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Ensemble Machine Learning and Stock Return Predictability

Abstract

Many, even sophisticated, models cannot beat a simple mean combination of univariate

stock market return forecasts. We introduce an ensemble machine learning method,

which averages forecasts from sophisticated models (like BMA, WALS and LASSO)

based on random subsamples and which learns from its mistakes by adaptively

changing sampling distributions. Empirically, our novel method improves the simple

mean forecast with statistically significant monthly out-of-sample R2
OS of around 2-

3% and annual utility gains around 3%. Our approach benefits from predicting well

in volatile periods and especially from extreme market drops. The forecasting gains

of our new method stem from improved diversity among individual forecasts. We

obtain similar gains in forecasting accuracy when we use our method to predict macro

economic variables.

JEL classifications: G17, G12, G02, C58

Keywords: Equity Premium Prediction, Machine Learning, Forecast Combination,

Parameter Uncertainty, Diversification
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1 Introduction

Out-of-sample predictability of equity premia remains a challenge both to academics in asset

pricing and investment practitioners (see, Rapach and Zhou, 2013, for a recent survey). There

are now many sophisticated forecast models that can be applied in stock return forecasting, such

as the popular Bayesian model averaging (BMA), the famous LASSO introduced by Tibshirani

(1996) and the weighted-average least squares (WALS) technique newly proposed by Magnus

et al. (2010). However, to our knowledge, there is no empirical evidence that these sophisticated

models can outperform a simple mean combination of univariate variables proposed by Rapach

et al. (2010) . This is surprising, since one might expect model uncertainty1 to be high in

this environment and these sophisticated models could therefore perform well. One possible

explanation is that, as is the case with any highly parameterized model, they may suffer from

overfitting and parameter uncertainty (estimation error) when applying to stock return forecasting

where the number of variables N is usually large relative to the sample size T . This suggests that

the stock return forecasting problem seems a natural candidate for the application of bootstrap

aggregation (bagging) methods that have already achieved great success in many real-world tasks

(see, Breiman, 1996; Zhou, 2012).

Bagging is a machine learning ensemble meta-method designed to reduce the out of-sample

mean squared forecast error (MSFE) of forecast models suffering from overfitting by reducing

variance. It is an equal-weighted average of forecast models estimated using subsamples randomly

drawn with replacement from the current available observations of the original forecasting

problem. Although a number of recent studies suggest that bagging is a promising tool for

improving forecast accuracy of economic variables such as inflation and employment growth (e.g.,

Inoue et al., 2008; Rapach and Strauss, 2010), to date few attempts have been made to apply

bagging in stock return forecasting. The theoretic explanation is that, just as Inoue et al. (2008)

pointed out, bagging cannot work well when the degree of predictability is very low, as is the case

in forecasting stock returns.

We empirically confirm that standard bagging has little use in the context of stock return

forecasting but introduce a variant of bagging - which we call adaptive bagging (AdaBagging)

- and demonstrate that it can substantially improve forecast models we investigate. Like bagging,

AdaBagging also combines a set of models estimated using random subsamples drawn from the

current samples to a more accurate one. However, AdaBagging is adaptive in the sense that it

1Model uncertainty refers to the situation in which a forecaster knows neither the best model specification nor its
corresponding parameter values.
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adaptively changes the distribution of the samples based on the performance of previous models

by using the sequential sampling mechanism borrowed from AdaBoost (Freund and Schapire,

1997).(AdaBoost is another representative method of ensemble learning, but is mainly applied in

classification problems instead of regressions.)2 The intuition behind our AdaBagging method

is straightforward. AdaBagging learns from its initial mistakes by systematically assigning more

weight in the re-estimation procedure on the error reduction of its mistakes. We show how this

adaption works well in stock return forecasting using the standard data sets from previous studies

and helps improve the forecast of the sophisticated models beyond the simple mean forecast. We

also show its robustness by forecasting numerous factor portfolios. And to illustrate the general

applicability of AdaBagging we show how it improves forecast of a number of economic variables.

Why does AdaBagging work so well? Based on the bias-variance-covariance decomposition

(Ueda and Nakano, 1996), which is an extension of the bias-variance decomposition and can be

dated back to Markowitz (1952)’s Modern Portfolio Theory (Brown et al., 2005), we explore

how AdaBagging works and show that it achieves a better bias-variance trade-off by generating

diversity successfully. We find that it is surprisingly resistant to overfitting in terms of the MSFE.

Moreover, our results indicate that out-of-sample gains for the forecasts of sophisticated models

with AdaBagging are mainly concentrated in extreme periods of stock returns, especially during

extreme market downturns.

Our first contribution is to provide the novel ensemble learning method AdaBagging to stock

return forecasting, and to study the behavior of sophisticated models built on our method. The

combination of AdaBagging and these sophisticated models is designed to deal with parameter

estimation error and model uncertainty simultaneously. We present empirical evidence regarding

the usefulness of AdaBagging for out-of-sample forecasting of stock returns. Since parameter

estimation error is a common challenge of financial econometrics, our ideas not only work for

economic and financial forecasting, or forecasting in general, but can be applied to many other

finance areas, such as portfolio optimization. The paper probably most closely related to ours is

Rossi (2018). This paper also employs ensemble learning methods such as boosting and bagging,

to forecast stock returns. However, Rossi (2018) experiments are based on regression trees, which

are nonlinear models. We focus on linear models.

Specifically, to test the effectiveness of AdaBagging on improving stock return forecasts, we

consider three representative sophisticated models. The first one is LASSO, which performs both

variable selection and shrinkage in order to enhance the prediction accuracy and interpretability

2Our experiments also confirm that, the standard AdaBoost method cannot work well in the context of stock return
forecasting. For brevity, these results are not reported but they are available upon request.
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of the model it produces.3 The other two are forecast combination models: BMA and WALS.4

WALS has turned out to be an effective approach for dealing with model uncertainty. It has two

advantages over BMA: It requires no prior and the computational time is linear in the number of

dependent variables rather than exponential. This last point is particularly relevant in forecasting

stock markets, where many variables can be in play.

Based on AdaBagging, we comprehensively compare the performance of BMA, LASSO and

WALS with the simple mean combination forecast model and the standard multivariate predictive

regression model called Kitchen sink. Dating back to the work of Bates and Granger (1969), it is

generally believed that a simple equal-weighted combination forecast, is hard to beat, which is also

known as the forecast combination puzzle (e.g., Smith and Wallis, 2009; Claeskens et al., 2016).

We compare these techniques in terms of forecast accuracy and economic gains using returns on

the S&P 500 index. To make our results comparable with the literature, following Rapach et al.

(2010), we use updated monthly data from Welch and Goyal (2008) over the period from 1926:12

to 2016:12. This data set also includes the usual suspects, such as the dividend–price ratio, the

dividend yield, the Treasury bill rate, inflation, and the term spread.

When estimated traditionally, without taking parameter uncertainty into account, we can

basically confirm the results in the current literature that the simple mean combination forecast

is superior. None of Kitchen sink, LASSO, BMA and WALS can outperform the historical

average, indicating they seriously suffer from overfitting and parameter uncertainty. And there is

not sufficient evidence to prefer WALS over LASSO and BMA in terms of the MSFE. The results

change we use the scheme that incorporate the AdaBagging method with estimation windows

given by the user ex-ante or determined by the data. All of the sophisticated models we investigate

including Kitchen sink can significantly beat the simple mean combination forecast in terms of

both the MSFE and utility gains. For example, the AdaBagging–WALS (AdaBagging–Kitchen

sink) with 360-month rolling windows can generate statistically significant monthly out-of-sample

R2
OS of 2.87% (2.80%) and annual utility gain of 3.47% (3.58%), when the learning round number

of AdaBagging are determined by data. Our results show that, contrary to the finding of Rapach

et al. (2010), the predictability of forecast models with AdaBagging remains strong in both NBER-

dated business-cycle recessions (bad times) and expansions (good times). Furthermore, our results

show that AdaBagging is surprisingly resistant to overfitting in terms of the MSFE, even when the

3Efron et al. (2004) show there is a very close mathematical relationship between LASSO and boosting. But this
issue is far beyond the scope of this paper.

4Forecast combination is a popular method for dealing with model uncertainty. The idea underlying forecast
combination is that, instead of selecting the true or best possible model, we construct a combination forecast based on
a weighted average over all candidate models.
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number of learning rounds becomes very large (such as 500 or 1000) in our experiments. However,

we also find that, in terms of utility gains, AdaBagging eventually overfits with the increase of the

number of learning rounds. Meanwhile, we confirm Inoue et al. (2008)’s asymptotic analysis,

which is that bagging cannot work well in stock return forecasting.

The second contribution is that, on the basis of bias-variance-covariance decomposition,

we explore the work mechanism of AdaBagging and provide statistical explanations on how

AdaBagging works in the context of forecasting stock returns. Our results show that the key to

the success of AdaBagging in improving stock return forecasts is its excellent ability of generating

diversity. Using sequential sampling with repeatedly reweighted data distribution like AdaBoost,

instead of bootstrap sampling like bagging, AdaBagging achieves diversity successfully. Our work

sheds light on the role of diversification in improving forecast accuracy. The extensive research

results of diversity generating techniques in ensemble learning methods may help provide further

insights into research on stock return forecasting.

Last but not least, we show our methodology is robust and can be applied in many cases. For

instance, we provide evidence that, with the same set of economic variables, AdaBagging-WALS

can significantly forecast many well-known macroeconomic variables, such as the Chicago Fed

National Activity Index, Smoothed U.S. Recession Probabilities, Industrial Production Growth,

the Output Gap and the Civilian Unemployment Rate.

2 The Equity Premium Prediction Problem and Ensemble Learning

2.1 Traditional Predictive Regression Models

The problem of forecasting stock returns is an instance of what is known as supervised learning

in machine learning. The standard predictive regression model: Kitchen sink can be expressed as

rt+1 = α +Xtβ + et+1, t = 0,1, ...,T −1 (1)

where rt+1 is the stock return in excess of the risk-free rate from the end of period t to the end of

period t + 1, α is a constant term, Xt is a 1×N vector of predictors available at the end of t, the

N× 1 vector β is the corresponding parameter vector, et+1 is a zero-mean disturbance term, N is

the number of predictors and T is the sample size.

The standard model is simple; however, it depends on two questionable crucial assumptions:

(i) The predictor variables are given and fixed, meaning the underlying “best model” is known and
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(ii) the model parameters do not change over time. There is abundant empirical evidence showing

that both assumptions are invalid (e.g., Goyal and Welch, 2003; Welch and Goyal, 2008).

