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Abstract

We study statistical discrimination of individuals based on payoff-irrelevant

social identities in markets where ratings/recommendations facilitate social learn-

ing among users. Despite the potential promise and guarantee for the ratings/recommendation

algorithms to be fair and free of human bias and prejudice, we identify possible

vulnerability of the ratings-based social learning to discriminatory inferences on

social groups. In our model, users’ equilibrium attention decision may lead data

to be sampled differentially across different groups so that differential inferences

on individuals may emerge based on their group identities. We explore policy im-

plications in terms of regulating trading relationships as well as algorithm design

[to be added].
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1 Introduction

Discrimination of individuals based on their race, gender, ethnicity and other social
identities, is a pervasive problem. While the problem is as old as humanity, it has
taken on a new meaning and form at digital marketplaces and social media where
our social and economic interactions increasingly take place. Evidence suggests that
discrimination is prevalent in popular online platforms such as airbnb (Edelman et al.

∗Che: Columbia University, yc2271@columbia.edu.
†Kim: Emory University, kyungmin.kim@emory.edu.
‡Zhong: Stanford University, weijie.zhong@stanford.edu.

1



(2017) and Cui et al. (2019)), freelancing worksites (Hannák et al. (2017)), ride-sharing
platforms (Ge et al. (2016)), and math Stack exchange (Bohren et al. (2019)).

At first glance, online platforms are an unlikely place for discrimination to occur,
given the widely-used ratings system that facilitates social learning among users. Plat-
forms for ride-sharing, house-sharing, freelancing, credit, and insurance collect infor-
mation about drivers, customers, guests, workers, and loan and insurance applicants
based on performers’ past records and user experiences. Platforms then aggregate the
information into simple ratings, and make recommendations based on these ratings. It
is now routine that machine algorithms pre-screen résumés of job applicants, evaluate
loan or insurance applicants and freelance workers, recommend their promotion or
firing, and rates recidivism of parolees.

By limiting subjective human judgment and replacing it with accurate informa-
tion and objective recommendation, one would think that data-driven social learning
should limit the scope for statistical discrimination. Intuitively, there should be simply
less room for statistical inference on an individual based on his/her group identity—
and therefore discrimination based on it—if one is guided by more accurate informa-
tion about his/her individual characteristics. The logic of this reasoning is at first glance
plausible, and indeed, if full information were available, discrimination, except based
on tastes, should disappear.1 However, it is not at all clear that more information and
social learning should necessarily lead to less discrimination.

Most importantly, it is not clear that social learning mechanisms at the heart of
these platforms work fairly and unbiasedly to mitigate discrimination. At a high level,
social learning involves a feedback of two processes: (1) the sampling of data (or experi-
ence) and (2) the informing (or recommending) of user decisions. The latter process is fair
or unbiased, or one can at least guarantee it to be so—in keeping with the recent call
for algorithmic fairness. However, the former process is neither random nor unbiased.
Data is sampled when transaction occurs, and this process is dictated by the economic
interests of parties: users seek reliable, trust-worthy, high-value partners with favor-
able ratings, not random or representative ones—a far cry from the idealized notion
of statistical sampling. Without a deeper understanding of this feedback process, par-
ticularly the selective nature of sampling, one cannot truly understand the fairness of
social learning and its implications for discrimination.

The purpose of the current paper is to build a model of social learning that ac-
counts for this feedback process and investigate its implications for statistical discrim-
ination. Specifically, we study the possibility of, and the extent to, which social learn-
ing through ratings can ameliorate or exacerbate statistical discrimination of social
groups.

1 There is some empirical evidence that reputation/ratings ameliorate discrimination in some contexts (see Cui et al. (2019)
and Bohren et al. (2019)).
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Our model features directed search/matching between two sides, (masses of long-
lived) buyers and sellers, guided by user-contributed ratings. Each seller is indexed
by her social group identity j “ 1, 2 and her productive type, H (“high”) or L (“low”):
a seller’s group identity is unchanging, but her productive type changes over time,
according to a continuous time Markov chain. The group identity is payoff irrelevant
since it has no effect on sellers’ productive types. Buyers seek to match and trade with
sellers; the surplus generated from trade is higher if the seller is of high type rather
than a low type.

The search-matching process is frictional, and is guided by imperfect information
about sellers’ types, called ratings. The rating is binary, either G or B, and is updated
after each trade. Although it is impossible for the ratings to perfectly reveal the sellers’
types due to the ever changing nature of seller type (except in the limit), we param-
eterize the effectiveness of social learning, or the extent to which the ratings “track”
sellers’ true types, by α P p0, 1q—the probability that an incorrect rating gets corrected
(e.g., type-H seller having G-rated) after each transaction. Buyers direct their search
attention to sellers based on their ratings and possibly on their group identities: a seller
of a given rating j “ G, B and group ` “ 1, 2 matches with probability that depends on
the number of buyers directing attention to the sellers with pj, `q. We study the steady
state of this system.

Absent any ex ante bias in belief updating, discrimination may still arise from the
selective nature of data sampling mentioned earlier. In our model, data on a seller
is sampled whenever the seller gets matched, and matching (thus sampling) arises
from buyers’ search for sellers with favorable beliefs. A positive feedback loop can
then ensue since sellers with a favorable posterior belief will get sampled more, and
those believed to have been sampled more often but maintained G rating would enjoy
even more favorable belief than those with the same G-rating but believed to have
been sampled less often. We identify a positive feedback loop that could lead to a
systematic statistical discrimination of social groups.

To begin, the payoff irrelevance of group identity means that there always exists a
“non-discriminatory” equilibrium in which sellers of the two groups are treated iden-
tically. In this equilibrium, a seller of any given rating enjoys the same amount of atten-
tion regardless of her group identity; a G-rated seller enjoys a higher match/employment
rate than a B-rated seller, due to the more favorable signal contained in the former, but
identically across the group identities. Identical treatment by buyers across the so-
cial groups means that there is no bias in the sampling process between the groups,
and this in turn leads to the identical updating of beliefs based on the group identity.
Hence, non-discrimination survives and perpetuates in steady state.

