N

+
(

1− β

N

){
hπ

(
z − 1

N

)
π̄(1|z) + hπ(z)π̄(0|z)

}
for z > 1/N,(2.1)

hπ(0) = 0.

In practice the value of N is very large, i.e the rate of arrival of people is very fast, so that
budget is almost continuous. In such cases it is more convenient to work with the limiting version
of (2.1) as N →∞. To this end let us subtract

(
1− β

N

)
hπ(z) from both sides of equation (2.1),

multiply both sides by N and take the limit as N → ∞. We then end up with the following
Ordinary Differential Equation (ODE) for the evolution of hπ(.):

(2.2) βhπ(z) = r̄π(z)− π̄(1|z)∂zhπ(z), hπ(0) = 0,

where ∂z denotes the differential operator with respect to z.11 ODE (2.2) is similar to the well
known Hamilton-Jacobi-Bellman (HJB) equation. However, an important difference is that (2.2)
determines the evolution of hπ(.) under a specified policy, while the HJB equation determines
the evolution of the value function under the optimal policy.

10We assume for simplicity that z is always in multiples of 1/N .
11Sufficient conditions for a unique solution to (2.2) are provided in Appendix C.3.
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Note that ODE (2.2) also provides a very good approximation to the value function if, e.g,
the planner groups all individuals arriving in a day and employs the same policy function (i.e
keeping z, t fixed) for all of them. We need not restrict the planner to considering individuals
only one at a time. Changes to z, t are negligible if the numbers in the groups are small compared
to the number of people being considered overall. We also note that there is an alternative way
in which we could have ‘derived’ the same ODE: This is if we discretized time into periods, and
assumed that number of people who arrive in each period is a Poisson random variable with
parameter λ(t)∆l, where ∆l denotes the time step (days, minutes etc) between two successive
periods. We would then obtain ODE (2.2) in the limit as ∆l→ 0.

The social planner’s decision problem is to choose the optimal policy π∗ that maximizes the
ex-ante expected welfare hπ(z0), over a pre-specified class of policies Π, where z0 denotes the
initial value of the budget:

π∗ = argmax
π∈Π

hπ(z0).

How should the planner choose Π? Consider the first best policy function:

π∗FB(1|x, z) = I
{
r(x, 1)− ∂zhπ∗FB (z) > 0

}
.

In general settings it is not clear what, if any, regularity properties π∗FB(.) possesses. In the next
section, we will find that once we have time as a state variable, ODE (2.2) becomes a PDE, and
the value function is generically non-differentiable, which makes characterizing π∗FB(·) difficult.
Consequently, it is not clear that consistent estimation of π∗FB(1|x, z) is possible with sample
data. Furthermore, π∗FB(1|x, z) would be generally be discontinuous and highly non-linear in
(x, z), and the social planner may prefer policies that are simpler for legal, ethical or incentive
compatibility reasons. For instance, if the policy function is discontinuous in z, individuals may
decide to arrive at slightly different times where the budget is different. Ultimately, the choice
of Π depends on computational and policy considerations of the planner. For our theoretical
results we take this as given and consider a class Π of policies indexed by some possibly infinite
dimensional parameter θ ∈ Θ. For instance, Θ could represent a collection of sets or functions.

For computation, however, we require πθ(.) to be differentiable in θ. This still allows for rich
spaces of policy functions. A rather convenient one is the class of soft-max functions. Let f(x, z)
denote a vector of functions of dimension k. The soft-max function takes the form

(2.3) π
(σ)
θ (1|x, z) = exp(θᵀf(x, z)/σ)

1 + exp(θᵀf(x, z)/σ) .

Here, θ is normalized by setting one of the coefficients, e.g the intercept, to 1. The term σ

is a ‘temperature’ parameter that is either determined beforehand, or estimated along with
θ, in which case it could be subsumed into the latter. For a fixed σ, we define the soft-max
policy class as Πσ := {π(σ)

θ (·|s) : θ ∈ Θ}. As σ → 0, this becomes equivalent to the class of
generalized linear eligibility scores proposed by Kitagawa and Tetenov (2018), which are of the
form I{θᵀf(x, z) > 0}. More generally, the class {π(σ)

θ (1|x, z) : θ ∈ Rk, σ ∈ R+} can approximate
any deterministic policy, including π∗FB(.), arbitrarily well, given a large enough dimension k.
For even more expressive policies, this can be generalized, e.g to multi-layer neural networks.
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Note that for computation we cannot directly work with deterministic rules as they are not
differentiable in θ. In practice, however, we can employ the soft max class and let σ → 0 in the
course of computation to obtain a deterministic rule, see Section 6.3. Alternatively, we can let σ
be estimated, and the algorithm will converge to a deterministic policy if the latter is optimal.

In what follows, we specify the policy class as Π ≡ {πθ(.) : θ ∈ Θ} and denote hθ ≡ hπθ along
with r̄θ ≡ r̄πθ . The social planner’s problem is then

(2.4) θ∗ = argmax
θ∈Θ

hθ(z0).

Clearly (2.4) is not feasible as one does not know r(x, 1), nor the distribution F to calculate
hθ(z). However the planner does have access to an RCT, which we assume to consist of an iid
draw of size n from the distribution F . The empirical distribution Fn of these observations is
thus a good proxy for F . Let W denote the treatment assignment in the RCT data. We also let
µ(x,w) = E[Y (w)|X = x,W = w] denote the conditional expectations for w = 0, 1, and p(x),
the propensity score. We recommend a doubly robust method to estimate r(x, 1), e.g,

r̂(x, 1) = µ̂(x, 1)− µ̂(x, 0) + (2W − 1) Y − µ̂(x,W )
Wp̂(x) + (1−W )(1− p̂(x)) ,

where µ̂(x,w) and p̂(x) are non-parametric estimates of µ(x,w) and p(x) respectively, and Y is
the observed outcome variable.

Define π̂θ(a|z) = Ex∼Fn [πθ(a|x, z)] and r̂θ(z) = Ex∼Fn [r(x, 1)πθ(1|x, z)]. Based on the knowl-
edge of r̂(.) and Fn, we can calculate a sample estimate of the integrated value function in the
discrete case as the solution to

ĥθ(z) = r̂θ(z)
N

+
(

1− β

N

){
ĥθ

(
z − 1

N

)
π̂θ(1|z) + ĥθ(z)π̂θ(0|z)

}
for z > 1/N,(2.5)

ĥθ(0) = 0.

Alternatively, in the limit as N →∞, we have the following ODE:

(2.6) βĥθ(z) = r̂θ(z)− π̂θ(1|z)∂zĥθ(z), ĥθ(0) = 0.

Using ĥθ(.) we can solve a sample version of the social planner’s problem:

θ̂ = arg max
θ∈Θ

ĥθ(z0).

Given θ, one could solve for ĥθ by backward induction starting from z = 1/N using (2.5). In
this simple example this is feasible as long as N is not too large, but note that one would need
to calculate the quantities Ex∼Fn [πθ(a|x, z)] and Ex∼Fn [r(x, 1)πθ(1|x, z)] - which are averages
over n observations - for all possible values of z. And even where solving for ĥθ(z0) is feasible,
we yet have to maximize this over θ ∈ Θ. Such a strategy is computationally too demanding.
Therefore in this paper we advocate a Reinforcement Learning algorithm that directly ascends
along the gradient of ĥθ(z0) and simultaneously calculates ĥθ(z0) in the same series of steps.
Furthermore, in making use of stochastic gradient descent, the algorithm only samples the
quantities Ex∼Fn [πθ(a|x, z)] and Ex∼Fn [r(x, 1)πθ(1|x, z)], instead of taking averages. All this
makes the algorithm very efficient. We describe our algorithm in Section 4.
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In the remainder of this section, we briefly outline the theory behind our approach. The
derivations here are informal, but provide intuition for our formal results in Section 5.

2.1. Regret bounds. We would like to know how θ̂ compares to θ∗ in terms of the welfare regret
hθ∗(z0) − hθ̂(z0). The bound for this depends on the sample size n and the complexity of the
space Π = {πθ : θ ∈ Θ}. One way to determine the complexity of Π is by its Vapnik-Cervonenkis
(VC) dimension. In particular, denote by v the VC-subgraph index of the collections of functions

I = {πθ(1|·, z) : z ∈ [0, z0], θ ∈ Θ}

indexed by z and θ. We shall assume that v is finite. Kitagawa and Tetenov (2018) were the
first to characterize the regret in the static setting in terms of the VC dimension of Π. Relative
to this, our definition of the complexity differs in two respects. First, our policy functions are
probabilistic. Second, for the purposes of calculating the VC dimension, we treat z as an index
to the functions πθ(1|·, z), similarly to θ. In other words πθ(1|·, z1) and πθ(1|·, z2) with the same
θ are treated as different functions. This is intuitive since how rapidly the policy rules change
with budget is also a measure of their complexity. Note that the VC index of I is not dim(θ)
when θ is Euclidean, but is in fact smaller. To illustrate, suppose that x is univariate and

I ≡ {Logit(g1(z) + g2(z)x) : g1, g2 are arbitrary functions}.

In this case the VC-subgraph index of I is at most 2.12

We now show how one can derive probabilistic bounds for the regret hθ∗(z0)− hθ̂(z0). First,
under the assumption of finite VC dimension and other regularity conditions, Athey and Wager
(2018) show that for doubly robust estimates of the rewards,

Ex∼F

[
sup

θ∈Θ,z∈[0,z0]
|r̄θ(z)− r̂θ(z)|

]
≤ C0

√
v

n
,(2.7)

Ex∼F

[
sup

θ∈Θ,z∈[0,z0]
|π̄θ(1|z)− π̂θ(1|z)|

]
≤ C0

√
v

n

for some universal constant C0 <∞. Denote δ̂θ(z) = hθ(z)− ĥθ(z). Now under some regularity
conditions (made precise in Section 5), it can be shown that supθ∈Θ,z∈[0,z0] |hθ(z)| < ∞. Then
from (2.2) and (2.6), we have

∂z δ̂θ(z) = −1
π̄θ(1|z)

βδ̂θ(z) + r̄θ(z)
π̄θ(1|z)

− r̂θ(z)
π̂θ(1|z)

+
( 1
π̂θ(1|z)

− 1
π̄θ(1|z)

)
βĥθ(z); δ̂θ(0) = 0

or

(2.8) ∂z δ̂θ(z) = −1
π̄θ(z)

βδ̂θ(z) +Kθ(z); δ̂θ(0) = 0,

where
Ex∼F

[
sup

θ∈Θ,z∈[0,z0]
|Kθ(z)|

]
≤M

√
v/n

12To see this, note that the VC-subgraph index of the class of functions F = {f : f(x) = a + xb over a, b ∈ R}
is 2 since F lies in the (two dimensional) vector space of the functions 1, x. The VC-subgraph index of I is the
same or lower than that of F (since the logit transformation is monotone), hence v ≤ 2 in this example.
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for some M < ∞ by (2.7) and the uniform boundedness of hθ(z), assuming that π̄θ(z) is
uniformly bounded away from 0. Rewriting (2.8) in integral form and taking the modulus on
both sides, we obtain ∣∣∣δ̂θ(z)∣∣∣ ≤ zM√

v

n
+
∫ z

0

1
π̄θ(ω)β

∣∣∣δ̂θ(ω)
∣∣∣ dω,

based on which we can conclude via Grönwall’s inequality that∣∣∣δ̂θ(z)∣∣∣ ≤M1

√
v

n

uniformly over all θ ∈ Θ, z ∈ [0, z0], for some M1 < ∞ - here, all the inequalities should be
interpreted as holding with probability approaching one under F . The above discussion implies

hθ∗(z0)− hθ̂(z0) ≤ 2 sup
θ∈Θ,z∈[0,z0]

∣∣∣δ̂θ(z)∣∣∣ ≤ 2M1

√
v

n

with probability approaching one under F . Hence the regret declines with
√
v/n, which is the

same rate that Kitagawa and Tetenov (2018) derived for the static case.

2.2. Discretization and numerical error. As we mentioned earlier, we do not recommend
using the ODE version of the problem to solve for θ̂. Instead, it is usually much quicker to solve
a discrete analogue of the problem as in (2.5). Now in practice N maybe unknown or too large,
but in either case we can simply employ any suitably large normalizing factor bn, and solve the
recurrence relation

(2.9) h̃θ(z) = r̄θ(z)
bn

+
(

1− β

bn

){
h̃θ

(
z − 1

bn

)
π̄θ(1|z) + h̃θ(z)π̄θ(0|z)

}
for h̃θ(.) together with the initial condition h̃θ(0) = 0. We are now faced with the issue of
choosing bn so that h̃θ(.) is sufficiently close to ĥθ(.) obtained from (2.6).

To answer this, we first note that ĥθ and ∂zĥθ are both Lipschitz continuous uniformly in θ
under some regularity conditions (c.f Section 5). Lipschitz continuity of ∂zĥθ implies

ĥθ(z) = r̄θ(z)
bn

+
(

1− β

bn

){
ĥθ

(
z − 1

bn

)
π̄θ(1|z) + ĥθ(z)π̄θ(0|z)

}
+ Bθ(z)

b2n
,

where |Bθ(z)| ≤ B < ∞ uniformly over θ and z. Then defining δ̃θ(z) = ĥθ(z) − h̃θ(z), and
subtracting (2.9) from the previous display equation, we get

δ̃θ(z) =
(

1− β

bn

){
δ̃θ

(
z − 1

bn

)
π̄θ(1|z) + δ̃θ(z)π̄θ(0|z)

}
+ Bθ(z)

b2n
.

Now let Z(n) = {1/bn, 2/bn, . . . , z0}. From the previous display equation, it follows

sup
θ∈Θ,z∈Zn

|δ̃θ(z)| ≤
(

1− β

bn

)
sup

θ∈Θ,z∈Zn
|δ̃θ(z)|+

B

b2n
,

which implies supθ∈Θ,z∈Zn |δ̃θ(z)| ≤ B/bn upon rearrangement. So far h̃θ(.) was only defined for
multiples of bn, but we can extend it to all of [0, z0] by setting h̃θ(z) = h̃θ (bn bz/bnc). Combining
the above with the (uniform) Lipschitz continuity of ĥθ(·), we obtain

sup
θ∈Θ,z∈[0,z0]

∣∣∣δ̃θ(z)∣∣∣ = O

( 1
bn

)
.
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Suppose that θ were estimated using (2.9) as

θ̃ = arg max
θ∈Θ

h̃θ(z0).

Then in view of the previous discussion,

hθ∗(z0)− hθ̃(z0) ≤ 2M1

√
v

n
+ 2 sup

θ∈Θ,z∈[0,z0]

∣∣∣δ̃θ(z)∣∣∣ = 2M1

√
v

n
+O

( 1
bn

)
.

Hence the numerical error from discretization declines at the rate b−1
n . As long as bn is chosen

to be substantially bigger than
√
n, this approximation error is dwarfed by the statistical error

from the regret bound.

3. General setup

In this section, we tackle the question of dynamically optimal treatment allocation in a general
setting that nests Examples 1-5 in Section 1 as special cases. The starting point of our approach
is a PDE that models the evolution of the social planner’s welfare. The different examples
from Section 1 will then correspond to various boundary conditions for the PDE. By way of a
motivation, we shall start by describing a particular setting, based on a Poisson point process
for the arrivals, from which the PDE can be recovered in the limit. We note, however, that this
is not only way in which one could motivate the PDE; we discuss other possibilities shortly.

With the above in mind, consider the following setting: The state variables are given by

s := (x, z, t),

where x denotes the vector of characteristics or covariates of the individual, z is the institutional
variable (e.g, the current budget, capacity, or queue length), and t is time. For convenience, we
shall take z to be scalar for the rest of this paper. Examples, and extensions to multivariate z
can be found in Appendix C.

The arrivals are determined by an inhomogenous Poisson point process with parameter λ(t)N .
Here N is a scale parameter that determines the rate at which individuals arrive, while λ(t) itself
is normalized via λ(t0) = 1. Thus λ(t) is the relative frequency of arrivals at time t compared
to that at time t0. As in Section 2, we shall eventually let N → ∞ to end up with a Partial
Differential Equation (PDE). We shall also treat λ(t) as a forecast and condition on it. For
now we focus on a single forecast. But our methods can accommodate multiple forecasts and
uncertainty over them. We discuss this in more detail at the end of this section.

As in Section 2, the planner has to choose among actions a = {0, 1}. The choice of the action
is determined by a policy function, πθ(a|s), indexed by θ:

πθ(.|s) : s −→ [0, 1].

If an action, a, has been chosen, the planner receives a utility of Y (a)/N . Observe that, as in
Section 2, we have normalized the individual utilities by N . We now allow Y (a) to be affected
by all the state variables s = (x, z, t); this extension is needed for Example 1.4 on queues. The
rewards are defined as r(s, 1) = E[Y (1)− Y (0)|s], and we set the normalization r(s, 0) = 0.
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Conditional on the action a and state s, we define an equation, or ‘law of motion’, to govern
the evolution of z as:

z′ − z = Ga(s)/N,

where Ga(·); a ∈ {0, 1} is some known function. For example, in the setup of Section 2,

(3.1) Ga(s) =

−1 if a = 1 and z > 0

0 if a = 0.

Let us define the quantity m(t) =
∫ t
t0
λ(u)du, to be interpreted as the expected mass of indi-

viduals until time t, when each individual is assigned a weight of 1/N . We can then reinterpret
many of the variables described above as flow quantities relative to m, using the latter as the
running or ‘base’ variable. For instance, Ga(s) can be thought of as flow rate of budget with
respect to m. Indeed, suppose that the social planner chooses action a for an infinitesimal mass,
δm, of individuals, all with the same covariate x. This corresponds to Nδm individuals. Then
the infinitesimal change to z is given by δz ≈ Ga(s)(Nδm)/N = Ga(s)δm. In a similar vein,
we can think of Y (a) and r(s, a) as the flow utilities and flow rewards with respect to m. This
interpretation of Ga(s), Y (a) and r(s, a) - as flow quantities - is useful since it is not affected by
the normalization or other specifics of the current setting.

Finally, the distribution of the covariates is given by

x ∼ F,

where F is fixed and assumed to not change with t or z.
We left out some extensions for ease of exposition. First, we did not allow the distribution

F of the individual covariates to vary with time. In Section 6.2 we relax this using clusters.
Second, we have not accommodated the possibility of non-compliance. This is discussed in
Section 6.1. We do however maintain the key economic assumption that individuals do not
strategically respond to the social planner’s policy, e.g, by arriving at different times. Indeed,
the waiting times and distribution of covariates were assumed to be independent of all state
variables (except for time, we allow this in Section 6.2). We will return to this in Section 6.5.

Define the quantities
r̄θ(z, t) := Ex∼F [r(s, 1)πθ(1|s)|z, t],

and
Ḡθ(z, t) := Ex∼F [G1(s)πθ(1|s) +G0(s)πθ(0|s)|z, t] .

Let hθ(z, t) denote the integrated value function. As N → ∞, the evolution of hθ(z, t) is
determined by the following Partial Differential Equation (PDE):

βhθ(z, t)− λ(t)Ḡθ(z, t)∂zhθ(z, t)− ∂thθ(z, t)− λ(t)r̄θ(z, t) = 0 on U .(3.2)

Here U is the domain of the PDE (more on this below). In Appendix C.1, we show how one
can interpret or ‘derive’ (3.2) in three different ways: (1) as the culmination of a ‘no-arbitrage’
argument, (2) as the limit of a sequence of discrete dynamic programming problems; and (3) as
the characterization of the value function when the arrivals are given by a Poisson point process
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with parameter λ(t)N , and N → ∞ (which was the setting so far in this section). In fact, for
the last interpretation, we can even set N = 1 if the setup is an infinite horizon one and there
is no boundary condition on z. The second interpretation is similar to the setup in Section 2.
In the next section, we will do the converse, i.e we will approximate the PDE with a discrete
dynamic programming problem as a device for computation. The formal justification for this is
provided by Theorem 3. In addition, the proof technique for Theorem 3 can be used to formally
justify the third interpretation as well, though we omit the details since they are similar.

To complete the dynamic model, we need to specify a boundary condition for (3.2). We
consider the different possibilities below:

Dirichlet boundary condition. Under this heading we consider boundary conditions of the
form hθ(z, T ) = 0 ∀z (e.g, a finite time constraint), or hθ(z, t) = 0 ∀t (e.g, a budget constraint),
or both. The quantities z and T are some known constants e.g, denoting budget and time
constraints. Formally, the set U is of the form U ≡ (z,∞)×[t0, T ),13 and the boundary condition
specified as

hθ(z, t) = 0 on Γ,(3.3)

where Γ ⊆ ∂U is given by

Γ ≡ {{z} × [t0, T ]} ∪ {(z,∞)× {T}}.(3.4)

Both z = −∞ or T =∞ are allowed.

Periodic boundary condition. Consider a setting where the program continues indefinitely.
Then t is a relevant state variable only as it relates to some periodic or repeated quantity, e.g
seasonality. So, in this setting, U ≡ R× [t0,∞), and we impose the periodic boundary condition:

(3.5) hθ(z, t) = hθ(z, t+ Tp) ∀(z, t) ∈ R× [t0,∞).

Here, Tp is a known quantity denoting the period length (e.g, a year). Note that the periodic
boundary condition can only be valid as long PDE (3.2) is also periodic, i.e the coefficients
λ(t), Ḡθ(z, t), r̄θ(z, t) are periodic in t with period length Tp. The latter implies that the policy
πθ should also be periodic.

Neumann boundary condition. To motivate this boundary condition, consider the setup of
Example 1.3, with a no-borrowing constraint. The social planner is unable provide any treatment
when z = z := 0. Assume that the planner receives a steady flow of funds given by σ(z, t),
where the flow is defined with respect to time. Then at z = z, we have λ(t)Ḡθ(z, t) = σ(z, t)
and r̄θ(z, t) = 0. Thus (3.2) takes the form

(3.6) βhθ(z, t)− σ(z, t)∂zhθ(z, t)− ∂thθ(z, t) = 0, on {z} × [t0, T ).

13We depart slightly here from the usual convention of taking U to be an open set. In that case U ≡ (zc,∞)×(t0, T )
but there is no boundary condition at t0. Since the solution will be continuous, we can always extend it to t = t0,
and a short argument will show that (3.2) also holds at t0 (see e.g, Crandall, Evans and Lions, 1984, Lemma 4.1).
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Since (3.6) specifies how the solution behaves at the boundary, we can use it as a boundary
condition. Indeed, (3.6) behaves like a reflecting boundary condition since it serves to push the
value of z back up when it hits z.14

The chief utility of the boundary condition (3.6) is in allowing the dynamics at the boundary
to be different from the interior. Apart from modeling borrowing constraints, this can also be
useful in examples with queues or capacity constraints where the end points (e.g when the queue
length is 0, or the capacity is full) are treated differently by the social planner. To allow for all
this, we consider a setting with a time constraint, and a semi-linear boundary condition on z.
Formally, we set U ≡ (z,∞)× [t0, T ) and specify the boundary condition to be

βhθ(z, t)− σ̄θ(z, t)∂zhθ(z, t)− ∂thθ(z, t)− η̄θ(z, t) = 0, on {z} × [t0, T ),(3.7)

hθ(z, T ) = 0, on (z,∞)× {T}.

Here σ̄θ(z, t) and η̄θ(z, t) are known functions, which are basically the values λ(t)Ḡθ(s), λ(t)r̄θ(z, t)
take on at the boundary z = z, if the latter were allowed to be discontinuous. The key require-
ment here is σ̄θ(z, t) > δ > 0 for all t. Barles and Lions (1991) term the first part of (3.7) a
semi-linear Neumann boundary condition. In general, the Neumann boundary condition may
be over-determined and one would have to allow that it may not hold at some points of ∂U . It is
therefore important to interpret (3.7) in a viscosity sense, which takes care of these possibilities.
We refer the reader to Appendix A for a precise definition.

Periodic Neumann boundary condition. This is an infinite horizon version of the previous
case. Suppose that PDE (3.2) is periodic in t with period length Tp. Then, setting T → ∞ in
the previous case, we have U ≡ (z,∞)× [t0,∞), and the boundary condition takes the form

βhθ(z, t)− σ̄θ(z, t)∂zhθ(z, t)− ∂thθ(z, t)− η̄θ(z, t) = 0, on {z} × [t0,∞),(3.8)

hθ(z, t) = hθ(z, t+ Tp), ∀ (z, t) ∈ U .

For semi-linear PDEs of the form (3.2), it is well known that a classical solution (i.e a solution
hθ(z, t) that is continuously differentiable) does not exist. The weak solution concept that we
employ here is that of a viscosity solution (Crandall and Lions, 1983). Compared to other weak
solution concepts, it allows for very general sets of boundary conditions, and also enables us
to derive regularity properties of the solutions, such as Lipschitz continuity, under reasonable
conditions. This is a common solution concept for equations of the HJB form; we refer to
Crandall, Ishii and Lions (1992) for a user’s guide, and Achdou et al (2017) for a useful discussion.
The following ensures existence of a unique, Lipschitz continuous viscosity solution to (3.2):

Assumption 1. (i) Ga(x, z, t) and πθ(x, z, t) are uniformly continuous in (z, t) ∈ U , for each
x, θ. Furthermore, Ḡθ(z, t) and r̄θ(z, t) are Lipschitz continuous uniformly over θ.

(ii) λ(t) is Lipschitz continuous and bounded away from 0.
(iii) |λ(t)Ḡθ(z, t)| ≤M for some M <∞.

14Instead of using (3.6) as a boundary condition, we could have alternatively augmented (3.2) with (3.6), allowing
for potential discontinuities in the coefficients of the PDE. This is theoretically equivalent, but the analysis of
PDEs with discontinuous coefficients is rather more involved, so we do not take this route here.
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(iv) σ̄θ(z, t), η̄θ(z, t) are bounded and Lipschitz continuous in t uniformly over θ. Furthermore,
σ̄θ(z, t) is uniformly bounded away from 0, i.e σ̄θ(z, t) ≥ δ > 0.

The first part of Assumption 1(i) is only needed to show existence of solutions to the sample
version of PDE (3.2) that will be introduced shortly. We will drop this after developing the the-
ory further in Section 5.2. Appendix C.3 provides primitive conditions for verifying the second
part of Assumption 1(i) under the soft-max policy class (2.3). In short, we shall require either
the temperature parameter σ to be bounded away from 0, or that atleast one of the covariates is
continuous. With purely discrete covariates and σ → 0, Ḡθ(z, t) and r̄θ(z, t) will typically be dis-
continuous, unless the policies depend only on x. Even with discontinuous coefficients, however,
a Lipschitz continuous solution may still exist. Indeed, depending on the boundary condition,
we can allow Ḡθ(z, t), r̄θ(z, t) to be discontinuous in one of the arguments, see Appendix C.3.
Recent work by Barles and Chasseigne (2014) suggests just piecewise Lipschitz continuity of
Ḡθ(z, t), r̄θ(z, t) may also be sufficient; we leave this extension for future research.

Assumption 1(ii) implies the arrival rates vary smoothly with t and are bounded away from 0.
Assumption 1(iii) is a mild requirement ensuring changes to z are bounded. Assumption 1(iv)
provides regularity conditions for the Neumann boundary condition.

Lemma 1. Suppose that Assumptions 1 hold. Then for each θ, there exists a unique viscosity
solution hθ(z, t) to (3.2) under the boundary conditions (3.3), (3.5), (3.7) or (3.8).

Note that (3.2) define a class of PDEs indexed by θ, the solution to each of which is the
integrated value function hθ(z, t) from following πθ. The social planner’s objective is to choose
θ∗ that maximizes the forecast welfare at the initial time, t0, and initial budget, z0:

(3.9) θ∗ = arg max
θ∈Θ

hθ(z0, t0).