There are several ways to extend the standard model that allow us to drop either of the two

assumptions. We consider three representative sophisticated models, as follows

(1) Least Absolute Shrinkage and Selection Operator (LASSO): a popular regularization

method for performing shrinkage in regressions, introduced by Tibshirani (1996). It can

improve the prediction accuracy and interpretability of regression models by altering the

model fitting process to select only a subset of the provided variables for use in the final

model rather than using all of them.

(2) Bayesian Model Averaging (BMA): a popular forecast combination method for dealing

with model uncertainty. The idea underlying BMA is that, instead of selecting the true

or best possible model, we construct a combination forecast based on a weighted average

over all candidate models, where the weights of candidate models are determined by their

posterior probabilities.

(3) Weighted-Average Least Squares (WALS): a new forecast combination method, intro-

duced by Magnus et al. (2010), which is a Bayesian combination of frequentist estimators

and possesses both computational and theoretical advantages over frequentist and Bayesian

methods. The computational advantage is that its computing time is linear in the number

of predictor variables rather than exponential, as in Bayesian model averaging techniques.

The theoretical advantage is that, in contrast to standard BMA, which is based on normal

priors leading to unbounded risk (prediction variance), WALS is based on reflected Weibull,

Subbotin, or Laplace priors, which imply a coherent treatment of ignorance and can generate

bounded risk.

For comparison, we also consider the simple mean combination model introduced by Rapach

et al. (2010). The detail description of these models are given in Appendix: Forecast Models.

2.2 AdaBagging Forecasts

Ensemble methods in machine learning, such as bagging, boosting and their variants, are

meta methods to improve on weak learners. The idea underlying bagging and boosting is that

a combination forecast is constructed by averaging forecasts estimated using different subsamples
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randomly drawn from the current available observations. The main difference between those

methods is how the subsamples are determined.

Bagging is appealing for its simplicity and elegance. The standard bagging procedure, includes

two key steps: bootstrapping and aggregation. For the first step (bootstrapping), bootstrap sampling

is applied to obtain subsamples from the available observations. In the second step (aggregation),

the regression models are first estimated based on subsamples generated in the first step and then

these submodels are averaged to obtain an aggregation model. The forecast of this aggregation

model is the final prediction given by bagging.

Algorithm 1 AdaBagging Forecasts

Input:
Data set D = (D0,D1, ...,DT−1) = {rt+1,Xt}T−1

t=0 of size T
The forecast model rt+1 = F(Xt), which can be LASSO, WALS or any other forecast model
Number of learning rounds B

Process:
1: Initialize the data distribution P(1)(Dt) = 1/T, t = 0, ...,T −1
2: for i = 1,...,B
3: Resample a data set D(i) of size T with replacement under distribution P(i)(D)
4: Estimate the forecast model F(i) using data set D(i)

5: Obtain the forecast value r̂(i)t+1 = F(i)(Xt), t = 0, ...,T −1

6: Compute the forecast error ei = ∑
T−1
t=0 P(i)(Dt)(rt+1− r̂(i)t+1)

2

7: Compute the model weight λi =
1
2 ln(1−ei

ei
)

8: Update the distribution P(i+1)(Dt) = P(i)(Dt)exp(−λirt+1r̂(i)t+1)/Zi, t = 0, ...,T − 1, where
Zi is a normalization factor that enables P(i+1)(D) to be a distribution

9: end

Output:

r̂AdaBaging
T+1 (D) =

1
B

B

∑
i=1

r̂(i)T+1 (2)

We provide a variant of bagging, called adaptive bagging, based on the sequential sampling

mechanism borrowed from AdaBoost. AdaBoost is the representative method in boosting method

family, which usually is used for cross-sectional classification. Similar to bagging, AdaBoost also

combines a set of weak learners to create a strong learner that obtains better performance than a

single one. However, there are two key differences between AdaBoost and bagging. One is that
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AdaBoost adaptively changes the distribution of the samples based on the performance of previous

models but bagging does not. The other is that bagging uses equal weights to combine models but

AdaBoost does not.

The implementation of AdaBagging is described in Algorithm 1. It works by estimating a set

of base forecast models sequentially based on the repeatedly reweighted data. The predictions

from all these base forecast models are then combined through a weighted average to produce the

final prediction. Initially, the weights of the data samples are all set to 1/N (step 1 in Algorithm 1),

so that the first iteration simply estimates a base forecast using the original data (steps 3 and 4 in

Algorithm 1). For each successive iteration, the data distribution weights are individually modified

(step 8 in Algorithm 1) based on the performance of the previous forecast model (steps 5 to 7

in Algorithm 1) and the learning algorithm is reapplied to the reweighted data (steps 3 and 4 in

Algorithm 1). At a given iteration, those samples that were incorrectly predicted by the base

forecast model induced in the previous iteration have their weights increased, whereas the weights

are decreased for those that were predicted correctly. As the iterations proceed, samples that are

difficult to predict obtain ever-increasing influence. The later forecast models are thereby forced

to focus more on the mistakes of the earlier forecast models. In recursive forecasting practice, the

input dataset D of AdaBagging can be rolling windows specified by the user or optimal windows

determined by the data.5

2.3 Forecast Evaluation Measures

Following Rapach et al. (2010), we use the out-of-sample R2 statistic, R2
OS, suggested by

Campbell and Thompson (2008) to evaluate the forecast accuracy of different (combination)

models. The out-of-sample R2
OS is a convenient statistic for comparing MSFEs and measures

the proportional reduction in the MSFE for model M relative to the benchmark model.

The MSFE is the most popular metric for evaluating forecast accuracy and is computed as

MSFEM =
1
p

T+p

∑
t=T+1

(rt− r̂M
t )2 (3)

where [T +1,T + p] is the out-of-sample evaluation period and r̂M
t comes from any forecast model

we investigate, such as the Kitchen sink, WALS, and BMA.

5Note that we must ensure that the forecast error ei < 0.5 (accordingly λi > 0), which depends on the data set
{rt+1}T−1

t=T0
and the forecast model r = F(X). Otherwise, AdaBagging may not work properly. The data set we will

test in Section 3 satisfies this condition; otherwise we can normalize the data to satisfy this condition.
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Then, the R2
OS statistic is defined as

R2
OS = 1− MSFEM

MSFEbmk = 1−
1
p ∑

T+p
t=T+1(rt− r̂M

t )2

1
p ∑

T+p
t=T+1(rt− r̄t)2

(4)

where MSFEbmk is the MSFE of the benchmark model. Following Rapach et al. (2010), we set the

benchmark model to the historical average model, which is computed as

r̄T+1 =
1
T

T

∑
t=1

rt (5)

When R2
OS > 0 , the forecast model M is more accurate than the benchmark model in terms of

the MSFE. The associated p-value is based on the work of Clark and West (2007) to test the null

hypothesis that R2
OS ≤ 0.

Following Campbell and Thompson (2008), Welch and Goyal (2008) and Rapach et al. (2010),

among others, we also analyze stock return forecasts with utility gains, which is a profit-based

metric and provides more direct measures of the value of forecasts to a mean–variance investor

who is more interested in the economic value of a forecast model than its precision.

Assume that a mean–variance investor with relative risk aversion parameter γ will decide at

the end of period T to allocate the following share of a portfolio to equities in period T +1:

wM
T =

1
γ
(

r̂M
T+1

σ̂2
T+1

) (6)

where r̂M
T+1 is the forecast of model M, and following Campbell and Thompson (2008) σ̂2

T+1 is the

five-year rolling-window estimate of the variance of stock returns6. In addition, following Rapach

et al. (2010) and Campbell and Thompson (2008), we constrain the portfolio weight on stocks to

lie between 0% and 150% (inclusive), and set the relative risk aversion parameter γ to three.

The investor then allocates 1−wM
T of the portfolio to risk-free bills, and the T + 1 realized

portfolio return is,

RM
p = wM

T r̂M
T+1 + r f

T+1 (7)

where r f
T+1 is the risk-free rate. Then, the investor realizes a certainty equivalent return (CER) of

6The results are qualitatively similar for a ten-year moving window suggested by Rapach et al. (2016).
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the portfolio formed using the model M,

CERM = ûM−
1
2

γ(σ̂2
M) (8)

where ûM and σ̂2
M are the sample mean and variance, respectively, for the investor’s portfolio over

the evaluation period. Finally, in the case of monthly data, we obtain the utility (CER) gain in

annualized percentage return as

4(ann%) = 1200∗ (CERM−CERbmk) (9)

where CERbmk is the CER of the portfolio formed using the benchmark model.

As pointed out by Rapach et al. (2010), the utility gain can be interpreted as the portfolio

management fee that an investor would be willing to pay to have access to the additional

information available in a forecast model relative to the information in the benchmark model alone.

In addition, we also calculate the monthly Sharpe ratio of the portfolio, which is the mean

portfolio return in excess of the risk-free rate divided by the standard deviation of the excess

portfolio return. To examine the adverse effect of transaction costs, we also consider the case

of 50bps transaction costs, which is generally considered as a relatively high number.

3 Empirical Results

3.1 Data

Following Rapach et al. (2010) and to make our results comparable with previous studies, we

use updated monthly data from Welch and Goyal (2008) over the period 1926:12 to 2016:12.7

Following Elliott et al. (2013) and to avoid multicollinearity when estimating some of the forecast

combination models such as WALS, we consider only 12 of the 14 popular economic variables,8

which can generate a total of 212 = 4096 candidate models. These 12 variables are as follows.

(1) Log dividend–price ratio [log(DP)]: log of a 12-month moving sum of dividends paid on the

S&P 500 index minus the log of stock prices (S&P 500 index).

7The data are available at http://www.hec.unil.ch/agoyal/. Variable definitions and data sources are described in
more detail by Welch and Goyal (2008).

8Following Elliott et al. (2013), we exclude the log dividend–earnings ratio and the long-term yield, because the
log dividend earnings ratio is equal to the difference between the log dividend price ratio and the log earnings–price
ratio, while the long- term yield is equal to the sum of the term spread and the Treasury bill rate.
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(2) Log dividend yield [log(DY)]: log of a 12-month moving sum of dividends minus the log of

lagged stock prices.

(3) Log earnings–price ratio [log(EP)]: log of a 12-month moving sum of earnings on the S&P

500 index minus the log of stock prices.

(4) Stock variance (SVAR): monthly sum of squared daily returns on the S&P 500 index.

(5) Book-to-market ratio (BM): book-to-market value ratio for the Dow Jones Industrial

Average.