However, a non-discriminatory equilibrium need not be the unique or even stable
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steady state.2 There could be another steady state that is discriminatory in the follow-
ing sense. Suppose buyers direct search attention toward G1 sellers (G-rated sellers
in group 1) away from G2 sellers (G-rated sellers in group 2). This leads to G1 sellers
being sampled more often than G2 in the steady state and to a more intensive weeding
out of type L sellers from G1 sellers than from G2 sellers. This in turn leads to G1 sell-
ers enjoying more favorable posterior beliefs than G2 sellers and validates the more
intensive attention G1 sellers are receiving. Hence, the feedback loop is now com-
plete, supporting a discriminatory equilibrium in which buyers favor G1 sellers over
G2 sellers. Interestingly, the same feedback loop does not exist between B1 and B2
sellers, the B-rated sellers in groups 1 and 2, respectively. Say B1 sellers receive more
attention from buyers than B2 ones. This makes the ratings of former sellers more
accurate, which, however, leads to a less favorable belief for those sellers. Hence, the
initial shift of the attention toward B1 gets self-corrected. In the steady state, therefore,
B1 and B2 sellers are treated identically.3

In sum, group 1 sellers are favored than group 2 sellers in this discriminatory equi-
librium, despite there being no payoff relevance of the group identity and no bias
in either the algorithmic rating/recommendation and belief updating. A discrimi-
natory equilibrium need not always exist, but interestingly, when it does, the non-
discriminatory steady state may become unstable; a small perturbation in terms of
buyers shifting their attention toward one group may break non-discriminatory equi-
librium and trigger a shift that leads to a discriminatory equilibrium. Our analysis
shows that a discriminatory equilibrium exists if the matching friction is small and
social learning friction is of intermediate value. This suggests that the advance of the
online marketplace, as measured by the reduction of these frictions, may have a non-
monotonic effect on discrimination. The economy could very well begin with high
enough frictions on both accounts that support only the non-discriminatory equilib-
rium. With an advance in matching and social learning, frictions may diminish and a
discriminatory equilibrium may emerge.

The current paper joins the long-line of research on discrimination. In particular,
our research follows the literature of statistical discrimination originated by Phelps
(1972) and Arrow (1973).4 Unlike the tasted-based theories of discrimination (see
Becker (1957)), this literature explains group inequality and stereotype as resulting

2 As will be seen, stability is defined in the usual manner, by the robustness of an equilibrium to small perturbations.
3 Note that this is observationally equivalent to firms paying more attention to the workers in one group than those in the other,

resulting in differential rewarding across the groups for (perceived) high quality. Interestingly, this behavior is consistent with the
empirical findings of Bertrand and Mullainathan (2004) and Bartoš et al. (2016): Bertrand and Mullainathan (2004) performed
field experiments by sending out fictitious résumés to help-wanted ads under white-sounding and black-sounding names. They
find that not only résumés by white-sounding names receive more call-backs for interview s than those by black-sounding names,
but the call-back rates gap between high-quality and low-quality résumés is significantly higher for the former group than for
the latter. Similar field experiments were performed by Bartoš et al. (2016) on the pre-screening behavior in job application and
apartment application contexts; they find that the advantaged group receives more scrutiny in the former (“cherry-picking”)
context whereas a disadvantaged group receives more scrutiny in the latter (“lemon-dropping”) context.

4 The earlier theories focus on taste-based discrimination. See Becker (1957).
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from rational statistical inferences on groups’ characteristics. In Phelps (1972) and its
modern incarnations, discrimination originates from exogenous differences in group
characteristics,5 whereas Arrow (1973) derives average group differences, and the as-
sociated differential treatment, as an endogenous equilibrium behavior. In the same
spirit, Coate and Loury (1993b) and the subsequent literature focus on workers’ skill
acquisition as a source of discriminatory group stereotyping:6 if employers view a cer-
tain group as less skilled and thus become more selective against them for assigning
higher-paying positions, the affected group will indeed lose incentives for acquiring
skills, thus fulfilling the employers’ adverse beliefs on that group.

Our paper is also related to the burgeoning literature in computer science on ethical
algorithm (see Dwork et al. (2012), Corbett-Davies et al. (2017), Kearns et al. (2018),
and Kleinberg et al. (2018), among others). This literature explores ways to ensure
that decision/recommendation algorithms satisfy a variety of fairness standards. The
current paper qualifies the effectiveness of this approach, by identifying the possibility
that algorithmic fairness alone may not be enough to accomplish a fairness goal. In
our model, a discriminatory equilibrium may arise even when the rating algorithm
treats both groups identically, as long as agents (buyers in our model) can interpret the
ratings in a way that can lead to discriminatory sampling. The debate on algorithmic
fairness must keep this aspect of social learning into consideration, so that either the
interpretational scope is totally eliminated to guarantee outcome fairness, an approach
that appears to be in line with the prescription of Kleinberg et al. (2018), or in case that
is impossible, the ratings system may be designed to counteract the interpretational
response by the users.

2 Model

We consider a frictional search market in which buyers (or firms) search for sellers
(or workers) of unknown types.

Players. There is a unit mass of sellers in the market. The sellers are indexed by
two characteristics, type and group. The type of a seller represents any payoff-relevant
information, such as the productivity or quality of the seller. At a given moment, a
seller is either of high type (H) or low type (L). Each seller’s type, however, changes
according to a continuous-time Markov process. Specifically, each type turns into the
other type at rate δ ą 0. The group of a seller describes her payoff-irrelevant identity,

5 Cornell and Welch (1996) explains discrimination and its inter-generational persistence from group-specific evaluational
familiarity. Bohren et al. (2019) and Monachou and Ashlagi (2019) focus on the “mis-specified” prior beliefs as a source of
discrimination.

6 See Coate and Loury (1993a), Mailath et al. (2000), Moro and Norman (2003), Norman (2003), and a survey by Fang and Moro
(2011).
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such as her gender, ethnic or racial identity. Each seller belongs to either group 1 or 2,
with ` “ 1, 2 being used as the generic index. Unlike her type, a seller’s group does
not change over time. For strong symmetry between the two groups, we assume that
both groups have the same total size (i.e., each group has mass 1{2).

On the other side of the market, there is mass Qpą 0q of buyers. They search for
sellers based on public information about sellers. Specifically, they condition their
search on sellers’ two observable characteristics, rating j “ G, B and group identity
` “ 1, 2.

The sellers who share the same observable characteristics, pj, `q, and the buyers that
search for them constitute a “submarket.” Clearly, each submarket can be indexed by
pj, `q. Sellers are assigned to those submarkets according to their (perfectly persistent)
group identity and (evolving) ratings, while buyers choose which submarket to enter.

Matching. We adopt the canonical search-and-matching framework to model an in-
teraction between sellers and buyers. We assume that matching technology is common
across all submarkets and exhibits constant returns to scale. The latter assumption im-
plies that all agents’ matching rates in each submarket depend only on the ratio λ of
buyers to seller in the submarket. We let ψpλq denote a seller’s matching rate and φpλq

denote a buyer’s matching rate. Note that consistency requires that ψpλq “ λφpλq for
all λ ą 0: matching is one-to-one, and thus the number of matched sellers should be
identical to that of matched buyers at each point in time.

For expositional clarity, we focus on the parametric case where ψpλq “ λk for some
k P p0, 1q. This corresponds to the constant-returns-to-scale Cobb-Douglas matching
function and, therefore, satisfies various natural and desirable properties.7 In partic-
ular, ψp0q “ 0, limλÑ8 ψpλq “ 8, ψ1pλq ą 0, and ψ2pλq ă 0. In addition, φp0q “ 8,
limλÑ0 φpλq “ 0, φ1pλq ă 0, and φ2pλq ą 0. As becomes clear later, most of our results
require only these standard properties of the matching function and, therefore, easily
generalize beyond our parametric case.