The welfare criterion above presupposes that the planner only has access to a single forecast.
We can alternatively allow for multiple forecasts. Denote each separate forecast for the arrival
rates by λ(t; ξ), where ξ indexes the forecasts. For example, in consensus or ensemble forecasts,
each ξ may represent a different estimate or model. For each forecast ξ, we can obtain the
integrated value function hθ(z, t; ξ) by replacing λ(t) in (3.2) with λ(t; ξ). Let P (ξ) denote some
- possibly subjective - probability distribution that the social planner places over the forecasts.
We take this distribution as given. Then we define the ‘forecasted’ integrated value function as

Wθ(z, t) =
∫
hθ(z, t; ξ)dP (ξ).

The social planner’s problem is to then choose θ∗ such that

θ∗ = arg max
θ∈Θ

Wθ(z0, t0).

Our welfare criterion conditions on a forecast, or more generally, a prior over forecasts. One
could alternatively calculate the welfare based on an unknown but true value of λ(t). We analyze
this alternative welfare criterion in Appendix C.4. Apart from adding an additional term to the
regret, which solely depends on the estimation error of λ(t), none of the subsequent analysis is
affected. In particular, this additional term is unaffected by the complexity of the policy class.
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3.1. The sample version of the social planner’s problem. The unknown parameters in
the social planner’s problem are F and r(s, a). As in Section 2, the social planner can leverage
observational data to obtain estimates Fn and r̂(s, a) of F and r(s, a). We discuss estimation
of r̂(s, a) in Section (5); assume for now that a consistent estimate is available. We can then
plug-in the quantities Fn, r̂(s, a), to obtain

r̂θ(z, t) := Ex∼Fn [r̂(s, 1)πθ(1|x, z, t)],

along with

Ĝθ(z, t) := Ex∼Fn [G1(x, z, t)πθ(1|x, z, t) +G0(x, z, t)πθ(0|x, z, t)] .

Based on the above we can construct the sample version of PDE (3.2) as

βĥθ(z, t)− λ(t)Ĝθ(z, t)∂zĥθ(z, t)− ∂tĥθ(z, t)− λ(t)r̂θ(z, t) = 0 on U ,(3.10)

together with the corresponding sample versions of the boundary conditions (3.3), (3.7) or (3.8).
A unique solution to PDE (3.10) exists for each θ under Assumption 1, since, among other
things, it implies Ĝθ(z, t) and r̂θ(z, t) are uniformly continuous. As before, one should think of
(3.10) as defining a class of PDEs indexed by θ, the solution to each of which is the integrated
value function ĥθ(z, t) that can be used as an estimate for hθ(z, t). Based on these estimates,
we can now solve a sample version of the social planner’s problem:

(3.11) θ̂ = arg max
θ∈Θ

ĥθ(z0, t0).

In the case where there are multiple forecasts, we will have ĥθ(z, t; ξ) as the solution to (3.10)
for each λ(t; ξ), and the estimated policy parameter θ̂ is obtained as

θ̂ = arg max
θ∈Θ

Ŵθ(z0, t0),

where
Ŵθ(z, t) :=

∫
ĥθ(z, t; ξ)dP (ξ).

While the PDE form for ĥθ(z, t) is very convenient for our theoretical results, it is not quite
useful for computing θ̂. So for estimation we use a discretized version of (3.10). In particular,
we discretize the arrivals so that the law of motion for z is given by (here, and in what follows,
we use the ‘prime’ notation to denote one-step ahead quantities following the current one)

(3.12) z′ =

z + b−1
n Ga(x, z, t) if z + b−1

n Ga(x, z, t) ≥ z

z otherwise
,

for some approximation factor bn. Additionally, in the approximation scheme, the difference
between arrival times is specified as

t′ − t ∼ min {Exponential(λ(t)bn), T − t} ,

with the truncation at T used as a device to impose a finite horizon boundary condition. To
simplify the notation, we shall allow Ga(s) and r(x, 1) to be potentially discontinuous at z = z
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in case of the Neunmann boundary condition, and thus avoid the need for the quantities σ̄θ(z, t)
and η̄θ(z, t).15 The rest of environment is the same as before. For this discretized setup, define
h̃θ(z, t) as the expected value function when an individual happens to arrive at state (z, t). This
can be obtained as the fixed point to the following dynamic programming problem:

h̃θ(z, t) =


r̂θ(z,t)
bn

+ En,θ
[
e−β(t′−t)h̃θ (z′, t′) |z, t

]
0 for (z, t) ∈ Γ (Dirichlet only)

.(3.13)

Here,

En,θ
[
e−β(t′−t)h̃θ

(
z′, t′

)
|z, t

]
:=
∫
e−β

ω
bnEx∼Fn

[
h̃θ

(
z + G1(x, t, z)

bn
, t+ ω

bn

)
π(1|x, z, t)

+h̃θ
(
z + G0(x, t, z)

bn
, t+ ω

bn

)
π(0|x, z, t)

]
gλ(t)(ω)dω.

In particular, for any function f , En,θ[f(z′, t′)|z, t] denotes the joint expectation over z′, t′ con-
ditional on the values of z, t and when following the policy πθ. Precisely, the expectation is joint
over three independent probability distributions: (i) The distribution Fn of the covariates, (ii)
the probability distribution, gλ(t)(·), over the truncated exponential waiting time process, and
(iii) the probability distribution induced on z′ due to the randomization of policies using πθ(a|s).

We emphasize that the Neumann boundary condition does not have to be imposed explicitly
since we allowed Ḡθ and r̄θ to be discontinuous. The same goes for the periodic boundary
condition since it would hold naturally as long as the environment is periodic in t.

The usual contraction mapping argument ensures that h̃θ always exists as long as T < ∞
or β < 1. We shall therefore use h̃θ as the feasible sample counterpart of hθ. With this, we
can estimate θ∗ by θ̃ = arg minθ∈Θ h̃θ(z0, t0). Note that the latter corresponds to solving for the
optimal policy function under the sample dynamics described by Fn, r̂(s, a) and λ(t). Here, both
the rewards r̂(s, a), and the dynamics are known. This nests computation of θ̂ into a standard
Reinforcement Learning problem for learning the optimal policy function.

3.2. Examples.

3.2.1. Budget constraints. We subsume Examples 1.1-1.3 under the common theme of budget
constraints. Let z denote the current budget. Suppose that the social planner receives cash
at the flow rate σ(z, t) with respect to time, while the flow cost of treating any individual is
given by c(x, z, t) with respect to the expected mass m of individuals. In this case Ga(s) =
λ(t)−1σ(z, t) − c(x, z, t)I(a = 1). The first term is divided by λ(t) to measure all flows relative
to the expected mass of individuals m, rather than time.

We can also consider settings with borrowing, where the rate of interest is given by b. For
simplicity suppose that the borrowing rate is the same as the savings rate. Then the law of
motion for z is given by

Ga(s) = λ(t)−1{σ(z, t) + bz} − c(x, z, t)I(a = 1).

15However, we need them for the theory of viscosity solutions since it does not allow for discontinuous PDEs.
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We assume b to be constant here for simplicity, but we could just as easily allow it to change
with z, t. With this definition of Ga(s), it is easy to see that we can use PDE (3.2) to model
the behavior of hθ(z, t) under the various constraints of finite budget or time and/or borrowing
constraints, by choosing the boundary condition appropriately.

3.2.2. Queues. We consider the case of a single queue. Extensions to multiple queues may
be found in Appendix C.2.2. The institutional variable z is now the queue length. Suppose
that individuals exit the queue (i.e after they finish treatment) at some known rate e(z, t)
with respect to time. We may normalize the measure of z so that taking action a = 1 adds
people to the queue at the rate 1. Then the law of motion for z is given by ż = Ga(s), where
Ga(s) = I(a = 1) − λ(t)−1e(z, t). Note that for the environment to generate queues, we would
need e(z, t) < λ(t) for atleast some t. It is natural to setup this problem as a periodic one,
with or without a nonlinear Neumann boundary condition at z = 0. The latter is useful if the
planner would like to allow the policy to behave discontinuously between z = 0 (when there is
no queue) and z > 0.

Since waiting is costly, this cost will be reflected in the flow rewards r(s, 1) now being a
function of z, along with x. In the simplest case, we can assume the cost is multiplicative, i.e
r(x, z, 1) = c(z)r̃(x, 1), where r̃(x, 1) is the reward when z = 0, and c(·) is a monotonically
decreasing function. We can then use observational data to estimate r̃(x, 1) using doubly robust
methods, while estimating c(·) through other means.16 In general, however, r(x, z, 1) could be
non-linear in z. In such cases, we need an observational dataset that includes z or some proxy
for it. The regret bound would then typically be non-parametric (see, Section 5).

3.2.3. Capacity constraints. Suppose that the planner faces a fixed capacity constraint. We
discuss here a relatively simple version of the problem in which people are turned away if the
capacity is full. One can alternatively think of augmenting this setup with queues.

The variable z now measures the amount of free capacity, assumed to take values between
[0, C]. A value of z = 0 implies the capacity is full. We assume capacity is freed up, i.e people
finish treatment, at the rate e(z, t) with respect to time. This rate is assumed to be known or
estimable. An important simplification here is that e(·, ·) does not depend on the characteristics
of individuals who are currently being treated, but only on the number of people currently in
the system which is C − z.17 This ensures the state space is finite. As before, we normalize
the measurement of capacity so that it is filled up at the rate 1 when a = 1. In this case
Ga(s) = I(a = 1) − λ(t)−1e(z, t). Thus, in this example, capacity behaves very similarly to
queues, including in terms of a Neumann boundary condition at z = 0.18 The main difference
is that the flow rewards typically do not depend on the capacity, i.e r(s, 1) = r(x, 1). Thus one
can estimate them using doubly robust methods.

16For instance, there is a substantial literature on the effect of entering labour market programs at different times
in the unemployment spell, see e.g Lechner (1999), Sianesi (2004), Crepon et al (2009) and Vikstrom (2017).
17So e.g, every individual has the same probability of moving out irrespective of how long he/she has been treated.
18There may additionally be another Neumann boundary condition at z = C due to possible discontinuity in
e(z, t), see the example in Appendix C.2.1.
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4. The actor-critic algorithm

In this Section we propose a Reinforcement Learning algorithm to efficiently compute θ̃ in
equation (3.13). For ease of exposition, we shall focus here on the Dirichlet boundary condition.
Extensions to the other boundary conditions will be provided in Appendix B. For now, let us
note that in the Dirichlet setting, the environment ends in some finite time. In the RL literature
these are known as episodic cases. In settings where the program continues indefinitely (as
with the periodic or periodic Neumann boundary conditions), our algorithms will require some
modifications. One approach is to convert these environments into episodic ones by adding a
finite time boundary condition hθ(z, T ) = 0 ∀z, where T is suitably long. Alternatively, we can
exploit the equivalence between discounting and random stopping to convert an infinite horizon
model into an episodic one with a random horizon. We discuss these and other approaches in
Appendix B, where we also characterize the numerical error involved, if any.

In a standard, episodic, Reinforcement Learning (RL) framework, an algorithm runs multiple
instances, called episodes, of a dynamic environment. At any particular state, on any particular
episode, the algorithm takes an action a according to the current policy function πθ and observes
the reward and the future value of the state. Based on these quantities, it updates the policy
parameter to a new value θ′. The process then continues with the new updated policy function
πθ′ until the parameter θ converges, or more likely, the welfare does not increase.19

Estimation of θ̃ in equation (3.13) fits naturally in the above context, since we can simulate
a ‘sample’ dynamic environment as follows: Suppose that the current state is s ≡ (x, z, t), and
the policy parameter is θ. The computer chooses an action a according to the policy function
πθ(a|s), which results in a reward of r̂(s, a). The next individual arrives at time t′ = t+ ∆t/bn,
where ∆t ∼ Exponential(λ(t)). New values of the institutional state variable z′ are obtained as
in (3.12). Finally, new values of the covariates x′ are drawn from the distribution Fn(.), i.e each
individual is drawn with replacement with probability 1/n from the sample set of observations.
Based on the reward r̂(s, a) and new state s′ ≡ (x′, z′, t′), the policy parameter is updated to a
new value θ. This process repeats until (z, t) reach the boundary of U . This determines the end
of the current episode. Following this, we start a new episode with the starting values (z0, t0).
We proceed in this fashion indefinitely until θ converges.

In this section, we adapt one of the most widely used RL algorithms - the Actor-Critic
algorithm - to our context. We differ from the standard RL approach, however, in employing
the integrated value function h̃θ(z, t) from (3.13) as the central ingredient of our algorithm
instead of the usual value function Ṽθ(s) - we explain the rationale for this in Section 4.1 below.

Actor-Critic algorithms aim to calculate θ̂ by updating θ at each state of each episode using
stochastic gradient descent along the direction g̃(θ) ≡ ∇θ

[
h̃θ(z0, t0)

]
:

θ ←− θ + αθg̃(θ),

where αθ is the learning rate. Denote by Q̃θ(s, a), the action-value function

(4.1) Q̃θ(s, a) := r̂n(s, a) + En,θ
[
e−β(t′−t)h̃θ(z′, t′)|s, a

]
,

19We monitor the welfare by running a test iteration of the environment periodically with the current value of θ.
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where r̂n(s, a) := r̂(s, a)/bn, and En,θ[.] in this context denotes the expectation over the (sta-
tionary) distribution of the states s, actions a induced by the policy function πθ in the (sample)
dynamic environment of Section 3.1. The Policy-Gradient theorem (see e.g Sutton et al, 2000)
provides an expression for g̃(θ) as

g̃(θ) = En,θ
[
e−β(t−t0)Q̃θ(s, a)∇θ ln π(a|s; θ)

]
,

A well known result (see e.g, Sutton and Barto, 2018) is that

En,θ
[
e−β(t−t0)Q̃θ(s, a)∇θ ln π(a|s; θ)

]
= En,θ

[
e−β(t−t0)

(
Q̃θ(s, a)− b(s)

)
∇θ ln π(a|s; θ)

]
for any arbitrary ‘baseline’ b(.) that is a function of s. Let ḣθ(z, t) denote some functional
approximation for h̃θ(z, t). We exploit the fact that the continuation value of the state-action
pair only depends on z, t, and therefore use ḣθ(z, t) as the baseline, which gives us

g̃(θ) = En,θ
[
e−β(t−t0)

(
Q̃θ(s, a)− ḣθ(z, t)

)
∇θ ln π(a|s; θ)

]
.

The above is infeasible since we don’t know Q̃θ(s, a). However we can heuristically approximate
Q̃θ(s, a) with the one step ‘bootstrap’ return as suggested by equation (4.1) (here the term
‘bootstrap’ refers to its usage in the RL literature, see Sutton and Barto, 2018):

R(1)(s, a) = r̂n(s, a) + I
{
(z′, t′) ∈ U

}
e−β(t′−t)ḣθ(z′, t′),

This enables us to obtain an approximation for g̃(θ) as

(4.2) g̃(θ) ≈ En,θ
[
e−β(t−t0)δn(s, s′, a)∇θ ln π(a|s; θ)

]
,

where δn(s, s′, a) is the Temporal-Difference (TD) error defined as

δn(s, s′, a) := r̂n(s, a) + I
{
(z′, t′) ∈ U

}
e−β(t′−t)ḣθ(z′, t′)− ḣθ(z, t).

We now describe the functional approximation for h̃θ(z, t). Let φz,t = (φ(j)
z,t , j = 1, . . . , dν)

denote a vector of basis functions of dimension dν over the space of z, t. For the sake of ar-
gument, consider approximating h̃θ(z, t) by choosing the weights ν to minimize the infeasible
mean squared error criterion:

arg min
ν

S̃(ν|θ) ≡ arg min
ν

En,θ

[
e−β(t−t0)

∥∥∥h̃θ(z, t)− νᵀφz,t∥∥∥2
]
.

Then we can update the value function weights, ν, using gradient descent

ν ←− ν + αν∇ν S̃(ν|θ)

for some value function learning rate αν . Here the gradient is given by

χ̃(ν|θ) := ∇ν S̃(ν|θ) ∝ En,θ
[
e−β(t−t0)

(
h̃θ(z, t)− νᵀφz,t

)
φz,t

]
.

The above procedure is infeasible since h̃θ(z, t) is unknown. However, as before, we can heuris-
tically approximate h̃θ(z, t) using the one step bootstrap return R(1) and obtain

(4.3) χ̃(ν|θ) ≈ En,θ
[
e−β(t−t0)δn(s, s′, a)φz,t

]
.
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Algorithm 1: Actor-Critic (Dirichlet boundary condition)
Initialise policy parameter weights θ ← 0
Initialise value function weights ν ← 0
Repeat forever:

Reset budget: z ← z0
Reset time: t← t0
I ← 1
While (z, t) ∈ U :

x ∼ Fn (Draw new covariate at random from data)
a ∼ π(a|s; θ) (Draw action, note: s = (x, z, t))
R← r̂(s, a)/bn (with R = 0 if a = 0)
ω ∼ Exponential(λ(t))
t′ ← t+ ω/bn

z′ ← z +Ga(x, z, t)/bn
δ ← R+ I{(z′, t′) ∈ U}e−β(t′−t)νᵀφz′,t′ − νᵀφz,t (Temporal-Difference error)
θ ← θ + αθIδ∇θ ln π(a|s; θ) (Update policy parameter)
ν ← ν + ανIδφz,t (Update value parameter)
z ← z′

t← t′

I ← e−β(t′−t)I

The heuristic for the bootstrap approximation above is based on equation (3.13), which implies
that an unbiased estimator of h̃θ(z, t) is given by sum of the current reward r̂n(s, a), and the
discounted future value of h̃θ(z′, t′).

Using equations (4.2) and (4.3), we can now construct stochastic gradient updates for θ, ν as

θ ←− θ + αθe
−β(t−t0)δn(s, s′, a)∇θ ln π(a|s; θ)(4.4)

ν ←− ν + ανe
−β(t−t0)δn(s, s′, a)φz,t,(4.5)

by replacing the expectations in (4.2), (4.3) with their corresponding unbiased estimates obtained
from the values of state variables as they come up in each episode. Importantly, the updates
(4.4) and (4.5) can be applied simultaneously on the same set of current state values, as long
as αν � αθ. This is an example of two-timescale stochastic gradient decent: the parameter
with the lower value of the learning rate is said to be updated at the slower time scale. When
the timescale for ν is much faster than that for θ, one can imagine that the value of νᵀφz,t has
effectively converged to the value function estimate for current policy parameter θ. Thus we
can proceed with updating θ as if its corresponding (approximate) value function were already
known.

The pseudo-code for this procedure is presented in Algorithm 1.

4.1. Basis dimensions and Integrated value functions. The functional approximation for
h̃θ(z, t) involves choosing a vector of bases φz,t of dimension dν . From a statistical point of view,
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the optimal choice of dν is in fact infinity. There is no bias-variance tradeoff since we would like to
compute h̃θ(z, t) exactly. We can simply take as high a value of dν as computationally feasible.
This useful property is a consequence of employing h̃θ(z, t) rather than the standard value
function (which is a function of x, z, t) in the Actor-Critic algorithm. Since r̂(s, a) could be a
function of Y (as with doubly robust estimators, for example), we would need some regularization
if we want to obtain a functional approximation for the standard value function, to ensure we
don’t overfit to the outcome data. This is not an issue for h̃θ(z, t), however, as it only involves
the expected value of r̂(s, a) given z, t. Thus, using h̃θ(z, t) enables us to avoid an additional
regularization term.

4.2. Convergence of the Actor-Critic algorithm. Our proposed algorithm differs from the
standard versions of the Actor-Critic algorithm in only using the integrated value function.
Consequently, its convergence follows by essentially the same arguments as that employed in the
literature for actor-critic methods, see e.g, Bhatnagar et al (2009). In this section, we restate
their main results, specialized to our context. Since all of the convergence proofs in the literature
are obtained for discrete Markov states, we need to impose the technical device of discretizing
time and making it bounded, so that the states are now discrete (the other terms z and x are
already discrete, the latter since we use empirical data). This greatly simplifies the convergence
analysis, but does not appear to be needed in practice.

Let S denote the set of all possible values of (z, t), after discretization. Also, denote by Φ,
the |S| × dν matrix whose ith column is (φ(i)

z,t, (z, t) ∈ S)ᵀ, where φ(i)
z,t is the ith element of φz,t.

Assumption C. (i) πθ(a|s) is continuously differentiable in θ for all s, a.
(ii) The basis functions {φ(i)

z,t : i : 1, . . . , dν} are linearly independent, i.e Φ has full rank. Also,
for any vector ν, Φν 6= e, where e is the S-dimensional vector with all entries equal to one.

(iii) The learning rates satisfy
∑
k α

(k)
ν →∞,

∑
k α

(k)2
ν <∞,

∑
k α

(k)
θ →∞,

∑
k α

(k)2
θ <∞ and

α
(k)
θ /α

(k)
ν → 0 where α(k)

θ , α
(k)
ν denote the learning rates after k steps/updates of the algorithm.

(iv) The update for θ is bounded i.e

θ ←− Γ
(
θ + αθδn(s, s′, a)∇θ ln π(a|s; θ)

)
where Γ : Rdim(θ) → Rdim(θ) is a projection operator such that Γ(x) = x for x ∈ C and Γ(x) ∈ C
for x /∈ C, where C is any compact hyper-rectangle in Rdim(θ).

Differentiability of πθ with respect to θ is a minimal requirement for all Actor-Critic methods.
Assumption C(ii) is also mild and rules out multicollinearity in the basis functions for the value
approximation. Assumption C(iii) places conditions on learning rates that are standard in the
literature of stochastic gradient descent with two timescales. Assumption C(iv) is a technical
condition imposing boundedness of the updates for θ. This is an often used technique in the
analysis of stochastic gradient descent algorithms. Typically this is not needed in practice,
though it may sometimes be useful to bound the updates when there are outliers in the data.

Define Z as the set of local maxima of J(θ) ≡ h̃θ(z0, t0), and Zε an ε-expansion of that set.
Also, θ(k) denotes the k-th update of θ. We then have the following theorem on the convergence
of our Actor-Critic algorithm.
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Theorem 1. Suppose that Assumptions C hold and additionally that ∇θπθ(s) is uniformly
Hölder continuous in s. Then, for each ε > 0, there exists M such that if dν ≥ M , then
θ(k) → Zε with probability 1 as k →∞.

The above theorem is for the most part a direct consequence of the results of Bhatnagar et
al (2009). We provide further discussion and a justification of the result in Appendix B. For
the exponential soft-max functional as in (2.3), Z is actually a singleton under discrete states
(Thomas, 2014). So our algorithm will converge to the global optimum.

4.3. Multiple forecasts. Thus far, we have only considered the case with a single forecast.
The extension to multiple forecasts is straightforward: we simply draw a value of ξ from P (ξ)
at the start of every new episode. In consensus or ensemble forecasts this just means drawing
an estimate or model at random based on the weights given to each of them. In other cases, e.g
if λ(t) follows a continuous time AR(1) process dλ(t) = −φλ(t)dt + σdBt (where dBt denotes
the increments to standard Brownian motion), we would draw the increments at random from
a normal distribution before each update step, but the cumulative effect of this is equivalent to
drawing an infinite dimensional parameter ξ at the beginning of each episode.

4.4. Parallel updates. While Theorem 1 assures convergence of our algorithm, in practice the
updates could be volatile and may take a long time to converge. Much of the reason for this
is the correlation between the updates as one cycles through each episode - indeed, note that
the state pairs (s, s′) are highly correlated. Hence the stochastic gradients become correlated
and one needs many episodes to move in the direction of the true (i.e the expected) gradient.
This is a common problem for all Actor-Critic algorithms, but recently Mnih et al (2015) have
proposed to solve this through the use of asynchronous parallel updates. The idea is to run
multiple versions of the dynamic environment on parallel threads or processes, each of which
independently and asynchronously updates the shared global parameters θ and v. Since at any
given point in time, the parallel threads are at a different point in the dynamic environment
(they are started with slight offsets), successive updates are decorrelated. Additionally, the
algorithm is faster by dint of being run in parallel.

Algorithm 2 provides the pseudo-code for parallel updating. It also amends the previous
version of the algorithm by adding batch updates. In batch updating, the researcher chooses a
batch size B such that the parameter updates occur only after averaging over B observations.
This usually results in a smoother update trajectory because extreme values of the updates are
averaged out.

4.5. Choosing the tuning parameters. To implement our algorithm, we need to specify the
basis functions for the value approximation and the learning rates. In specifying these, one
should try incorporate prior knowledge about the environment. Indeed, the ability to do so is
one of the strengths of the algorithm. For instance, in the time constrained boundary condition,
we know that h̃θ(z, 0) = 0 for all z. So in this setting, the basis functions could be chosen so
that there are also 0 when t = 0. In a similar vein, in the periodic boundary condition setting,
one could choose the bases so that they are also periodic in t.
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Algorithm 2: Parallel Actor-Critic (Dirichlet boundary condition)
Initialise policy parameter weights θ ← 0
Initialise value function weights ν ← 0
Batch size B
For p = 1, 2, ... processes, launched in parallel, each using and updating the same global
parameters θ and ν:
Repeat forever:

Reset budget: z ← z0
Reset time: t← t0
I ← 1
While (z, t) ∈ U :

θp ← θ (Create local copy of θ for process p)
νp ← ν (Create local copy of ν for process p)
batch_policy_upates← 0
batch_value_upates← 0
For b = 1, 2, ..., B:

x ∼ Fn (Draw new covariate at random from data)
a ∼ π(a|s; θp) (Draw action, note: s = (x, z, t))
R← r̂(s, a)/bn (with R = 0 if a = 0)
ω ∼ Exponential(λ(t))
t′ ← t+ ω/bn

z′ ← z +Ga(x, z, t)/bn
δ ← R+ I{(z′, t′) ∈ U}e−β(t′−t)νᵀpφz′,t′ − νᵀpφz,t (TD error)
batch_policy_upates← batch_policy_upates + αθIδ∇θ ln π(a|s; θp)
batch_value_upates← batch_value_upates + ανIδφz,t

z ← z′

t← t′

I ← e−β(t′−t)I

If (z, t) /∈ U , break For
Globally update: ν ← ν + batch_value_upates/B
Globally update: θ ← θ + batch_policy_upates/B

Choosing the right learning rates may require some experimentation. These are typically
taken to be constant, rather than decaying over time as the theory requires. In practice, as long
as they are set small enough, this only means that the parameters will oscillate a bit around
their optimum values. A common rule of thumb (see, e.g, Sutton and Barto, 2018) is to set
αν = 0.1/En,θ [‖φz,t‖], while keeping αθ = 0 in the beginning. Once learning is stable, the value
of αθ can be increased slowly. There are now automated procedures for determining the rates
based on Population Based Training, see e.g Jaderberg et al (2018). This could be an attractive
choice in problems with very large state spaces.
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5. Statistical and numerical properties

In this section, we analyze the statistical and numerical properties of the estimated welfare
maximizing policy functions. The main result of this section is a probabilistic bound on the
regret defined as the maximal difference between the integrated value functions hθ̂(z0, t0) and
hθ∗(z0, t0). We derive this using our bound on the maximal difference in the value functions

(5.1) sup
(z,t)∈Ū ,θ∈Θ

|ĥθ(z, t)− hθ(z, t)|

since
hθ∗(z0, t0)− hθ̂(z0, t0) ≤ 2 sup

(z,t)∈Ū ,θ∈Θ
|ĥθ(z, t)− hθ(z, t)|.