(6) Net equity expansion (NTIS): ratio of a 12-month moving sum of net equity issues by New

York Stock Exchange-listed stocks to the total end-of-year market capitalization of the New

York Stock Exchange stocks.

(7) Treasury bill rate (TBL): interest rate on a three-month Treasury bill (secondary market).

(8) Long-term return (LTR): return on long-term government bonds.

(9) Term spread (TMS): long-term yield minus the Treasury bill rate.

(10) Default yield spread (DFY): difference between BAA- and AAA-rated corporate bond

yields.

(11) Default return spread (DFR): long-term corporate bond return minus the long-term govern-

ment bond return.

(12) Inflation (INFL): calculated from the Consumer Price Index (all urban consumers).

The stock returns are measured as the difference between the log return on the S&P 500

(including dividends) and the log return on the risk-free Treasury bill. We follow Rapach and

Zhou (2013) and divide the total sample into an in-sample period (1926:12–1956:12) and an out-

of-sample evaluation period (1957:01–2016:12), including 720 observations. As the authors point

out, the 1957:01–2016:12 forecast evaluation period covers most of the postwar era, including the

oil price shocks of the 1970s; the deep recession associated with the Volcker disinflation in the

early 1980s; the stock price shock in 1987; the long expansions of the 1960s, 1980s, and 1990s;

and the recent global financial crisis in 2008 and the concomitant Great Recession. Following

Rapach and Zhou (2013), we present not only the results of the full 1957:01–2016:12 forecast

evaluation period, but also the results computed separately during National Bureau of Economic

Research-dated business cycle expansions and recessions.
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Table A.1 in Internet Appendix reports R2
OS statistics for each of the individual predictive

regression models relative to the historical average benchmark model. It reinforces the findings of

Welch and Goyal (2008) that the individual predictive regression models can not generate reliable

out-of-sample forecasts of the equity premium.

3.2 Out-of-sample Forecasting Results under Conventional Estimation Schemes

In this section, we investigate the performance of Kitchen sink, BMA, LASSO and WALS

compared to Rapach et al. (2010)’s simple mean combination under traditional estimation schemes.

Table 1 provides the out-of-sample forecasting results of these models estimated using 360-

month rolling windows. It shows that, none of the Kitchen sink, BMA, LASSO and WALS model

can outperform the historical average model in terms of the MSFE, although they can outperform

the Kitchen sink model. Hence, our results confirm the common finding in the literature on the

forecast combination, which is, that the simple mean combination forecast is superior.9 There

is not sufficient evidence to prefer WALS over BMA and LASSO in terms of the MSFE. It is

worthy pointing out, however, that WALS overwhelmingly beat BMA and LASSO in terms of the

computational times. Especially, compared to BMA, WALS can reduce the computation time by

90% in our experiments using 12 dependent variables.10 Furthermore, as pointed out by Magnus

et al. (2010), the computational time of WALS is linear in the number of dependent variables rather

than exponential, as in BMA. In stock return forecasting practice where many variables can be in

play, this point is particularly relevant.

[Place Table 1 about here]

3.3 Out-of-sample Forecasting Results with AdaBagging

One possible explanation for the relatively poor results under the conventional estimation

schemes is that these sophisticated models suffer from overfitting and parameter uncertainty. Now,

we further investigate the performance of forecast models based on AdaBagging.

9With recursively expanding windows, we also draw a similar conclusion. For brevity, we do not report these
results here but they are available upon request.

10We use a window 10 based PC with Core(TM) i7-6700 3.40Ghz processors and 32 G of DRAM.
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3.3.1 The R2
OS Values with Different Learning Rounds

Table 2 reports the out-of-sample performance of forecast models estimated using AdaBagging

with 360-month rolling windows, given the number of learning rounds B = 100,200,300. It shows

that, whatever the number of learning rounds is, all of these sophisticated models including the

Kitchen sink model improve their R2
OS dramatically while the simple mean combination only

improves slightly. Impressively, for example, the R2
OS value of WALS (Kitchen sink) is 2.26%

(2.33%) when B = 300, which is significantly larger than that of the simple mean combination.

It further shows that, surprisingly, these sophisticated models can obtain positive R2
OS values in

the period of NBER-dated business-cycle expansions. Although the simple mean combination

is stable, its space for improving seems seriously limited. It does not benefit substantially from

AdaBagging, suggesting it suffers from underfitting.

Table 2 also indicates that, compared to the case of B = 100, the R2
OS values of all sophisticated

models (BMA, LASSO and WALS) do increase substantially and then decrease slowly with the

increase of B. However, the simple mean combination forecast suffers from the increase of the

number of learning rounds of AdaBagging.

[Place Table 2 about here]

Figure 1 plots the performance (in terms of the R2
OS values) of Kitchen sink, BMA, LASSO,

WALS and the simple mean combination forecast model based on AdaBagging with 360-month

rolling windows, against the number of learning rounds. It confirms that, in terms of the R2
OS values,

WALS achieves improvement substantially and rapidly with the increase of the number of learning

rounds when B ≤ 200, after that R2
OS converges to a stable value of about 2.1% ∼ 2.3%. Our

untabulated results indicate that, after B > 600, WALS begins overfit very slowly, but even given

a large number of learning rounds such as B = 1000, the R2
OS of WALS can still reach the value of

1.46, higher than that of B = 100. The figure also shows that while LASSO improves more rapidly

than WALS, it also tends to overfit more rapidly than WALS. Meanwhile, the standard Kitchen

sink model improves most slowly, but can achieve highest R2
OS values than all other models we

investigate when the number of learning rounds becomes large enough. Figure 1 also shows, as

noted before, that the simple mean combination forecast suffers from the increase of B, confirming

that it shrinks too much and suffers from underfitting. Last but not least, Figure 1 suggests a

preference for WALS (and Kitchen sink) over BMA and LASSO because of its resistance to

overfitting.

[Place Figure 1 about here]
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3.3.2 What is the Optimal Number of Learning Rounds? Results with Early Stopping

We next investigate how to determine the optimal number of learning rounds via early stopping,

which is a technique used to avoid overfitting and quicken the learning speed when training a

model with an iterative method. Following Prechelt (2012), to dynamically determine the optimal

learning rounds in recursive forecasting practice, we use a holdout-based early stopping strategy

as follows

(1) Split the current available data sample into a training set of size, for example, 360 months

and a validation set of size 120 months if possible, otherwise set the optimal learning rounds

as 100.

(2) Train on the training set and evaluate the average error on the validation set once in a while

after every fifty learning rounds.

(3) Stop training as soon as the error on the validation set is higher than it was the last time it

was checked.

(4) Use the number of learning rounds of the previous step as the optimal number of learning

rounds.

Table 3 reports the out-of-sample performance of Kitchen sink, BMA, LASSO, WALS and

the simple mean combination forecast model estimated using AdaBagging with early stopping.

It shows that, in terms of R2
OS, all the models including the simple mean combination achieve

some improvement compared to the case of the number of learning rounds B = 100, conforming

the effectiveness of early stopping on avoiding overfitting. Specifically, the R2
OS values of WALS

and Kitchen sink are 2.87% and 2.80% respectively, which are surprisingly high. Furthermore,

both WALS and Kitchen sink can always achieve a quite high positive R2
OS value no matter what

macroeconomic conditions are, indicating the predictability of stock returns in both good times

and bad times.

[Place Table 3 about here]

Overall, our results indicate that AdaBagging achieves a good results and seems resistant to

overfitting in terms of the R2
OS values. It seems that AdaBagging benefits from the sequential

sampling mechanism borrowed from AdaBoost that is famous for its resistance to overfitting

(Zhou, 2012).
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For comparison, Table 4 reports the results of bagging with 360-month rolling windows,

given the number of learning rounds B = 100,200,300. It shows that, compared to the rolling

windows scheme, bagging alone cannot substantially improve, and may even slightly deteriorate,

the performance of forecast models we investigate. Our results of bagging confirm the asymptotic

analysis of Inoue et al. (2008) that bagging cannot improve on forecasts when the degree of

predictability is low, as tends to be the case in stock return forecasting.

[Place Table 4 about here]

3.4 Asset Allocation Results with AdaBagging

We further examine the economic value of the stock return predictability of different forecast

models from an asset allocation perspective. Following Campbell and Thompson (2008) among

others, we compute the certainty equivalent return (CER) gain and Sharpe ratio for a mean-variance

investor who optimally allocates across equities and the risk-free asset using the out-of-sample

predictive regression forecasts.

Table 5 reports the asset allocation results of AdaBagging with 360 months rolling windows,

for different numbers of learning rounds B = 100,200,300. It indicates that the CER values

of all forecast models we investigate decrease monotonically with an increase in the number of

learning rounds B. However, it also shows that, in terms of both the CER gains and Sharpe ratio,

Kitchen sink, BMA, LASSO and WALS substantially outperform the simple mean combination.

For example, given the number of learning rounds B = 100, the CER gains of WALS equals 3.73%

which is about 3 or 6 times higher than that of the simple mean combination when assuming

no transaction costs. Even in the case of high transaction costs of 50bps, WALS still achieves a

positive CER gain of 2.15%, while the CER gain of the simple mean combination forecast becomes

negative.

[Place Table 5 about here]

Figure 2 confirms that the CER values of all forecast models we investigate decrease

monotonically with an increase in the number of learning rounds. When B is larger than 100,

the CER values of Kitchen sink, BMA, LASSO and WALS tend to decrease rapidly. Still, the

CER gain of WALS when B = 500 reaches 2.67%, four times larger than the CER gain of the

simple mean combination model. Figure 2 also provides evidence which indicates that WALS

(and Kitchen sink) is preferred over BMA and LASSO.
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[Place Figure 2 about here]

Table 6 reports the asset allocation results of AdaBagging with optimal learning rounds

determined by our holdout-based early stopping rule. Table 6 shows that all forecast models we

investigate, even in the case of 50bps transaction costs, achieve quite high positive CER values,

regardless whether the risk aversion coefficient is 3 or 5. This confirms the ability of early stopping

to avoid overfitting.

[Place Table 6 about here]

To summarize, our results show that, based on AdaBagging learning method, sophisticated

models (such as Kitchen sink, BMA, LASSO and WALS) strongly beat the historical average

benchmark and the simple mean combination in terms of both the MSFE and CER gains. Their

predictability remains strong in both good times and bad times. One possible explanation for

their excellent performance is that the AdaBagging machine learning method successfully handles

the problems of parameter uncertainty and overfitting which seriously impair these sophisticated

models return predictability.