Trade. Once a buyer and a seller meet, they transact instantaneously and go back to
the market.8 The transaction yields surplus uH if the seller’s type is H and uL if the
seller’s type is L, where uH ą uL ě 0. If a buyer transacts with a seller, the buyer
pays ppě 0q to the seller. In order to exclude trivial cases, we assume uH ą p (so that

7 Formally, let f pb, sq denote the measure of matched formed at each instant when there are mass b of buyers and mass s of
sellers. If f pb, sq “ bks1´k , then the rate at which each individual seller is matched with a buyer is given by

ψ pλq ” ψ

ˆ

b
s

˙

“
f pb, sq

s
“

bks1´k

s
“

ˆ

b
s

˙k
“ λk .

8 The assumption on instantaneous transaction makes the model more naturally applicable for one-shot relationship such as
free-lance independent work and insurance or loan purchase. It is conceptually straightforward, but technically complicated, to
extend our model to capture the canonical persistent employment relationship.
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there are gains from trade when a seller is of type H), but consider both the case when
uL ą p and the case when uL ď p.

Ratings. Market accumulates information about sellers through simple summary in-
dices, called “ratings.” There are two possible ratings: G (as in “good”) and B (as in
“bad”). When searching for sellers, buyers can only observe the current rating of the
sellers; no information about sellers’ underlying types or their past ratings history is
available to them. After each transaction, the seller’s rating may be updated to reveal
her type. Specifically, with probability α P p0, 1s, a B-rated seller with type H receives
G rating, and a G-rated seller with type L receives G rating. A seller with correct rating
keeps the same rating after a transaction. With remaining probability 1´ α, the seller’s
rating remains unchanged. Note that due to the changing environment (or changing
type), a correct rating may turn inaccurate.

Buyers’ beliefs over a seller’s type will depend on the rating, and the (equilibrium)
behavior of all players in the system. In particular, the belief may depend on the group
identity. If the two groups of agents are treated differently, the inference a buyer makes
on a seller with a given rating depend nontrivially on her group identity. This will be
made clear in our analysis.

Solution Concept. We consider a steady state of the economy in terms of the distri-
bution of sellers of different types, ratings and group identity, and the beliefs that the
buyers hold for each submarket. Specifically, an equilibrium is a tuple tpP`

ij, λ`
j , µ`

j qu
`“1,2
i“H,L,j“G,B

in the stationary distribution, where P`
ij is the mass of sellers of type i with rating j and

group `, λ`
j is the ratio of buyers to sellers in submarket pj, `q, and µ`

j P r0, 1s is the
public belief on the sellers in submarket pj, `q, i.e., the probability that they are of type
H. Note that the masses of buyers who participate in alternative submarkets are de-
termined by the first components.

3 Non-Discriminatory Equilibrium

We begin by studying equilibria in which buyers search for sellers only based on
their ratings and do not distinguish between the two groups. As in other statistical-
discrimination models, this equilibrium always exists and provides a benchmark for
discriminatory equilibria studied in Section 4. Several technical results in this section
will also be useful in Section 4.
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3.1 Steady-State Distribution

In non-discriminatory equilibrium, buyers condition their search strategies only on
sellers’ ratings. Therefore, effectively, there are only 2 submarkets indexed by rating
j “ G, B. For each j “ G, B, let qj denote the measure of buyers that join submarket j
and Pij denote the measure of type i “ H, L sellers with rating j “ G, B. Then, the ratio
of buyers to sellers (“queue length”) in submarket j “ G, B is given as follows:

λj ”
qj

PHj ` PLj
.

Our matching technology implies that a j-rated seller is hired by a buyer at rate ψj ”

ψpλjq, while a buyer in submarket j successfully finds a seller at rate φj ” ψj{λj.
In steady state, Pij’s must satisfy the following system of equations:

PHGδ “ PLGδ` PHBψBα,

PLGpδ` ψGαq “ PHGδ,

PHBpδ` ψBαq “ PLBδ, and

PLBδ “ PHBδ` PLGψGα.

In each equation, the left-hand side represents the outflow of sellers from status pi, jq,
while the right-hand side quantifies the corresponding inflow. For example, consider
PHG. Due to our rating technology (with no false negative), a type H seller with rating
G changes his status only when his type changes to L, which occurs at rate δ (thus,
´PHGδ). On the other hand, a type L seller with rating G becomes type H at rate δ

(thus `PLGδ). In addition, a type H seller with rating B improves his rating to G once
he meets a buyer and receives a good rating (thus `PHBψBα). In steady state, net flow
must be equal to 0, which yields the first equation.

The following result is straightforward from the above equations.

Lemma 1 (Steady-state Distribution). In steady state, the measure of sellers with type i “
H, L and rating j “ G, B is given as follows:

PHG “
ψBpδ` ψGαq

2 pδpψG ` ψBq ` αψGψBq
, PLG “

ψBδ

2 pδpψG ` ψBq ` αψGψBq
,

PHB “
ψGδ

2 pδpψG ` ψBq ` αψGψBq
, PLB “

ψGpδ` ψBαq

2 pδpψG ` ψBq ` αψGψBq
.

Letting µj ” PHj{pPHj ` PLjq for each j “ G, B,

µG “ 1´
δ

2δ` ψGα
and µB “

δ

2δ` ψBα
.
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Proof. See the appendix. Q.E.D.

Notice that for each j “ G, B, the fraction µj of type H sellers in submarket j de-
pends only on ψj. This is due to the fact that ψj1 has the same proportional effect on PHj

and PLj, and thus PHj{PLj is independent of ψj1 . More concretely, our rating technology
involves no type-I errors, and thus a seller’s rating improves from B to G only when
her type is H, while her rating falls from G to B only when her type is L. This implies
that in each submarket, the mass of sellers with wrong rating (PLG in submarket G,
and PHB in submarket B) is fully determined by the mass of sellers with correct rating
(PHG in submarket G, and PLB in submarket B) and the matching rate of the submarket
(see the second and the third equations in the above system of equations). This drives
the convenient independence property of µj.

In addition, µG increases in ψG, while µB decreases in ψB. This is intuitive: an
increase in ψG or ψB can be interpreted as better/faster screening of sellers. Therefore,
a seller with rating G becomes more likely to be type H as ψG increases. Similarly, a
seller with rating B becomes less likely to be type H (more likely to be type L) as ψB

increases.

3.2 Buyers’ Expected Payoffs

Let uj denote a buyer’s flow expected payoff when he targets j-rated sellers (i.e.,
searches in submarket j). Given the steady-state queue length λj and the fraction µj of
type H sellers, uj is given by

uj “ φjpµjuH ` p1´ µjquL ´ pq.

There are the following two cases to consider.

(i) uj ď 0: This case arises if and only if9

µjuH ` p1´ µjquL ´ p ď 0 ô µj ď µ ”
p´ uL

uH ´ uL
.