We maintain Assumption 1 that is required for the existence of the value functions. In
addition, we impose the following:

Assumption 2. (i) (Bounded rewards) There exists M <∞ such that |Y (0)|, |Y (1)| ≤M .
(ii) In the Dirichlet setting, if z > −∞ in (3.4), then β > 0 and there exists δ > 0 such that

Ḡθ(z, t) < −δ.
(iii) (Complexity of the policy function space) The collection of functions

I =
{
πθ(1|·, z, t) : (z, t) ∈ Ū , θ ∈ Θ

}
over the covariates x, indexed by z, t and θ, is a VC-subgraph class with finite VC index v1.
Furthermore, for each a = 0, 1, the collection of functions

Ga =
{
πθ(a|·, z, t)Ga(·, z, t) : (z, t) ∈ Ū , θ ∈ Θ

}
over the covariates x is also a VC-subgraph class with finite VC index v2. We shall let v =
max{v1, v2}.

Assumption 2(i) ensures that the rewards are bounded. This is a common assumption in the
treatment effect literature (see e.g Kitagawa and Tetenov, 2018) and imposed mainly for ease of
deriving the theoretical results.

Assumption 2(ii) is required only in the Dirichlet setting, and even here, only where the
boundary condition is determined fully or in part by z.20 The assumption ensures hθ(z, t) is
continuous near the boundary, by ruling out cases where the solution diverges widely for small
differences in z.21 In the subset of our examples where this assumption is relevant, i.e Examples
1.1 & 1.3, it can be verified that Ḡθ(z, t) < 0 (e.g, the budget can only be depleted). In such
cases, Assumption (ii) restricts the policy function class to ensure there is always some expected
change to the budget at any given state. This is a mild restriction: as long as there exist some
people that benefit from treatment and β 6= 0, it is a dominant strategy to treat at least some
fraction of the population.

20We can relax this assumption to: Ḡθ(z, t) < −δ on N ε, where N ε := {(z, t) ∈ U : |z − z| < ε} for some ε > 0.
Since it does not materially affect our examples, we use the stronger version for simplicity.
21E.g, if Gθ(z1, t1) = 0 at some (z1, t1) close to the boundary, then as time proceeds, it is possible for z to
move away from the boundary for some starting values in a neighborhood of (z1, t1), while moving towards the
boundary for other values.
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Assumption 2(iii) has already been discussed in some detail in Section 2. In many of the
examples we consider, Ga(s) is independent of x, as in equation (3.1). In this case it is easy to
verify that v1 = v2. Let us also point out that the domain of (z, t) is Ū . In settings with Dirichlet
and Neumann boundary conditions, this means that I and Ga are defined by continuously
extending πθ(1|·) and Ga(·) to the boundary using the limit operation, even though the actual
‘policy’ and law of motion at the boundary may be quite different.

The next set of assumptions relate to the properties of the observational or RCT dataset from
which we estimate r̂(s, a). For now we shall focus on the situation where neither time t, nor
the institutional variable z affect the utilities Y (a). Thus r(s, a) ≡ r(x, a). Under this setting
we can use doubly robust estimates, r̂(x, a), of the rewards to obtain a parametric bound on
the regret. When z, t are able to affect Y (a), we are not aware of any doubly robust estimate
for the rewards. In this case, the regret will only converge to 0 at non-parametric rates. The
characterization of the regret in this more general case will be provided in the next sub-section.

Assumption 3. (i) (iid draws from F ) The observed data is an iid draw of size n from the
distribution F .

(ii) (Selection on observables) (Y (1), Y (0)) ⊥W |X.
(iii) (Strict overlap) There exists κ > 0 such that p(x) ∈ [κ, 1− κ] for all x.
(iv) E[Y (a)|s] = E[Y (a)|x] i.e, the individual outcomes do not depend on z, t.

Assumption 3(i) assumes that the observed data is representative of the entire population.
If the observed population only differs from F in terms of the distribution of some observed
covariates, we can reweigh the rewards, and our theoretical results continue to apply. Assump-
tion 3(ii) assumes that the observed data is taken from an observational study that satisfies
unconfoundedness. In Section 6.1, we consider extensions to non-compliance. Assumption 3(iii)
ensures that the propensity scores are strictly bounded away from 0 and 1. Both Assumptions
3(ii) and 3(iii) are directly satisfied in the case of RCT data. As noted earlier, assumption 3(iv)
will be relaxed in the next sub-section.

Under Assumptions 2 and 3, one can propose many different estimates of the rewards r̂(x, 1)
that are consistent for r(x, 1). In this paper we recommend doubly robust estimates. This is
given by

(5.2) r̂(x, 1) = µ̂(x, 1)− µ̂(x, 0) + (2W − 1) Y − µ̂(x,W )
Wp̂(x) + (1−W )(1− p̂(x)) ,

where µ̂(x,w) and p̂(x) are non-parametric estimates of µ(x,w) and p(x). To simplify matters,
we shall assume that these non-parametric estimates are obtained through cross-fitting (Cher-
nozhukov et al, 2018). This is done as follows: We divide the data randomly divided into K folds
of equal size, and for each fold j, we run a machine learning estimator of our choice on the other
K−1 folds to estimate µ̂(−j)(x,w) and p̂(−j)(x). Then for any observation xj in some fold j, we
set µ̂(xj , w) = µ̂(−j)(xj , w) and p̂(xj) = p̂(−j)(xj). We employ cross-fitting estimators as they
require minimal assumptions. Additionally, they have excellent bias properties as demonstrated
by Chernozhukov et al, (2018), and Athey and Wager (2018). We impose the following high
level conditions for the machine learning methods used in our cross-fitted estimates:
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Assumption 4. (i) There exists an a > 0 such that for w = 0, 1

sup
x
|µ̂(x,w)− µ(x,w)| = Op(n−a), sup

x
|p̂(x)− p(x)| = Op(n−a).

(ii) (L2 convergence) There exists some ξ > 1/2 such that

E
[
|µ̂(x,w)− µ(x,w)|2

]
. n−ξ, E

[
|p̂(x)− p(x)|2

]
. n−ξ.

Assumption 4 is taken from Athey and Wager (2018). The requirements imposed are weak
and satisfied by almost all non-parametric estimators including series regression or LASSO.
Using Assumptions 1-4, one can show that the quantities r̂θ(z, t), Ĝθ(z, t) are uniformly close to
r̄θ(z, t), Ḡθ(z, t). In particular, there exists a universal constant C0 such that with probability
approaching 1,

sup
(z,t)∈Ū ,θ∈Θ

|r̂θ(z, t)− r̄θ(z, t)| ≤ C0

√
v1
n

and(5.3)

sup
(z,t)∈Ū ,θ∈Θ

∣∣∣Ĝθ(z, t)− Ḡθ(z, t)∣∣∣ ≤ C0

√
v2
n
.

The above inequalities are based on Athey and Wager (2018).22

From (5.3), we find that the parameters characterizing the PDEs (3.2) and (3.10) are uniformly
close. This suggests that the solutions to these PDEs should also be uniformly close. The
intuition is formalized in the following theorem:

Theorem 2. Suppose that Assumptions 1-4 hold. Then with probability approaching one under
the distribution F ,

sup
(z,t)∈Ū ,θ∈Θ

∣∣∣ĥθ(z, t)− hθ(z, t)∣∣∣ ≤ C√ v

n
,

under the boundary conditions (3.3) and (3.7). Furthermore, there exists β0 > 0 that depends
only on the upper bounds for λ(t) and Ḡθ(·) such that the above result also holds true under the
boundary conditions (3.5) and (3.8) as long as the discount factor β ≥ β0.

A consequence of the above is

hθ∗(z0, t0)− hθ̂(z0, t0) ≤ 2C
√
v

n
.

The above statements hold uniformly over all F if similarly uniform versions of Assumptions
1-4 hold.

Theorem 2 requires the discount factor β to be sufficiently large in infinite horizon settings.
We emphasize that β can be arbitrary (and even potentially negative) in finite horizon settings,
such as the ones implied by the boundary conditions (3.3) and (3.7). To see what could go
wrong with an infinite horizon, consider Example 1.2 with a constant flow of income and arrival
rates that are independent of t. This is equivalent to setting ∂thθ = 0 in PDE (3.2). Suppose
now β ≈ 0. This implies ∂zhθ ≈ r̄θ(z)/Ḡθ(z). But Ḡθ(z) has to be 0 at some value of z in this
example (otherwise the budget will continuously increase or decrease), even as r̄θ(z) may be
22If the propensity score is known, one can use inverse probability weighting as in Kitagawa and Tetenov (2018)
instead of the doubly robust estimate. In this case r̂(x, 1) = WY/p(x)− (1−W )Y/(1− p(x)).
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non-zero. At these points hθ varies too rapidly for ĥθ to approximate it at any reasonable rate.
Hence we need β to be sufficiently large to prevent this. Indeed, this requirement is standard
for analyzing viscosity solutions in infinite horizon settings, see e.g Crandall and Lions (1983),
Souganidis (1985) and Barles & Lions (1991).

It seems likely that the
√
n rate for the regret hθ∗(z0, t0)−hθ̂(z0, t0) cannot be improved upon,

especially since Kitagawa and Tetenov (2018) show that this rate is optimal in the static case.
However, we do not know if the VC dimension v in the rate is necessarily tight. But it does
allow us to bound the difference between the integrated value functions at other values of (z, t)
apart from (z0, t0). Indeed, Theorem 2 also implies

sup
(z,t)∈Hn

∣∣hθ∗(z, t)− hθ̂(z, t)∣∣ ≤ 2C
√
v

n
, where Hn ≡

{
(z, t) : ĥθ̂(z, t) ≥ ĥθ∗(z, t)

}
.

We now discuss how the results extend to multiple forecasts. Assume that Assumption 1 now
holds uniformly in ξ i.e, λ(t; ξ) is bounded and Lipschitz continuous, both uniformly in ξ. Then
a straightforward modification of the proof of Theorem 2 implies

sup
ξ

sup
(z,t)∈Ū ,θ∈Θ

∣∣∣ĥθ(z, t; ξ)− hθ(z, t; ξ)∣∣∣ ≤ C√ v

n
.

We thus have the following corollary:

Corollary 1. Suppose that Assumptions 1-4 hold, with Assumption 1 holding uniformly in λ(t; ξ)
for all ξ. Then with probability approaching one under joint the probability distribution F×P (ξ),

sup
(z,t)∈Ū ,θ∈Θ

∣∣∣Ŵ θ(z, t)−Wθ(z, t)
∣∣∣ ≤ C√ v

n
.

The above result holds under the boundary conditions (3.3) & (3.7) for all β ∈ R, and also under
(3.5) & (3.8) for all β ≥ β0. In particular, we also have

Wθ∗(z0, t0)−Wθ̂(z0, t0) ≤ 2C
√
v

n
.

5.1. Regret bounds when the utilities are affected by z, t. Here we describe how our
results could be modified if z, t is able to affect the individual utilities Y (a). Such a situation
occurs in the example with queues (Example 1.4). Here z denotes the queue length, or waiting
time. Since waiting is costly, the effect of this should be reflected in the outcome Y (a) of the
individual, so that now E[Y (a)|s] = µa(x, z). We assume that consistent estimation of µa(x, z)
is possible as described in Section 3.2.2. More generally, µa(·) may also vary with time, e.g if
the cost of treatment is different in different times of the year. Typically, the effect of t is either
known deterministically (as with the variable cost of treatment), or can be estimated from the
observational data if the latter also includes a time variable. In all these cases, we can construct
a non-parametric estimate µ̂a(s) of µa(s). Following this, we can estimate the rewards as

r̂(s, 1) = µ̂1(s)− µ̂0(s).

The rest of the quantities are obtained as usual, e.g r̄θ(z, t) := E[r̂(s, 1)πθ(1|z, t)] etc.
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Suppose that there exists a sequence ψn such that, for a ∈ {0, 1},

(5.4) sup
x,(z,t)∈Ū

|µ̂a(x, z, t)− µa(x, z, t)| = Op(ψ−1
n ).

Primitive conditions for the above can be obtained on a case-by-case basis. Also, letting VC(·)
denote the VC dimension, suppose that for a ∈ {0, 1},

(5.5) VC
(
Īa
)
<∞; where Īa :=

{
µa(·, z, t)πθ(1|·, z, t) : (z, t) ∈ Ū , θ ∈ Θ

}
.

Under these two assumptions, following the analysis of Kitagawa and Tetenov (2018, Theorem
2.5), we can show23

sup
(z,t)∈Ū ,θ∈Θ

|r̂θ(z, t)− r̄θ(z, t)| = Op(ψ−1
n ).

We thus have the following counterpart to Theorem 2:

Corollary 2. Suppose that Assumptions 1-3 hold, along with (5.4) and (5.5). Then with prob-
ability approaching one under F ,

hθ∗(z0, t0)− hθ̂(z0, t0) ≤ Cψ−1
n

for some C < ∞. The above result holds under the boundary conditions (3.3) & (3.7) for all
β ∈ R, and also under (3.5) & (3.8) for all β ≥ β0.

The proof follows by the same reasoning as that for Theorem 2, and is omitted.

5.2. Approximation and numerical convergence. In Section 3.1, we pointed out that for
computation, it is preferable to use an approximate version of PDE (3.10), given by (3.13).
Our algorithm in Section 4 was based on this. Implementing this algorithm requires choosing a
‘approximation’ factor bn. Here we characterize the numerical error resulting from any particular
choice of bn. This is the PDE counterpart of the analysis in Section 2.2.

For each θ ∈ Θ, denote by h̃θ(z, t) the solution to (3.13),.

Theorem 3. Suppose that Assumptions 1-4 hold and Ex∼F
[
|Ga(x, z, t)|2

]
≤ C < ∞ for all

a ∈ {0, 1} and (z, t) ∈ Ū . Then, with probability approaching one under F , there exists K <∞
independent of θ, z, t such that

sup
(z,t)∈Ū ,θ∈Θ

∣∣∣hθ(z, t)− h̃θ(z, t)∣∣∣ ≤ K
(√

v

n
+
√

1
bn

)
.

The above result holds under the boundary conditions (3.3) & (3.5).

From the proof, we note that Theorem 3 still holds if we drop the first part of Assumption
1(i), which is only needed for results involving the sample PDE (3.10). We conjecture that
Theorem 3 also holds for the Neumann boundary conditions though we were unable to prove
this with our current techniques. By the results of Barles and Souganidis (1991), it is actually
straightforward to show point-wise convergence of h̃θ to hθ for each θ, under all the boundary
conditions. However, their results do not appear to be powerful enough to show uniform (over

23On the other hand, the rate for
∣∣Ĝθ(z, t)− Ḡθ(z, t)∣∣ in the second part of (5.3) is unaffected.
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θ) convergence, or to get a bound on the approximation error as we do here. In the theorem,
the approximation error is given by the b−1/2

n term. This bound appears to be sharp under our
assumptions, see, e.g, Krylov (2005). The bound is of a smaller order than b−1

n obtained in
Section 2.2 for ODEs. One can understand the difference in the rates as the price for dealing
with viscosity solutions that are not differentiable everywhere.

Let θ̃ denote the numerical approximation to θ̂, obtained as the solution to

θ̃ = arg max
θ∈Θ

h̃θ(z0, t0).

A direct consequence of 3 is that

hθ∗(z0, t0)− hθ̃(z0, t0) ≤ 2K
√
v

n
+ 2K

√
1
bn
.

Hence, as a rule of thumb, we recommend setting bn to be some multiple of, or exactly equal to
n, so that the approximation is of the same, or smaller order than the regret rates.

6. Extensions

6.1. Non-compliance. A common issue with observational data is that there is substantial
non-compliance. Here we show how our methods can be modified to account for this. For ease
of exposition, we shall specialize to examples with a budget constraint (Examples 1.1-1.3), and
also suppose that the rewards are independent of z, t. We shall also assume that the treatment
assignment behaves similarly to a monotone instrumental variable in that we can partition
individuals into three categories: compliers, always-takers and never-takers.

We will suppose that the social planner cannot change the compliance behavior of any indi-
vidual. Then the only category of people for whom a social planner can affect a welfare change
are the compliers. As for the always-takers and never-takers, the planner has no control over
their choices, so its equivalent to assume that the planner would always treat the former and
never treat the latter. Formally, the change in reward (conditional on the covariates) for the
social planner from treating an individual i, as compared to not treating, is

(6.1) r(xi, 1) =

LATE(xi) if i is a complier

0 otherwise,

where LATE(x) denotes the local average treatment effect for an individual with covariate x. As
before, we normalize r(x, 0) to 0 as we only consider expected welfare. Note that always takers
and never-takers are associated with 0 rewards. The evolution of the budget is also different for
each group. In particular,

(6.2) N(z′ − z) =


Ga(x, t, z) if i is a complier

G1(x, t, z) if i is an always-taker

G0(x, t, z) if i is a never-taker.

While the planner does not know the true compliance behavior of any individual, she can form
expectations over them given the observed covariates. Let qc(x), qa(x) and qn(x) denote the
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probabilities that an individual is respectively a complier, always-taker or never-taker conditional
on x. Given these quantities, the analysis under non-compliance proceeds analogously to Section
3. In particular, let hθ(z, t) denote the integrated value function in the current setting. Then
we have the following PDE for the evolution of hθ(z, t):

βhθ(z, t)− λ(t)Ḡθ(z, t)∂zhθ(z, t)− ∂thθ(z, t)− λ(t)r̄θ(z, t) = 0, on U ,

together with the relevant boundary conditions from (3.3), (3.5), (3.7) or (3.8), where

r̄θ(z, t) := Ex∼F [qc(x)πθ(1|x, z, t)r(x, 1)] ,

and (in view of equation 6.2),

Ḡθ(z, t) := Ex∼F [qc(x) {πθ(1|z, t)G1(x, t, z) + πθ(0|z, t)G0(x, t, z)}

+ qa(x)G1(x, t, z) + qn(x)G0(x, t, z)] .

In order to estimate the optimal policy rule, we need estimates of qc(x), qa(x), qn(x), along
with LATE(x). To obtain these, we assume that the planner has access to an observational
study involving Z as the intended treatment status or instrumental variable, and W as the
observed treatment. As before, Y is the observed outcome variable. Observe that qa(x) =
E[W |X = x, Z = 0] and qn(x) = E[1 −W |X = x, Z = 1]. Hence we can estimate q̂a(x) by
running a Logit regression of W on X for the sub-group of the data with Z = 0. Estimation
of q̂n(x) can be done in an analogous manner. Using both these estimates, we can also obtain
q̂c(x) = 1 − q̂a(x) − q̂n(x). To estimate LATE(x), we recommend the doubly robust version of
Belloni et al (2017), denoted by ˆLATE(x). In the case where there are no always-takers, the
expression for this simplifies and is given by

ˆLATE(x) = θy(1)− θy(0),

where

θy(1) :=
Ê[WY |x, Z = 1] + Z

p̂(x)(WY − Ê[WY |x, Z = 1])
q̂c(x) + Z

p̂(x)(W − q̂c(x))
, and

θy(0) :=
Ê[(1−W )Y |x, Z = 1] + Z

p̂(x)

[
(1−W )Y − Ê[(1−W )Y |x, Z = 1]

]
−
[
µ̂(x, 0) + 1−Z

1−p̂(x)(Y − µ̂(x, 0))
]

Z
p̂(x) (q̂c(x)−W )− q̂c(x)

.

In these equations, Ê[·|x, Z = 1] is an estimator for E[·|x, Z = 1], which can be obtained
through series regression, or other non-parametric methods. Additionally p̂(x) is an estimator
for p(x) = P (Z = 1|X = x) - the IV propensity score.

Given the estimates q̂c(x), q̂a(x), q̂n(x) and ˆLATE(x), it is straightforward to modify the
algorithm in Section 4 to allow for non-compliance. The main difference from Algorithm 2
is that at each update we would randomly draw the compliance nature of the individual from a
multinomial distribution with probabilities (q̂c(x), q̂a(x), q̂n(x)). Conditional on this draw, the
rewards are given by sample counterpart of (6.1), and the updates to budget by (6.2). The
pseudo-code for the resulting algorithm is provided in Appendix B.
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Probabilistic bounds on the regret for the estimated policy rule can also be obtained by the
same techniques as in Section 5. If qc(x), qa(x), qn(x) were known exactly, it is possible to show
that the rates for the regret remain unchanged at

√
v/n. A similar analysis using the estimated

quantities q̂c(x), q̂a(x), q̂n(x) is however more involved; we leave the details for future research.

6.2. Time varying distribution of covariates. In realistic settings, different individuals not
only respond differently to treatment, but also have (potentially) different dynamics regarding
their arrival rates. Thus the distribution Ft of the covariates may change with time (and in
general be different from F , the limit of the empirical distribution Fn). Assuming that the
support of Ft(·) lies within that of F (·) for all t, we can write

Ft(y) =
∫
x≤y

wt(x)dF (x),

for some weight function wt(·). Let λx(t) denote the covariate specific arrival process, and f(·)
the density function of F (·). Then we can note that

wt(x) = λx(t)/f(x)∫
(λω(t)/f(ω))dF (ω) .

Our previous results amounted to assuming λx(t) = f(x).
With the above in mind, the PDE for the evolution of hθ(z, t) is the same as (3.2), but now

r̄θ(z, t) := Ex∼Ft [πθ(1|x, z, t)r(x, 1)] ,

Ḡθ(z, t) := Ex∼Ft [G1(x, z, t)πθ(1|x, z, t) +G0(x, z, t)πθ(0|x, z, t)]

and λ(t) is replaced by λ̄(t), where

λ̄(t) :=
∫
λω(t)dω.

We have assumed here for simplicity that the rewards do not depend on (z, t). If the weight func-
tion wt(x) were known, we can replace Ft with its empirical counterpart Fn,t := n−1∑

iwt(xi)δ(xi),
where δ(·) denotes the Dirac delta function. Thus Fn,t is akin to a weighted empirical distribu-
tion. We can then construct the empirical PDE (3.10) using the sample quantities

r̂θ(z, t) = Ex∼Fn,t [πθ(1|x, z, t)r̂(x, 1)] , and

Ĝθ(z, t) = Ex∼Fn,t [G1(x, z, t)πθ(1|x, z, t) +G0(x, z, t)πθ(0|x, z, t)] .

With known weights, one can extend the methods of Athey and Wager (2018) to show that
equation (5.3) still holds. Consequently, Theorem 2 continues to hold true.

In reality, wt(·) is unknown as the distribution F is unknown. We shall assume however that
we have access to covariate specific forecasts, λx(t). We then suggest approximating wt(·) with
a piece-wise constant function ŵt(x) by partitioning the space X of the covariates into a finite
set of clusters j = 1, . . . , J . The value of ŵt(·) is constant within each cluster. Ideally, we
would like to obtain time varying clusters by clustering on λx(t), for each given t. This is of
course computationally infeasible since t is a continuous variable, so we will instead assume that
the heterogeneity in arrival rates is driven by a low dimensional latent variable κ, of dimension
dκ. Then the clusters can be determined by partitioning on a vector of moments of λx(t),
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e.g
(∫
λx(t)dt,

∫
λ2
x(t)dt

)
etc., assuming they are injective with respect to κ (see Bonhomme,

Lamadon and Manresa, 2017). Note that the resulting clusters do not change with time.
Denote X (j) as the domain of cluster j. With the knowledge of the clusters, we can calculate

the cluster-specific arrival rate λj(t) =
∫
X (j) λx(t)dx. The value of ŵt(·) within each cluster j,

denoted by ŵt(j), is then obtained as ŵt(j) = λj(t)/
∑
j λj(t). The empirical counterpart of Ft

is now Fn,t = n−1∑
j ŵt(j)Fn,j , where Fn,j denotes the empirical distribution of observations

for each cluster. Using these quantities, the empirical PDE (3.10) is constructed by setting

r̂θ(z, t) = Ex∼Fn,t [πθ(1|x, z, t)r̂(x, 1)] ,

Ĝθ(z, t) = Ex∼Fn,t [G1(x, z, t)πθ(1|x, z, t) +G0(x, z, t)πθ(0|x, z, t)] , and

λ(t) =
∑
j

λj(t).

The regret rates will now have an additional term due to the approximation error from
replacing wt(x) with the cluster estimate ŵt(x). Let us denote this rate by R(n, J), defined as
the upper bound

sup
x∈X

∣∣∣∣Ft(x)−
∫
y≤x

ŵt(y)dF (y)
∣∣∣∣ . R(n, J).

For the clustering scheme described above, we haveR(n, J) > J−dκ+
√
J/n (see, e.g, Bonhomme,

Lamadon and Manresa, 2017). Different rates are possible under various assumptions and
clustering schemes; we shall not document these here but simply use R(n, J) to state our results.
The concentration inequalities (5.3) will now include this as an additional term:24

E

[
sup

z,t∈U ,θ∈Θ
‖r̂θ(z, t)− r̄θ(z, t)‖

]
≤ C0

√
v1
n

+R(n, J),

with related expressions for Ĝθ(z, t) − Ḡθ(z, t) and λ̂(t) − λ̄(t). Subsequently, proceeding as in
the proof of Theorem 2 enables us to show that

hθ∗(z0, t0)− hθ̂(z0, t0) ≤ 2C
(√

v

n
+R(n, J)

)
,

with probability approaching one.
It is straightforward to extend our Actor-Critic algorithm to allow for clusters: before each

update we sample the cluster index by drawing the value of j from a multinomial distribution
with probabilities (ŵt(1), . . . , ŵt(J)). The pseudo-code is provided in Appendix B. Also, we have
assumed so far that λx(t) is given. In Appendix F, we present an iterative scheme for estimating
the clusters c and cluster specific arrival rates λ̂c(·) jointly from time series data.

6.3. Deterministic policy rules. In this section we consider the case where the social planner
explicitly wants deterministic rules. Now in examples with substantial functional approximation,
the optimal rule is often stochastic (Sutton and Barto, 2018, Chapter 13). Hence, if the goal is

24In deriving this expression, we make use of the fact that the concentration bounds in (5.3) hold uniformly over all
probability distributions, and therefore uniformly over all F̃t(x) =

∫
ŵt(x)dF (x). In particular, we can decompose

r̂θ(z, t)− r̄θ(z, t) as the sum of r̂θ(z, t)− r̃θ(z, t) and r̃θ(z, t)− r̄θ(z, t), where r̃θ(z, t) := Ex∼F̃t
[πθ(1|x, z, t)r(x, 1)].

The first term is the of order
√
v/n due to the uniform concentration bounds, while the second term R(n, J)

then arises from the difference between Ft − F̃t as discussed above.
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to obtain a purely deterministic rule, we would often need to explicitly constrain the algorithm
to do so.

To illustrate how this can be done, suppose that the social planner is restricted to using gener-
alized linear eligibility scores (Kitagawa and Tetenov, 2018), given by E = {πθ : πθ(1|s) = I(s′θ > 0)} .
This functional class is not differentiable. However, we can approximate E with the soft-max
class Πσ, where σ ∈ R+ is arbitrarily small. The Actor-Critic algorithm can be directly applied
on this approximation class for any fixed σ, but more usefully, we can also treat σ as a ‘temper-
ature’ parameter, and decrease it slowly in the course of the updates. In doing so we eventually
end up with a deterministic policy. In practice, we recommend starting with Algorithm 1 to
obtain an initial estimate of θ. After this, the intercept can be extracted and denoted as the
initial 1/σ, and the present procedure may be applied.