3.5 Robust analysis of AdaBagging

To verify the robustness of AdaBagging, we further investigate the performance of AdaBagging

with estimation windows determined by data, instead of specified by the user ex-ante.11 We use

the cross-validation method, developed by Pesaran and Timmermann (2007), to select optimal

estimation windows.

Assuming forecast model is subject to one or more breaks with unknown break dates, the

optimal estimation window size W ∗ is determined as follows:

W ∗ = arg min
W=W ,...,(T−Wcv)

∑
T
τ=T−Wcv+1(yτ − r̂τ(W ))2

Wcv

where W is the minimum estimation window size, Wcv is the cross-validation window size, r̂τ(W )

is the forecast value of a given model, estimated using the window of size W , at time τ (Pesaran

and Timmermann, 2007, P11-12). Following Pesaran and Timmermann (2007), we set the cross-

validation window size Wcv at 25% of T . And we set the minimum window size W = 240.

11We thank Michael Halling for suggesting discussing this issue.
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Figure 3 plots the performance (in terms of the R2
OS values) of forecast models estimated using

AdaBagging with estimation windows determined by data, against the number of learning rounds.

It shows that, with the increase of the number of learning rounds, all sophisticated models we

investigate including Kitchen sink can achieve improvement substantially and converge to a stable

R2
OS value of above 1.0%. However, it also indicates the so-called optimal windows are not reliable

enough. A more sophisticated window selection method seems to be needed.

[Place Figure 3 about here]

4 How AdaBagging Helps? Accuracy-Diversity Trade-off

The fact that AdaBagging, which averages the same models but estimated over subsamples

randomly drawn from the available observations, can improve performance might seem counterin-

tuitive at first. It is however easy to see how it works. Via forecast encompassing tests, we illustrate

that AdaBagging incorporates useful forecasting information from increasing learning rounds.

Based on bias-variance-covariance decomposition (Ueda and Nakano, 1996), we demonstrate

that, by introducing randomness, AdaBagging reduces the average covariance of individual

forecasts and stabilizes the variance of the combination forecast, thereby improving forecasting

performance.

4.1 Forecast Encompassing Test Results

To further assess the information content of AdaBagging relative to alternative schemes such

as the traditional rolling windows or AdaBagging with different numbers of learning rounds,

following Rapach et al. (2010) among others, we conduct a forecast encompassing test. Harvey

et al. (1998) develop the MHLN statistic for testing the null hypothesis that a given forecast

contains all of the relevant information found in a competing forecast (i.e., the given forecast

encompasses the competitor) against the alternative that the competing forecast contains relevant

information beyond that in the given forecast.

Table 7 reports p-values of the Harvey et al. (1998)’s MHLN statistic for Kitchen sink, BMA,

LASSO, WALS and the simple mean combination forecast model estimated using 360 months

rolling windows, and AdaBagging with 360 months rolling windows, given the number of learning

rounds B = 50,100,200. Each entry in the table corresponds to a one-sided (upper-tail) test of the

null hypothesis that the forecast under the scheme given in the column heading encompasses the
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forecast under the scheme given in the row heading against the alternative hypothesis that the

forecast under the scheme given in the column heading does not encompass the forecast under the

scheme given in the row heading.

The first column of Panel A of Table 7 shows, not surprisingly, the forecast of BMA based on

rolling windows fails to encompass the forecasts of AdaBagging–BMA with different numbers of

learning rounds. The second column shows that AdaBagging–BMA with the number of learning

rounds B = 50 significantly encompasses the traditional rolling windows scheme, indicating that

AdaBagging contains incremental forecasting information beyond the traditional rolling windows

scheme. The three and four columns further indicate that AdaBagging–BMA with a larger B

encompasses AdaBagging–BMA with a smaller B, suggesting potential gains from increasing

the number of learning rounds to fully make use of the relevant information. From Panel B, C

and D, we can also draw a similar conclusion for AdaBagging–LASSO, AdaBagging–WALS and

AdaBagging–Kitchen sink.

Panel E shows that AdaBagging–SMC can always encompass the simple mean combination

forecast estimated using rolling windows. However, it cannot benefit obviously from the increase

of learning rounds, indicating that the simple mean combination forecast model suffers from

underfitting, which limits its potential in out-of-sample forecasting.

[Place Table 7 about here]

4.2 Explanations based on Bias-Variance-Covariance Decomposition

AdaBagging per se is a forecast combination. Intuitively, the method is analogous to including

additional assets in a portfolio to reduce the portfolios variance (see, e.g. Dunis et al., 2001;

Timmermann, 2006; Rapach et al., 2010, among others). With AdaBagging combining individual

forecasts helps to reduce forecast variability when they are diverse.

Generating diverse individual forecasts, however, is not easy. The major obstacle lies in the

fact that these individual forecasts are estimated for the same task from the same data based on the

same type of models, and thus they are usually highly correlated. Another challenge of generating

diverse individual forecasts is that the individual forecasts must not be very poor, otherwise their

combination would not improve and could even worsen performance. So, it is desired that the

individual forecasts should be accurate and diverse. The key to success of forecast combination

lies in achieving a good trade-off between individual performance and diversity. It is known as

the accuracy-diversity trade-off in the machine learning literature on ensemble methods (for more
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details, see e.g. Zhou, 2012). One way to understand the accuracy-diversity trade-off is through

the bias-variance-covariance decomposition (Ueda and Nakano, 1996)12.

Looking back to the forecasts of AdaBagging, r̂AdaBagging = 1
B ∑

B
i=1 r̂(i), which is an equal-

weighted combination of the individual forecasts from B learning rounds. Following Ueda and

Nakano (1996) and Brown et al. (2005), define the averaged bias, averaged variance, and averaged

covariance of the individual forecasts of AdaBagging as, respectively,

Bias =
1
B

B

∑
i=1

(E[r̃(i)]− r),

Variance =
1
B

B

∑
i=1

(E[r̃(i)]− r̃(i))2,

Covariance =
1

B(B−1)

B

∑
i=1

B

∑
j=1, j 6=i

(E[r̃(i)]− r̃(i))(E[r̃( j)]− r̃( j)). (10)

Then, the bias-variance-covariance decomposition of the MSFE of r̂AdaBagging is

MSFE = Bias2
+

1
B

Variance+(1− 1
B
)Covariance, (11)

which divides the MSFE into three components: averaged squared bias, averaged variance and

averaged covariance. It indicates that the MSFE depends heavily on the covariance term, which

can be negative while the bias and variance terms are constrained to be positive, especially when B

becomes a large number. It is obvious that the more diverse the individual forecasts are, the better.

Figure 4 plots the bias-variance-covariance decomposition of the MSFE of AdaBagging–

WALS with 360 months rolling windows, against the number of learning rounds. It demonstrates

that, the MSFE decreases dramatically with the increase of the number of learning rounds

especially when the number of learning rounds B ≤ 30. After that, the MSFE (and averaged

variance, covariance) gradually decreases. It also clearly shows that the MSFE is mainly

determined by the averaged covariance when B becomes larger such as B≥ 30. It provides insight

to how AdaBagging gains from combination of the individual forecasts estimated over subsamples

randomly drawn from the available observations, indicating that AdaBagging achieves diversity

12It is interesting to note that this is the first appearance of the decomposition only for the machine learning literature.
In fact, just as Brown et al. (2005) pointed out, an equivalent decomposition can be found in Markowitz (1952), which
is instrumental for Modern Portfolio Theory.
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successfully by introducing randomness based on the repeatedly reweighted data.

However, the introduction of randomness may lead to a reduction in the accuracy of the

individual forecasts. Figure 4 clearly shows that, with the increase of the number of learning

rounds, the averaged squared bias will increase gradually. But the positive effect of diversity

outweighs the negative effects of the lost accuracy of the individual forecasts because, relative to

the averaged variance and covariance, the averaged squared bias is so small that it is negligible.13

We can also draw a similar conclusion from the bias-variance-covariance decomposition of

AdaBagging–BMA, AdaBagging–LASSO and AdaBagging–Kitchen sink. See Panels A, B and C

of Figure A.1 in Internet Appendix. Meanwhile, Panel D of Figure A.1 reinforces our argument

that the simple mean combination forecast model suffers from underfitting and cannot benefit

obviously from the increase of learning rounds.

[Place Figure 4 about here]

5 Forecasting Macro Conditions with the Same Set of 12 Economic Vari-
ables

In order to explore the economic sources of equity premium predictability, we investigate

whether the stock return predictors also have predictive power for future business conditions. As

pointed out by Cochrane (2008), if the return predictor shows predictive power for business cycle,

then the predictable return variations are more plausibly related to macroeconomic risk.

In particular, we run the following regressions with AdaBagging–WALS,

Yt+1 = α +Xtβ + et+1 (12)

Yt+12 = α +Xtβ + et+1 (13)

∆Yt+1 = α +Xtβ + et+1 (14)

∆Yt+12 = α +Xtβ + et+1 (15)

where Xt is the same 12 economic predictors, Yt+1 is the macroeconomic condition for next month,

Yt+12 is the macroeconomic condition for next year, ∆Yt+1 = Yt+1−Y(t+1)−12 is the year change

13Our untabulated results discussed in the above subsection indicates that, when the learning rounds becomes large
such as B≥ 600, the negative effects of the lost accuracy of the individual forecasts will be not negligible. Of course,
the performance deterioration in this case may also result from decreased diversity due to the number of the learning
rounds becoming large.
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in macroeconomic condition for the next month, and ∆Yt+12 = Yt+12−Yt is the year change in

macroeconomic condition for the next year.

We focus on the following macroeconomic conditions Yt

(1) Chicago Fed National Activity Index (CFNAI). The CFNAI is a monthly index designed to

capture economic activty and inflationary presure. The data are download from the Federal

Reserve Bank of Chicago. Data spans from 1967:03 to 2017:12, monthly.

(2) Smoothed U.S. Recession Probabilities (SRP). Smoothed recession probabilities for the

United States are obtained from a dynamic-factor markov-switching model applied to

four monthly coincident variables: non-farm payroll employment, the index of industrial

production, real personal income excluding transfer payments, and real manufacturing and

trade sales. The data are download from the Federal Reserve Bank of St. Louis. Data spans

from 1967:06 to 2017:12, monthly.

(3) Industrial Production Growth (IPG). The production growth rate data are also obtained from

the Federal Reserve Bank of St. Louis. Data spans from 1919:01 to 2017:12, monthly.