This is when a buyer’s utility from a type L seller falls short of the price p (i.e.,
uL ă p) and the probability that a buyer meets a type L seller is sufficiently large.
In this case, clearly, no buyers search in submarket j, that is, λj “ 0.

(ii) uj ą 0: Opposite to (i), this arises if and only if µj ą µ. In addition, it must be
that a positive measure of buyers search in submarket j and, therefore, λj ą 0: if
λj “ 0, then a participating buyer would meet sellers infinitely frequently, each

9 If λj “ 8 then φj “ 0, and thus uj “ 0 even if µjuH ` p1´ µjquL ´ p ą 0. However, this case clearly cannot be sustained in
equilibrium.
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λG0

uG

λGλG λG

Figure 1: The blue solid curves shows buyers’ expected payoffs in submarket G, as
a function of λG. The common parameter values used for this figure are δ “ α “ 0.1,
uH “ 2, and uL “ w “ 1 (which leads to k “ 0.8536). k “ 0.7682 in the left panel, while
k “ 0.8828 in the right panel.

of whom gives the buyer a positive expected payoff µjuH ` p1´ µjquL ´ p ą 0),
and thus his expected payoff becomes unbounded.

Recall that φj “ φpλjq and in steady state, µj is also a function only of λj (see
Lemma 1). Therefore, uj also can be interpreted as a function of λj. Interestingly and
importantly, whereas uBpλBq is always monotone, uGpλGq may not be monotone, as
formally reported in the following lemma (and shown in Figure 1).

Lemma 2. Suppose that pyH ` yLq{2 ą w. For both j “ G, B, limλjÑ0 ujpλjq “ 8,
limλjÑ8 ujpλjq “ 0, and ujpλjq is continuous. uBpλBq is always strictly monotone (decreas-
ing), while uGpλGq is monotone if and only if

k ď k ”
1`

b

1´ uH´uL
2puH´wq

2
.

If k ą k, then there exist λGpą 0q and λGpą λGq such that uGpλGq is strictly increasing if
and only if λG P pλ, λq.

Proof. See the appendix. Q.E.D.

This result is due to the fact that µBpλBq is decreasing in λB, while µGpλGq is in-
creasing in λG (Lemma 1). Since a seller’s matching rate φpλq always decreases with
relatively more sellers (i.e., higher λ), the utility effect of increasing λ is always nega-
tive in submarket B but ambiguous in submarket G. Lemma 2 shows that the quan-
tity effect (through φpλGq) always dominates the quality effect (through µGpλGq) if
λG is sufficiently small or sufficiently large: the former is because the quantity effect
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(φ1pλGq “ pk´ 1qλk´2
G ) is arbitrarily large when λG is close to 0, while the latter is be-

cause as λG tends to infinity, the quality effect vanishes faster than the quantity effect.
Given these observations, it is intuitive that the quality effect can outweigh the quan-
tity effect, and thus uGpλGq decreases, over an interval if and only if k is sufficiently
close to 1 (so that given λG ą 0, φ1pλGq “ pk´ 1qλk´2

G is close to 0).

3.3 Equilibrium Characterization

We now characterize non-discriminatory steady-state equilibria of our model. The
following result provides a necessary and sufficient condition for there to be no trade
in equilibrium.10

Proposition 1. If puH ` uLq{2 ď p, then it is the unique non-discriminatory steady-state
equilibrium outcome that buyers do not search for sellers, regardless of their ratings (i.e., λG “

λB “ 0). Conversely, if puH ` uLq{2 ą p, then buyers search for both ratings of sellers (i.e.,
λG, λB ą 0).

Proof. Suppose that λj “ 0. Since ψj “ ψpλjq “ 0, by Lemma 1, µj “ 1{2. But then,

µjuH ` p1´ µjquL ´ p “
uH ` uL

2
´ p.

Therefore, λj “ 0 (no trade in submarket j) can be an equilibrium if and only if puH `

uLq{2 ď p. Since this condition is independent of rating j, it is either λG “ λB “ 0 or
λG, λB ą 0. Q.E.D.

This result is fairly intuitive. Since both types of sellers change their types at an
identical rate, the unconditional proportion of type H sellers is 1{2 in steady state:
recall that in Lemma 1, pPHG ` PHBq{

ř

i,j Pij “ 1{2. If there is no trade, then there is
also no market learning, that is, a seller’s rating becomes uninformative of his type
(observe that µG “ µB “ 1{2 if λG “ λB “ 0). Therefore, no trade outcome can be
sustained if and only if puH ` uLq{2 ď p.

Now consider the case where puH ` uLq{2 ą p, so that λG, λB ą 0. In this case,
searching buyers receive positive surplus (i.e., µG, µB ą 0), and thus it is necessar-
ily the case that all buyers search. Therefore, in equilibrium, the following “market
clearing” condition must hold:

qG ` qB “ Q.

Since λj “ qj{pPHj ` PLjq for each j “ G, B, this condition can be rewritten, in terms of

10 Note that Proposition 1 argues only uniqueness of no trade outcome, not that of symmetric steady-state equilibrium. This is
because in no-trade equilibrium, there is no seller movement between submarkets G and B, and thus any distribution of sellers
can be sustained as long as µG “ µB “ 1{2.
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pλG, λBq, as follows:

Q “ λGpPHG ` PLGq ` λBpPLG ` PLBq

“
λGψBp2δ` αψGq

2pδψG ` δψB ` αψGψBq
`

λBψGp2δ` αψBq

2pδψG ` δψB ` αψGψBq
. (1)

In addition, in equilibrium, a buyer must be indifferent between submarket G and
submarket B, that is, the following buyer-indifference condition should hold:

φGpµGuH ` p1´ µGquL ´ pq “ uGpλGq “ uBpλBq “ φBpµBuH ` p1´ µBquL ´ pq. (2)

This equation shows a buyer’s trade-off between ratings G and B. By Lemma 1, it is
always the case that a seller is more likely to be type H when his rating is G than when
his rating is B (i.e., µG ě 1{2 ě µB). This makes rating G attract relatively more buyers
than rating B, which reduces a buyer’s chance to hire a G-rated seller (i.e., λG ą λB,
and thus φG ă φB). In equilibrium, λG and λB are such that a buyer is indifferent
between the two submarkets.

Combining the two conditions leads to the following result.

Proposition 2. If puH ` uLq{2 ą w, then there always exists a non-discrimatory steady-state
equilibrium in which λG ą λB ą 0.

Proof. Let λMC
B pλGq be the implicit function defined by equation (1). It is straightfor-

ward that limλGÑ0 λMC
B pλGq “ 8 and limλGÑ8 λMC

B pλGq “ 0. In addition, since the
right-hand side of equation (1) increases in both λG and λB, λMC

B pλGq is monotone.11

Similarly, let λBI
B pλGq be the implicit function defined by equation (2). By Lemma 2,

limλGÑ0 λBI
B pλGq “ 0, limλGÑ8 λBI

B pλGq ą 0, and λBI
B pλGq is continuous. Therefore,

there exists λ˚G ą 0 such that λ˚B ” λMC
B pλGq “ λBI

B pλGq. By construction, the pair
pλ˚G, λ˚Bq constitute a non-discriminatory steady-state equilibrium. Q.E.D.