Our theoretical results require some extensions since the first part of Assumption 1(i) - on
the continuity of πθ(1|x, z, t) - precludes deterministic policies which are usually discontinuous
in (z, t) for a given x. However, as noted before, this part of the assumption can be dropped,
and we only need that Ḡθ(z, t) and r̄θ(z, t) are uniformly Lipschitz continuous. For instance, the
class of linear eligibility scores is discontinuous for any given x, but satisfies Lipschitz continuity
of Ḡθ(z, t) and r̄θ(z, t) under some regularity conditions, see Appendix C. A technical difficulty,
however, is that ĥθ may not exist (as a viscosity solution) since Ĝθ(z, t) and r̂θ(z, t) will still
be discontinuous. One way to resolve this is to give up on ĥθ entirely and only work with the
solution, h̃θ, to the approximation scheme (3.13). Theorem 3 then guarantees convergence of h̃θ
to hθ without requiring continuity of πθ(1|x, z, t).

6.4. Continuing and online learning. In this section we discuss how our algorithm may
continue to be updated after coming online, as new information is revealed that focuses the
forecasts of λ(t). Obviously, it is important to keep updating the algorithm if it is intended to
be run indefinitely as in Example 1.2. Note that if changes to the forecasts of λ(t) are small, it is
not computationally too expensive to re-run the program with the new forecasts, starting from
the current policy and value function parameters. In general, the optimal policy is continuous
in λ(·), so we can expect to reach the new optimum within a few episodes. Aggregating over
forecasts also adds to the robustness of learned policy against small changes to the forecasts.

We can also let the Actor-Critic algorithm keep updating in the background after coming
online. To do so we require the estimates r̂(s, 1) from the observational dataset as we assumed
the outcomes are not observable. However, the algorithm now observes the true waiting times
between arrivals, and by continuing to update it now implicitly uses the true value of λ(t). In
this way, the program is able to adjust to changes in arrival rates. The speed of the adjustment
will depend on learning rates (αθ,o, αν,o) for the online updates. How these should be set will
depend on the prior belief over how informative the forecast is, but as a rule of thumb we suggest
setting the rates to the same values as used in estimation.25

25However, it should be noted that the trade-offs involved are somewhat different. With historical data, we can
use slower rates than optimal as the drawback is only computational. But with online learning, this would lead
to sub-optimal policies. It is therefore important to employ a structured procedure to determine learning rates,
such as Population Based Training (see Jaderberg et al, 2018).
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In settings with infinite horizon, we can also use our algorithm in a completely online manner
without historical data, assuming the rewards Y (1) are revealed instantly. Note that contextual
bandit algorithms are not applicable here since they do not consider that current actions affect
the distribution of the future states (in addition to affecting instantaneous rewards). On the
other hand, it can be shown using existing results in Reinforcement Learning that the optimal
policy is learnable under our Actor-Critic algorithm, i.e, the program will eventually converge
to it assuming the environment is periodic (see e.g, Bhatnagar et al, 2009). However the con-
vergence may be extremely slow, leading to substantial welfare losses in the interim. In fact,
it would be more efficient to combine both the online and historical learning approaches: at
various points, we can periodically pool all the past observations and run an empirical version
of the dynamic model (with λ(·) estimated from previous observations) to perform additional
updates to the policy and value parameters. Doing so speeds up convergence since the model
effectively enables us to generate additional observations. The considerations here are essentially
the same as that between model-based and model-free reinforcement learning; we refer to Sutton
and Barto (2018, Chapter 8) for a discussion.26

6.5. When the policy can affect the environment. We have assumed so far that the policy
does not affect the environment, i.e the distribution and rate of arrival of individuals. However,
even if this assumption is not tenable, the results of this paper can be applicable if we have a
model of individual response to policy. In particular, if we know how the arrival rates λ(·), and
the distribution F (·) change with the state variables s, we can incorporate this information into
our procedure, and our theoretical results will continue to hold. We illustrate this in Appendix
H with a simple example where the distribution of the arrivals depends on the types of people
who have been treated before (e.g, men are more likely to apply if the program had historically
favored men etc.).

The main difficulty then is to estimate the response to policy. In examples with a finite
horizon this is in fact not estimable and one would need to exploit some prior knowledge about
the policy response. The situation is however different in infinite horizon setups. Here our
algorithm can be used in an online manner and it will eventually learn the optimal policy even
in the presence of behavioral response.

7. Empirical application: JTPA

To illustrate our approach, we use the popular dataset on randomized training provided
under the JTPA, akin to e.g Kitagawa and Tetenov (2018), or Abadie, Angrist, and Imbens
(2002). During 18 months, applicants who contacted job centers after becoming unemployed
were randomized to either obtain support or not. Local centers could choose to supply one of
the following forms of support: training, job-search assistance, or other support. Again akin to
Kitagawa and Tetenov (2018), we consolidate all forms of support. Baseline information about
the 20601 applicants was collected as well as their subsequent earnings for 30 months. We follow
the sample selection procedure of Kitagawa and Tetenov (2018) and delete entries with missing
26Indeed, some of the best performing RL algorithms such as Monte-Carlo-Tree-Search used in AlphaGo (Silver
et al, 2017) combine both model-based and model-free approaches for a more efficient algorithm.
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Figure 7.1. Clusters-Specific Arrival Rates over Time

earnings or education variables as well as those that are not in the analysis of the adult sample
of Abadie, Angrist, and Imbens (2002). This results in 9223 observations.

In this setting, a policy maker is faced with a sequence of individuals who just became
unemployed. For each arriving individual, she has to decide whether to offer job training to
them or not. The decision is made based on current time, remaining budget, and individual
characteristics. For the latter, we follow Kitagawa and Tetenov (2018) and use education,
previous earnings, and age. Job training is free to the individual, however, costly to the policy
maker who has only limited funds.

The frequency with which people with given characteristics apply is not constant throughout
the year. As we use RCT data which contains information regarding when participants arrived,
we can estimate Poisson processes that are changing over the course of the year. We first partition
the data into clusters using k-median clustering on education, previous earnings, and age. The
resulting clusters are briefly described in Appendix G. For each cluster, we estimate the arrival
probabilities. While we assume that they are constant across years, we allow for variation within
a year. In particular, we specify the following functional form for the cluster-specific Poisson
parameter: λc(t) = exp {β0,c + β1,csin(2πt) + β2,ccos(2πt)}, where t is normalized so that t = 1
corresponds to a year. For each cluster, we obtain the estimates βc using maximum likelihood
(see Appendix F). Figure 7.1 shows the estimated dynamic behavior of each cluster. People
from cluster 1, for example, display a less pronounced seasonal pattern regarding their arrival
rates than people from cluster 2.

We obtain the reward estimates r̂(x, 1) in two ways: (i) r̂(x, 1) = µ̂(x, 1)−µ̂(x, 0), and (ii) from
a doubly robust procedure as in (5.2) that also employs crossfitting. In both cases we use simple
OLS to estimate the conditional means. For this reason we shall call case (i) the case of standard
OLS rewards. The relevant covariates are education, previous earnings, and age. Estimating
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the propensity score is not necessary in this context as it was set by the RCT to be 2
3 . Note that

the different reward estimates give rise to different heterogeneity patterns, which crucially affect
the resulting policy function. Indeed, while the doubly robust procedure consistently estimates
the true heterogeneity structure, the standard OLS does not. Consequently, we expect differing
parameters in the policy functions and treatment decisions.

In terms of the other parameters, we set the budget such that 1600 people can be treated,
which is about a quarter of the expected number of people arriving in a year (given our Poisson
rates). This is achieved by normalizing z such that z0 = 0.25 and the cost of treatment to
c = 1

6400 . We also use a discount factor of β = − log(0.9), which implies an annualized discount
rate of 0.9 (since t = 1 corresponds to an year). The episode terminates when all budget is used
up.

We chose the policy function class such that log(πθ(1|s)/(1−πθ(1|s)) = θ0+θᵀ1x+θᵀ2x·z+θᵀ3x·
cos(2πt), where x = (1, age, education, previous earnings).27 We use cos(2πt) to ensure that the
arrival rates are periodic, and to prevent discontinuities at the end of the year. Note that this
allows for episodes potentially lasting longer than a year, but constrains the years themselves to
be identical.

To run our Actor-Critic algorithm we need to set the learning rates. We tuned these manually
starting from the rules of thumb to optimize the performance of the algorithm. Based on pilot
runs we found that by setting αθ = 0.3 and αν = 0.6 we could achieve good performance.
Moreover, our implementation has 23 reinforcement learning agents training in parallel threads
and we have set the batch size to B = 1024.

Employing the parallel actor-critic algorithm with clusters (see Appendix G and section 6.2)
provides promising results. Figure 7.2 shows that the expected welfare converges as learning
occurs through the episodes. Each point in Figure 7.2 is an average over 500 evaluation episodes.
We normalize welfare so that choosing a random policy provides a welfare of 1. Eventually, the
welfare is around three to four times higher than that under random treatment in the initial
episode. For the OLS rewards we initialized the policy and value functions by setting all the
coefficients to 0. The evaluated welfare quickly increases and reaches a constant level. On the
other hand, the parameters in the policy function do not seem to have entirely converged. We
suspect this is because the function ĥθ(z, t) is flat around the optimum. We also increased the
number of episodes to 20000 but this did not affect the welfare by any significant amount.

In the case of doubly robust rewards, we initialize the policy function parameter with the
results obtained from the standard OLS. This is done in order to obtain an initial policy that
is sufficiently exploratory. The rewards under doubly robust estimates are much more variable.
Thus when initialized with a random policy, the program takes too long a time to explore
sufficiently, and as a consequence, the parameters take too long to converge. It is therefore
preferable to start with a policy that explores until a few years straightaway (the random policy,
by contrast, finishes in only 6 months).

27The value basis function used is φ(z, t) =
(
z, z sin(2πt), z cos(2πt), z2 cos(2πt), z2, z3, z4)ᵀ.
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Figure 7.2. Converging Episodic Welfare

To visualize how the policy function changes with (z, t), we add up all the terms corresponding
to a particular covariate, resulting in an expression of the form θ1(x) + θ2(x)z + θ3(x) cos(2πt),
where (θ1(x), θ2(x), θ3(x)) are the coefficients corresponding to covariate x. We then plot these
functions as a heatmap for each covariate in Figure 7.4. Note that a low budget indicates
that the end of an episode is near, while time reflects differences in seasonal patterns related
to the non-constant arrival rates. An episode lasts for approximately three years in the case
with standard OLS reward estimates and around 25 years with doubly robust rewards.28 The
heat maps indicate how large the coefficient value is, i.e how strongly this variable influences
the decision of treatment. For example, in the case of doubly robust rewards older individuals
are more likely to be treated when the remaining budget is still large. Simulations of the
resulting policy function allow for further interpretation of the policy function (see Appendix G
for details). These simulations show that the policy becomes more selective when the budget
decreases. Seasonality, on the other hand, does not seem to matter much in our current example.

In sum, we have shown that rewards resulting from following our estimated policy function
are substantially higher than under random treatment. Moreover, both rewards and policy
function parameters converge. This illustrates the functionality of our algorithm for given reward
estimates. How these estimates are obtained matters: the results for standard OLS rewards are
different from those obtained from employing doubly robust estimates (see Appendix G for a

28For time running from 0 to 1, the horizontal pattern that the left and right margin are equal to each other with
gradual changes towards the middle is artificially due to our choice to have time in the policy function in the form
cos(2πt).
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Figure 7.3. Convergence of Policy Function Parameters

discussion). Since the latter consistently estimates the true heterogeneity structure, we clearly
recommend using doubly robust reward estimation out of the two.

8. Conclusion

In this paper we have shown how to estimate optimal dynamic treatment assignment rules
using observational data under constraints on the policy space. We proposed an Actor-Critic al-
gorithm to efficiently solve for these rules. Our framework is very general and allows for a broad
class of dynamic settings. Separately, our results also point the way to using Reinforcement
Learning to solve PDEs characterizing the evolution of value functions. We do so by approx-
imating the PDEs with a dynamic program. We were also able to characterize the numerical
error involved in this approximation.

At the same time, the work raises a number of avenues for future research. We have already
discussed in previous sections the need to study online learning algorithms, and to allow for
strategic behavior on part of individuals. Another drawback of our procedure is that the action
space is quite small. For instance, the planner is not allowed to pool individuals and simulta-
neously allocate treatment given their combined set of covariates. This drawback is also shared
by the previous literature on treatment assignment rules. Thus far, the literature has consid-
ered static settings where the policy function is determined ex-ante, but is not ex-post optimal
conditional on the realized covariates. Our work represents an advance in this regard since we
allow the planner to determine the assignment rule as a function of past history. However we
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A: Doubly Robust Reward Estimates B: Standard OLS Reward Estimates

Figure 7.4. Coefficient Interactions in the Resulting Policy Function

still do not allow the planner to simultaneously decide on a plan of action over a given mass of
people. This gives rise to infinite dimensional states and actions, the analysis of which is beyond
the scope of the current paper.
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Appendix A. Proofs of main results

We recall here the definition of a viscosity solution. Consider a first order differential partial
equation of the Dirichlet form

(A.1) F (z, t, u(z, t), Du(z, t)) = 0 on U ; u = 0 on Γ,

where x is a vector, Du denotes the derivative with respect to (z, t), U is the domain of the PDE
and Γ ⊆ ∂U is the set on which the boundary conditions are specified. We restrict ourselves to
functions F (·) that are proper, i.e F (·) is non-decreasing in u(·, ·).

In what follows, let y = (z, t) and y0 = (z0, t0). Let Z denote the domain of z. Also, C2(U)
denotes the space of all twice continuously differentiable functions on U .

Definition 1. A bounded continuous function u is a viscosity sub-solution to (A.1) if:
(i) u ≤ 0 on Γ, and
(ii) for each φ ∈ C2(U), if u− φ has a local maximum at y0 ∈ U , then

F (y0, u(y0), Dφ(y0)) ≤ 0.

Similarly, a bounded continuous function u is a viscosity super-solution to (A.1) if:
(i) u ≥ 0 on Γ, and
(ii) for each φ ∈ C2(U), if u− φ has a local minimum at y0 ∈ U , then

F (y0, u(y0), Dφ(y0)) ≥ 0.

Finally, u is a viscosity solution to (A.1) if it is both a sub-solution and a super-solution.

We shall also say that u is a viscosity sub-solution to (A.1) on U if only the second condition
holds (i.e it need not be the case that u ≤ 0 on Γ). Similarly, u is a viscosity super-solution to
(A.1) on U if only condition (ii) holds, without necessarily being the case that u ≥ 0 on Γ.

The definition of viscosity solutions can also be extended to non-linear boundary conditions
following Barles and Lions (1991). Here, we consider a Cauchy problem with a non-linear
Neumann boundary condition: (recall that Z denotes the domain of z)

F (z, t, u(z, t), Du(z, t)) = 0 on Z × (0, T̄ ];(A.2)

B (z, t, u(z, t), Du(z, t)) = 0 on ∂Z × (0, T̄ ];

u(z, t) = 0 on Z × {0};

where B(·) is a non-linear boundary condition. In general, the boundary condition on ∂Z×(t0, T̄ ]
may be over-determined, and the second condition may not hold everywhere. We thus need some
weaker notion of the boundary condition as well. This is provided in the following definition,
due to Barles and Lions (1991); see also Crandall, Ishii and Lions (1992).

Definition 2. A bounded continuous function u is a viscosity sub-solution to (A.2) if:
(i) u(z, 0) ≤ 0 for all z ∈ Z, and
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(ii) for each φ ∈ C2(Z̄ × [0, T̄ ]), if u− φ has a local maximum at y0 ∈ Z̄ × (0, T̄ ], then

F (y0, u(y0), Dφ(y0)) ≤ 0 if y0 ∈ Z × (0, T̄ ];

min {F (y0, u(y0), Dφ(y0)) , B (y0, u(y0), Dφ(y0))} ≤ 0 if y0 ∈ ∂Z × (0, T̄ ].

Similarly, a bounded continuous function u is a viscosity super-solution to (A.2) if:
(i) u(z, 0) ≥ 0 for all z ∈ Z, and
(ii) for each φ ∈ C2(Z̄ × [0, T̄ ]), if u− φ has a local minimum at y0 ∈ Z̄ × (0, T̄ ], then

F (y0, u(y0), Dφ(y0)) ≥ 0 if y0 ∈ Z × (0, T ];

max {F (y0, u(y0), Dφ(y0)) , B (y0, u(y0), Dφ(y0))} ≥ 0 if y0 ∈ ∂Z × (0, T ].

Finally, u is a viscosity solution to (A.2) if it is both a sub-solution and a super-solution.

Henceforth, whenever we refer to a viscosity super- or sub-solution, we shall implicitly assume
that it is bounded and uniformly continuous. Existence and uniqueness of viscosity solutions
for (A.1) and (A.2) can be shown to hold under the regularity conditions given below (see e.g,
Crandall, Ishii and Lions, 1992, or Barles and Lions, 1991):

(R1) F (y, u, p) is uniformly continuous in p.
(R2) There exists a modulus of continuity ω(·) such that

|F (y1, u, p)− F (y2, u, p)| ≤ ω (‖y1 − y2‖ |1 + ‖p‖|) .

(R3) There exists β > 0 such that F (y, u1, p)− F (y, u2, p) ≥ β(u1 − u2) for all u1 ≥ u2.

The regularity conditions on B(·) are very similar, except for one additional condition:

(R4) B(y, u, p) is uniformly continuous in p.
(R5) There exists a modulus of continuity ω(·) such that

|B(y1, u, p)−B(y2, u, p)| ≤ ω (‖y1 − y2‖ |1 + ‖p‖|) .

(R6) B(y, u, p) is non-decreasing in u for all (y, p).
(R7) Let n(y) denote the outward normal to Γ at y. There exists ν > 0 such that

B(y, u, p+ λn(·))−B(y, u, p+ µn(·)) ≥ ν(λ− µ) for all λ ≥ µ.

Finally, we shall also require

(R8) There exists M ≥ 0 such that F (y,M, 0) ≥ 0 ≥ F (y,−M, 0) ∀(z, t) ∈ U , and
B(y,M, 0) ≥ 0 ≥ B(y,−M, 0) ∀(z, t) ∈ Γ.

A.1. Proof of Lemma 1. Dirichlet boundary condition. Under the Dirichlet boundary condi-
tion, PDE (3.2) can be written as

Fθ (z, t, hθ, Dhθ) = 0 on U ;(A.3)

hθ(z, t) = 0 on Γ,

where Fθ(·) is defined as

Fθ(z, t, u, p) := βu−
(
λ(t)Ḡθ(z, t), 1

)ᵀ
p− λ(t)r̄θ(z, t).
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It is straightforward to verify that the function Fθ(·) satisfies the regularity conditions (R1)-(R3)
and (R8) under Assumption 1. Furthermore, the set Γ as defined in (3.4) satisfies the uniform
exterior sphere condition.29 Then, as long as the above properties are satisfied, the analysis of
Crandall (1997, Section 9) shows that a unique viscosity solution exists for (A.3), as long as
we are able to exhibit some continuous sub- and super-solutions to (A.3). From the regularity
condition (R8), we can see that one such set is given by M and −M . Hence a viscosity solution
to (A.3) exists.

Periodic boundary condition. We construct the solution to the periodic boundary condition as
the long run limit of a Cauchy problem. In particular, let vθ(·) denote a solution to the Cauchy
problem

Fθ (z, t, vθ, Dvθ) = 0 on R× (t0,∞);

vθ(z, t) = v0 on R× {t0},

where the function Fθ(·) is as defined before and v0 is some arbitrary Lipschitz continuous
function e.g v0 = 0. We then claim that if Fθ(·) is periodic in t, the unique periodic viscosity
solution hθ satisfying (3.5) can be identified as hθ(z, t) = limm→∞ vθ(z,mTp+t) for all t ∈ [t0, t0+
Tp]. This claim is proved in Bostan and Namah (2007, Proposition 5), but for completeness we
restate their arguments here. First, observe that existence of a solution vθ to the Cauchy problem
is assured by our previous arguments. Define v+

θ (z, t) = vθ(z, t + Tp). By periodicity of Fθ(·),
v+
θ (z, t) is a viscosity solution to Fθ (z, t, vθ, Dvθ) = 0 on R× (t0,∞). By Lemma 3 in Appendix
D, |vθ| ≤ M < ∞ for some M < ∞. Combined with the Comparison Theorem for Cauchy
problems (Lemma 5 in Appendix D), we obtain

sup
(z,w)∈R×[t0,∞)

|v+
θ (z, w)− vθ(z, w)| ≤ e−β(w−t) sup

z∈R
|v+
θ (z, t0)− vθ(z, t0)| ≤ 2e−β(w−t)M,

for any t < w. In view of the above equation, setting w = t + mTp, and denoting hm,θ(z, t) :=
vθ(z,mTp + t), we have thus shown that

sup
z,t∈R×[t0,t0+Tp]

|hm+1,θ(z, t)− hm,θ(z, t)| ≤ 2e−βmTpM.

Thus there exists a limit hθ(z, t) to the sequence hm,θ(z, t). It is clear that this limit is periodic
in Tp, as can be seen from the fact

|hm,θ(z, t+ Tp)− hm,θ(z, t)| := |hm+1,θ(z, t)− hm,θ(z, t)| → 0

uniformly over all t ∈ [t0, t0+Tp]. Additionally, since hm,θ(·) is a viscosity solution to Fθ (z, t, vθ, Dvθ) =
0 on R×(t0,∞) for each m, the stability property of viscosity solutions (see Crandall and Lions,
1983) implies that hθ(·) is a viscosity solution as well. This completes the existence claim of
the periodic solution. That it is also unique follows from the Comparison theorem for periodic
boundary condition problems (Theorem 6 in Appendix D).

29A set U is said to satisfy the uniform exterior sphere condition if there exists r0 > 0 such that every point
y ∈ ∂U is on the boundary of a ball of radius r0 that otherwise does not intersect Ū .
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Neumann and periodic-Neumann boundary conditions. We can rewrite the Neumann bound-
ary condition (3.7) in the form

Fθ (z, t, hθ, Dhθ) = 0 on (z,∞)× [t0, T );(A.4)

Bθ (z, t, hθ, Dhθ) = 0 on {z} × (t0, T );

hθ(z, t) = 0 on [z,∞)× {T},

where
Bθ (z, t, u, p) := βu− (λ(t)σ̄θ(z, t), 1)ᵀ p− η̄θ(z, t).

This can be cast in the form (A.2) after a change of variable uθ(z, τ) := hθ(z, T − τ). Then
by the results of Crandall, Ishii and Lions (1992, Theorem 7.12), we can show that a unique
solution to (A.4) exists as long as Fθ(·) and Bθ(·) satisfy the regularity conditions (R1)-(R8).
It is straightforward to verify these under Assumption 1 (note that the outward normal to the
plane {z}×[t0, T ) is n = (−1, 0)ᵀ, so (R7) holds as long as σ̄θ(z, t) > 0, as assured by Assumption
1(iv)).

For the periodic Neumann boundary condition, we can argue as before by first constructing
a solution vθ to

Fθ (z, t, vθ, Dvθ) = 0 on (z,∞)× [t0,∞);

Bθ (z, t, vθ, Dvθ) = 0 on {z} × [t0,∞);

vθ(z, t) = 0 on [z,∞)× {t0},

and then defining hθ(z, t) = limm→∞ vθ(z,mTp + t) for t ∈ [t0, t0 + Tp].

A.2. Proof of Theorem 2. We treat the different boundary conditions separately.

Dirichlet boundary condition. There are two further sub-cases here, depending on whether T <

∞ or T =∞. For our proof we choose the case of T <∞. In this setting U ≡ (z,∞)× [t0, T ),
and the boundary condition (3.4) is given by Γ ≡ {{z} × [t0, T ]} ∪ {(z,∞)× {T}}, where z ∈ R
(including, potentially, z = −∞). We will later sketch how the proof can be modified to deal
with the other, arguably simpler, case with T =∞ but finite z, i.e, where Γ ≡ {z} × [t0,∞) .

For simplicity, we shall set t0 = 0. This is without loss of generality. We shall also make a
change of variable for t using τ(t) := T−t, which enables us place the boundary condition at τ =
0 rather than t = T . Define uθ(z, τ) := eβτhθ(z, T − τ), along with ûθ(z, τ) := eβτ ĥθ(z, T − τ).30

In view of (3.2), uθ satisfies

∂τuθ +Hθ(z, τ, ∂zuθ) = 0 on Υ ≡ (z,∞)× (0, T ];(A.5)

uθ = 0 on B ≡ {{z} × [0, T ]} ∪ {(z,∞)× {0}}

in a viscosity sense, where

Hθ(z, τ, p) := −eβτλ(τ)r̄θ(z, τ)− λ(τ)Ḡθ(z, τ)p.

30The multiplication with eβτ allows us to get rid of the term βuθ, which simplifies the proof. The price we pay
however is that we have an additional constant in the rate.
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Similarly, from (3.10), ûθ is a viscosity solution to

∂τ ûθ + Ĥθ(z, τ, ∂zûθ) = 0 on Υ;(A.6)

ûθ = 0 on B,

where

Ĥθ(z, τ, p) := −eβτλ(τ)r̂θ(z, τ)− λ(τ)Ĝθ(z, τ)p.

We claim that for each θ ∈ Θ, uθ(z, τ) + τC
√
v/n is a viscosity super solution to (A.6) on

Υ, for some appropriate choice of C. We show this by directly employing the definition of a
viscosity super-solution. First, note that uθ(z, τ) + τC

√
v/n is continuous and bounded on Ῡ

since so is uθ (see Lemmas 3 and 4 in Appendix D). Now take any arbitrary point (z∗, τ∗) ∈ Υ,
and let φ(z, τ) ∈ C2(Υ) be any function such that uθ(z, τ) + τC

√
v/n − φ(z, τ) attains a local

minimum at (z∗, τ∗). This implies uθ(z, τ)− ϕ(z, τ) attains a local minimum at (z∗, τ∗), where
ϕ(z, τ) := −τC

√
v/n+ φ(z, τ). Since uθ(z, τ) is a viscosity solution of (A.5), it follows

∂τϕ(z∗, τ∗) +Hθ (z∗, τ∗, ∂zϕ(z∗, τ∗)) ≥ 0.

The above expression implies

∂τφ(z∗, τ∗)− eβτ∗λ(τ∗)r̄θ(z∗, τ∗)− λ(τ∗)Ḡθ(z∗, τ∗)∂zφ(z∗, τ∗) ≥ C
√
v

n
,

and, after a bit more algebra, that

∂τφ(z∗, τ∗)− eβτ∗λ(τ∗)r̂θ(z∗, τ∗)− λ(τ∗)Ĝθ(z∗, τ∗)∂zφ(z∗, τ∗)(A.7)

≥ C
√
v

n
− eβτ∗ λ̄ |r̂θ(z∗, τ∗)− r̄θ(z∗, τ∗)| − λ̄

∣∣∣Ĝθ(z∗, τ∗)− Ḡθ(z∗, τ∗)∣∣∣ |∂zφ(z∗, τ∗)|

where λ̄ := supτ λ(τ) <∞ by Assumption 1(iii). We shall now show that the right hand side of
(A.7) is bounded away from 0, as required by the condition for a viscosity super-solution. To
this end, we employ Lemma 4 in Appendix D which assures uθ(·, τ) is Lipschitz continuous in
its first argument, with a Lipschitz constant L1 < ∞ independent of z, τ, θ. Consequently, for
uθ(z, τ)−ϕ(z, τ) to attain a local maximum at (z∗, τ∗), it has to be the case that |∂zϕ(z∗, τ∗)| ≤
L1. This in turn implies

(A.8) |∂zφ(z∗, τ∗)| ≤ L1.