(4) Macroeconomic Uncertainty Index (MU). MU is the macroeconomic uncertainty index

proposed in Jurado et al. (2015), which is constructed as a common component of the

unpredictable variation of macroeconomic variables. It can be download from Prof.

Ludvigson’s website. Data spans from 1960:07 to 2017:12, monthly.

(5) Output Gap (Gap): The output gap is the difference between actual GDP or actual output

and potential GDP. Both of them can be obtained from Federal Reserve Bank of St. Louis.

Data spans from 1968:01 to 2017:12, monthly.

(6) Cay: Cay, introduced by Lettau and Ludvigson (2001a,b), is a cointegrating residual between

log consumption, log asset (nonhuman) wealth, and log labor income. It is proved to have

striking forecasting power for excess returns on aggregate stock market indexes. It can be

download from Prof. Ludvigson’s website. Data spans from 1952:Q1 to 2017:Q3, quartly.

We tranform it to monthly data spanning from 1952:01 to 2017:12.

(7) Civilian Unemployment Rate (UNRATE). The UNRATE is also obtained from Federal

Reserve Bank of St. Louis. Data spans from 1948:01 to 2017:12, monthly.

Table 8 reports the R2
OS values of forecasts of AdaBagging–WALS with early stopping for the

above macroeconomic condition variables. It shows that, not surprisingly, all the out-of-sample
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R2
OS values are significantly positive, indicating that the 12 economic predictors also have strong

predictive power for future business conditions.

[Place Table 8 about here]

6 Forecasting Extreme Market Movements

Fama and French (1989) and Campbell and Cochrane (1999); Cochrane (2007) argue that

heightened risk aversion during economic downturns demands a higher risk premium, thereby

generating equity premium predictability. Following Rapach et al. (2010), we examine the R2
OS

statistics computed separately during NBER-dated business-cycle recessions (bad times) and

expansions (good times). Our results in Table 3 show that, however, the predictive ability of

sophisticated models with AdaBagging remains strong in both bad times and good times.

We first investigate when and by how much AdaBagging helps these sophisticated models

to outperform the simple mean combination. Following Goyal and Welch (2003) and Welch and

Goyal (2008), Figure 5 depicts the relative performance of different sophisticated models over time

in terms of the DCSFE that is defined as the difference in the cumulative squared forecast error

of the historical average benchmark model and the given model. The larger the DCSFE value, the

better the model’s performance. These models are estimated using 360-month rolling windows or

AdaBagging with the number of learning rounds as B = 100,200,300.

Panel A of Figure 5 illustrates that, when estimated using 360-month rolling windows, the

Kitchen sink model almost always underperform the simple mean combination. However, when

estimated using AdaBagging with the number of learning rounds B = 100, it begins to outperform

the simple mean combination during the subperiod 1975:01–2008:01, but still fail to outperform

it during the global financial crisis in 2008. With the increase of the number of learning rounds,

such as when B = 200 or 300, it begins to consistently outperform the simple mean combination

over the entire evaluation period since 1970s, demonstrating the success of AdaBagging–Kitchen

sink in forecasting the extreme market movements during the global financial crisis in 2008.

Panel B of Figure 5 shows that, when estimated using AdaBagging, Kitchen sink achieves a

substantial performance leap during the October 1987 stock market crash period, further implying

the predictive ability of AdaBagging–Kitchen sink to forecast extreme market movements. We can

draw a similar conclusion for all other models we investigate, see Panels C and D of Figure 5 and

Figure A.2 in Internet Appendix.
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[Place Figure 5 about here]

In order to confirm the economic sources of equity premium predictability, we further

investigate forecasting gains of different models, estimated using rolling windows or AdaBagging

with early-stopping, during extreme (downturn) periods of normalized monthly returns rt . For

brevity, we only report the results of sophisticated models (BMA, LASSO and WALS), compared

to the simple mean combination forecast model. A similar conclusion can be drawn from the

results of the standard Kitchen sink model.

Panel A of Table 9 reports the results for four extreme periods, defined as |rt | ≥ 0.5,1.0,1.5,2.0

respectively. It shows that, whichever estimation scheme we use, the R2
OS statistics of all

sophisticated models are always higher during extreme periods than during less extreme periods.

For example, when estimated using AdaBagging, the R2
OS statistics are approximately three times

higher during the extreme period when |rt | ≥ 2.0 than during the extreme period when |rt | ≥ 0.5.

Panel A also indicates that sophisticated models always beat the simple mean combination with

much higher R2
OS values during extreme periods.

Panel B reports the results for four extreme downturn periods, defined as rt ≤ −0.5, -1.0, -

1.5, -2.0 respectively. It shows that the R2
OS statistics of all models are always much higher during

extreme downturn periods than during the corresponding extreme periods that also include extreme

upturn periods. For example, the R2
OS statistics of sophisticated models with AdaBagging are

approximately three times higher during the extreme downturn period when rt ≤−0.5 than during

the extreme period when |rt | ≥ 0.5. In fact, our untabulated results further indicate that out-of-

sample gains for forecasts of all models we investigate are mainly concentrated in downturn periods

defined as rt < 0, especially extreme downturn periods. It also shows that the differences of the

R2
OS statistics of all sophisticated models and the simple mean combination become larger during

extreme downturn periods than during extreme periods, demonstrating the superior of sophisticated

models during extreme downturn periods.

Table 9 shows that, compared to conventional rolling window schemes, AdaBagging sub-

stantially improve forecasts of all models we investigate during extreme (downturn) periods

except a few extreme outliers.14 It seems that forecasts of sophisticated models estimated using

AdaBagging fluctuate less than when estimated traditionally. Overall, Table 9 points to enhanced

forecasting gains for sophisticated models relative to the simple mean combination during extreme

periods, especially extreme downturn periods, in agreement with the Fama and French (1989)

14 In fact, our untabulated results indicate that, compared to conventional estimation schemes, AdaBagging can also
substantially improve forecasts during normal periods.
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and Campbell and Cochrane (1999); Cochrane (2007) view that heightened risk aversion during

economic downturns requires a higher risk premium.

[Place Table 9 about here]

7 Conclusions

We provide a novel ensemble machine learning method AdaBagging, which is a variant of

bagging, to improve on forecast models suffering from overfitting and parameter uncertainty.

Based on AdaBagging, we compare several representative sophisticated models that accommodate

model uncertainty, such as the recently proposed WALS, the popular BMA and the famous

LASSO, with the standard Kitchen sink model and the simple mean combination in the context

of stock return forecasting.

Our empirical results confirm, when estimated using conventional rolling window schemes,

the common finding in the literature that the simple mean combination forecast is superior. None

of the forecast models we investigate can outperform the historical average and the simple mean

combination forecast, indicating they seriously suffer from overfitting and parameter uncertainty.

However, under the schemes that incorporate the AdaBagging learning method with estimation

windows given by the user ex-ante or determined by the data, all of the forecast models we

investigate can significantly outperform the simple mean combination forecast in terms of both

the MSFE and utility gains. For example, the AdaBagging–WALS (AdaBagging–Kitchen sink)

model with early stopping generates statistically significant monthly out-of-sample R2
OS of 2.87%

(2.80%) and annual utility gain of 3.47% (3.58%).

Furthermore, our results show that, with the same set of economic variables, AdaBagging-

WALS can significantly forecast many well-known macroeconomic variables, such as Chicago

Fed National Activity Index, Smoothed U.S. Recession Probabilities, Output Gap, Civilian

Unemployment Rate. Our results also indicate that out-of-sample gains for the forecasts of

sophisticated models with AdaBagging are mainly concentrated in extreme periods, especially

during extreme market downturns.

On the basis of bias-variance-covariance decomposition, we further investigate how and why

AdaBagging works in the context of forecasting stock returns. Our results show that the key to

the success of AdaBagging is its excellent ability of generating diversity. Through diversification,

without demanding more data, AdaBagging help sophisticated models reduce estimation error
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dramatically. However, the simple mean combination forecast cannot benefit obviously from

AdaBagging, because it shrinks too much and suffers from underfitting. Furthermore, our results

show that AdaBagging is surprisingly resistant to overfitting in terms of the MSFE. However, we

also find that, in terms of utility gains, AdaBagging eventually overfits with the increase of the

number of learning rounds. Because the bias-variance-covariance decomposition can be dated

back to Modern Portfolio Theory, the benefit of the AdaBagging learning method can be viewed

as theory-based, stemming from diversification.

Our work sheds light on the role of diversification in improving forecast accuracy. The

extensive research results of diversity generating techniques in ensemble learning methods may

provide further insights into stock return forecasting.
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Appendix: Forecast Models

Simple Mean Combination

Rapach et al. (2010)’s simple mean combination forecast can be expressed as,

r̂SMC
T+1 =

1
N

N

∑
i=1

r̂(i)T+1 (A.1)

where r̂(i)T+1 is the forecast result of the univariate regression model that only includes the i-th

variable of X and the constant term.

Bayesian Model Averaging

Let λ = (λ1, ...,λm) be a vector of model weights with 0 ≤ λi ≤ 1 and ∑
m
i=1 λi = 1 where

m = 2N is the number of candidate models and λi is the weight of model Mi. A general forecast

combination can be expressed as

r̂C
T+1 =

m

∑
i=1

λir̂
(i)
T+1 (A.2)

where r̂(i)T+1 is the forecast result of model Mi. A natural framework for model combination that has

proved useful is Bayesian model averaging, where the weights of candidate models are determined

by their posterior probabilities.

Let P(Mi) denote the prior probability that Mi is a true model and P(R|Mi) denote the marginal

likelihood of R in model Mi . Then, the BMA weight for Mi is given by

λ
BMA
i = P(Mi|R) =

P(Mi)P(R|Mi)

∑
2N

j=1 P(M j)P(R|M j)
, i = 1,2, ...,2N (A.3)

Under the assumption of equal model priors and diffuse model priors on parameters, Buckland

et al. (1997) provide a good approximation for the BMA weights, Equation (A.3), expressed as

λ
BMA
i = exp(−1

2
BICi)/

2N

∑
j=1

exp(−1
2

BIC j), i = 1,2, ...,2N (A.4)

where BICi = T log(σ̂2
i )+ log(T )(Ni) is the Bayesian information criterion (BIC) for model Mi,
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σ̂2
i is the estimate of σ2 in Mi and Ni is the actual number of predictors of Mi.