Figure 2 explains the argument behind Proposition 2. The red dashed curves rep-
resent the market clearing condition (1). They are always decreasing from infinity to
zero as λG increases, which is because the right-hand side is increasing in both λG and
λB. The blue solid curves capture the buyer-indifference condition (2). As shown in
Figure 2, they are not necessarily monotone, which is because, whereas uBpλBq always
decreases, uGpλGq may increase over an interval (Lemma 2). Nevertheless, they are
always continuous, start from 0 and eventually stay away from 0, and thus the two
curves always intersect.

11 For the result with λG , one can express the right-hand side as follows:

pλG{ψGqψBp2δ` αµGq

2pδ` δψB{ψG ` αψBq
`

λBψGp2δ` αψBq

2pδ` δψB{ψG ` αψBq
.

The desired result follows from the fact that φpλq “ ψpλq{λ is decreasing in λ, while ψpλq is increasing in λ.
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λMC
B pλGq
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λG0

λBI
B pλGq

λMC
B pλGq

Figure 2: The blue solid curves depict the buyer-indifference condition (2), while the
red dashed curves depict the market clearing condition (1). The common parameter
values used for this figure are δ “ 1, α “ 0.1, uH “ 2, and uL “ w “ 1 (which leads to
k “ 0.8536). k “ 0.8682 in the left panel, while k “ 0.9121 in the right panel.

As exemplified by the right panel of Figure 2, there may exist multiple equilibria.
This is, again, because the buyer-indifference condition may produce a non-monotone
relationship between λG and λB (i.e., the implicit function λBI

B pλGq may not be mono-
tone). Clearly, if k ď k (in which case λBI

B pλGq is monotone), then there always ex-
ists a unique non-discriminatory equilibrium. Even if k ą k, it is often the case that
non-discriminatory equilibrium is unique (see the left panel). However, there is a non-
negligible set of parameter values that yield multiple equilibria.12

4 Discriminatory Equilibrium

In this section, we investigate discriminatory equilibria in which buyers condi-
tion their search strategies on sellers’ identities as well as their ratings. We first de-
rive a condition under which such equilibria exist and then compare them to non-
discriminatory equilibria studied in Section 3.

4.1 Notation and Assumption

We use the same notation as in Section 3 but distinguish the two groups with super-
scripts ` “ 1, 2. For example, we denote by q`j the measure of buyers who are targeting
j-rated sellers in group `, and P`

ij the measure of sellers with type i, rating j, and group
`.

12 If there are multiple equilibria, then they are ranked in terms of buyer surplus: since the market-clearing condition is always
decreasing in λG , if there are two equilibria, pλG , λBq and pλ1G , λ1Bq, and λG ă λ1G , then λB ą λ1B. In this case, buyers’ expected
payoffs are necessarily higher with pλ1G , λ1Bq, because µB is decreasing in λB (see Lemma 1), and thus uBpλ

1
Bq has not only a higher

value of φpλBq but also a higher value of µB.
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Within each group ` “ 1, 2, sellers follow the same transition dynamics as in the
non-discriminatory case. Therefore, Lemma 1 applies unchanged to each group. In
particular, for each ` “ 1, 2, the proportion of type H sellers in submarket j` is given
as follows:

µ`
G ” µGpλ

`
Gq “ 1´

δ

2δ` ψpλ`
Gqα

and µ`
B ” µBpλ

`
Bq “

δ

2δ` ψpλ`
Bqα

.

In addition, buyers’ expected payoffs are determined as follows:

u`
j pλ

`
j q “ φpλ`

j qpµ
`
j uH ` p1´ µ`

j quL ´ pq.

Proposition 1 also applies unchanged. Specifically, by the same logic and proof
as for non-discriminatory equilibria, there is no trade in any submarket if and only if
puH ` uLq{2 ď p. In addition, if puH ` uLq{2 ą p, then trade must take place in all
four submarkets. Since the analysis is trivial for the no-trade case, from now on, we
maintain the following assumption:

Assumption 1. puH ` uLq{2 ą p, and thus λ`
j ą 0 for all j “ G, B and ` “ 1, 2.

4.2 Existence of Discriminatory Equilibrium

We begin by presenting a necessary condition for the existence of discriminatory
equilibria, namely that the function uGpλqmust be non-monotone, which is the case if
and only if k ą k.

Proposition 3. If uGpλq is monotone (i.e., k ď k), then there does not exist a discriminatory
equilibrium in which λ1

B ‰ λ2
B or λ1

G ‰ λ2
G.

Proof. In equilibrium, buyers must be indifferent over all 4 submarkets, that is,

uGpλ
1
Gq “ uBpλ

1
Bq “ uBpλ

2
Bq “ uGpλ

2
Gq.

Since uBpλq is monotone, it is always the case that λ1
B “ λ2

B. If uGpλq is also monotone,
then it is also the case that λ1

G “ λ2
G. Therefore, a discriminatory equilibrium cannot

exist. Q.E.D.

Let us first explain how the non-monotonicity of uGpλq can lead to the existence of
discriminatory equilibria. Suppose that uGpλq is non-monotone, and fix λB such that
uBpλBq “ uGpλGq “ uGpλ

1
Gq for two distinct values, λG ă λ1G: in Figure 3, it suffices to

choose λB P rλB, λBs. Given λB and λG, let Q1 be the value that supports pλB, λGq as a

14
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B pλGq

Figure 3: The blue solid curve represents the buyer-indifference condition (2). The
parameter values used for this figure are δ “ 0.2, α “ 0.5, uH “ 3, uL “ 1, w “ 1.5
(which leads to k “ 0.7887), and k “ 0.8204.

non-discriminatory equilibrium, that is,

Q1
”

λGψpλBqp2δ` αψpλGqq

2pδψpλGq ` δψB ` αψpλGqψpλBqq
`

λBψpλGqp2δ` αψpλBqq

2pδψpλBq ` δψpλBq ` αψpλGqψpλBqq
.

Similarly, let Q2 be the corresponding value for pλB, λ1Gq, that is,

Q2
”

λ1GψpλBqp2δ` αψpλ1Gqq

2pδψpλ1Gq ` δψB ` αψpλ1GqψpλBqq
`

λBψpλ1Gqp2δ` αψpλBqq

2pδψpλBq ` δψpλBq ` αψpλ1GqψpλBqq
.