Furthermore, by the results of Athey and Wager (2018), under Assumptions 1-4, there exists a
universal constant C0 <∞ such that

sup
(z,τ)∈Ū ,θ∈Θ

|r̂θ(z, τ)− r̄θ(z, τ)| ≤ C0

√
v1
n
, and(A.9)

sup
(z,τ)∈Ū ,θ∈Θ

∣∣∣Ĝθ(z, τ)− Ḡθ(z, τ)
∣∣∣ ≤ C0

√
v2
n
,

with probability approaching one (henceforth wpa1). The second inequality in (A.9) can also
be derived from Kitagawa and Tetenov (2018, Lemma A.4). In view of (A.7)-(A.9), we can thus
set C > C0λ̄(eβT +L1) for which the right hand side of (A.7) is bounded away from 0 wpa1 and
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we obtain

(A.10) ∂τφ(z∗, τ∗)− λ(τ∗)r̂θ(z∗, τ∗)− λ(τ∗)Ĝθ(z∗, τ∗)∂zφ(z∗, τ∗) ≥ 0, wpa1.

Thus wpa1, uθ(z, τ) + τC
√
v/n is a viscosity super-solution to (A.6) on Υ. This holds true for

each θ ∈ Θ.
The function ûθ is a viscosity solution, and therefore, a sub-solution to (A.10) on Υ. At

the same time, uθ(z, τ) + τC
√
v/n ≥ 0 = ûθ(z, τ) on B and we have already shown that

uθ(z, τ)+τC
√
v/n is a viscosity super solution to (A.6) on Υ. Furthermore, it is straightforward

to verify that Ĥθ(·) satisfies the regularity conditions (H1)-(H3) in Appendix D uniformly in θ,
wpa1, in view of Assumption 1 (in particular, the first part of Assumption 1(i) ensures Ĝθ(z, t)
and r̂θ(z, t) are uniformly continuous). Consequently, we can apply the Comparison Theorem 5
in Appendix D to conclude

ûθ(z, τ)− uθ(z, τ) ≤ τC
√
v

n
, wpa1,

for all θ ∈ Θ. A symmetric argument involving uθ(z, τ)− τC
√
v/n as a sub-solution to (A.10)

also implies
uθ(z, τ)− ûθ(z, τ) ≤ τC

√
v

n
, wpa1,

for all θ ∈ Θ. Converting the above results back to hθ and ĥθ, we obtain∣∣∣ĥθ(z, t)− hθ(z, t)∣∣∣ ≤ C(T − t)e−β(T−t)
√
v

n
.

Since T is finite, this completes the proof of Theorem 2 for the Dirichlet case with a time
constraint.

We now briefly sketch how the proof can be modified in the setting with finite z when T =∞.
Here U ≡ (z, z0]× [t0,∞) and Γ ≡ {z}× [t0,∞). Note that assumption 2(ii) implies Ḡθ(z, t) < 0.
Then, we make the transformation uθ(z, t) = e−βthθ(z, t), and write the PDE for uθ(z, t) in the
form

∂zuθ +H
(1)
θ (t, z, ∂tuθ) = 0 on U ,

uθ = 0 on Γ,

where now
H

(1)
θ (t, z, p) := e−βt

r̄θ(z, t)
Ḡθ(z, t)

+ p

λ(t)Ḡθ(z, t)
.

The rest of the proof can then proceed as before with straightforward modifications, after re-
versing the roles of z and t.

Periodic boundary condition. Choose some arbitrary t∗ > Tp. Denote uθ(z, τ) = eβτhθ(z, t∗−τ),
ûθ(z, τ) = eβτ ĥθ(z, t∗ − τ). Also, set v0 := uθ(z, 0) and v̂0 := ûθ(z, 0). Now uθ can be thought
of as a viscosity solution to the Cauchy problem

∂τf +Hθ(z, τ, ∂zf) = 0 on Υ;(A.11)

f(·, 0) = v0,
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where Υ ≡ R× (0, Tp] and

Hθ(z, τ, p) := −eβτλ(τ)r̄θ(z, τ)− λ(τ)Ḡθ(z, τ)p.

Similarly, ûθ(z, τ) is a viscosity solution to

∂τf + Ĥθ(z, τ, ∂zf) = 0 on Υ;(A.12)

f(·, 0) = v̂0,

where

Ĥθ(z, τ, p) := −eβτλ(τ)r̂θ(z, τ)− λ(τ)Ĝθ(z, τ)p.

Finally, we shall also define ũθ(z, τ) as a viscosity solution to the Cauchy problem

∂τf + Ĥθ(z, τ, ∂zf) = 0 on Υ;(A.13)

f(·, 0) = v0.

Note that ũθ exists and is unique, by the same reasoning as in the proof of Lemma 1. In analogy
with the relationship between uθ, ûθ and hθ, ĥθ, let us also define

h̃θ(z, t) := e−βtũθ(z, t∗ − t).

Observe that uθ and ũθ share the same boundary condition in (A.11) and (A.13). Furthermore,
Lemma 6 in Appendix D assures uθ(·, τ) is Lipschitz continuous in its first argument, with a
Lipschitz constant L1 < ∞ independent of z, τ, t, θ. Consequently, we can employ the same
arguments as in the Dirichlet setting to show

|ũθ(z, τ)− uθ(z, τ)| ≤ C1τ

√
v

n
, wpa1,

for some constant C1 <∞ independent of θ, z, τ, t∗. In terms of h̃θ and hθ, this is equivalent to∣∣∣h̃θ(z, t∗ − τ)− hθ(z, t∗ − τ)
∣∣∣ ≤ C1τe

−βτ
√
v

n
, wpa1.

Setting τ = Tp in the above expression, and noting that hθ is Tp-periodic, we obtain

(A.14)
∣∣∣h̃θ(z, t∗ − Tp)− hθ(z, t∗)∣∣∣ ≤ C1Tpe

−βTp
√
v

n
, wpa1.

Now we can also compare ũθ and ûθ on Υ, using the Comparison Theorem 5 in Appendix D
(it is straightforward to note that the regularity conditions are satisfied under Assumption 1).
This gives us (henceforth, (f)+ := max{f, 0})

(ũθ(z, Tp)− ûθ(z, Tp))+ ≤ (ũθ(z, 0)− ûθ(z, 0))+ , wpa1.

Recall that ũθ(z, 0) = v0 = uθ(z, 0), by definition. Hence,

(ũθ(z, Tp)− ûθ(z, Tp))+ ≤ (uθ(z, 0)− ûθ(z, 0))+ , wpa1.

Rewriting the above in terms of h̃θ, ĥθ and hθ, and noting that ĥθ is Tp-periodic, we get

(A.15) eβTp
(
h̃θ(z, t∗ − Tp)− ĥθ(z, t∗)

)
+
≤
(
hθ(z, t∗)− ĥθ(z, t∗)

)
+
, wpa1.
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In view of (A.14) and (A.15), wpa1,(
hθ(z, t∗)− ĥθ(z, t∗)

)
+
≤
(
h̃θ(z, t∗ − Tp)− ĥθ(z, t∗)

)
+

+ C1Tpe
−βTp

√
v

n

≤ e−βTp
(
hθ(z, t∗)− ĥθ(z, t∗)

)
+

+ C1Tpe
−βTp

√
v

n
.

Rearranging the above expression gives(
hθ(z, t∗)− ĥθ(z, t∗)

)
+
≤ C1

Tpe
−βTp

1− e−βTp

√
v

n
, wpa1.

A symmetric argument - after exchanging the places of ũθ and ûθ in the lead up to (A.15) - also
proves that (

ĥθ(z, t∗)− hθ(z, t∗)
)

+
≤ C1

Tpe
−βTp

1− e−βTp

√
v

n
, wpa1.

Since t∗ was arbitrary, this concludes the proof of Theorem 2 for the periodic setting.

Neumann boundary condition. We shall recast the Neumann boundary condition problem (3.7)
in the form (A.2) by a change of variables through uθ(z, τ) := eβτhθ(z, T − τ) and ûθ(z, τ) :=
eβτ ĥθ(z, T − τ). Note that uθ(z, τ) is a viscosity solution to

Fθ(z, τ, ∂zuθ, ∂τuθ) = 0 on (z,∞)× (0, T ];(A.16)

Bθ(z, τ, ∂zuθ, ∂τuθ) = 0 on {z} × (0, T ];

uθ(·, 0) = 0,

where

Fθ(z, τ, p1, p2) := −eβτλ(τ)r̄θ(z, τ)− λ(τ)Ḡθ(z, τ)p1 + p2,

Bθ(z, τ, p1, p2) := −eβτ η̄θ(z, τ)− σ̄θ(z, τ)p1 + p2.

Similarly, ûθ is a viscosity solution to

F̂θ(z, τ, ∂zûθ, ∂τ ûθ) = 0 on (z,∞)× (0, T ];(A.17)

Bθ(z, τ, ∂zûθ, ∂τ ûθ) = 0 on {z} × (0, T ];

ûθ(·, 0) = 0,

where

F̂θ(z, τ, p1, p2) := −eβτλ(τ)r̂θ(z, τ)− λ(τ)Ĝθ(z, τ)p1 + p2.

As before, the proof strategy is to show that uθ(z, τ) + τC
√
v/n and uθ(z, τ) − τC

√
v/n are

viscosity super- and sub-solutions to (A.17) for some suitable choice of C.
Denote wθ(z, τ) := uθ(z, τ) + τC

√
v/n. Clearly, wθ(z, 0) = 0 = ûθ(z, 0). Additionally, using

the Lipschitz continuity of uθ (Lemma 7 in Appendix D), we can recycle the arguments from
the Dirichlet setting to show that in a viscosity sense,31

F̂θ(z, τ, ∂zwθ, ∂τwθ) ≥ 0 on (z,∞)× (0, T ], wpa1,
31It is straightforward to verify that under Assumption 1, the functions Hθ(·) and Bθ(·) uniformly satisfy all the
regularity conditions (R1)-(R10), as required by the hypothesis of Lemma 7.
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for some suitable choice of C. Thus to verify that wθ(z, τ) is a super-solution to (A.17), it
remains to show that in a viscosity sense, wpa1,

(A.18) max
{
F̂θ(z, τ, ∂zwθ, ∂τwθ), Bθ(z, τ, ∂zwθ, ∂τwθ)

}
≥ 0 on {z} × (0, T ].

Take an arbitrary point (z, τ∗) ∈ {z} × (0, T ], and let φ(z, τ) ∈ C2([z,∞) × (0, T ]) be any
function such that wθ(z, τ) − φ(z, τ) attains a local minimum at (z, τ∗). We then show below
that, wpa1,

(A.19) max
{
F̂θ(z, τ∗, ∂zφ, ∂τφ), Bθ(z, τ∗, ∂zφ, ∂τφ)

}
≥ 0,

which proves (A.18).
Observe that if wθ(z, τ) − φ(z, τ) attains a local minimum at (z, τ∗), then uθ(z, τ) − ϕ(z, τ)

attains a local minimum at (z, τ∗), where ϕ(z, τ) := −τC
√
v/n+φ(z, τ). Lemma 7 in Appendix

D assures uθ is Lipschitz continuous with constant L1. Hence, for (z, τ∗) to be a local minimum
relative to the domain [z,∞)× [0, T ], it must be the case 32

(A.20) |∂τϕ(z, τ∗)| ≤ L1, and ∂zϕ(z, τ∗) ≤ L1.

Now, by the fact uθ(z, τ) is a viscosity solution of (A.16), we have

max {Fθ(z, τ∗, ∂zϕ, ∂τϕ), Bθ(z, τ∗, ∂zϕ, ∂τϕ)} ≥ 0.

Suppose Bθ(z, τ∗, ∂zϕ, ∂τϕ) ≥ 0. Then by ∂zϕ = ∂zφ and ∂τϕ = ∂τφ − C
√
v/n, it is easy

to verify Bθ(z, τ∗, ∂zφ, ∂τφ) ≥ C
√
v/n ≥ 0, which proves (A.19). So let us suppose instead

that Bθ(z, τ∗, ∂zϕ, ∂τϕ) < 0. We shall use this to obtain a lower bound on ∂zϕ(z, τ∗). Indeed,
Bθ(z, τ∗, ∂zϕ, ∂τϕ) < 0 implies

σ̄θ(z, τ∗)∂zϕ(z, τ∗) > −eβτ η̄θ(z, τ∗) + ∂τϕ(z, τ∗) ≥ −CηeβT − L1,

where the last inequality follows from Assumption 1(iv) - which ensures η̄θ(z, τ) is bounded
above by some constant, say, Cη - and (A.20). But Assumption 1 also assures that σ̄θ(z, ·) is
uniformly bounded away from 0. Hence we conclude ∂zϕ(z, τ∗) ≥ −L2 if Bθ(z, τ∗, ∂zϕ, ∂τϕ) < 0,
where L2 <∞ is independent of θ, τ∗. Combined with (A.20), this implies

(A.21) |∂zϕ(z, τ∗)| ≤ max{L1, L2}, if Bθ(z, τ∗, ∂zϕ, ∂τϕ) < 0.

Now, if Bθ(z, τ∗, ∂zϕ, ∂τϕ) < 0 as we supposed, it must be the case Fθ(z, τ∗, ∂zϕ, ∂τϕ) ≥ 0 to
satisfy the requirement for the viscosity boundary condition. Then by similar arguments as in
the Dirichlet case, we obtain via (A.21) and (A.9) that 33

F̂θ(z, τ∗, ∂zφ, ∂τφ) ≥ 0, wpa1,

as long as C > C0(exp(βT ) + λ̄max{L1, L2}). We have thereby proved (A.19).

32Note that it is not necessary ∂zϕ(z, τ∗) ≥ −L1 since (z, τ∗) lies on the boundary and we define maxima or
minima relative to the domain [z,∞)× [0, T ].
33In terms of the notation in (A.9), note that here Ū ≡ [z,∞)× [0, T ]. Recall also that to get these rates we use
Assumption 2 which continuously extends r̄θ and Ḡθ to the boundary.
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Returning to the main argument, we have shown by the above that uθ(z, τ) + τC
√
v/n

is a super-solution to (A.17), wpa1. At the same time ûθ(z, t) is a sub-solution to (A.17).
Furthermore, it is straightforward to verify that F̂θ(·), Bθ(·) satisfy the regularity conditions
(R1)-(R10) uniformly in θ, wpa1, in view of Assumptions 1 and (A.9). Hence we can apply the
Comparison theorem (7) for the Neumann setting to conclude

ûθ(z, τ)− uθ(z, τ) ≤ τC
√
v

n
, wpa1,

for all θ ∈ Θ. A symmetric argument involving uθ(z, τ)− τC
√
v/n as a sub-solution to (A.17)

also implies
ûθ(z, τ)− uθ(z, τ) ≤ τC

√
v

n
, wpa1,

for all θ ∈ Θ. Rewriting the above inequalities in terms of hθ and ĥθ, we have thus shown

sup
(z,t)∈[z,∞)×{0,T ];θ∈Θ

∣∣∣ĥθ(z, t)− hθ(z, t)∣∣∣ ≤ (T − t)e−β(T−t)C

√
v

n
.

This concludes our proof of Theorem 2 for the Neumann boundary condition.

Periodic-Neumann boundary condition. This follows from a combination of arguments from the
previous cases using Lemma 8 (on Lipschitz continuity of the solution), so we omit the proof.

A.3. Proof of Theorem 3. The following proof is based on an argument first sketched by
Souganidis (2009) in an unpublished paper.

All the inequalities in this section should be understood to be holding with probability ap-
proaching 1 under the distribution F . In what follows, we drop this qualification for ease of
notation and hold this to be implicit. We also employ the following notation: For any function f
over (z, t), Df denotes its Jacobean. Additionally, ‖∂zf‖ , ‖∂zf‖ and ‖Df‖ denote the Lipschitz
constants for f(·, t), f(z, ·) and f(·, ·).

We focus here on the Dirichlet boundary condition with T < ∞ (but z could be −∞). The
argument for the other Dirichlet setting, with T =∞ and z > −∞, is similar, so we omit it.

We shall represent PDE (3.10) by

Fθ(z, t, f, ∂zf, ∂tf) = 0, on U ,(A.22)

f = 0, on Γ

with f denoting a function, and where

Fθ(z, t, l, p, q) := −λ(t)Ḡθ(z, t)l − p+ βq − λ(t)r̄θ(z, t).

Additionally, denote our approximation scheme (3.13) by

Sθ([f ], f, z, t) = 0, on U ,(A.23)

f = 0, on Γ

where for any two functions f1, f2,

(A.24) Sθ ([f1], f2(z, t), z, t, bn) := bnλ(t)
(
f2(z, t)− En,θ

[
e−β(t′−t)f1(z′, t′)|z, t

])
− λ(t)r̂θ(z, t).
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Here [f ] refers to the fact that it is a functional argument. Note that hθ and h̃θ are the
functional solutions to (A.22) and (A.23) respectively. We shall also make use of the following
two properties for Sθ(·): First, that Sθ(·) is monotone in its first argument, i.e

(A.25) Sθ([f1], f, z, t, bn) ≥ Sθ([f2], f, z, t, bn) ∀ f2 ≥ f1.

Furthermore, for all f and m ∈ R+, it holds for all t ≤ T − b−1/2
n

(A.26) Sθ([f +m], f +m, z, t, bn) ≥ Sθ([f ], f, z, t) + χm,

where χ > β/2 > 0. The first property is trivial to show. As for the second, observe that when
t is sufficiently far from the boundary (e.g, t ≤ T − b−1/2

n ),

Sθ([f +m], f +m, z, t, bn)− Sθ([f ], f, z, t) = mbnλ(t)
(
1− En,θ

[
e−β(t′−t)|z, t

])
≥ χm.

Finally, we recall Lemmas 3, 4 in Appendix D, which show that there existK1,K2 <∞ satisfying

sup
θ
‖hθ‖ < K1, and(A.27)

sup
θ
‖Dhθ‖ < K2.(A.28)

We provide here an upper bound for

(A.29) mθ := sup
(z,t)∈Ū

(
hθ(z, t)− h̃θ(z, t)

)
.

A lower bound for hθ − h̃θ can be obtained in an analogous manner. Clearly, we may assume
mθ > 0, as otherwise we are done. Denote (z∗θ , t∗θ) as the point at which the supremum is
attained in (A.29) (or, if such a point does not exist, where the right hand side of (A.29) is
arbitrarily close to mθ). We shall consider the three (not necessarily mutually exclusive) cases:
(i) |t∗θ − T | < 2Kε, (ii) |z∗θ − z| < 2K2ε, and (iii) |z∗θ − z| ≥ 2K2ε and |t∗θ − T | ≥ 2K2ε. We take
ε to be any positive number satisfying ε ≥

√
bn.

We start with Case (i). In view of (A.28), and the fact hθ(z, T ) = 0 ∀z, we have

(A.30) |hθ(z∗θ , t∗θ)| < 4K2
2ε.

Now, we claim h̃θ(z, t) ≤ L{(T−t)+b−1
n }, for some L <∞ independent of θ, z, t. Let N [t, T ] be a

random variable denoting the number of arrivals between t and the end point T . Then N [t, T ] is
first order stochastically dominated by N̄ [t, T ] ∼ Poisson(λ̄bn(T − t)), where λ̄ := supt λ(t) <∞
(note that N̄ [t, T ] is the number of arrivals between t and T under a Poisson process with pa-
rameter λ̄bn; the rate of arrivals here is uniformly faster than under the approximation scheme).
Hence E[N [t, T ]] ≤ E[N̄ [t, T ]] = λ̄bn(T − t). Furthermore, the expected utility gain from any
given arrival is atmost supθ,z,t |r̂θ(z, t)|/bn ≤ 2M/bn by Assumption 2(i). Consequently,

h̃θ(z, t) ≤
2M
bn

+ E

[
N [t, T ]2M

bn

]
≤ 2Mλ̄

{
(T − t) + b−1

n

}
:= L

{
(T − t) + b−1

n

}
.

Considering that we are in the case |t∗θ − T | ≤ 2K2ε, the previous statement implies

(A.31) |h̃θ(z∗θ , t∗θ)| ≤ L
(
2K2ε+ b−1

n

)
.
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In view of (A.30) and (A.31), we thus obtain

(A.32) mθ ≤ (4K2
2 + 2LK2)ε+ Lb−1

n .

This completes the treatment of the first case, when |t∗θ − T | < 2K2ε. In a similar vein, we
can show that (A.32) also holds for Case (ii) using the Lipschitz continuity of hθ and the fact
h̃θ(z, t) ≤ L2{|z − z| + b−1

n } for some L2 < ∞. The latter follows from Ḡθ(z, t) < −δ, imposed
by Assumption 2(ii), which implies the expected number of arrivals subsequent to state z is
bounded above by δ−1 {bn(z − z) + C} with C <∞ independent of θ, z, t. The proof of the last
statement relies on some martingale results and is deferred to the end of this section.

We now turn to Case (iii), i.e |z∗θ − z| ≥ 2K2ε and |t∗θ − T | ≥ 2K2ε. Denote

A ≡ {(z, t) ∈ Ū : |z − z| ≥ 2K2ε ∩ |t− T | ≥ 2K2ε}.

To obtain the bound on mθ in this case, we shall employ the sup-convolution of hθ(z, t), denoted
by hεθ(z, t):34

hεθ(z, t) := sup
r,w∈A

{
hθ(r, w)− 1

ε

(
|z − r|2 + |t− w|2

)}
.

In view of (A.28) in Appendix D, and Lemma 10 in Appendix E,

(A.33) sup
(z,t)∈A

|hθ(z, t)− hεθ(z, t)| ≤ 4K2
2ε.

Also, by Lemma 12 in Appendix E (Assumption 1 ensures all relevant regularity conditions for
Fθ(·) are satisfied), there exists c <∞ independent of θ, z, t such that, in a viscosity sense,

(A.34) Fθ(z, t, hεθ, ∂zhεθ, ∂thεθ) ≤ cε on A.

Finally, we also note from Lemma 10 in Appendix E that hεθ is a semi-convex function with
coefficient 1/ε.35

We now compare Sθ(·) and Fθ(·) at the function hεθ. Consider any (z, t) ∈ A at which hεθ is
differentiable (by semi-convexity, it is differentiable almost everywhere). We can then expand

Sθ([hεθ], hεθ, z, t, bn) = bnλ(t)hεθ(z, t)
(
1− En,θ

[
e−β(t′−t)|z, t

])
+ bnλ(t)En,θ

[
e−β(t′−t) {hεθ(z, t)− hεθ(z′, t′)} |z, t]− λ(t)r̂θ(z, t)

:= A
(1)
θ (z, t) +A

(2)
θ (z, t) +A

(3)
θ (z, t).(A.35)

Using ‖hεθ‖ ≤ ‖hθ‖ ≤ K1 and Assumptions 1-4, straightforward algebra enables us to show

(A.36) A
(1)
θ (z, t) ≤ βhεθ(z, t) + C1

bn
,

for some C1 independent of θ, z, t. We now consider A(2)
θ (z, t). Observe that by semi-convexity

of hεθ (Lemma 9 in Appendix E),

hεθ(z′, t′) ≥ hεθ(z, t) + ∂zh
ε
θ(z, t)(z′ − z) + ∂th

ε
θ(z, t)(t′ − t)−

1
2ε
{
|z′ − z|2 + |t′ − t|2

}
.

34We discuss sup and inf-convolutions and their properties in Appendix E.
35See Appendix E for the definition of semi-convex functions.
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Substituting the above into the expression for A(2)
θ (z, t), and using Assumptions 1, (A.9) and

(A.28), some straightforward algebra enables us to show that when ε ≥
√
bn, 36

A
(2)
θ (z, t) ≤ −λ(t)Ḡθ(z, t)∂zhεθ − ∂thεθ + C2

( 1
εbn

+
√
v

n

)
,(A.37)

where again C2 is independent of θ, z, t. It remains to bound A(3)
θ (z, t). For this, we make use

of Assumption 1(iii) and (A.9), which ensure there exists C3 independent of θ, z, t such that

(A.38) A
(3)
θ (z, t) ≤ −λ(t)r̄θ(z, t) + C3

√
v

n
.

Combining (A.35)-(A.38), and setting C = max(C1, C2, C3), we thus find

(A.39) Sθ([hεθ], hεθ, z, t, bn) ≤ Fθ(z, t, hεθ, ∂zhεθ, ∂thεθ) + C

{ 1
bn

(
1 + 1

ε

)
+
√
v

n

}
.

In view of (A.39) and (A.34),

(A.40) Sθ([hεθ], hεθ, z, t, bn) ≤ cε+ C

{ 1
bn

(
1 + 1

ε

)
+
√
v

n

}
a.e.

where the qualification almost everywhere (a.e.) refers to the points where Dhεθ exists.
Let (here f+ := max(f, 0))

mε
θ := sup

(z,t)∈A

(
hεθ(z, t)− h̃θ(z, t)

)+
,

and denote (z̆θ, t̆θ) as the point at which the supremum is attained (or where the right hand
side of the above expression is arbitrarily close to mε

θ). Now, by definition,

hεθ ≤ h̃θ +mε
θ on A.

Then in view of the properties (A.25), (A.26) of S(·) ,

χmε
θ = Sθ

(
[h̃θ], h̃θ(z̆θ, t̆θ), z̆θ, t̆θ, bn

)
+ χmε

θ

≤ Sθ
(
[h̃θ +mε

θ], h̃θ(z̆θ, t̆θ) +mε
θ, z̆θ, t̆θ, bn

)
(A.41)

≤ Sθ
(
[hεθ], hεθ(z̆θ, t̆θ), z̆θ, t̆θ, bn

)
.

Without loss of generality, we may assume hεθ is differentiable at (z̆θ, t̆θ) as otherwise we can
move to a point arbitrarily close, given that hεθ is differentiable a.e and Lipschitz continuous;
in particular, we note that Sθ ([f ], f(z, t), z, t, bn) is continuous in (z, t) ∈ U as long as f(·) is
Lipschitz continuous. With this in mind, we can combine (A.41) and (A.40) to obtain

(A.42) mε
θ ≤ c1ε+ C

{ 1
bn

(
1 + 1

ε

)
+
√
v

n

}
,

where c1 = χ−1c and C1 = χ−1C are independent of θ, z, t.

36To show this, we use the fact that En,θ [bn(t′ − t)|z, t] = λ(t)−1 +O(b−1
n ) and En,θ [bn(z′ − z)|z, t] = Ĝθ(z, t) +

O(b−1
n ). Here the O(b−1

n ) terms arise from the requirement that t′, z′ have to lie within the boundary, i.e below
T and above z respectively. When ε ≥

√
bn, the probability of t′, z′ crossing the boundary is exponentially small,

leading to the O(b−1
n ) remainder. As for the quadratic terms, observe that En,θ

[
(t′ − t)2|z, t

]
≤ (bn inft λ(t))−2

and En,θ
[
(z′ − z)2|z, t

]
≤ Cb−2

n under the assumption Ex∼F
[
|Ga(x, z, t)|2

]
≤ C <∞.
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Hence, in view of (A.33) and (A.42),

(A.43) mθ ≤ (4K2
2 + c1)ε+ C1

{ 1
bn

(
1 + 1

ε

)
+
√
v

n

}
.

This completes the derivation of the upper bound formθ under Case (iii), i.e when |z∗θ−z| ≥ 2K2ε

and |t∗θ − T | ≥ 2K2ε.
Finally, in view of (A.32) and (A.43), setting ε = b

−1/2
n gives the desired rate.

Bound on expected number of arrivals after z. It remains to show that the expected number of
arrivals subsequent to a state with institutional constraint z is bounded by δ−1 {bn(z − z) + C},
as was needed for the analysis of Case (ii). Denote by {s̄i ≡ (xi, zi, ti, ai) : i = 1, 2, . . . } the
sequence of state variables following a particular state (z, t), and let

Ml :=
l∑

i=1

{
Gai(xi, zi, ti)− Ḡθ(zi, ti)

}
.