Then, based on Equations (A.2) and (A.4), the BMA forecast model can be expressed as

r̂BMA
T+1 =

2N

∑
i=1

λ
BMA
i r̂(i)T+1 (A.5)

The BMA technique is straightforward and has proved useful (see, e.g. Avramov, 2002;

Hoogerheide et al., 2010). However, it has several problems in practice. The most important

is that the computation time will increase exponentially with the increase of N. The second is

that, since the priors are based on the normal distribution, they can lead to unbounded prediction

variance.

Weighted-Average Least Squares

Weighted-average least squares, introduced by Magnus et al. (2010), is a Bayesian combination

of frequentist estimators and possesses both computational and theoretical advantages over

frequentist and Bayesian methods. The computational advantage is that its computing time is

linear in the number of predictor variables rather than exponential, as in Bayesian model averaging

techniques. The theoretical advantage is that, in contrast to standard BMA, which is based on

normal priors leading to unbounded risk, WALS is based on reflected Weibull, Subbotin, or Laplace

priors, which imply a coherent treatment of ignorance and can generate bounded risk.

Rewrite the standard predictive regression model, Equation (1), in matrix form as

R = X1β1 +X2β2 + e (A.6)

where X1 is a T × (N1 +1) vector of “focus” predictors that must be included in the model based

on theoretical or other grounds and always includes a constant term as the first variable, X2 is a

T ×N2 vector of “auxiliary” predictors that may or may not be included in the model.

Let P be an orthogonal matrix and Λ a diagonal matrix with positive diagonal elements such

that P′X ′2M1X2P = Λ, where

M1 = IT −X1(X ′1X1)
−1X ′1 (A.7)

and IT represents a T ×T identity matrix.
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Define the transformed auxiliary variables and parameter as

X∗2 = X2PΛ
−1/2, β

∗
2 = Λ

1/2P′β2 (A.8)

such that X∗2 β ∗2 = X2β2.

Then we can rewrite Equation (A.6) equivalently as

R = X1β1 +X∗2 β
∗
2 + e (A.9)

This transformation is called semi-orthogonal because the new matrix (X1 : X∗2 ) is semi-orthogonal

in the sense that X∗2 M1X∗
′

2 = IN2 .

The equivalence theorem (Magnus et al., 2010, 2016) tells us that the WALS estimators of β1

and β ∗2 = (β ∗2,1,β
∗
2,2, ...,β

∗
2,N2

) in Equation (A.9) can be expressed as, respectively,

β̂1 = β̂1r−Q∗β̂ ∗2 (A.10)

β̂
∗
2,h = β̂

∗
2u,h− σ̂h

A1(
β̂ ∗2u,h
σ̂h

)

A0(
β̂ ∗2u,h
σ̂h

)

, (h = 1, ...,N2) (A.11)

where

β̂1r = (X ′1X1)
−1X ′1R

Q∗ = (X ′1X1)
−1X ′1X∗2

β̂
∗
2u = X∗

′
2 M1R

A j(x) =
∫

∞

−∞

(x− γ) j
φ(x− γ)π(γ)dγ, ( j = 0,1)

, φ denotes the standard normal density, and π(γ) is the reflected Weibbull prior15, and σ̂h is the

estimate of the standard deviation of β ∗2,h.

Based on Equations (A.9), (A.10) and (A.11), we can easily obtain the WALS forecast, as

15Following Magnus and Luca (2016), the reflected Weibull prior is preferred, which is defined as

π(γ) =
qc
2
|γ|−(1−q)exp−c|γ|q

, where q = 0.8876 , c = log2.
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follows:

r̂WALS
T+1 = X1,T β̂1 +X∗2,T β̂

∗
2 (A.12)

The WALS theory is appealing and has turned out to be an effective approach for dealing with

model uncertainty. For example, Magnus et al. (2016) compare it with four competing predictors

(unrestricted model, pretesting, ridge regression, MMA) in a wide range of simulation experiments.

They find that the WALS predictor generally produces the lowest mean squared error. They also

find that the estimated variance of the WALS predictor is typically larger than the variance of the

pretesting and ridge predictor but more accurate in terms of the root mean squared error. Finally,

when model uncertainty increases, the dominance of WALS becomes more pronounced.

LASSO

Least absolute shrinkage and selection operator (LASSO), introduced by Tibshirani (1996),

is a popular regularization method for performing shrinkage in regressions. It can improve the

prediction accuracy and interpretability of regression models by altering the model fitting process

to select only a subset of the provided variables for use in the final model rather than using all of

them. For the standard OLS model, Equation (1), the objective of LASSO can be expressed as

argmin
α∈R,β∈RN

(
1
T

T−1

∑
t=0

(rt+1−α−Xtβ )
2 +λ

N

∑
i=1
|βi|) (A.13)

where λ is a regularization parameter. We use a 5-fold cross-validation to choose the optimal

λ with minimum mean square error. The first component in parentheses is the familiar sum of

squared residuals, so that the objective function reduces to that for OLS when λ = 0. The second

component is an ι1 penalty term that shrinks the slope coefficient estimates to prevent overfitting.
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Table 1
Performance comparison of sophisticated models estimated conventionally, 1957:01–2016:12
This table provides the out-of-sample performance comparison of forecast models estimated using
360 months rolling windows. These models are the standard multivariate predictive regression
model: Kitchen sink, BMA with diffuse prior, LASSO with 5-fold cross-validation, Magnus et al.
(2010)’s WALS, and Rapach et al. (2010)’s simple mean combination (SMC). R2

OS measures the
percent reduction in mean squared forecast error (MSFE) for the forecast model given in the
first column relative to the historical average benchmark forecast. CW-test is the Clark and West
(2007) MSFE-adjusted statistic. *, **, *** indicate significance at the 10%, 5% and 1% levels,
respectively. R2

OS,exp (R2
OS,rec) statistics are calculated over NBER-dated business-cycle expansions

(recessions). The out-of-sample evaluation period is 1957:01–2016:12.

Model R2
OS(%) CW-test R2

OS,exp(%) R2
OS,rec(%) Time consumed (s)

BMA -2.50 1.09 -2.57 -2.35 1,492

LASSO -1.34 1.72∗∗ -2.92 2.23 248

WALS -1.00 2.31∗∗ -1.49 0.12 141

SMC 0.25 1.30∗ -0.28 1.47 11

Kitchen sink -5.69 2.30∗∗ -5.88 -5.25 7

32



Table 2
Out-of-sample performance with AdaBagging, 1957:01–2016:12
This table reports the out-of-sample performance of various measures of forecast models estimated
using AdaBagging with 360 months rolling windows, given the number of learning rounds of
AdaBagging B = 100,200,300. These models are the standard multivariate predictive regression
model: Kitchen sink, BMA with diffuse prior, LASSO with 5-fold cross-validation, Magnus et al.
(2010)’s WALS, and Rapach et al. (2010)’s simple mean combination (SMC). R2

OS measures the
percent reduction in mean squared forecast error (MSFE) for the given forecast model relative to
the historical average benchmark forecast. CW-test is the Clark and West (2007) MSFE-adjusted
statistic. *, **, *** indicate significance at the 10%, 5% and 1% levels, respectively. R2

OS,exp
(R2

OS,rec) statistics are calculated over NBER-dated business-cycle expansions (recessions). The
out-of-sample evaluation period is 1957:01–2016:12.

Learning Rounds R2
OS(%) CW-test R2

OS,exp(%) R2
OS,rec(%)

Panel A: BMA

B=100 1.38 2.34∗∗∗ 0.27 3.88

B=200 1.72 2.38∗∗∗ 0.51 4.44

B=300 1.82 2.47∗∗∗ 0.40 5.03

Panel B: LASSO

B=100 1.84 2.48∗∗∗ 0.80 4.19

B=200 2.10 2.46∗∗∗ 0.94 4.71

B=300 2.09 2.44∗∗∗ 0.80 4.99

Panel C: WALS

B=100 1.28 2.43∗∗∗ 0.51 3.05

B=200 2.10 2.56∗∗∗ 1.01 4.57

B=300 2.26 2.59∗∗∗ 1.04 5.04

Panel D: Kitchen sink

B=100 0.16 2.49∗∗∗ -0.50 1.66

B=200 1.94 2.65∗∗∗ 0.63 4.90

B=300 2.33 2.66∗∗∗ 0.96 5.41

Panel E: SMC

B=100 0.31 1.45∗ -0.50 1.66

B=200 0.32 1.48∗ -0.66 2.52

B=300 0.29 1.49∗ -0.83 2.83
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Table 3
Out-of-sample forecasting results of AdaBagging with early stopping, 1957:01–2016:12
This table reports the out-of-sample performance of various measures of different forecast models,
including the standard multivariate predictive regression model: Kitchen sink, BMA with diffuse
prior, LASSO with 5-fold cross-validation, Magnus et al. (2010)’s WALS, and Rapach et al.
(2010)’s simple mean combination (SMC). These models are estimated using AdaBagging with
optimal learning rounds determined by holdout-based early stopping (Prechelt, 2012). In the
implementation of early stopping, we set the size of training set and validation set as 360-month
and 120-month respectively, and stop training as soon as the average error, which is evaluated on
the validation set once in a while after every fifty epoch, is higher than it was the last time it was
checked. R2

OS measures the percent reduction in mean squared forecast error (MSFE) for the given
forecast model relative to the historical average benchmark forecast. CW-test is the Clark and West
(2007) MSFE-adjusted statistic. *, **, *** indicate significance at the 10%, 5% and 1% levels,
respectively. R2

OS,exp (R2
OS,rec) statistics are calculated over NBER-dated business-cycle expansions

(recessions). B̄ given in column six, is the average of optimal learning rounds. The out-of-sample
evaluation period is 1957:01–2016:12.

R2
OS(%) CW-test R2

OS,exp(%) R2
OS,rec(%) B̄

BMA 1.85 2.62∗∗∗ 0.11 5.79 324

LASSO 2.18 2.87∗∗∗ 0.59 5.79 349

WALS 2.87 2.99∗∗∗ 1.65 5.61 361

Kitchen sink 2.80 3.00∗∗∗ 1.11 6.61 352

SMC 0.40 1.57∗ -0.63 2.72 199
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Table 4
Out-of-sample forecasting results with the standard bagging method, 1957:01–2016:12
This table reports the out-of-sample performance of various measures of forecast models estimated
using bagging with 360 months rolling windows, given the number of learning rounds of bagging
B = 100,200,300. These models are the standard multivariate predictive regression model:
Kitchen sink, BMA with diffuse prior, LASSO with 5-fold cross-validation, Magnus et al. (2010)’s
WALS, and Rapach et al. (2010)’s simple mean combination (SMC). R2

OS measures the percent
reduction in mean squared forecast error (MSFE) for the given forecast model relative to the
historical average benchmark forecast. CW-test is the Clark and West (2007) MSFE-adjusted
statistic. *, **, *** indicate significance at the 10%, 5% and 1% levels, respectively. R2

OS,exp
(R2

OS,rec) statistics are calculated over NBER-dated business-cycle expansions (recessions). The
out-of-sample evaluation period is 1957:01–2016:12.