Suppose that Q “ Q1 ` Q2, and consider a steady state in which λ1
B “ λ2

B “ λB,
λ1

G “ λ1G, and λ2
G “ λG. By construction, buyers are indifferent over all 4 submarkets,

that is,
uBpλ

1
Bq “ uBpλ

2
Bq “ uGpλ

1
Gq “ uGpλ

2
Gq.

In addition, for both ` “ 1, 2, we have

Q`
“ λ`

GpP
`
HG ` P`

LGq ` λBpP`
HB ` P`

LBq.

Therefore, this (discriminatory) strategy profile is a steady-state equilibrium.
This discriminatory equilibrium gives higher expected payoffs to group 1 sellers

than to group 2 sellers. Intuitively, this is because the two groups have the same match-
ing rate ψpλBqwith rating B, but the former have a higher matching rate than the latter
with rating G (i.e., ψpλ1

Gq ą ψpλ2
Gq).

13 Let us emphasize that this discriminatory out-

13 To be precise, the following composition effect needs to be taken into account: more group 2 sellers are G-rated than group
1 sellers (i.e., P1

G ă P2
G). However, it can be shown that this composition effect never outweigh the effect due to the difference in

matching rates: the unconditional matching rate P`
GψGpλ

`
Gq ` P`

BψBpλ
`
Bq is increasing in both λG and λB.
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come arises even if the two groups have no fundamental differences (including the
size of the group) and, perhaps more importantly, despite the fact that there may ex-
ist a unique non-discriminatory equilibrium. In other words, unlike in some related
papers, the possibility of discriminatory equilibria relies neither on any intrinsic differ-
ences between the two groups nor on the equilibrium multiplicity of our underlying
environment.

The mechanism behind our discriminatory equilibria is the novel feedback loop
between ratings and trade. More buyers search for group 1 sellers because their ratings
are more informative (i.e., µ1

G ą µ2
G). Conversely, group 1 ratings are more accurate

because they are hired and reviewed more frequently (i.e., ψpλ1
Gq ą ψpλ2

Gq).
As shown by Proposition 3, this feedback effect never results in the existence of

discriminatory equilibria if uGpλq is monotone. It may not work even if uGpλq is not
monotone, depending on Q. Nevertheless, the following result shows that whenever
uGpλq is not monotone, there is a positive measure of Q’s that give rise to discrimina-
tory equilibria.

Theorem 1. If uGpλq is not monotone (i.e., k P pk, 1q), then there exist Qpą 0q and Qpą Qq
such that a discriminatory equilibrium exists if and only if Q P pQ, Qq.

Proof. See the appendix. Q.E.D.

In order to see why a discriminatory equilibrium does not exist if Q ă Q or Q ą Q,
note that in our model, buyers use group identities only to improve informational
content of ratings. If Q is sufficiently small, then λ`

j « 0 for all j`, and thus ratings
do not contain much information (i.e., µ`

j « 1{2 for all j`). To the contrary, if Q is
sufficiently large, then each λ`

j is large, and thus ratings convey precise information
about sellers’ types (i.e., for both ` “ 1, 2, µ`

B « 0, while µ`
G « 1). In both cases, group

identities do not add much more information to ratings, and thus it is unlikely that
buyers condition their search strategies on them.

4.3 Stability of Ratings-based Discrimination

The analysis so far has demonstrated that non-discriminatory and discriminatory
equilibria can coexist. The possibility of discriminatory equilibria is intriguing by it-
self, but they would be unlikely to matter in practice if they could not be sustained in
any robust manner. We now examine whether (and when) discriminatory equilibria
exhibit desirable stability properties.

Since discriminatory equilibria can exist only when uGpλq is not monotone, we
mainly focus on the case where k P pk, 1q throughout this subsection. In addition, so as
to streamline the analysis, we also restrict attention to the parameter space that yields
a unique non-discriminatory equilibrium.
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Assumption 2. For all Q P R`, there exists a unique non-discriminatory equilibrium.

Since the market clearing condition is monotone in both λG and λB, this assump-
tion holds whenever the function uGpλq does not increase too sharply, which is guar-
anteed if k is close to k.

In order to provide a relevant stability concept, let Upqq denote buyers’ equilib-
rium expected payoffs in the non-discriminatory equilibrium when the total measure
of buyers is given by 2q. In other words, if pλB, λGq is a non-discriminatory equilib-
rium with 2q measure of buyers, then Upqq “ uBpλBq “ uGpλGq. Proposition 2 and
Assumption 2 ensure that UpQq is well-defined for all Q.

Both non-discriminatory and discriminatory equilibria can be summarized by a
pair pQ1, Q2q such that Q1 ` Q2 “ Q (market clearing) and UpQ1q “ UpQ2q (buyer
indifference among all 4 submarkets). The only difference between them is that an
equilibrium is non-discriminatory if Q1 “ Q2, while it is discriminatory if Q1 ‰ Q2.
Based on this observation, we make use of the following tractable notion of stability.

Definition 1. An equilibrium with pQ1, Q2q is stable if U1pQ1q `U1pQ2q ď 0 and unstable
otherwise.

In order to understand this definition, fix a steady-state equilibrium with pQ1, Q2q,
and suppose that a small measure of buyers move from group 1 to group 2, so that
Q1 ´ ∆ measure of buyers search for group 1 sellers and Q2 ` ∆ measure of buyers
search for group 2 sellers. After the change, if buyers targeting group 1 receive a
higher expected payoff than those targeting group 2, then those buyers who left group
1 will move back to group 1, restoring the original equilibrium with pQ1, Q2q. If it is
the opposite, then even more buyers would move to group 2, making the economy
drift further away from the equilibrium pQ1, Q2q. Clearly, the (original) equilibrium is
stable in the former case and unstable in the latter case. Our stability definition captures
this idea in a particularly simple fashion. For the simple condition in the definition,
observe that, since UpQ1q “ UpQ2q,

UpQ1
´ ∆q ě UpQ2

` ∆q ô ´
UpQ1q ´UpQ1 ´ ∆q

∆
ě

UpQ2 ` ∆q ´UpQ2q

∆
,

which reduces to U1pQ1q `U1pQ2q ď 0 in the limit as ∆ tends to 0.
We first apply our stability notion to non-discriminatory equilibria.

Proposition 4. Fix a non-discriminatory equilibrium in which λ`
B “ λB and λ`

G “ λG for
both ` “ 1, 2. The equilibrium is stable if and only if uGp¨q is decreasing at λG.

Proof. In a non-discriminatory equilibrium, Q1 “ Q2 “ Q{2. Therefore, it is stable if
and only if U1pQ{2q ď 0. Since the market clearing condition (1) always expands as

17



Q increases, this is equivalent to the equilibrium value of λB increasing in Q (so that
uBpλBq decreases), which in turn holds if and only if uGp¨q is decreasing at λG.

Q.E.D.

Recall that if k ď k, then there exists a unique steady-state equilibrium, which
is non-discriminatory (Propositions 2 and 3). Proposition 4 suggests that the unique
equilibrium is stable, which is desirable. It further suggests that even if a non-discriminatory
equilibrium coexists with discriminatory equilibria, the former may be stable, but not
always. If an equilibrium lies on a decreasing region of uGp¨q (either λG ď λG or
λG ě λG), then it is stable. Otherwise (i.e., λG P pλG, λGq), the equilibrium is unstable.