Clearly, Ml is a martingale with respect to the filtration Fl := σ(s̄l−1, . . . , s̄1, z, t). Let N [z] be
the random variable denoting the number of arrivals until the institutional variable goes below
z (strictly speaking, N [·] should also depend on t, but we drop this dependence as our results
will be valid for all t). Then N [z] can be interpreted as the stopping time

N [z] = inf
{
l :

l∑
i=1

Gai(xi, zi, ti) ≤ bn(z − z)
}
.

Now, the martingale differences of Ml are bounded in expectation by the fact (assumed in the
statement of Theorem 3) that supa,z,tEx∼F [|Ga(x, z, t)|] ≤ C. Hence we can apply the Optional
Stopping Theorem, which implies

En,θ
[
MN [z]

]
= En,θ[M1] = 0.

In other words,

En,θ

N [z]∑
i=1

Gai(xi, zi, ti)−
N [z]∑
i=1

Ḡθ(zi, ti)

 = 0.

By Assumption 2(ii), −
∑N [z]
i=1 Ḡθ(zi, ti) ≥ δN [z]. Furthermore, by definition of N [z],

En,θ

N [z]∑
i=1

Gai(xi, zi, ti)

 = En,θ

N [z]−1∑
i=1

Gai(xi, zi, ti)

+ En,θ
[
GaN [z](xN [z], zN [z], tN [z])

]
≥ bn(z − z)− C.

The above implies δEn,θ[N [z]] ≤ bn(z − z) + C or En,θ[N [z]] ≤ δ−1 {bn(z − z) + C}.

Periodic boundary condition. The proof of Theorem 3 for the periodic boundary condition follows
by the same reasoning. Indeed, due to periodicity, we can restrict ourselves to the domain
R × [t0, t0 + Tp] and reuse the analysis from Case (iii) above to prove the desired claim (in
particular, note that we do not have to worry about seperate cases for the boundary).
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Appendix B. Psuedo-codes and additional details for the algorithm

This Section consists of three parts. In the first part, we show how our algorithm can be ex-
tended to other boundary conditions beyond the Dirichlet boundary condition setting employed
in Section 4. In the second part, we give details about the convergence of the Actor-Critic
algorithm in Section 4.2, and provide a proof of Theorem 1 in the main text. In the last part,
we provide psuedo-codes and some additional discussion for various extensions to the basic
algorithm that were proposed in Section 6.

B.1. The Actor-Critic algorithm under various boundary conditions. In Section 4, we
described our Actor-Critic algorithm for the Dirichlet boundary condition. Here we look at how
it extends to other boundary conditions.

B.1.1. Neumann boundary condition. We first start with the Neumann boundary condition. The
algorithm is very similar to the Dirichlet case, but we have to be mindful about the fact that the
behavior changes at the boundary z = z. The pseudo-code is described in Algorithm 3, where
we employ the example with borrowing constraints for concreteness. Recall that in this setting
r̄θ(z, t) = 0 and Ḡθ(z, t) = σ(z, t). Here σ(z, t) is the rate of inflow of funds with respect to time,
which is assumed to be known. When the flow rate is measured with respect to the expected
mass of individuals, this becomes σ(z, t)/λ(t).

Note that in this example the policy parameter θ is not updated when z = z. This is because
the policy function does not exist at this point.37 However the value function parameters ν are
updated since the value function is Lipschitz continuous at z (see Section D).

B.1.2. Periodic/Infinite horizon boundary conditions. Under the periodic and periodic-Neumann
boundary conditions, the policy is intended to be applied indefinitely into the future. In the
RL literature, this is known as the continuing case. As mentioned in Section 4, an easy way
to extend our algorithms to these settings is to artificially add a time constraint hθ(z, T ) = 0,
where T is sufficiently large. In other words, we can approximate the infinite horizon problem
with a suitably large finite horizon problem. The numerical error due to this can be bounded
using the techniques employed in the proof of Lemma 1 in Appendix A. In particular, suppose
that T = mTp for some integer multiple m. Let hθ(z, t;m) denote the value function obtained
from restricting the program to t < mTp. We then have for all (z, t),

|hθ(z, t;m)− hθ(z, t)| ≤
∞∑

m̃=m
|hθ(z, t; m̃)− hθ(z, t; m̃+ 1)| ≤

∞∑
m̃=m

2Me−βm̃Tp

= 2M
1− e−βTp

e−βmTp .

Thus the numerical error decays exponentially fast with respect to m.
A drawback with the above procedure is that the computational time could become very

large for high values of T . A heuristic approach, commonly used in the RL literature (see, e.g,
Mnih et al, 2015), is to get rid of the e−β(t−t0) term in equations (4.4) and (4.5) and let the
37Strictly speaking, the planner is forced to choose a = 0 when z = z. One can extend the definition of the policy
function by allowing it to be discontinuous at z. However, we think this interpretation is not too helpful here,
and we prefer to think of continuous policy functions that are restricted to the interior of the domain U .
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Algorithm 3: Actor-Critic (Neumann boundary condition)
Initialise policy parameter weights θ ← 0
Initialise value function weights ν ← 0
Repeat forever:

Reset budget: z ← z0
Reset time: t← t0
I ← 1
While t < T :

If z > z:
x ∼ Fn (Draw new covariate at random from data)
a ∼ π(a|s; θ) (Draw action, note: s = (x, z, t))
R← r̂(s, a)/bn (with R = 0 if a = 0)
z′ ← max{z + b−1

n Ga(x, z, t), z}
Elseif z = z:

R← 0
z′ ← z + b−1

n σ(z, t)/λ(t) (Rewrite flow rate wrt mass of people)

ω ∼ Exponential(λ(t))
t′ ← t+ ω/bn

δ ← R+ I{t′ < T}e−β(t′−t)νᵀφz′,t′ − νᵀφz,t (Temporal-Difference error)
θ ← θ + I{z > z}αθIδ∇θ ln π(a|s; θ) (Update policy parameter)
ν ← ν + ανIδφz,t (Update value parameter)
z ← z′

t← t′

I ← e−β(t′−t)I

algorithm continue indefinitely until convergence. This simply entails setting I = 1 in all our
Algorithms 1-3. This approach appears to work very well in practice even though it can be
shown theoretically that getting rid of the e−β(t−t0) term in this way can introduce some bias
(Thomas, 2014).

Yet a third alternative exploits the equivalence between discounting and random stopping.
Mathematically, a Markov Decision Problem (MDP) with some discount factor γ is equivalent to
an MDP that is undiscounted but terminates with probability (1− γ) after each decision point.
Thus random stopping enables us to convert a infinite horizon problem into an episodic one with
a random horizon. We exploit this equivalence in Algorithm 4. Convergence of this algorithm
follows by the same arguments as in the episodic case. In practice, we recommend parallel
updates, since its possible to get draws where the episode takes too long to terminate. Note that
our previous procedure, with finite T , essentially amounts to deterministic stopping. Compared
to this, random stopping is preferable since there is no bias. Additionally the practitioner does
not have to select T .
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Algorithm 4: Actor-Critic (Periodic boundary condition with random stopping)
Initialise policy parameter weights θ ← 0
Initialise value function weights ν ← 0
Repeat forever:

Reset budget: z ← z0
Reset time: t← t0

While break == FALSE :
x ∼ Fn (Draw new covariate at random from data)
a ∼ π(a|s; θ) (Draw action, note: s = (x, z, t))
R← r̂(s, a)/bn (with R = 0 if a = 0)
ω ∼ Exponential(λ(t))
t′ ← t+ ω/bn

γ ← exp{−β(t′ − t)} (Continuation probability)
τ ∼ Binomial(1− γ) (Stopping variable)
z′ ← z +Ga(x, z, t)/bn
δ ← R+ (1− τ)νᵀφz′,t′ − νᵀφz,t (Temporal-Difference error)
θ ← θ + αθδ∇θ ln π(a|s; θ) (Update policy parameter)
ν ← ν + ανδφz,t (Update value parameter)
z ← z′

t← t′

If τ == 1:
break == TRUE

B.2. Convergence of the Actor-Critic algorithm. Let h̄θ := ν̄ᵀθφz,t, where ν̄θ denotes the
fixed point of the value function updates (4.5) for any given value of θ. This is the ‘Temporal-
Difference fixed point’, and is known to exist and also to be unique (Tsitsiklis and van Roy,
1997). We will also make use of the quantities

h̄+
θ (z, t) ≡ Eθ[r̂n(s, a) + I

{
(z′, t′) ∈ U

}
e−β(t′−t)h̄θ(z′, t′)|z, t]

and
Eθ = Eθ

[
e−β(t−t0)

{
∇θh̄+

θ (z, t)−∇θh̄θ(z, t)
}]
.

Define Z as the set of local minima of J(θ) ≡ h̃θ(z0, t0), and Zε an ε-expansion of that set. Also,
θ(k) denotes the k-th update of θ. The following theorem is a straightforward consequence of
the results of Bhatnagar et al (2009).

Theorem 4. (Bhatnagar et al, 2009) Suppose that Assumptions C hold. Then, given ε > 0,
there exists δ such that, if supk |Eθ(k) | < δ, it holds that θ(k) → Zε with probability 1 as k →∞.

Intuition for the above theorem can be gleaned from the fact that the expected values of
updates for the policy parameter are approximately given by

E
[
e−β(t−t0)δn(s, s′, a)∇θ ln π(a|s; θ)

]
≈ ∇θJ(θ) + Eθ.
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Thus the term Eθ acts as bias in the gradient updates. One can show from the properties of
the temporal difference fixed point that if dν = ∞, then h̄θ(z, t) = h̄+

θ (z, t) = h̃θ(z, t), see e.g
Tsitsiklis and van Roy (1997). Hence, in this case Eθ = 0. More generally, it is known that

h̄θ(z, t) = Pφ[h̄+
θ (z, t)],

where Pφ is the projection operator onto the vector space of functions spanned by {φ(j) : j =
1, . . . , dν}. This implies that ∇θh̄+

θ (z, t) − ∇θh̄θ(z, t) = (I − Pφ)[∇θh̄θ](z, t)38. Now, ∇θh̄θ is
uniformly (where the uniformity is with respect to θ) Hölder continuous as long as ∇θπθ(s) is
also uniformly Hölder continuous in s.39 Hence for a large class of sieve approximations (e.g
Trigonometric series), one can show that supθ

∥∥∥(I − Pφ)[∇θh̄θ]
∥∥∥ ≤ A(dν) where A(.) is some

function satisfying A(x)→ 0 as x→∞. This implies supθ |Eθ| ≤ A(dν). The exact form of A(.)
depends on the smoothness of ∇θh̄θ, and therefore that of ∇θπθ(s), with greater smoothness
leading to faster decay of A(.). In view of the above discussion, we have thus shown the following:

Corollary 3. Suppose that Assumptions C hold and additionally that ∇θπθ(s) is uniformly
Hölder continuous in s. Then, for each ε > 0, there exists M such that if dν ≥ M , then
θ(k) → Zε with probability 1 as k →∞.

The above was stated as Theorem 1 in the main text.

B.3. Extensions and Pseudo-codes. Algorithms 5 and 6 provide the pseudo-codes for the
algorithm with non-compliance and clusters respectively. Both algorithms are provided for
the Dirichlet boundary condition. The treatment of the other boundary conditions follows
analogously to Algorithms 3 and 4. We omit these for brevity.

38To verify this, note that we can associate h̄θ, h̄+
θ with vectors and Pφ with a matrix since we assumed discrete

values for z, t.
39This can be shown easily from the definition of the temporal difference fixed point.
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Appendix C. Additional details and extensions for Section 3

This Section consists of four parts. In the first part, we provide various informal derivations
of PDE (3.2). In the second part, we consider extensions of our setup to vector-valued institu-
tional variables. The third part discusses Assumption 1(i) in greater detail, and provides some
suggestions on how this can be weakened. In the last part, we discuss alternative welfare criteria
where the welfare is measured relative to the ‘true’ or actual values of the arrival rates λ(t).

C.1. An intuitive derivation of PDE (3.2). In this section, we provide three informal deriva-
tions of PDE (3.2). The first uses a no-arbitrage argument. The second derives it as the limit of
a discrete dynamic programming problem with exponential arrivals. The third derives it as the
characterization of the value function when the arrivals are given by an inhomogenous Poisson
point process with parameter λ(t)N , and N →∞.

C.1.1. No arbitrage. Let us first interpret PDE (3.2) in terms of a no-arbitrage argument. Con-
sider an asset whose value is indexed to the integrated value function hθ(z, t), and which pays
out the flow (i.e. the flow with respect to time) reward λ(t)r̄θ(z, t) as dividend. The flow return
on this asset, at the natural rate of interest β, is given by βhθ(z, t). By a no-arbitrage argument,
the return on this asset has to equal the dividend, i.e the flow rewards, plus the expected rate
of change of value of the asset with respect to time, i.e the (expected) total time derivative
dhθ(z, t)/dt. But note that λ(t)Ḡθ(z, t) is the expected flow change, 〈dz/dt〉, of the institutional
variable with respect to time. Hence,

dhθ(z, t)
dt

= λ(t)Ḡθ(z, t)∂zhθ(z, t) + ∂thθ(z, t).

Thus the no-arbitrage argument implies βhθ(z, t) = λ(t)r̄θ(z, t) + dhθ(z, t)/dt, or equivalently,

βhθ(z, t) = λ(t)r̄θ(z, t) + λ(t)Ḡθ(z, t)∂zhθ(z, t) + ∂thθ(z, t).

The above is just a rearrangement of PDE (3.2).

C.1.2. As the limit of a sequence of discrete dynamic programming problems with exponential
arrivals. We now provide a second intuitive argument for PDE (3.2) as the limit of a sequence of
discrete dynamic programming problems corresponding to an exponential arrival time process.
The PDE is obtained in the limit as the average waiting time tends to 0 (or equivalently the rate
of arrival of individuals tends to∞). This is similar to our ‘derivation’ of the ODE in Section 2.

Suppose that the time between arrivals is distributed as ∆t ∼ Exp(λ(t)N). Recall that from
Section 3 that we had normalized λ(t0) = 1. The value of N is proportional to the total number
of individuals within any given time interval and provides a way to scale the rate of arrivals. In
general, its exact value is not important as we will take it to ∞ shortly. Note that the setting
is somewhat different from a Poisson process since there is some history dependence: the value
of λ(t) is determined by the time of the last arrival.

Define Vθ(s) as the expected discounted value of all normalized the future rewards r(s, a)/N ,
starting from state s, and when the planner chooses actions according to πθ. It should be
interpreted as the expected value function when the social planner happens to be at state s.
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We shall let gλ(t)(.) denote the probability density function of the exponential distribution with
parameter λ(t). Now, Vθ(.) can be obtained as the fixed point of the recursive equation:

Vθ(s) =r(s, 1)πθ(1|s)
N

+
∫
e−β

ω
NEx′∼F

[
Vθ

(
x′, z + G1(s)

N
, t+ ω

N

)
π(1|s) + . . .(C.1)

. . . +Vθ
(
x′, z + G0(s)

N
, t+ ω

N

)
π(0|s)

]
gλ(t)(ω)dω, for z > 0

together with
Vθ(s) = 0 for z = 0.

The recursive equation for the integrated value function hθ(z, t) = Ex∼F [Vθ(s)|z, t] is given by

hθ(z, t) =Ex∼F [r(s, 1)πθ(1|s)|z, t]
N

+
∫
e−β

ω
NEx∼F

[
hθ

(
z + G1(s)

N
, t+ ω

N

)
π(1|s) + . . .(C.2)

. . . + hθ

(
z + G0(s)

N
, t+ ω

N

)
π(0|s)

∣∣∣∣ z, t] gλ(t)(ω)dω, for z > 0

together with
hθ(z, t) = 0 for z = 0.

We now consider the behavior of hθ(z, t) in the limit as N → ∞. To this end, first subtract
hθ (z, t)

∫
e−β

ω
N gλ(t)(ω)dω from both sides of equation (C.2) and multiply both sides by N . Next

use the definition r̄θ(z, t) := Ex∼F [r(s, 1)πθ(1|s)|z, t] and
Ḡθ(z, t) := Ex∼F [G1(s)πθ(1|s) +G0(s)πθ(0|s)|z, t]. Assuming all the quantities are continuously
differentiable to all orders and taking the limit as N →∞ leads (after some re-arrangement of
terms) to PDE (3.2).

C.1.3. As the limit of the value function under a Poisson point process whose frequency of arrivals
goes to infinity. Finally, we provide a third interpretation of (3.2) as the characterization of the
value function when the arrivals are modeled as an inhomogenous Poisson process with parameter
λ(t)N , and N → ∞ (i.e the rate of arrivals is almost continuous). In turns out that in some
cases, we can even set N = 1. This is possible under an infinite horizon setting where there is
no boundary condition on z (otherwise boundary issues could make solution discontinuous).

Let N [t1, t2] denote the counting process for the number of arrivals between time points t1 and
t2. Note that N [t1, t2] is distributed as a Poisson random variable with parameter N

∫ t2
t1
λ(t)dt.

As in Section 2, we shall use N to normalize the rewards and budget changes, so that the utility
is given by r̄θ(z, t)/N , and the budget increments by z′ − z = Ga(s)/N . Also, let us define
δ = 1/N . We then have that for points (z, t) that are ‘sufficiently’ far away from the boundary

hθ(z, t) = E

 1
N

N [t,t+δ]∑
i=1

r̄θ(ZTi , Ti)

∣∣∣∣∣∣ z, t
+ e−βδE [hθ(Zt+δ, t+ δ)|z, t] ,

where Ti is a random variable denoting the time of the ith arrival time following time t, and ZT
is a random variable denoting the budget at any arbitrary time T . The above equation comes
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about since there is a random number, N [t, t+ δ], of individuals who arrive between t and t+ δ,
with the covariates of each of these individuals drawn from the distribution F . The equation
ignores boundary constraints, which is reasonable if δ = 1/N is small enough that Zt+δ lies
within the boundary with probability close to 1.

We shall assume that Ga(s) is uniformly bounded by some constant G for all possible a, s.
This ensures that |ZTi − z| ≤ GN−1N [t, t+ δ] for all Ti < t+ δ. Hence, by Lipschitz continuity
of r̄θ(·, ·) in both its arguments (this is implied by Assumption 1(i)),

E

 1
N

N [t,t+δ]∑
i=1

r̄θ(ZTi , Ti)

∣∣∣∣∣∣ z, t
− λ(t)r̄θ(z, t)δ

≤ E
[N [t, t+ δ]

N

]
r̄θ(z, t)− λ(t)r̄θ(z, t)δ + E

[N [t, t+ δ]
N

Lr

∣∣∣∣GN [t, t+ δ]
N

+ δ

∣∣∣∣]
= O(δ2),(C.3)

where Lr denotes the Lipschitz constant for r̄θ(·, ·), and we have used the facts

E

[N [t, t+ δ]
N

]
=
∫ t+δ

t
λ(v)dv = λ(t)δ +O(δ2), and

E

[
N [t, t+ δ]2

N2

]
≤ 1
N

∫ t+δ

t
λ(v)dv +

(∫ t+δ

t
λ(v)dv

)2

= O(δ2).

Next, assuming that hθ(·) has bounded second derivatives, we obtain

E [hθ(Zt+δ, t+ δ)− hθ(z, t)|z, t]

= ∂thθ(z, t)δ + ∂zhθ(z, t)E[Zt+δ − z|z, t] + C
{
δ2 + E

[
(Zt+δ − z)2|z, t

]}
= ∂thθ(z, t)δ + ∂zhθ(z, t)E[Zt+δ − z|z, t] +O(δ2),

since E
[
(Zt+δ − z)2|z, t

]
≤ G2N−2E

[
N [t, t+ δ]2

]
= O(δ2). Now, we may expand

E[Zt+δ − z|z, t] = E

 1
N

N [t,t+δ]∑
i=1

Ḡθ(ZTi , Ti)

∣∣∣∣∣∣ z, t
 ,

and by a similar reasoning to that used for (C.3), it follows

E[Zt+δ − z|z, t] = λ(t)Ḡθ(z, t)δ +O(δ2).

In view of the above, we thus obtain

(1− e−βδ)hθ(z, t) = λ(t)r̄θ(z, t)δ + λ(t)Ḡθ(z, t)δ + ∂thθ(z, t)δ +O(δ2).

Dividing the above expression by δ and letting δ → 0 leads to PDE (3.2).
We emphasize that the above ‘derivation’ is only heuristic as hθ(z, t) will not in general be dif-

ferentiable, let alone twice differentiable. However we can make the argument rigorous through
the use of inf- and sup-convolutions as used in the proof of Theorem 3. More precisely, we
will be able to employ Taylor expansions as above after approximating hθ(z, t) with its inf- and
sup-convolutions which are twice differentiable.
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C.2. Vector valued institutional variables. While we only considered scalar z in the main
text, it is straightforward to extend the setup to vector valued z. In this case Ga(s) and Ḡθ(z, t)
will both be vectors and the PDE (3.2) will be of the form

(C.4) βhθ(z, t)− λ(t)Ḡθ(z, t)ᵀ∂zhθ(z, t)− ∂thθ(z, t)− λ(t)r̄θ(z, t) = 0 on U ,

where ∂z· is to be interpreted as the partial derivative with respect to a vector valued z.
We need to specify appropriate boundary conditions over the domain U to close the model.

In general different components of z may have different boundary conditions, e.g a Dirichlet
boundary condition on the first component and a Neumann one on the other. However, the
regret rates and other theoretical properties as given by Theorems 2 & 3 continue to apply
and can be derived using the same techniques, even if the analysis becomes tedious due to the
multiple boundary conditions.

We describe below some examples with vector valued z:

C.2.1. Joint budget and capacity constraints. This example illustrates how the different con-
straints may be combined. Consider a situation in which the planner has a fixed budget B, but
additionally also faces capacity constraints. The institutional variables are z = (z1, z2) denoting
current budget and the current ‘free’ capacity respectively. The variable z1 takes values between
[0, B] while z2takes values between [0, C], where C denotes the maximal capacity. A value of
z2 = 0 implies the capacity is full. The law of motion for budget is given by ż1 = −I(a = 1)c(s),
where c(·) denotes the cost of treatment. Similarly, ż2 = I(a = 1)−λ(t)−1e(z, t), where e(z, t) is
the rate (wrt t) at which capacity is freed up. Note that we have normalized the measurement
of capacity so that it is filled up at the rate 1 when a = 1. Taken together, we thus have

Ga(s) =

 −I(a = 1)c(s)
I(a = 1)− λ(t)−1e(z, t)

 .
We can then define the quantities r̄θ(z, t) and Ḡθ(z, t) in the same manner as in the main text.
The resulting PDE is given by (C.4).

We need to specify the boundary conditions to complete the model. Here, one of them is
determined by the budget constraint, since the program ends when the budget is 0. This gives
us a Dirichlet boundary condition

(C.5) hθ(0, z2, t) = 0 on {0} × [0, C]× [t0,∞).

At the same time we also have two Neumann type boundary condition due to possibly discon-
tinuous behaviors when the z2 = 0 or when z2 = C. When the free capacity is 0, the planner is
not allowed to treat so that we have r̄θ(z1, 0, t) = 0 and Ḡθ(z1, 0, t) = −λ(t)−1e(z, t). Hence at
z2 = 0 we have the boundary condition

(C.6) βhθ(z, t)− σ̄θ(z, t)ᵀ∂zhθ(z, t)− ∂thθ(z, t) = 0, on (0, B]× {0} × [t0,∞),

where σ̄θ(z, t) :=
(
Ḡ1θ(z, t),−λ(t)−1e(z, t)

)ᵀ
, with Ḡ1θ(z, t) denoting the first component of

Ḡθ(z, t). At the same time when z2 = C, we must have e(z, t) = 0, so that we have another
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Neumann boundary condition

(C.7) βhθ(z, t)− ς̄θ(z, t)ᵀ∂zhθ(z, t)− ∂thθ(z, t) = 0, on (0, B]× {C} × [t0,∞),

where ς̄θ(z, t) :=
(
Ḡ1θ(z, t), π̄θ(z, t)

)ᵀ
and π̄θ(z, t) = Ex∼F [πθ(x, z, t)]. Thus equations (C.5) -

(C.7) together form the set of boundary conditions for this model.

C.2.2. Multiple Queues. Here we consider settings in which the social planner can set up more
than one queue. Multiple queues generally enable a more efficient allocation of resources since
the planner can use the shorter queue for more time intensive cases. We consider here the case
with two queues. The institutional variables are z1, z2 denoting the length of the two queues.
Suppose that individuals exit the two queues at some known rates e1(z, t), e2(z, t) with respect
to time. The planner’s action a consists of assigning the individuals to one of the queues. We
shall denote by a = 0 the assignment to queue 1, while the assignment to queue 2 is denoted by
a = 1. Finally, as with the case of a single queue, we may normalize the measures of z1, z2 so
that taking action a = 0 or 1 adds people to the queues at the rate 1. Then the law of motion
for z is given by ż = Ga(s), where

Ga(s) =

 I(a = 0)− λ(t)−1e1(z, t)
I(a = 1)− λ(t)−1e2(z, t)

 .
An important difference from earlier settings is that we can no longer normalize one of the

rewards to 0 (note that here all individuals are eventually treated). The reward for assigning
an individual to queue 1 is given by r(x, z1, t), while that for assigning to queue 2 is given by
r(x, z2, t). The rewards reflect the fact that waiting is costly and the cost is a function of the
waiting times i.e the queue length. We then define the quantities

r̄θ(z, t) := Ex∼F [r(x, z1, t)πθ(0|s) + r(x, z2, t)πθ(1|s)|z, t], and

Ḡθ(z, t) := Ex∼F [G1(s)πθ(1|s) +G0(s)πθ(0|s)|z, t] ,

denoting respectively the expected flow utility and the expected flow change to z. The resulting
PDE is of the form (C.4) above. It is natural to setup this problem as a periodic one, either
with or without nonlinear Neumann boundary conditions at z1 = 0 and z2 = 0. The latter are
useful if the planner would like to allow the policy to behave discontinuously between z1 = 0
and z1 > 0 (or similarly a discontinuity around z2 = 0 and z2 > 0).

C.3. Additional discussion of Assumption 1. In this section we provide some primitive
regularity conditions under which the soft-max policy class (2.3) satisfies Assumption 1(i). Recall
that the soft-max class of policy functions is of the form

πθ(1|s) = exp(θᵀf(s)/σ)
1 + exp(θᵀf(s)/σ) ,

where f(·) denotes a vector of basis functions over s. Due to the presence of σ, we can normalize
θ to some convenient form. For the present purposes, it will be useful to impose ‖θ‖ = 1. Let
Θ, a subset of the unit sphere, denote the parameter space under consideration for θ.

The following conditions are sufficient to show Assumption 1(i):
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Assumption R. (i) Ga(s) and r(s, 1) are uniformly bounded. Furthermore, there exists C <∞
such that Ex∼F [|∇(z,t)Ga(s)|] < C and Ex∼F [|∇(z,t)r(s, 1)|] < C uniformly over all (z, t) ∈ U .

(ii) There exists M < ∞ independent of (x, z, t) such that |∇(z,t)f(s)| ≤ M . This can be
relaxed to Ex∼F [|∇(z,t)f(s)|] ≤M if σ is bounded away from 0.

(iii) Either σ is bounded away from 0, or, there exists δ > 0 such that the probability density
function of θᵀf(s) is bounded in the interval [−δ, δ] for each (z, t) ∈ U , θ ∈ Θ.