Learning Rounds R2
OS(%) CW-test R2

OS,exp(%) R2
OS,rec(%)

Panel A: BMA

B=100 -1.19 1.80∗∗ -1.16 -1.25

B=200 -1.18 1.77∗∗ -1.32 -0.87

B=300 -1.12 1.80∗∗ -1.24 -0.85

Panel B: LASSO

B=100 -1.92 2.00∗∗ -1.25 -3.41

B=200 -1.83 2.01∗∗ -1.41 -2.78

B=300 -1.62 2.05∗∗ -1.29 -2.35

Panel C: WALS

B=100 -2.25 2.16∗∗ -1.81 -3.24

B=200 -2.01 2.20∗∗ -1.68 -2.75

B=300 -1.99 2.18∗∗ -1.62 -2.82

Panel D: Kitchen sink

B=100 -5.32 2.23∗∗ -4.65 -6.81

B=200 -5.46 2.23∗∗ -5.07 -6.35

B=300 -5.38 2.25∗∗ -4.94 -6.39

Panel E: SMC

B=100 0.21 1.21 -0.30 1.35

B=200 0.21 1.23 -0.30 1.38

B=300 0.21 1.22 -0.32 1.41
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Table 5
Asset allocation results with AdaBagging, 1957:01–2016:12
This table reports the portfolio performance measures for a mean-variance investor
who allocates capital monthly between equities and risk-free bills using the monthly
out-of-sample forecast results of the U.S. equity premium based on forecast models
estimated using AdaBagging with 360 months rolling windows, given different number
of learning rounds. These models are the standard multivariate predictive regression
model: Kitchen sink, BMA with diffuse prior, LASSO with 5-fold cross-validation,
Magnus et al. (2010)’s WALS, and Rapach et al. (2010)’s simple mean combination
(SMC). The utility gain4(ann%) is the annualized certainty equivalent return gain for
the investor with risk aversion coefficient of three. The monthly Sharpe ratio is the
mean portfolio return in excess of the risk-free rate divided by its standard deviation.
The out-of-sample evaluation period is 1957:01–2016:12.

Learning Rounds
No transaction cost 50bps transaction cost

4(ann%) Sharpe ratio 4(ann%) Sharpe ratio

Panel A: BMA
B=100 3.34 0.17 1.77 0.13
B=200 2.86 0.16 1.46 0.12
B=300 2.33 0.15 1.06 0.12

Panel B: LASSO
B=100 3.76 0.17 2.18 0.14
B=200 3.39 0.17 1.89 0.13
B=300 2.96 0.17 1.63 0.13

Panel C: WALS
B=100 3.73 0.17 2.15 0.14
B=200 3.52 0.17 2.02 0.14
B=300 3.34 0.17 1.93 0.13

Panel D: Kitchen sink
B=100 3.27 0.16 1.64 0.13
B=200 3.52 0.17 2.02 0.14
B=300 3.30 0.17 1.90 0.13

Panel E: SMC
B=100 0.55 0.11 -0.12 0.09
B=200 0.47 0.11 -0.17 0.08
B=300 0.38 0.11 -0.20 0.08
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Table 6
Asset allocation results of AdaBagging with early stopping, 1957:01–2016:12
This table reports the portfolio performance measures for a mean-variance investor who allocates
capital monthly between equites and risk-free bills using the monthly out-of-sample forecast
results of the U.S. equity premium based on forecast models estimated using AdaBagging with
optimal learning rounds determined by holdout-based early stopping (Prechelt, 2012). In the
implementation of early stopping, we set the size of training set and validation set as 360-month
and 120-month respectively, and stop training as soon as the average error, which is evaluated
on the validation set once in a while after every fifty epoch, is higher than it was the last time it
was checked. These models are the standard multivariate predictive regression model: Kitchen
sink, BMA with diffuse prior, LASSO with 5-fold cross-validation, Magnus et al. (2010)’s WALS,
and Rapach et al. (2010)’s simple mean combination (SMC). The utility gain 4(ann%) is the
annualized certainty equivalent return gain for the investor with risk aversion coefficient γ = 3,5.
The monthly Sharpe ratio is the mean portfolio return in excess of the risk-free rate divided by its
standard deviation. The out-of-sample evaluation period is 1957:01–2016:12.

Model Risk Aversion
No transaction cost 50bps transaction cost

4(ann%) Sharpe ratio 4(ann%) Sharpe ratio

BMA γ = 3 2.69 0.16 1.33 0.12

BMA γ = 5 2.70 0.15 1.68 0.10

LASSO γ = 3 2.93 0.16 1.54 0.13

LASSO γ = 5 3.00 0.16 1.89 0.11

WALS γ = 3 3.47 0.18 2.05 0.14

WALS γ = 5 3.40 0.17 2.20 0.12

Kitchen sink γ = 3 3.58 0.18 2.13 0.14

Kitchen sink γ = 5 3.40 0.16 2.13 0.12

SMC γ = 3 0.92 0.12 0.25 0.10

SMC γ = 5 1.52 0.10 1.11 0.08
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Table 7
Forecast encompassing test for AdaBagging, MHLN statistic p-values
The table reports p-values of the Harvey et al. (1998) MHLN statistic for combination models
estimated using 360-month rolling windows and AdaBagging with 360-month rolling windows,
given the number of learning rounds B = 50,100,200. These models are the standard multivariate
predictive regression model: Kitchen sink, BMA with diffuse prior, LASSO with 5-fold cross-
validation, Magnus et al. (2010)’s WALS, and Rapach et al. (2010)’s simple mean combination
(SMC). The MHLN statistic corresponds to a one-sided (upper-tail) test of the null hypothesis
that the forecast under the scheme given in the column heading encompasses the forecast under
the scheme given in the row heading against the alternative hypothesis that the forecast under the
scheme given in the column heading does not encompass the forecast under the scheme given in
the row heading. 0.00 indicates less than 0.005. The MHLN statistic is computed for the entire
1957:01–2016:12 forecast evaluation period.

Rolling Windows AdaBagging, B=50 AdaBagging, B=100 AdaBagging, B=200

Panel A: BMA

Rolling Windows 0.99 0.99 0.97

AdaBagging, B=50 0.00 0.77 0.65

AdaBagging, B=100 0.00 0.07 0.72

AdaBagging, B=200 0.00 0.05 0.10

Panel B: LASSO

Rolling Windows 0.77 0.93 0.88

AdaBagging, B=50 0.00 0.93 0.77

AdaBagging, B=100 0.00 0.01 0.68

AdaBagging, B=200 0.00 0.01 0.08

Panel C: WALS

Rolling Windows 0.74 0.87 0.75

AdaBagging, B=50 0.02 0.99 0.92

AdaBagging, B=100 0.00 0.00 0.85

AdaBagging, B=200 0.00 0.00 0.03

Panel D: Kitchen sink

Rolling Windows 0.97 0.97 0.92

AdaBoost, B=50 0.00 0.99 0.97

AdaBoost, B=100 0.00 0.00 0.97

AdaBoost, B=200 0.00 0.00 0.00

Panel E: SMC

Rolling Windows 0.76 0.55 0.33

AdaBagging, B=50 0.12 0.35 0.25

AdaBagging, B=100 0.19 0.49 0.30

AdaBagging, B=200 0.21 0.42 0.50
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Table 8
Forecasting macro variables with AdaBagging–WALS
This table reports the R2

OS values of forecasts of AdaBagging–WALS with early stopping and
360-month rolling windows, for a list of macroeconomic condition variables. Yt+1 is the
macroeconomic condition for next month, Yt+12 is the macroeconomic condition for next year,
∆Yt+1 = Yt+1 −Y(t+1)−12 is the year change in macroeconomic condition for the next month,
and ∆Yt+12 = Yt+12 − Yt is the year change in macroeconomic condition for the next year.
These macroeconomic condition variables considered include Chicago Fed National Activity
Index (CFNAI), Smoothed U.S. Recession Probabilities (SRP), Industrial Production Growth
(IPG), Jurado et al. (2015)’s Macroeconomic Uncertainty Index (MU), Output Gap (Gap), Lettau
and Ludvigson (2001a,b)’s Cay that is a cointegrating residual between log consumption, log
asset (nonhuman) wealth, and log labor income, Civilian Unemployment Rate (UNRATE). R2

OS
measures the percent reduction in mean squared forecast error (MSFE) for the given forecast model
relative to the historical average benchmark forecast. *, **, *** indicate significance at the 10%,
5% and 1% levels, respectively, based on p-values for the Clark and West (2007) MSFE-adjusted
statistic for testing the null hypothesis that the historical average MSFE is less than or equal to the
predictive regression MSFE. The out-of-sample evaluation period given in column two depends on
the data sample available.

Evaluation Period Yt+1 4Yt+1 Yt+12 4Yt+12

CFNAI 2000:01-2016:12 51.72∗∗∗ 17.44∗∗∗ 11.15∗∗∗ 21.36∗∗∗

SRP 2000:01-2016:12 44.00∗∗∗ 8.88∗∗∗ 8.78∗∗∗ 18.96∗∗∗

IPG 1957:01-2016:12 94.19∗∗∗ 64.13∗∗∗ 94.61∗∗∗ 25.61∗∗∗

MU 1995:01-2016:12 18.79∗∗∗ 18.83∗∗∗ 33.91∗∗∗ 15.00∗∗∗

GAP 1980:01-2016:12 72.53∗∗∗ 35.72∗∗∗ 42.33∗∗∗ 16.41∗∗∗

Cay 1985:01-2016:12 24.95∗∗∗ 4.43∗∗∗ 9.33∗∗∗ 5.75∗∗∗

UNRATE 1980:01-2016:12 70.60∗∗∗ 51.04∗∗∗ 55.68∗∗∗ 21.95∗∗∗
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Table 9
Forecasting extreme market movements, 1957:01–2016:12
This table reports the R2

OS values of forecasts of different models, estimated using 360-month rolling windows or AdaBagging with
360-month rolling windows, for extreme (downturn) periods of normalized monthly returns rt . These models are BMA with diffuse
prior, LASSO with 5-fold cross-validation, Magnus et al. (2010)’s WALS, and Rapach et al. (2010)’s simple mean combination (SMC).
In the implementation of AdaBagging with holdout-based early stopping (Prechelt, 2012), we set the size of training set and validation
set as 360-month and 120-month respectively, and stop training as soon as the average error, which is evaluated on the validation set
once in a while after every fifty epoch, is higher than it was the last time it was checked. R2

OS measures the percent reduction in mean
squared forecast error (MSFE) for the given forecast model relative to the historical average benchmark forecast. *, **, *** indicate
significance at the 10%, 5% and 1% levels, respectively, based on p-values for the Clark and West (2007) MSFE-adjusted statistic for
testing the null hypothesis that the historical average MSFE is less than or equal to the predictive regression MSFE. The out-of-sample
evaluation period is 1957:01–2016:12.