Can a discriminatory equilibrium be stable? The following result argues that (there
is a sense in which) discriminatory equilibria are more likely to be stable than non-
discriminatory equilibria.

Theorem 2. Whenever there exists a discriminatory equilibrium, there exists a stable discrim-
inatory equilibrium.

Proof. Suppose that a discriminatory equilibrium exists. By Theorem 1, this is the case
if and only if uGpλq is non-monotone (i.e., k P pk, 1q) and Q P pQ, Qq. Now consider the
function g : r0, Q{2q Ñ R such that

gpxq “ U
ˆ

Q
2
` x

˙

´U
ˆ

Q
2
´ x

˙

.

Since UpQq is finite, while limqÑ0 Upqq “ 8, gpxq ă 0 if x is sufficiently close to Q{2.
In addition, the existence of discriminatory equilibrium implies that there exists x˚ P
r0, Q{2q such that gpx˚q “ 0 (i.e., x˚ “ |Q1 ´Q2|{2). Combining these with continuity
of g, it follows that there exists x˚˚ P rx˚, Q{2q such that

gpx˚˚q “ 0 and g1px˚˚q ď 0.

The first condition implies that pQ{2´ x˚˚, Q{2` x˚˚q is a discriminatory equilibrium,
while the second condition implies that the equilibrium is stable. Q.E.D.

Note that Theorem 2 does not claim that all discriminatory equilibria are stable.
There may exist an unstable discriminatory equilibrium. Theorem 2 implies that if
such an unstable equilibrium exists, then there exists another discriminatory equilib-
rium that is stable. Of course, it also implies that if there is a unique discriminatory
equilibrium, then it is necessarily stable.
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4.4 Rating Quality and Discrimination

As ratings have become increasingly more prevalent, the associated technology
also has improved, extracting more (accurate) information from more users (buyers).
Will such a technological advance bring more fairness by weakening the role of preju-
dice in decision making, or can it actually worsen discrimination? The following result
shows that the effect is non-monotone in general: an improvement in rating quality,
measured by β ” α{δ, may create discrimination initially.14 However, if the technology
becomes sufficiently effective, then discrimination becomes unsustainable.

Proposition 5. Fix k ą k and Q ą 0. There exist βpą 0q and βpą βq such that a discrimina-
tory equilibrium exists if and only if β P pβ, βq.

Proof. Let λ1 ” λβ1{k. Then, the two equilibrium equations, (1) and (2), can be written
as follows:

Qβ1{k
“

λ1Gψ1Bp2` ψ1Gq

2pψ1G ` ψ1B ` ψ1Gψ1Bq
`

λ1Bψ1Gp2` ψ1Bq

2pψ1G ` ψ1B ` ψ1Gψ1Bq
,

and

φpλ1Gq

ˆ

1` ψ1G
2` ψ1G

puH ´ uLq ` uL ´ p
˙

“ φpλ1Bq

ˆ

1
2` ψ1B

puH ´ uLq ` uL ´ pq
˙

.

Notice that β appears only on the left-hand side of the first equation, together with Q.
This implies that if there is an equilibrium (whether discriminatory or non-discriminatory)
with Q and β, then effectively the same equilibrium exists with Qβ1{k and 1 as well,
and vice versa. Combining this observation with Theorem 1, it follows that for a
fixed value of Q, a discriminatory equilibrium exists if and only if β P pβ, βq, where

Qβ1{k
“ Q and Qβ

1{k
“ Q. Q.E.D.

For an intuition, recall that discrimination arises in our model because a seller’s
group identity may provide extra information about her productive type. Such extra
information is of little value when ratings are sufficiently uninformative (i.e., β is close
to 0) or sufficiently informative (i.e., β is large). It can make a large enough difference
that can sustain a discriminatory equilibrium only when rating quality belongs to an
intermediate range.

5 Comparison to Coate and Loury (1993a)

Just as in our paper, Coate and Loury (1993a) (CL, hereafter) demonstrated that dis-
criminatory outcomes can arise despite no exogenous differences between two groups.

14 Note that α and δ always enter the steady-state system together (see Lemma 1), and thus they cannot be separately identified.
Intuitively, α measures how fast ratings get corrected, while δ measures how fast ratings become obsolete. Therefore, their ratio,
β “ α{δ, is the proper measure of rating quality.
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They considered a labor market model in which workers invest in their human capital
and employers assign a job to each worker based on the worker’s group identity and a
noisy signal about the worker’s human capital. They showed that discrimination can
result from a “self-fulfilling prophecy”: employers believe that group 2 workers are
less likely to invest in their human capital than group 1 workers and, therefore, assign
less group 2 workers to a better job than group 1 workers. Expecting lower returns,
group 2 workers indeed invest in their human capital less than group 1 workers.

The underlying mechanism behind statistical discrimination in our model differs
from that of CL in several important ways. First, the discrimination in our model
is based on rational inference on sellers’ transaction histories (“ratings”), and thus it
does not require endogenous human capital acquisition as in CL. The perspectives on
the cause of discrimination also differ. In the latter, “future” anticipated discrimina-
tion discourages the candidates in the discriminated group from acquiring skills, thus
validating the discrimination in equilibrium. In our theory, “past” discrimination dis-
advantages the discriminated sellers/workers in the inference formed by prospective
buyers/employers about their good ratings, thus perpetuating discrimination.

Second, unlike CL, the existence of discriminatory equilibrium in our model does
not rely on multiplicity of non-discriminatory equilibria. In CL, discrimination arises
when (and because) different groups coordinate on different equilibria, making mul-
tiplicity of non-discriminatory equilibria a necessary and sufficient condition for dis-
crimination. As explained in Section 4, in our model, a discriminatory equilibrium can
exist even if there is a unique non-discriminatory equilibrium.

Finally, while the non-discriminatory equilibrium is stable in CL, it is often unstable
in our model: as shown in Proposition 4 and Theorem 2, when a discriminatory equi-
librium exists, the non-discriminatory equilibrium can be unstable, while there always
exists a stable discriminatory equilibrium. This means that discrimination is a more
robust prediction in our model than in CL.

It is worth noting that, despite the above differences, the effect recognized in our
theory is consistent with, and further reinforced by, the force that Coate and Loury
identified. Namely, the payoff gap between H and L types is higher for group 1 than
for group 2 in the asymmetric equilibrium, suggesting that the incentive for becom-
ing type H will be higher for the former group if indeed the type is endogenous, as
envisioned by Coate and Loury (1993a).
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Appendix: Omitted Proofs

Proof of Lemma 1. Arranging the equations for PLG, PHB, and PLB, we get

PLG “
δ

δ` ψGα
PHG, PHB “

δ

δ` ψBα
PLB, and PLB “ PHB `

ψGα

δ
PLG.