Assumption R(i) imposes some regularity conditions on Ga(s) and r(s, 1). In our empirical
example, these quantities do not even depend on (z, t), so the assumption is trivially satisfied
there. Assumption R(ii) ensures that f(s) varies smoothly with (z, t). Assumption R(iii) pro-
vides two possibilities. If 1/σ is compactly supported, it easy to see that the derivatives of
πθ(·|s) with respect to (z, t) are bounded, but this constrains the ability of the policy class to
approximate deterministic policies. As an alternative, we can require the distribution of θᵀf(s)
to be bounded around 0 for any given (z, t, θ). It is easy to verify this alternative condition
holds as long there exists atleast one continuous covariate, the coefficient of θ corresponding
to that covariate is non-zero, and the conditional density of that covariate given the others is
bounded away from ∞. The case of discrete covariates with σ → 0 presents some difficulties
and is discussed in the next sub-section.

Proposition 1. Suppose that assumptions R(i)-R(iii) hold. Then Ḡθ(z, t) and r̄θ(z, t) are Lip-
schitz continuous uniformly over θ.

Proof. Define the soft-max function ξ(w) = 1/(1 + e−w/σ), and let ξ′(·) denote its derivative,
which is always positive. Observe that

∇(z,t)Ḡθ(z, t) = Ex∼F
[
∇(z,t)Ga(s)πθ(a|s)

]
+ Ex∼F

[
Ga(s)ξ′(θᵀf(s))θᵀ∇(z,t)f(s)

]
≤ Ex∼F [|∇(z,t)Ga(s)|] + LEx∼F

[
ξ′(θᵀf(s))

]
,

for some L < ∞ independent of (z, t, θ), where the inequality follows from Assumptions R(i)-
(ii). It thus remains to show Ex∼F [ξ′(θᵀf(s))] < ∞. Now ξ′(w) ≤ e−|w|/σ/σ for all w, so the
previous statement clearly holds when σ is bounded away from 0. For the other possibility in
Assumption R(iii), let us pick δ as in the assumption, and expand Ex∼F [ξ′(θᵀf(s))] as

Ex∼F
[
ξ′(θᵀf(s))

]
≤ Ex∼F

[
ξ′(θᵀf(s))I{|θᵀf(s)| > δ}

]
+ Ex∼F

[
ξ′(θᵀf(s))I{|θᵀf(s)| ≤ δ}

]
:= A1 +A2.

Now without loss of generality, we may assume δ ≥ σ ln(1/σ), as otherwise σ is bounded away
from 0. Then, by the fact ξ′(w) ≤ e−|w|/σ/σ, we have A1(δ) ≤ 1. Additionally, by Assumption
R(iii), the probability density function of θᵀf(s) is bounded by some constant c, so

A2 ≤ c
∫ δ

−δ
ξ′(w)dw ≤ c[ξ(δ)− ξ(−δ)] ≤ 2c.

We thus have Ex∼F [ξ′(θᵀf(s))] ≤ 1 + 2c <∞. This proves Lipschitz continuity of Ḡθ(z, t). The
argument for Lipschitz continuity of r̄θ(z, t) is similar. �
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C.3.1. Discrete covariates with arbitrary σ. For purely discrete covariates with σ → 0, it will
generically be the case that Ḡθ(z, t) and r̄θ(z, t) are discontinuous, except when the policy is
independent of (z, t). Nevertheless, depending on the boundary condition, we can allow for some
discontinuities and still end up with a Lipschitz continuous solution. For instance, the results
of Ishii (1985) imply a Comparison Theorem (akin to Theorem 5 in Section D) can be derived
under the following alternative to Assumption 1(i):

Assumption 1a. Suppose that the boundary condition is either a periodic one, or of the Cauchy
form hθ(z, T ) = 0 ∀ z. Then we can replace the second part of Assumption 1(i) with the condi-
tion: Ḡθ(z, t) and r̄θ(z, t) are integrable in t on [t0, T ] for any (z, θ), and Lipschitz continuous
in z uniformly over (t, θ). A similar condition also holds, with the roles of z, t reversed, if the
boundary condition is the form hθ(z, t) = 0 ∀ t.

The above condition is also sufficient for proving (uniform) Lipschitz continuity of hθ(z, t). To
see how, consider the Cauchy condition hθ(z, T ) = 0 ∀ z. That hθ(z, t) is Lipschitz continuous
in z follows by the same reasoning as in Lemma 4, after exploiting the Lipschitz continuity of
Ḡθ(z, t) and r̄θ(z, t) with respect to z. As for the Lipschitz continuity of hθ(z, t) in the second
argument, we can argue as in the second part of Lemma 6; note that this only requires the use
of a Comparison Theorem. With these results in hand, we can verify our main Theorems 2 and
3 under the weaker Assumption 1a.

The above results are particularly powerful when applied to the simplified example in Section
2. In this case, the only regularity condition we require for π̄θ(z) and r̄θ(z) is that they have to
be integrable and uniformly bounded on [0, z0], and π̄θ(z) has to be bounded away from 0.

The general case, when Ḡθ(z, t) and r̄θ(z, t) may be discontinuous in both arguments, is more
difficult, but we offer here a few comments. Suppose that there are K distinct covariate groups
in the population. Then we can create 2K strata, each corresponding to regions of (z, t) where
the (deterministic) policy function takes the value 1 for exactly one particular subgroup from
the K groups. In this way, we can divide the space U into discrete regions, also called stratified
domains, within which Ḡθ(z, t) and r̄θ(z, t) are constant (and therefore uniformly Lipschitz
continuous). Discontinuities occur at the boundaries between the strata. Under some regularity
conditions, Barles and Chasseigne (2014) demonstrate existence and uniqueness of a solution
in this context, and also prove a comparison theorem. It is unknown, however, whether this
solution is Lispchitz continuous.

C.4. Alternative Welfare Criteria. In the main text we have treated the arrival rates λ(·) as
forecasts and measured welfare in terms of its ‘forecasted’ value. Here we consider an alternate
criterion where welfare is measure using the realized value or true value of λ(·), denoted by
λ0(·). Recall that the integrated value function under λ0(·) is denoted by hθ(z, t;λ0). Under
this welfare criterion the optimal choice of θ is given by

θ∗0 = arg max
θ∈Θ

hθ(z0, t0;λ0).

To simplify matters assume that we have access to only a single point forecast or estimate of
λ0(·), denoted by λ̂(·). The extension to density estimates is straightforward, so we do not
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consider it here. The criterion function hθ(z0, t0;λ0) is clearly infeasible. However we can use
the historical data and the estimate λ̂(·) to obtain the empirical counterpart of hθ(z, t;λ0) as
ĥθ(z, t; λ̂), where ĥθ(·) is the solution to PDE (3.10) from the main text when λ(·) is replaced
with λ̂(·). This suggests the following estimator for θ∗0:

θ̂ = arg max
θ∈Θ

ĥθ(z0, t0; λ̂).

Note that θ̂ is exactly the same as in the main text (cf equation 3.11), excepting that we use
λ̂(·) in place of λ(·). Thus the computation of θ̂ is not affected.

In terms of the statistical properties, the main difference is that we now have to take into
account the statistical uncertainty between λ̂(·) and λ0(·) while calculating the regret. However
estimation of λ0(·) is almost always orthogonal to estimation of treatment effects itself (which
are used for estimating r̄θ(z, t)) since the former is based on time series variation while the latter
uses the cross-sectional variation in the data. Indeed, the estimate λ̂(·) may even be obtained
from a completely different and much bigger dataset: e.g, unemployment rates can be estimated
using macro level time series data which is usually much bigger than the RCT data needed to
estimate treatment effects. These considerations suggest that the regret can be decomposed
into two parts: the first dealing with estimation of the treatment effects, and the other with the
estimation of λ0(·). Formally, we can upper bound the regret, R0(θ̂), under the present welfare
criterion as

R0(θ̂) := hθ̂(z0, t0;λ0)− hθ∗0 (z0, t0;λ0)

=
{
hθ̂(z0, t0; λ̂)− hθ∗0 (z0, t0; λ̂)

}
+
{
hθ̂(z0, t0;λ0)− hθ̂(z0, t0; λ̂) + hθ∗0 (z0, t0;λ0)− hθ̂(z0, t0; λ̂)

}
≤
{
hθ̂(z0, t0; λ̂)− hθ∗0 (z0, t0; λ̂)

}
+ 2 sup

θ∈Θ

∣∣∣hθ(z0, t0;λ0)− hθ(z0, t0; λ̂)
∣∣∣

:= R(I)
0 +R(II)

0 .

Note that R(I)
0 and R(II)

0 are stochastically independent if the estimation of treatment effects
and λ̂(·) are orthogonal to each other. The first term R(I)

0 can be analyzed using the techniques
developed so far. Indeed,40

R(I)
0 ≤ 2 sup

θ∈Θ

∣∣∣ĥθ(z0, t0; λ̂)− hθ(z0, t0; λ̂)
∣∣∣ ≤ 2C

√
v

n
wpa1.

As for the second term, we can analyze it using the same PDE techniques as that used in the
proof of Theorem 2. This gives us

R(II)
0 ≤ C1 sup

t∈[t0,∞)

∣∣∣λ0(t)− λ̂(t)
∣∣∣ ,

where the constant C1 depends only on (1) the upper bounds supθ∈Θ;(z,t)∈Ū |Ḡθ(z, t)| &
supθ∈Θ;(z,t)∈Ū |r̄θ(z, t)| and (2) the uniform Lipschitz constants for Ḡθ(z, t) & r̄θ(z, t).41 We

40We shall require λ̂(·) to be uniformly upper bounded and bounded away from 0. This is clearly satisfied wpa1
if λ̂(·)− λ0(·) = op(1) and λ0(·) is upper bounded and bounded away from 0.
41Assumption 1(i) assures that all these quantities are indeed finite.
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particularly emphasize that R(II)
0 is independent of the complexity v of the policy space. It may

even be independent of n if the estimate λ̂(·) is constructed using a different dataset.
Combining the above, we have thus shown

R0(θ̂) ≤ 2C
√
v

n
+ C1 sup

t∈[t0,∞)

∣∣∣λ0(t)− λ̂(t)
∣∣∣ .

Thus the regret rates are exactly the same as that derived in the main text, except for an addi-
tional term dealing with estimation of λ0(·). However since this additional term is independent
of the complexity of the policy space, the alternative welfare criterion offers no additional im-
plication for choosing the policy class. Thus both welfare criteria lead practically to the same
results.
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Appendix D. Properties of viscosity solutions

In this Section, we collect various properties of viscosity solutions used in the proof of The-
orems 2 and 3. A key result is the Comparison theorem that enables one to prove inequalities
between viscosity super- and sub-solutions. We break down this section into separate cases for
each of the boundary conditions:

D.1. Dirichlet boundary condition. Some of the results in this section apply only to Hamiltoninan-
like PDEs with a Dirichlet boundary condition

(D.1) ∂tu+H (z, t, u(z, t), ∂zu(z, t)) = 0 on U ; u = 0 on Γ,

where U and Γ are of the form given in the main text. The properties we imposed for F (·) in
Appendix A are now transferred to H(·). As before, we let y := (z, t).

(H1) H(y, u, p) is continuous in all its arguments.
(H2) There exists a modulus of continuity ω(·) such that

|H(y1, u, p1)−H(y2, u, p2)| ≤ ω (‖y1 − y2‖+ ‖p1 − p2‖) , and

|H(y1, u, p)−H(y2, u, p)| ≤ ω (‖y1 − y2‖ |1 + ‖p‖|) .

(H3) There exists β > 0 such that H(y, u1, p)−H(y, u2, p) ≥ β(u1 − u2) for all u1 ≥ u2.

The following Comparison Theorem states that if a function v is a viscosity super-solution and u
a sub-solution satisfying v ≥ u on the boundary, then it must be the case that v ≥ u everywhere
on the domain of the PDE. The version of the theorem that we present here combines Crandall,
Ishii & Lions (1992, Theorem 3.3), and Crandall & Lions (1986, Theorem 1). We present the
theorem in both the usual and Hamiltonian forms. Clearly, the second set of results is implied
by the first, but we present both here to provide an easy reference for the applications of the
theorem. (Recall the notation (f)+ := max{f, 0}).

Theorem 5. (Comparison Theorem - Dirichlet form) (i) Suppose that the function F (·)
satisfies conditions (R1)-(R3). Let u, v be respectively, a viscosity sub- and super-solution to

F (z, t, f(z, t), ∂zf(z, t), ∂tf(z, t)) = 0 on U ,

where U is an open set. Then

(D.2) sup
Ū

(u− v)+ ≤ sup
∂U

(u− v)+.

(ii) Suppose that the function H(·) satisfies conditions (H1)-(H3). Let u, v be respectively, a
viscosity sub- and super-solution to

∂tf +H (z, t, f(z, t), ∂zf(z, t)) = 0 on U ,

where U is an open set. Then (D.2) holds. If, alternatively, U is the of the form Z × (0, T ],
where Z is any open set, we can replace ∂U in the statement with Γ ≡ {∂Z× [0, T ]}∪{Z×{0}}.

Note that the above theorem can be applied without regard to the actual boundary condition.

73



The following useful lemma is taken from Crandall and Lions (1986).

Lemma 2. (Crandall and Lions, 1986, Lemma 2) Suppose that the functions H1(·) and
H2(·) satisfy conditions (H1)-(H3). Suppose further that u, v are respectively a viscosity sub-
and super-solution of ∂tf + H1 (z, t, f, ∂zf) = 0 and ∂tf + H2 (z, t, f, ∂zf) = 0 on Ω × (0, T ],
where Ω is an open set. Denote w(z1, z2, t) := u(z1, t)− v(z2, t). Then w(z1, z2, t) satisfies

∂tw +H1 (z1, t, u(z1, t), ∂z1w)−H2 (z2, t, v(z2, t), ∂z2w) ≤ 0 on Ω× Ω× (0, T ]

in a viscosity sense.

Lemma 3. Suppose that Assumptions 1-4 hold for the Dirichlet boundary condition (3.3).
Then there exists L0 < ∞ independent of θ, z, t such that |hθ(z, t)| ≤ L0. In addition, for the
setting with T < ∞, it holds |hθ(z, t)| ≤ K|T − t| for some K < ∞. In a similar vein, for the
setting with z > −∞ it holds |hθ(z, t)| ≤ K1|z − z| for some K1 <∞.

Proof. Consider first the Dirichlet problem with T <∞. As in the proof of Theorem 2, we make
a change of variable and define uθ(z, τ) := eβτhθ(z, T − τ). This enable us to recast PDE (3.2)
in the form (A.5), as used in the proof of Theorem 2. We now claim that φ(z, τ) := Kτ is a
super-solution to (3.2) on U , for some appropriate choice of K. Indeed, plugging this function
into the PDE, we get

∂τφ+Hθ(z, τ, ∂zφ) = K − λ(τ)r̄θ(z, τ).

The right hand side is greater than 0 as long as we choose K ≥ supz,τ |λ(τ)r̄θ(z, τ)| (note that
|λ(τ)r̄θ(z, τ)| is uniformly bounded by virtue of Assumption 2(i)). This proves φ(z, τ) := Kτ is
a super-solution to (A.5) on U . At the same time it is clear that φ ≥ 0 ≥ uθ on Γ. Hence, by
the Comparison Theorem 5, it follows uθ ≤ φ on Ū (it is straightforward to verify the conditions
for the Comparison Theorem 5 under Assumptions 1). Note that this also implies uθ ≤ KT

everywhere. Since hθ(z, t) = e−β(T−t)uθ(z, T−t), this completes the proof for the non-stationary
case with finite T .

A similar argument switching the roles of z, τ (as we also did in the proof of Theorem 2)
proves that |hθ(z, t)| ≤ K1|z − z|. �

Lemma 4. Suppose that Assumptions 1-4 hold for the Dirichlet boundary condition (3.3).
Then there exists L1 <∞ independent of θ, z, t such that hθ(z, t) is locally Lipschitz continuous
in both arguments with Lipschitz constant L1.42

Proof. We split the proof into three cases:
Case (i), wherein z = −∞: In this case, the boundary condition (3.3) is equivalent to a

Cauchy problem after a change of variable to τ as in the proof of Theorem 2. In particular,
the initial value is provided at τ = 0. For the Cauchy problem, we can apply the results of
Souganidis (1985, Proposition 1.5) to show that the hθ is locally Lipschitz continuous.

42We say a function f is locally Lipschitz continuous if |f(z1) − f(z2)| ≤ L|z1 − z2| for all |z1 − z2| < δ, where
δ > 0. Clearly a locally Lipschitz function is also globally Lipschitz if the domain of z is a compact set.
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Case (ii), wherein T =∞: In this case too, we can recast (3.3) as a Cauchy problem, with an
initial value provided at z = 0. Hence we can again apply Souganidis (1985, Proposition 1.5) to
prove the claim.

Case (iii), wherein z > −∞ and T < ∞: We prove here that hθ(·, t) is locally Lipschitz
continuous in its first argument. That it is also Lipschitz continuous in its second argument
follows by a similar reasoning after switching the roles of z and t. As in the proof of Theorem
2, we make a change of variable and define uθ(z, τ) := eβτhθ(z, T − τ). This enable us to recast
PDE (3.2) in the form (A.5), where

Hθ(z, τ, p) := −eβτλ(τ)r̄θ(z, τ)− λ(τ)Ḡθ(z, τ)p,

as specified in that proof. Denote δθ(z1, z2, τ) := uθ(z1, τ) − uθ(z2, τ). Also let Υ ≡ (z,∞) ×
(z,∞) × (0, T ]. In view of Lemma 2, δθ(z1, z2, τ) is a viscosity solution, and therefore a sub-
solution of

(D.3) ∂τf +Hθ (z1, τ, ∂z1f)−Hθ (z2, τ,−∂z2f) = 0, on Υ.

We aim to find an appropriate non-negative function φ(z1, z2, τ) independent of θ such that φ
is (1) a super-solution of (D.3) - i.e a super-solution of (D.3) for all θ ∈ Θ - on some convenient
domain Ω ≡ A × (0, T ], where A ⊆ (z,∞) × (z,∞), and (2) that also satisfies φ ≥ δθ on
Γ ≡ {∂A× (0, T ]} ∪ {Ā × {0}} - again for all θ ∈ Θ. Then by the Comparison Theorem 5, we
will be able to obtain δθ ≤ φ on Ω̄.43 We claim that such a function is given by

φ(z1, z2, τ) := AeBτ
(
|z1 − z2|2 + ε

)1/2

after choosing A := {(z1, z2) : |z1 − z2| < 1, z < z1, z < z2}. Here, A,B are some appropriately
chosen constants and ε > 0 is an arbitrarily small number (we shall later send this to 0).44

First note that under the choice of setA, φ is continuous and uniformly bounded, as demanded
by the definition of a viscosity super-solution.

Next, let us show that for all θ ∈ Θ, φ ≥ δθ on Γ ≡ {∂A × (0, T ]} ∪ {Ā × {0}}, under
some appropriate choice of A. Clearly, φ ≥ δθ on Ā × {0} since φ(z1, z2, 0) ≥ 0 for all (z1, z2),
while δθ(z1, z2, 0) = 0. It therefore remains to show φ ≥ δθ on ∂A× (0, T ]. We have three (not
necessarily exclusive) possibilities for ∂A: (i) |z1 − z2| = 1, (ii) z1 = z, or (iii) z2 = z. In the
first case, i.e when |z1 − z2| = 1, we have φ(z1, z2, τ) ≥ eBτA. Now, by Lemma 3, |uθ| ≤ K

for some K < ∞ independent of θ. Hence, as long as we choose A ≥ 2K, we can ensure
φ ≥ δθ on the region of ∂A where |z1 − z2| = 1. Next, consider the case when z1 = z. Here
φ(z, z2, τ) ≥ eBτA(z2 − z). But uθ(z, τ) = 0, while by Lemma 3, uθ(z2, τ) ≤ K1(z2 − z), where
K1 < ∞ is independent of θ, τ . Thus here too we can ensure φ ≥ δθ by choosing A ≥ K1. A
symmetric argument also implies φ ≥ δθ when z2 = z. In view of the above, we have thus shown
that there exists A <∞ for which φ ≥ δθ on Γ.

43Note that the Comparison theorem is now being applied on (D.3). Let z = (z1, z2)ᵀ and p = (p1,p2)ᵀ .
Then it is straightforward to verify that the Hamiltonian H̃θ(z, t,p) := Hθ (z1, τ,p1)−Hθ (z2, τ,p2) satisfies the
properties (H1)-(H3) in view of Assumption 1.
44The reason for not setting ε = 0 straightaway is to ensure

(
|z1 − z2|2 + ε

)1/2 is differentiable everywhere.
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We now show that for all θ ∈ Θ, φ is a super-solution of (D.3) on the domain Ω, under some
appropriate choice of B (given A). To this end, observe that

∂τφ+Hθ (z1, τ, ∂z1φ)−Hθ (z2, τ,−∂z2φ)

= ABeBτ
(
|z1 − z2|2 + ε

)1/2

+Hθ

(
τ, z1,

AeBτ (z1 − z2)
(|z1 − z2|2 + ε)1/2

)
−Hθ

(
τ, z2,

AeBτ (z1 − z2)
(|z1 − z2|2 + ε)1/2

)

:= ABeBτ
(
|z1 − z2|2 + ε

)1/2
+ ∆θ(τ, z1, z2;A,B).(D.4)

Now under Assumptions 1(i)-(ii) -which ensures Ḡθ(z, t) and r̄θ(z, t) are uniformly Lipschitz
continuous - and some straightforward algebra, we have

|∆θ(τ, z1, z2;A,B)| ≤ AeBτλ(τ)
∣∣∣Ḡθ(z1, τ)− Ḡθ(z2, τ)

∣∣∣+ eβτλ(τ) |r̄θ(z1, τ)− r̄θ(z2, τ)|

≤ Aemax{B,β}τλ(τ)M |z1 − z2| ,

for some constant M <∞ independent of θ, z1, z2, τ . Plugging the above expression into (D.4),
we note that by choosing B large enough (e.g B ≥ max{AMλ̄, β} would suffice), it follows

∂τφ+Hθ (τ, z1, ∂z1φ)−Hθ (τ, z2,−∂z2φ) ≥ 0 on Ω,

for all θ ∈ Θ. This implies that for all θ ∈ Θ, φ is a super-solution of (D.3) on Ω.
By now we shown that for all θ ∈ Θ, φ ≥ δθ on Γ, and that φ is a super-solution of (D.3) on Ω.

At the same time, δθ is viscosity sub-solution of (D.3) on Ω. Hence by applying the Comparison
theorem on (D.3), we get φ ≥ δθ on Ω̄, i.e

uθ(z1, τ)− uθ(z2, τ) ≤ eBτ
(
A|z1 − z2|2 + ε

)1/2

for all (z1, z2, τ) ∈ Ω̄ and θ ∈ Θ. But the choice of ε was arbitrary. We may therefore take this
to 0 to obtain

sup
(z1,z2,τ)∈Ω̄,θ∈Θ

(
uθ(z1, τ)− uθ(z2, τ)−AeBτ |z1 − z2|

)
≤ 0

Now, Ω̄ ≡ Ā× [0, T ], where Ā includes all z1, z2 such that |z1− z2| < 1. Hence, we can conclude
that uθ(·, t) is locally Lipschitz in its first argument. Since hθ(·, t) = eβ(T−t)uθ(·, T − t), this also
implies that hθ is locally Lipschitz continuous in its first argument. �

D.2. Periodic boundary condition. Following (3.5), we consider time periodic first order
PDEs of the form

∂tf +H (z, t, f(z, t), ∂zf(z, t)) = 0 on U ;(D.5)

f(z, t) = f(z, t+ Tp) ∀(z, t) ∈ U .

We first present a stronger version of the Comparison Theorem for Cauchy problems, due to
Crandall and Lions (1983). This turns out to be useful to prove a Comparison theorem for
periodic problems as in Bostan and Namah (2007). Denote (f)+ := max{f, 0}.
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Lemma 5. Suppose that the function H(·) satisfies conditions (H1)-(H3). Let u, v be, respec-
tively, viscosity sub- and super-solutions to

∂tf +H (z, t, f(z, t), ∂zf(z, t)) = 0 on R× (t0, T ].

Then for all t ∈ [t0, T ],

eβ(t−t0) sup
z∈Rd

(u(z, t)− v(z, t))+ ≤ sup
z∈Rd

(u(z, t0)− v(z, t0))+ .

Theorem 6. (Comparison Theorem - Periodic form) Suppose that the function H(·)
satisfies conditions (H1)-(H3), and that it is Tp-periodic in t. Let u, v be respectively, Tp-periodic
viscosity sub- and super-solutions to (D.5) on U . Then u(x, t) ≤ v(x, t) on R× R.

Proof. By Lemma 5, we have that for any t0 ∈ R,

eβTp sup
z∈R

(u(z, Tp + t0)− v(z, Tp + t0))+ ≤ sup
z∈R

(u(z, t0)− v(z, t0))+ .

But by periodicity, u(z, Tp + t0) − v(z, Tp + t0) = u(z, t0) − v(z, t0), hence it must be the case
supz∈R (u(z, t0)− v(z, t0))+ = 0. But the choice of t0 was arbitrary; therefore u(z, t) ≤ v(z, t)
on R× R. �

Lemma 6. Suppose that Assumptions 1-4 hold for the periodic boundary condition, and the
discount factor β is sufficiently large. Then there exists L1 <∞ independent of θ, z, t such that
hθ is locally Lipschitz continuous with Lipschitz constant L1.

Proof. We first show that hθ(·, t) is Lipschitz continuous in its first argument. As in the proof
of Theorem 2, fix any t∗ > Tp, and denote uθ(z, τ) := eβτhθ(z, t∗ − τ). Also, let δθ(z1, z2, τ) :=
uθ(z1, τ)− uθ(z2, τ) and recall that

Hθ(z, τ, p) := −eβτλ(τ)r̄θ(z, τ)− λ(τ)Ḡθ(z, τ)p.

In view of Lemma 2, δθ(z1, z2, τ) is a viscosity solution, and therefore a sub-solution of

(D.6) ∂τf +Hθ (τ, z1, ∂z1f)−Hθ (τ, z2,−∂z2f) = 0, on Ω,

where
Ω ≡ A× (0, Tp]; A ≡ {(z1, z2) : |z1 − z2| < 1}.

We shall compare δθ against the function

φ(z1, z2, τ) := AeBτ
(
|z1 − z2|2 + ε

)1/2
.

By the same arguments as in the proof of Lemma 4, we can set B = β and choose A in such
a way that φ ≥ δθ on ∂A × (0, Tp], and φ is a super-solution to (D.6). This step requires β
to be sufficiently large (β ≥ AMλ̄ would suffice), as assumed in the statement of Theorem 2.
Subsequently, by the Comparison Theorem 5, we obtain

sup
z1,z2∈R2

(uθ(z1, Tp)− uθ(z2, Tp)− φ(z1, z2, Tp))+ ≤ sup
z1,z2∈R2

(uθ(z1, 0)− uθ(z2, 0)− φ(z1, z2, 0))+ .
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Rewriting the above in terms of hθ, and noting that hθ(z, ·) is Tp-periodic, we get

eβTp sup
z1,z2∈R2

(
hθ(z1, t

∗)− hθ(z2, t
∗)− e−βTpφ(z1, z2, Tp)

)
+
≤ sup

z1,z2∈R2
(hθ(z1, t

∗)− hθ(z2, t
∗)− φ(z1, z2, 0))+ .

Since we set B = β, we have e−βTpφ(z1, z2, Tp) = φ(z1, z2, 0). In view of the above,

sup
z1,z2∈R2

(hθ(z1, t
∗)− hθ(z2, t

∗)− φ(z1, z2, 0))+ ≤ 0.

Since t∗ is arbitrary, this proves the Lipschitz continuity of hθ with respect to z, after sending
ε→ 0 in the definition of φ.