Periods Observations
R2

OS (%) of models with AdaBagging R2
OS (%) of models estimated traditionally

BMA LASSO WALS SMC BMA LASSO WALS SMC

Overall 720 / 720 1.85∗∗ 2.18∗∗∗ 2.87∗∗∗ 0.40∗ −2.50 −1.99∗∗ −1.00∗∗ 0.25∗

Panel A: extreme periods of normalized returns rt

|rt | ≥ 0.5 336 / 720 3.26∗∗∗ 3.72∗∗∗ 4.53∗∗∗ 1.09∗∗∗ −0.07∗ 1.38∗∗ 2.95∗∗∗ 0.75∗∗

|rt | ≥ 1.0 119 / 720 5.30∗∗∗ 5.61∗∗∗ 6.59∗∗∗ 1.83∗∗∗ 0.87 4.04∗∗ 4.69∗∗ 1.09∗∗∗

|rt | ≥ 1.5 42 / 720 7.30∗∗∗ 7.45∗∗∗ 9.24∗∗∗ 1.75∗∗ 1.62 6.10∗∗ 7.24∗∗ 1.13∗∗

|rt | ≥ 2.0 12 / 720 9.95∗∗∗ 10.34∗∗∗ 12.61∗∗∗ 2.47∗∗ 9.09∗∗ 10.46∗∗ 18.87∗∗∗ 2.02∗∗∗

Panel B: extreme downturn periods of normalized returns rt

rt ≤−0.5 167 / 720 11.90∗∗∗ 11.64∗∗∗ 12.06∗∗∗ 6.61∗∗∗ 9.74∗∗∗ 9.85∗∗∗ 9.53∗∗∗ 2.45∗∗∗

rt ≤−1.0 71 / 720 10.82∗∗∗ 10.94∗∗∗ 11.40∗∗∗ 5.39∗∗∗ 8.40∗∗∗ 8.82∗∗∗ 9.94∗∗∗ 2.11∗∗∗

rt ≤−1.5 26 / 720 11.80∗∗∗ 11.93∗∗∗ 12.85∗∗∗ 4.35∗∗∗ 7.50∗∗ 8.83∗∗ 12.52∗∗ 1.71∗∗∗

rt ≤−2.0 8 / 720 13.46∗∗∗ 13.86∗∗∗ 15.76∗∗∗ 4.27∗∗∗ 15.40∗∗∗ 14.67∗∗∗ 24.30∗∗∗ 2.35∗∗∗
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Fig. 1. Effects of the number of learning rounds of AdaBagging on R2
OS

This figure depicts how the out-of-sample R2
OS statistics changes with the number of learning rounds B of the AdaBagging method

applied to different forecast models. These models are the standard multivariate predictive regression model: Kitchen sink, BMA with
diffuse prior, LASSO with 5-fold cross-validation, Magnus et al. (2010)’s WALS, and Rapach et al. (2010)’s simple mean combination
(SMC). R2

OS measures the percentage reduction in mean squared forecast error (MSFE) for the AdaBagging method relative to the
historical average benchmark forecast. The out-of-sample forecast evaluation period is 1957:01–2016:12.
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Fig. 2. Effects of the number of learning rounds of AdaBagging on CER gains
This figure depicts how the CER gains change with the number of learning rounds B of the AdaBagging method applied to different
forecast models. These models are the standard multivariate predictive regression model: Kitchen sink, BMA with diffuse prior, LASSO
with 5-fold cross-validation, Magnus et al. (2010)’s WALS, and Rapach et al. (2010)’s simple mean combination (SMC). The CER gain
measures the annualized certainty equivalent return (CER) gain for a mean-variance investor with risk aversion coefficient of three for
the AdaBagging method. The out-of-sample forecast evaluation period is 1957:01–2016:12.
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Fig. 3. Performance of AdaBagging with estimation windows determined by data
This figure depicts how the out-of-sample R2

OS statistics of different forecast models, estimated using AdaBagging with optimal
estimation windows determined by data, change with the number of learning rounds B of the AdaBagging method. These forecast
models are the standard multivariate predictive regression model: Kitchen sink, BMA with diffuse prior, LASSO with 5-fold cross-
validation, Magnus et al. (2010)’s WALS, and Rapach et al. (2010)’s simple mean combination (SMC). The optimal estimation windows
are determined by the Pesaran and Timmermann (2007)’s cross-validation method with unknown break dates, given the minimum
window size of 240. Following Pesaran and Timmermann (2007), we set the cross-validation window size Wcv of their cross-validation
window selection method at 25% of the current observation sample. R2

OS measures the percent reduction in mean squared forecast
error (MSFE) for the given forecast model relative to the historical average benchmark forecast. The out-of-sample evaluation period is
1957:01–2016:12.
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Fig. 4. Accuracy-diversity Trade-off of AdaBagging method
This figure depicts the bias-variance-covariance decomposition of the mean squared forecast errors (MSFE, solid line) for the
AdaBagging–WALS method, with the number of learning rounds B changing from 1 to 500. The bias-variance-covariance decomposition
of MSFE is defined as

MSFE = Bias2
+

1
B

Variance+(1− 1
B
)Covariance

where Bias, Variance and Covariance are the averaged squared bias (dotted line), averaged variance (dashed line), and averaged
covariance (dash-dot line) of the individual forecasts, respectively, and B is the number of learning rounds. The out-of-sample forecast
evaluation period is 1957:01–2016:12.
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(a) Kitchen sink, 1957:01–2016:12 (b) Kitchen sink, 1987:01–1988:12

(c) WALS, 1957:01–2016:12 (d) WALS, 1987:01–1988:12

Fig. 5. Forecast accuracy over time
This figure shows the relative performance of the Kitchen sink model and Magnus et al. (2010)’s WALS in terms of the DCSFE, which
is defined as the difference in the cumulative squared forecast error of the historical average benchmark model and the given model.
The larger the DCSFE value, the better the model’s performance. These models are estimated using 360-month rolling windows or
AdaBagging with the number of learning rounds B = 100,200,300. For comparison, the DCSFE of the simple mean combination
(SMC) from Rapach et al. (2010) is also depicted in gray dashed line. The vertical bars correspond to the NBER-dated recessions. The
out-of-sample evaluation period is 1957:01–2016:12.
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Internet Appendix

Table A.1
Predictive regression forecasts
This table reports the R2

OS values of forecast models based on individual economic variables.
These models are estimated using recursively expanding windows and rolling windows of size
360 months. R2

OS measures the percent reduction in mean squared forecast error (MSFE) for the
forecast model given in the first column relative to the historical average benchmark forecast.
Brackets report p-values for the Clark and West (2007) MSFE-adjusted statistic for testing the null
hypothesis that the historical average MSFE is less than or equal to the predictive regression MSFE
against the alternative that the historical average MSFE is greater than the predictive regression
MSFE (corresponding to H0 : R2

OS ≤ 0 against HA : R2
OS > 0). CW-test is the Clark and West

(2007) MSFE-adjusted statistic. The out-of-sample evaluation period is 1957:01–2016:12.

Economic variable
Rolling windows Expanding windows

R2
OS(%) CW-test R2

OS(%) CW-test

log(DP) -0.71 [0.29] 0.54 -0.05 [0.10] 1.31

log(DY) -0.75 [0.22] 0.78 -0.37 [0.07] 1.49

log(EP) -1.80 [0.81] -0.89 -1.88 [0.28] 0.57

SVAR -0.69 [0.28] 0.58 0.32 [0.17] 0.97

BM -1.99 [0.73] -0.61 -1.74 [0.31] 0.50

NTIS -1.00 [0.32] 0.47 -0.91 [0.41] 0.22

TBL -1.30 [0.09] 1.33 -0.01 [0.09] 1.34

LTR -0.69 [0.06] 1.57 -0.08 [0.20] 1.01

TMS -0.31 [0.06] 1.57 0.06 [0.16] 0.84

DFY -1.71 [0.83] -0.95 -0.04 [0.59] -0.24

DFR -1.67 [0.64] -0.37 -0.01 [0.38] 0.31

INFL -0.48 [0.49] 0.03 -0.09 [0.50] 0.01
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(a) AdaBagging–BMA (b) AdaBagging–LASSO

(c) AdaBagging–Kitchen sink (d) AdaBagging–SMC

Fig. A.1. Accuracy-diversity Trade-off of AdaBagging method
This figure depicts the bias-variance-covariance decomposition of the mean squared forecast errors (MSFE, solid line) for the
AdaBagging–BMA, AdaBagging–LASSO, AdaBagging–Kithcen sink and AdaBagging-SMC method, with the number of learning
rounds B changing from 1 to 500. The bias-variance-covariance decomposition of MSFE is defined as

MSFE = Bias2
+

1
B

Variance+(1− 1
B
)Covariance

where Bias, Variance and Covariance are the averaged squared bias (dotted line), averaged variance (dashed line), and averaged
covariance (dash-dot line) of the individual forecasts, respectively, and B is the number of learning rounds. The out-of-sample forecast
evaluation period is 1957:01–2016:12.
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(a) LASSO, 1957:01–2016:12 (b) LASSO, 1987:01–1988:12

(c) BMA, 1957:01–2016:12 (d) BMA, 1987:01–1988:12

Fig. A.2. Forecast accuracy over time
This figure shows the relative performance of LASSO and BMA in terms of the DCSFE, which is defined as the difference in the
cumulative squared forecast error of the historical average benchmark model and the given model. The larger the DCSFE value, the
better the model’s performance. These models are estimated using 360-month rolling windows or AdaBagging with the number of
learning rounds B = 100,200,300. For comparison, the DCSFE of the simple mean combination (SMC) from Rapach et al. (2010) is
also depicted in gray dashed line. The vertical bars correspond to the NBER-dated recessions. The out-of-sample evaluation period is
1957:01–2016:12.
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