Combining the latter two equations yields

PLB “
δ

δ` ψBα
PLB `

ψGα

δ
PLG “

ψGpδ` ψBαq

δψB
PLG.
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Since the total measure of workers is always equal to 1, we have

1 “ PHG ` PLG ` PLB` PHB “ PHG

„

1`
δ

δ` ψGα

ˆ

1`
ψGpδ` ψBαq

δψB

ˆ

1`
δ

δ` ψBα

˙˙

.

Arranging the terms, we get the expression for PHG. From there, we can also find the
expressions for PLG, PLB, and PHB as well. The results for µG and µB are immediate
from the solutions to PHG, PLG, PLB, and PHB. Q.E.D.

Proof of Lemma 2. Recall from Lemma 1 that

µG “ 1´
δ

2δ` ψGα
and µB “

δ

2δ` ψBα
.

Therefore,

uGpλq “ φpλqpµGyH ` p1´ µGqyL ´wq “
ψpλq

λ

ˆ

puH ´wq ´ puH ´ uLq
δ

2δ` ψpλqα

˙

,

and

uBpλq “ φpλqpµByH ` p1´ µBqyL ´wq “
ψpλq

λ

ˆ

δ

2δ` ψBα
pyH ´ yLq ` yL ´w

˙

.

The continuity of ujpλq follows from the same property of φpλq and µjpλq.
If λ tends to 0, then µj approaches 1{2 for both j “ G, B. The result that limλÑ0 ujpλq “

8 then follows from the fact that pyH ` yLq{2´ w ą 0 and limλÑ0 φpλq “ 8. For the
case when λ tends to infinity, observe that

µjpλq “ φpλqpµGyH ` p1´ µGqyL ´wq ď φpλqpyH ´wq.

The desired result is immediate because limλÑ8 φpλq “ 0.
The monotonicity of uBpλq follows from the fact that both φpλq and µB are strictly

decreasing in λ. For uGpλq, observe that

duGpλq

dλ
“

ˆ

ψ1

λ
´

ψ

λ2

˙ˆ

uH ´w´ puH ´ uLq
δ

2δ` ψα

˙

`
ψ

λ
puH ´ uLq

δαψ1

p2δ` ψαq2

“
1

p2δ` ψαq2

ˆˆ

ψ1

λ
´

ψ

λ2

˙

`

puH ´wqp2δ` ψαq2 ´ puH ´ uLqδp2δ` ψαq
˘

`
ψ

λ
puH ´ uLqδαψ1

˙

.

When ψpλq “ λk, duGpλq{dλ has the same sign as

hpλq “ ´p1´ kqpuH ´wqp2δ` ψαq2 ` p1´ kqpuH ´ uLqδp2δ` ψαq ` kpuH ´ uLqδαψ

“ ´p1´ kqα2
puH ´wqψ2

` p´4p1´ kqpuH ´wq ` uH ´ uLqδαψ

´2p1´ kqδ2
puH ` uL ´ 2wq.

23



hpλq is a quadratic equation of ψ, and its maximal value is equal to

puH ´ uL ´ 4p1´ kqpuH ´wqq2δ2

4p1´ kqpuH ´wq
´ 2p1´ kqδ2

puH ` uL ´ 2wq,

which has the same sign as

puH ´ uLq
2
´ 8p1´ kqpuH ´ uLqpuH ´wq ` 16p1´ kq2puH ´wq2

´8p1´ kq2puH ´wqpuH ` uL ´ 2wq

“ 8puH ´ uLqpuH ´wq
ˆ

p1´ kq2 ´ p1´ kq `
uH ´ uL

8puH ´wq

˙

.

Let k P p0, 1q be the unique value that equates the maximal value of hpλq to 0:

1´ k “
1´

b

1´ uH´uL
2puH´wq

2
ñ k “

1`
b

1´ uH´uL
2puH´wq

2
.

If k ď k, then hpλq ď 0 for any λ, which implies that uGpλq is monotone (decreasing).
If k ą k, then hpλq ď 0 has two solutions, λG and λG. Then, uGpλq is strictly increasing
if and only if λ P pλG, λGq. Q.E.D.

Proof of Theorem 1. Suppose that uGpλq is not monotone, that is, k ď pk, 1q. Then,
as shown in Lemma 2, there exist λGpą 0q and λGpą λGq such that uGpλq is strictly
decreasing if and only if λ P pλG, λGq. Let λB and λB be the values such that λB “

λBI
B pλGq (i.e., uBpλBq “ uGpλGq) and λB “ λBI

B pλGq (i.e., uBpλBq “ uGpλGq), respectively
(see Figure 3). Then, for each λB P rλB, λBs, there exist h1pλBq, h2pλBq, and h3pλBq such
that h1pλBq ď h2pλBq ď h3pλBq, with at least one inequality holding strictly if λB “ λB

or λB “ λB and both inequality holding strictly otherwise, and uBpλBq “ uGphmpλBqq

for all m “ 1, 2, 3. By construction, all hipλq’s are continuous over pλB, λBq. In addition,
h1pλBq and h3pλBq are strictly increasing, while h2pλBq is strictly decreasing (again, see
Figure 3).

By the explanation given just before Theorem 1, every discriminatory equilibrium
can be represented (produced) by two distinct points, λG and λ1G, that correspond
to the same value of λB P rλB, λBs. Combining this with the fact that for each λB P

rλB, λBs, there are three such values, h1pλBq, h2pλBq, and h1pλBq, it follows that each λB

yields three possible values of Q’s that lead to a discriminatory equilibrium. In other
words, for any pair pm, m1q such that m, m1 “ 1, 2, 3 and m ‰ m1, it is an equilibrium
that one group trades according to phmpλBq, λBq and the other group trades according
to phm1pλBq, λBq if the total measure of firms is given by

Q “ ΘphmpλBq, λBq `Θphmpλ
1
Bq, λBq,
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where ΘpλG, λBq is the measure of buyers necessary to support a steady-state equilib-
rium in which one group of sellers trade according to pλG, λBq, that is,

ΘpλG, λBq ”
λGψpλBqp2δ` αψpλGqq

2pδψpλGq ` δψB ` αψpλGqψpλBqq
`

λBψpλGqp2δ` αψpλBqq

2pδψpλBq ` δψpλBq ` αψpλGqψpλBqq
.

In order to show the interval structure of Q’s, for each m “ 1, 2, 3, let Im denote the
set of all Q’s that are associated with hmpλBq and hm`1pλBq. Formally, define

Im “
 

ΘphmpλBq, λBq `Θphm`1pλBq, λBq|λB P rλB, λBs
(

.

Since ΘpλG, λBq is continuous, each Im is an interval. Furthermore, I ”
Ť

m Im is also
an interval, because

lim
λBÑλB

h2pλBq “ lim
λBÑλB

h3pλBq and lim
λBÑλB

h1pλBq “ lim
λBÑλB

h2pλBq.

Q.E.D.
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