We now show that hθ(z, ·) is Lipschitz continuous in its second argument. For this, we will
use the original form of the PDE. Rewrite PDE (3.2) in the form ∂tf + H̄θ(z, t, f, ∂zf) = 0,
where

H̄θ(z, t, u, p) := −βu+ λ(t)r̄θ(z, t) + λ(t)Ḡθ(z, t)p,

and consider the Cauchy problem

∂tf + H̄θ(z, t, f, ∂zf) = 0 on R× (t1,∞);(D.7)

f(·, t1) = v0,

for any continuous function v0. Denote the solution of the above as fθ. We now compare fθ
with φ := v0 + K(t − t1), for some constant K. Indeed, arguing as in the proof of Lemma
3, we can find K < ∞ independent of θ, z, t, t1 such that φ is a viscosity super-solution of
∂tf + H̄θ(z, t, f, ∂zf) = 0 on R × (t1,∞). Also, φ = v0 = fθ on R × {t1}. Hence, by the
Comparison Theorem 5, φ ≥ fθ on R× [t1,∞), i.e fθ − v0 ≤ K(t− t1). A symmetric argument
involving ϕ := v0 −K(t − t1) as a sub-solution will also show that v0 − fθ ≤ K(t − t1). Taken
together, we obtain

sup
z∈R
|fθ(z, t)− v0(z)| ≤ K(t− t1).

Note that this inequality holds uniformly over all continuous v0. In particular, we may set
v0(·) = hθ(·, t1). But with this initial condition the unique solution of (D.7) on R × [t1,∞) is
simply hθ itself (i.e fθ ≡ hθ). We have thus shown that supz∈R |hθ(z, t)− h0(z, t1)| ≤ K(t− t1)
for all t ≥ t1. But the choice of t1 here was arbitrary. Consequently, this property holds for
all t1 ∈ R and t ≥ t1, which implies that hθ(z, ·) is Lipschitz continuous in its second argument
uniformly over θ, z. �

D.3. Neumann and Periodic-Neumann boundary conditions. For results on the Neu-
mann and periodic-Neumann boundary conditions, we go back to the more general version of
first order PDEs as given in (A.2). We shall impose a couple of additional regularity conditions
on F (·) and B(·), in addition to (R1)-(R8) in Appendix A. These are given by (as before, we
use the notation y := (z, t)):

(R9) There exist C1, C2 <∞ such that

|F (y1, u, p1)− F (y2, u, p2)| ≤ C1 (‖y1 − y2‖+ ‖p1 − p2‖) , and

|F (y1, u, p)− F (y2, u, p)| ≤ C2 ‖p‖ ‖y1 − y2‖ .
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(R10) There exist C3, C4 <∞ such that

|B(y1, u, p1)−B(y2, u, p2)| ≤ C3 (‖y1 − y2‖+ ‖p1 − p2‖) , and

|B(y1, u, p)−B(y2, u, p)| ≤ C4 ‖p‖ ‖y1 − y2‖ .

It is straightforward to verify that all the regularity conditions (R1)-R(10) are satisfied for our
population PDE (3.2) under Assumption 1, with constants C1, C2, C3, C4 independent of θ (this
is due to uniform Lipschitz continuity of Ḡθ(z, t) and r̄θ(z, t) imposed in Assumption 1(i)). It
is useful to note that for the population PDE, the first part of Assumption 1(i) is not required
to verify these conditions. On a side note, we also remark that the sample PDE (3.10) may
not satisfy the regularity conditions (R9) and (R10). This is because Assumption 1 does not
imply Ĝθ(z, t) and r̂θ(z, t) are Lipschitz continuous, only that they are continuous (where the
continuity is turn due to the first part of Assumption 1(i)).

The following results are taken from Barles & Lions (1991), but see also Crandall, Ishii &
Lions (1992, Theorem 7.12). We refer to those papers for the proofs.

Theorem 7. (Comparison Theorem - Neumann form) Suppose that the functions F (·)
and B(·) satisfies conditions (R1)-(R8) in Appendix A. Let u, v be respectively, a viscosity sub-
and super-solutions to (A.2). Then u(x, t) ≤ v(x, t) on Z̄ × [0, T̄ ].

Lemma 7. Suppose that the functions F (·) and B(·) satisfies conditions (R1)-(R10). Then the
unique viscosity solution, u, to (A.2) is Lipschitz continuous on Z̄ × [0, T̄ ], where the Lipschitz
constant depends only on the values of C1-C4 and M in (R1)-(R10).

The next set of results are for the periodic-Neumann boundary condition. These follow from
Theorem 7 and Lemma 7 in the same way that Theorem 6 and Lemma 6 follow from Theorem
5 and Lemma 4, and are therefore also presented without a proof.

Theorem 8. (Comparison Theorem - Periodic Neumann form) Suppose that the func-
tions F (·) and B(·) satisfies conditions (R1)-(R8) in Appendix A, and that they are both also
Tp-periodic in t. Let u, v be respectively, Tp-periodic viscosity sub- and super-solutions to (A.2).
Then u(x, t) ≤ v(x, t) on Z̄ × R.

Lemma 8. Suppose that the functions F (·) and B(·) satisfies conditions (R1)-(R10), they are
both also Tp-periodic, and the discount factor β is sufficiently large. Then the unique Tp-periodic
viscosity solution, u, to (A.2) is Lipschitz continuous on Z̄ × R, where the Lipschitz constant
depends only on the values of Tp and C1-C4 & M in (R1)-(R10).
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Appendix E. Semi-convexity, sup-convolution etc.

In this Section, we collect various properties of semi-convex/concave functions, and sup/inf-
convolutions used in the proof of Theorem 3. Many of these results are well known. In some
cases we provide simpler proofs at the expense of obtaining results that are not as sharp, but
they will suffice for the purpose of proving the theorems in this paper.

E.1. Semi-convexity and concavity. In what follows we take y to be a vector in Rn. Also,
for any vector y, |y| denotes its Euclidean norm.

Definition 3. A function u on Rn is said to be semi-convex with the coefficient c if u(y) + c
2 |y|

2

is a convex function. Similarly, u is said to be semi-concave with the coefficient c if u(y)− c
2 |y|

2

is concave.

The following lemma states a useful property of semi-convex functions.

Lemma 9. Suppose that u is semi-convex. Then u is twice differentiable almost everywhere.
Furthermore, for every point at which Du exists, we have for all h ∈ Rn,

u(y + h) ≥ u(y) + hᵀDu(y)− c

2 |h|
2.

Proof. Define g(y) = u(y) + c
2 |y|

2. Since g(y) is convex, the Alexandrov theorem implies g(·)
is twice continuously differentiable almost everywhere. Hence u(y) = g(y) − c

2 |y|
2 is also twice

differentiable almost everywhere.
For the second part of the theorem, observe that by convexity,

g(y + h) ≥ g(y) + hᵀDg(y).

Note that where the derivative exists, Dg(y) = Du(y) + cy. Hence,

u(y + h) + c

2 |y + h|2 ≥ u(y) + c

2 |y|
2 + hᵀDu(y) + chᵀy.

Rearranging the above expression gives the desired inequality. �

An analogous property also holds for semi-concave functions. We can also extend the scope
of the theorem to points where Du does not exist by considering one-sided derivatives, which
can be shown to exist everywhere for semi-convex functions.

E.2. Sup and Inf Convolutions. Let u(y) denote a continuous function on some open set Y.
Let ∂Y denote the boundary of Y, and Ȳ its closure. Additionally, for some function u, we let
‖Du‖ denote the Lipschitz constant for u, with the convention that it is ∞ if u is not Lipschitz
continuous.

Definition 4. The function uε is said to be the sup-convolution of u if

uε(y) = sup
w∈Ȳ

{
u(w)− 1

2ε |w − y|
2
}
.

Similarly, uε is said to be the inf-convolution of u if

uε(y) = inf
w∈Ȳ

{
u(w) + 1

2ε |w − y|
2
}
.
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We shall also define yε as the value for which

u(yε)− 1
2ε |y

ε − y|2 = uε(y),

if yε lies in Y (otherwise it is taken to be undefined). Analogously, yε is the value for which

u(yε) + 1
2ε |yε − y|

2 = uε(y).

Additionally, define Yε as the set of all points in Y that are atleast 2 ‖Du‖ ε distance away from
∂Y, i.e

Yε := {y ∈ Y : |y − w| ≥ 2 ‖Du‖ ε ∀w ∈ ∂Y}.

We have the following properties for sup and inf-convolutions:

Lemma 10. Suppose that u is continuous. Then,
(i) uε is semi-convex with coefficient 1/ε. Similarly, uε is semi-concave with coefficient 1/ε.
(ii) |yε − y| ≤ 2 ‖Du‖ ε and |yε − y| ≤ 2 ‖Du‖ ε.
(iii) For all y ∈ Yε, |uε(y)− u(y)| ≤ 4 ‖Du‖2 ε and |uε(y)− u(y)| ≤ 4 ‖Du‖2 ε.

Proof. We show the above properties for uε and yε. The claims for uε and yε follow in an
analogous manner.

For (i), observe that

uε(y) + 1
2ε |y|

2 = sup
w∈Ȳ

{
u(w) + 1

ε
wᵀy − 1

2ε |w|
2
}
.

The right hand side of the above expression is in the form of a supremum over affine functions,
which is convex. Hence (i) follows by the definition of semi-convex functions.

For (ii), by the definition of yε and uε,
1
2ε |y

ε − y|2 ≤ u(yε)− u(y) ≤ ‖Du‖ |yε − y|.

Rearranging the above inequality we get |yε − y| ≤ 2 ‖Du‖ ε.
For (iii), by the definition of yε (which exists for y ∈ Yε in view of part (ii)),

|uε(y)− u(y)| =
∣∣∣∣u(yε)− u(y) + 1

2ε |y
ε − y|2

∣∣∣∣
≤ ‖Du‖ |yε − y|+ 1

2ε |y
ε − y|2

≤ 4 ‖Du‖2 ε,

where the last inequality follows by (ii). �

Lemma 11. Assume that u is uniformly continuous. Suppose that φ ∈ C2(Y), such that uε−φ
has a local maximum at y0 ∈ Yε. Define ψ(y) = φ(y+y0−yε0). Then u−ψ has a local maximum
at yε0 ∈ Y, and

Dψ(yε0) = Dφ(y0) = 1
ε

(yε0 − y0).

Proof. Since uε − φ has a local maximum at y0, this implies there is a ball B(y0, r) of radius r
around y0 for which

uε(y0)− φ(y0) ≥ uε(w)− φ(w)
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for all w ∈ B(y0, r). Hence,

u(yε0)− 1
2ε |y

ε
0 − y0|2 − φ(y0) ≥ uε(w)− φ(w)

≥ u(y)− 1
2ε |w − y|

2 − φ(w)

for all y and w ∈ B(y0, r) (note that yε0 ∈ Y in view of the definition of Yε and Lemma 10).
This implies that (yε0, y0) is the local maximum of the function

Υ(y, w) := u(y)− 1
2ε |w − y|

2 − φ(w).

In other words,

(E.1) Υ(yε0, y0) ≥ Υ(y, w) ∀y and w ∈ B(y0, r).

In view of (E.1), we have Υ(yε0, y0) ≥ Υ(w − y0 + yε0, w) for all w ∈ B(y0, r), which implies

u(yε0)− 1
2ε |y

ε
0 − y0|2 − φ(y0) ≥ u(w − y0 + yε0)− 1

2ε |y
ε
0 − y0|2 − φ(w).

Hence, for all w ∈ B(y0, r),

u(yε0)− φ(y0) ≥ u(w − yε0 + yε)− φ(w).

Now set y∗ = w− y0 + yε0 and observe that |y∗− yε0| = |w− y0| ≤ r for all w ∈ B(y0, r). We thus
obtain that for all y∗ ∈ B(yε, r),

u(yε0)− φ(y0) ≥ u(y∗)− φ(y∗ + y0 − yε0).

In view of the definition of ψ(.), the above implies

u(yε0)− ψ(yε0) ≥ u(y∗)− ψ(y∗) ∀y∗ ∈ B(yε0, r).

Hence u− ψ has a local maximum at yε0.
For the second part of the lemma, observe that by (E.1), Υ(yε0, y0) ≥ Υ(yε0, w) for all w ∈

B(y0, r), which implies (after some rearrangement)
1
2ε |y

ε
0 − w|2 + φ(w) ≥ 1

2ε |y
ε
0 − y0|2 + φ(y0), ∀w ∈ B(y0, r).

Hence the function θ(w) := 1
2ε |y

ε
0 − w|2 + φ(w) has a local minimum at w = y0. Consequently,

Dφ(y0) = 1
ε

(yε0 − y0).

This proves the second claim after noting Dψ(yε0) = Dφ(y0). �

Our next Lemma considers PDEs of the form

F (y, u(y), Du(y)) = 0 on Y.

We shall assume that F (·) satisfies the following property (here C <∞ denotes some constant)

(E.2) |F (y1, q1, p)− F (y2, q2, p)| ≤ Cp{|q1 − q2|+ |y1 − y2|}.
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Lemma 12. Suppose that u is a viscosity solution of F (y, u,Du) = 0, and ‖Du‖ ≤ m < ∞.
Suppose also that F (·) satisfies (E.2). Then there exists some c depending on only C (from E.2)
and m such that for all y ∈ Yε,

F (y, uε, Duε) ≤ cε,

where the above holds in the viscosity sense.

Proof. Take any φ ∈ C2(Y) such that uε − φ has a local maximum at y0 ∈ Yε. Set ψ(y) :=
φ(y+ y0− yε0). Then by Lemma 11, u−ψ has a local maximum at yε0 ∈ Y. Hence, by definition
of the viscosity solution

(E.3) F (y, u(yε0), Dψ(yε0)) ≤ 0.

Recall also from Lemma 11 that

|Dψ(yε0)| = |Dφ(y0)| = 1
ε
|yε0 − y0| < ‖Du‖ ≤ m.

We then have

|F (y0, u
ε(y0), Dφ(y0))− F (yε0, u(yε0), Dψ(yε0))|

≤ Cm {|y0 − yε0|+ |uε(y0)− u(yε0)|}

≤ Cm {(1 +m)|y0 − yε0|+ |uε(y0)− u(y0)|}

≤ Cm{2m(1 +m) + 4m2}ε := cε,

where the first inequality follows from (E.2) and the last inequality from Lemma 10. We thus
obtain in view of the above and (E.3) that

(E.4) F (y0, u
ε(y0), Dφ(y0)) ≤ cε.

Since c is a constant, we have thus shown that if uε − φ has a local maximum at some y0 ∈ Yε,
then (E.4) holds. This implies that in a viscosity sense

F (y, uε, Duε) ≤ cε.

�
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Appendix F. Estimation of clusters and cluster specific arrival rates

Section 6.2 in the main text discussed a setup in which the distribution of the arrivals varied
with time. In this section we discuss how both the clusters and the cluster specific arrival rates
can be estimated. We shall suppose, as in our empirical application, that we have access to a
time series dataset consisting of a sample of (Nd,xd)Dd=1, where Nd denotes the number of people
of people that arrived on day d, and xd denotes the covariates of all the individuals who arrived
on that day. Note that d denotes the unit of aggregation in the data. These observations can
generally come from a different dataset than the observational one used to estimate the rewards.

First, let us suppose that there is no heterogeneity in the arrival rates between individuals.
Then we can parameterize λ(t) ≈ exp

{∑k
l=1 βlϑl(t)

}
, where {ϑl(·)}∞l=1 is a set of basis functions,

e.g Fourier series. Let t(d) denote the time corresponding to day d (recall that time is rescaled).
Then the coefficients β := (β1, . . . , βk) can be estimated by maximizing the likelihood

l(N|β) :=
D∏
d=1

λ(t;β)Nd
Nd!

e−λk(t;β), where λk(t;β) := exp
{

k∑
l=1

βlϑl(t)
}
.

Letting β̂ denote the MLE estimates, the estimate of arrival rates is given by

λ̂(t) = exp
{

k∑
l=1

β̂lϑl(t)
}
.

We now turn to estimation when there is heterogeneity in the arrival rates. As we mentioned
in the main text, we can handle the heterogeneity using clustering. The basic premise is to
partition the data into blocks c = {1, . . . , J} and estimate λ̂c(t) separately for each cluster.
This a two step procedure. There are many ways one could do the first step; in this paper we
recommend k-mean or k-median clustering due to its simplicity and ease of use.

In our empirical application, we employ k-median clustering (a well-established method, for
full details see Anderberg, 1973). The aim is to divide the candidates into k clusters. The
clusters are chosen such that the characteristics of each candidate are as close as possible to
the characteristic-medians of their cluster. The clusters are chosen such that the squared sum
of Euclidean distances between the vector of characteristics of each candidate and the vector of
characteristics-medians of their cluster is as small as possible.

In practice, we use Lloyd’s algorithm, as usual for k-median clustering. First, we start with
k randomly selected candidates (k can be chosen freely, k = 4 in our JTPA example), which
are each the ‘founding members’ of each cluster. All other candidates that are then allocated
to the cluster with the smallest Euclidean distance between the vector of characteristics of
the candidate and the founding member. Second, the median of each cluster’s characteristics
is computed and denoted ‘centroid’. Each candidate is then re-allocated to the cluster with
the smallest Euclidean distance between the vector of characteristics of the candidate and the
centroid. The second step is repeated until convergence, i.e until no more re-allocations occur.
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Appendix G. JTPA Application: Additional Figures and Tables

G.1. Clusters. Table 1 describes the clusters resulting from the JTPA example. Cluster 1
appears to contain predominantly candidates with high previous earnings. Cluster 2’s distin-
guishing factor is the high age, and for cluster 3 it is few years of education. Cluster 4 contains
young educated candidates with low previous earnings.

Cluster 1 Cluster 2 Cluster 3 Cluster 4
Age: Mean 31.8 44.9 31.3 26.9
Age: Min. 22 34 22 22
Age: Max. 63 78 57 34
Prev. Earnings: Mean 8999 1439 1413 1231
Prev. Earnings: Min. 3600 0 0 0
Prev. Earnings: Max. 63000 12000 9076 5130
Education: Mean 12.1 12.1 9.0 12.3
Education: Min. 7 8 7 11
Education: Max. 18 18 10 18
Observations 2278 2198 1698 3049

Table 1. Cluster Descriptions

G.2. Results & Interpretation. In order to further interpret the resulting (final) policy func-
tion, we use that function in 100 evaluation episodes and record the treated candidates. As a
measure of selectivity, we record how many candidates were declined before one was treated.
Figure G.1 illustrates for each treated person in the 100 episodes how many candidates were
declined since the last treatment, plotted against the remaining budget. In the both cases, the
algorithm becomes more selective when the budget is scarce. This is in line with economic
considerations due to discounting. The inter-temporal trade-off is between treating a person
now versus treating a person at the end of the budget. If the remaining budget is large, the
reward from treating a person at the end of the budget is discounted more heavily compared
to the case where the remaining budget is small. There are 160,000 points depicted in Figure
G.1 and outliers appear over-prominent. Figure G.2 simplifies this illustration by imposing a
linear/quadratic structure.
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Figure G.2. Effect of Remaining Budget on Average Number of Rejected Indi-
viduals Prior to a Treatment (first and second order)

A: Doubly Robust Reward Estimates B: Standard OLS Reward Estimates

Figure G.1. Remaining Budget and Average Number of Rejected Individuals
Prior to a Treatment across 100 Simulations

Table 2 shows again the correlation between the number of declined candidates with the
remaining budget, but also with cos(2πt) (i.e the effect of seasonality). For both cases, the
correlation with cos(2πt) is low: the depletion of budget appears to be the main driver of
increased selectivity.

Doubly Robust Rewards Standard OLS Rewards
Remaining Budget -0.492 -0.353

cos(2πt) 0.007 -0.003

Table 2. Correlation of the Average Number of Rejected Individuals Prior to a
Treatment with Time and Budget of the Policy Functions
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A: Doubly Robust Reward Estimates B: Standard OLS Reward Estimates

Figure G.3. Seasonal Differences in the Average Number of Rejected Individu-
als Prior to a Treatment

Figure G.3 provides further illustration of the policy function’s behavior throughout the year.
For the standard OLS rewards, an increasing number of rejections over the year is observable.
As seasonality has mechanically been smoothed across seasons using the cosine function, the
sharp difference between December and January in panel B is further evidence against the effect
of seasonality. It does support the notion of increased selectivity with depleted budget as every
episode starts on January 1st with a complete budget - i.e months later in the year are generally
months with less budget. For the doubly robust rewards, this is less apparent - arguably due to
the fact that episodes last for around 25 years and hence the different months are less associated
with higher/lower budget.

The key difference between the optimal policy for doubly robust and standard OLS rewards
appears to be the duration of a typical episode. We offer the following interpretation. While
the two rewards concern the same dataset, they have entirely different distributions. A key
difference is that there are more and more extreme outliers in case of the doubly robust rewards.
In order to be relatively sure to avoid negative outliers, a higher selectivity is helpful. While
this explains the longer episode-duration for the doubly robust rewards, it does not explain the
large difference in the optimal policy with small versus large budget. We suspect that the latter
is due to a high option value of budget for treating positive outliers.
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Appendix H. An example with behavioral response to policy

In this section we present a simple example that illustrates how our techniques may be ex-
tended to a situation in which the policy affects the behavior of the individuals. Assume for
simplicity that the setting is one of a finite budget, and that it is stationary in time (as in
Section 2). Suppose further that there are two kinds of individuals, denoted by l = 1, 2. We
shall separate l from the other covariates x. At any given point in time, the distribution of x
in terms of the draw of arrivals is given by F (x) := qF1(x) + (1− q)F2(x), where q denotes the
proportion of individuals from population 1, and F1, F2 denote the population distribution of
the covariates in populations 1, 2. Suppose now that

q = Ψ(ω)

is actually a function of ω, where ω denotes the fraction of all the previously treated people who
are from population 1. For instance, Ψ(·) could be strictly increasing, which means that the
greater the fraction of population 1 in the treated population, the more people from population
1 are also likely to apply. Such a phenomenon could arise due to peer effects, for instance. Note
that ω will now be a state variable even though it does not affect πθ. Thus the state variables
are s := (x, z, ω).

We will suppose that the policy maker is prohibited from discriminating on the basis of l, i.e
πθ is independent of l. Let

r̄θ,l(z) = Ex∼Fl [r(x, 1)πθ(1|x, z)], and

Ḡθ,l(z) = Ex∼Fl [G1(x, z)πθ(1|x, z) +G0(x, z)πθ(0|x, z)],

denote the population specific quantities. The net flow rates are thus given by

r̄θ(z, ω) = Ψ(ω)r̄θ,1(z) + (1−Ψ(ω))r̄θ,2(z), and

Ḡθ(z, ω) = Ψ(ω)Ḡθ,1(z) + (1−Ψ(ω))Ḡθ,2(z).

Finally, we will also need a law of motion for ω. This is given by ω̇ = Υa(s, l) := I(l = 1∩a = 1).
The expectation of Υa(s, l) conditional on z, ω will be denoted by

Ῡθ(z, ω) = Ψ(ω)Ex∼F1 [πθ(1|x, z)].

With the above definitions in mind, it is easy to see that we have the following PDE for the
evolution of hθ(z, ω): (we take λ = 1 for simplicity)

βhθ(z, ω)− Ḡθ(z, ω)∂zhθ(z, ω)− Ῡθ(z, ω)∂ωhθ(z, ω)− r̄θ(z, ω) = 0 on (0, z0]× [0, 1],(H.1)

hθ(z, ω) = 0 on {0} × [0, 1].

This is nothing more than a PDE in two variables with a Dirichlet boundary condition.
For estimation, we can simply replace F1, F2, r(x, 1),Ψ with their estimated counterparts

F1n, F2n, r̂(x, 1), Ψ̂ and obtain a empirical version of PDE (H.1). Let θ̂ denote the resulting
estimate after solving the empirical welfare maximization problem. Then as long as Ψ(·) is es-
timable at some rate n−c, and Ῡθ is uniformly Lipschitz continuous, we can apply the techniques
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of this paper to show that
hθ∗(z, ω)− hθ̂(z, ω) .

√
v

n
+ n−c.
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Algorithm 5: Parallel Actor-Critic with non-compliance: Dirichlet boundary condition
Initialise policy parameter weights θ ← 0
Initialise value function weights ν ← 0
Batch size B
For p = 1, 2, ... processes, launched in parallel, each using and updating the same global
parameters θ and ν:
Repeat forever:

Reset budget: z ← z0
Reset time: t← t0
I ← 1
While (z, t) ∈ U :

θp ← θ (Create local copy of θ for process p)
νp ← ν (Create local copy of ν for process p)
batch_policy_upates← 0
batch_value_upates← 0
For b = 1, 2, ..., B:

x ∼ Fn (Draw new covariate at random from data)
hetero ∼ multinomial(q̂c(x), q̂a(x), q̂n(x)) (Draw compliance heterogeneity)
a ∼ π(a|s; θp) (Draw action, note: s = (x, z, t))
If hetero = 1 (Sample draw is a complier)

R← L̂ATE(x) · I(a = 1)/bn (I.e. r̂n(s, a))
z′ ← z +Ga(x, z, t)/bn

Elseif hetero = 2 (Sample draw is always-taker)
R← 0
z′ ← z +G1(x, z, t)/bn

Elseif hetero = 3 (Sample draw is never-taker)
R← 0
z′ ← z +G0(x, z, t)/bn

ω ∼ Exponential(λ(t))
t′ ← t+ ω/bn

δ ← R+ I{(z′, t′) ∈ U}e−β(t′−t)νᵀpφz′,t′ − νᵀpφz,t (TD error)
batch_policy_upates← batch_policy_upates + αθIδ∇θ ln π(a|s; θp)
batch_value_upates← batch_value_upates + ανIδφz,t

z ← z′

t← t′

I ← e−β(t′−t)I

If (z, t) /∈ U , break For
Globally update: ν ← ν + batch_value_upates/B
Globally update: θ ← θ + batch_policy_upates/B
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Algorithm 6: Parallel Actor-Critic with clusters: Dirichlet boundary condition
Initialise policy parameter weights θ ← 0
Initialise value function weights ν ← 0
Batch size B
Clusters c = 1, 2, . . . , C
Cluster specific arrival rates λc(t)
For p = 1, 2, . . . processes, launched in parallel, each using and updating the same global
parameters θ and ν:
Repeat forever:

Reset budget: z ← z0
Reset time: t← t0
I ← 1
While (z, t) ∈ U :

θp ← θ (Create local copy of θ for process p)
νp ← ν (Create local copy of ν for process p)
batch_policy_upates← 0
batch_value_upates← 0
For b = 1, 2, ..., B:

λ(t)←
∑
c λc(t) (Calculate arrival rate for next individual)

c ∼ multinomial(p1, . . . , pC) (where pc := λ̂c(t)/λ̂(t))
x ∼ Fn,c (Draw new covariate at random from data cluster c)
a ∼ π(a|s; θp) (Draw action, note: s = (x, z, t))
ω ∼ Exponential(λ(t))
t′ ← t+ ω/bn

z′ ← z +Ga(x, z, t)/bn
R← r̂(s, a)/bn (with R = 0 if a = 0)

δ ← R+ I{(z′, t′) ∈ U}e−β(t′−t)νᵀpφz′,t′ − νᵀpφz,t (TD error)
batch_policy_upates← batch_policy_upates + αθIδ∇θ ln π(a|s; θp)
batch_value_upates← batch_value_upates + ανIδφz,t

z ← z′

t← t′

I ← e−β(t′−t)I

If (z, t) /∈ U , break For
Globally update: ν ← ν + batch_value_upates/B
Globally update: θ ← θ + batch_policy_upates/B
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