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1. Introduction

Extrapolation bias of investors has been widely documented.1 Thus, it is im-

portant to understand its implications for asset pricing. In this paper, we study

a Lucas exchange economy with independent and identically distributed (IID) div-

idend growth and a representative agent having a constant relative risk aversion

coefficient (RRA). Instead of rational expectations, we assume that the agent has

an extrapolative expectation in the sense that her expectation about future stock

returns is a weighted average of past realized returns, where the stock is the claim

to the aggregated consumption. Our objective is not to propose a model that fits

data but to isolate the effects of extrapolation on stock prices. Our setup allows us

to do this because the equilibrium with either rational expectation or extrapolative

expectation can be solved in closed form.

In our model, extrapolation has significant effects on the stock price. The price-

consumption ratio decreases with the sentiment (the weighted average of past real-

ized returns). When the sentiment is high, the agent expects both high consumption

growth rates (the income effect) and high discount rates (the intertemporal substitu-

tion effect). The intertemporal substitution effect dominates the income effect when

the RRA is greater than one,2; thus, high sentiment leads to a low price-consumption

ratio. In contrast, the price-consumption ratio is constant in the rational benchmark,

which is defined as the standard Lucas economy with rational expectations.

Extrapolation generates deficient return volatility in the sense that it is lower

than consumption volatility in our model. Intuitively, the return volatility is the

sum of consumption volatility and price-consumption ratio volatility, and the latter

is negative because price-consumption ratio decreases with the sentiment.

Furthermore, return volatility is insensitive to the sentiment. Indeed, price-

consumption ratio is an approximately exponential function of the sentiment because

both consumption growth rates and discount rates under the subjective measure are

linear functions of the sentiment. This implies that price-consumption ratio volatil-

ity as well as return volatility is insensitive to the sentiment. Extrapolation has a

first order effect on (subjective) expectations (almost by definition), while a second

order effect on volatilities.

In our model, the subjective risk premium is small because of deficient volatility

and is insensitive to the sentiment because the volatility is insensitive. The physical

risk premium is the sum of the subjective risk premium and a sentiment premium

1Vissing-Jorgensen (2004), Bacchetta, Mertens and van Wincoop (2009), Amromin and Sharpe
(2014), Greenwood and Shleifer (2014), and Kuchler and Zafar (2019), among others, document
that many individual and institutional investors have extrapolative expectations.
2We focus on the case when the RRA is greater than one because most asset pricing models study
this case. Our analytical results also hold for the case when the RRA is less than one. Some return
properties in the two cases are the opposite.
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that accounts for the difference between the subjective measure and the physical

measure and reflects the market price of sentiment. The sentiment premium is low

if RRA is greater than one. Low subjective risk premium and sentiment premium

lead to low physical risk premium is low.

The short rate is endogenously determined in our model, and it is volatile. Because

the risk premium is low and insensitive to the changes in the sentiment, the short

rate is largely equal to the expected stock return, which is specified exogenously

by return extrapolation. The short rate is volatile because the expected return is

volatile and extrapolation impacts the short rate more than the risk premium. In

fact, most features of the expected stock return generated by extrapolation, such

as the predictive ability of price-consumption ratio, are reflected in the short rate

rather than in the risk premium.

In our model, the stock returns exhibit momentum under the physical measure

when the RRA is greater than one. This is because stock returns have momentum

under the subjective measure by definition and the sentiment premium is small.

This result is different from most studies of extrapolation. On the other hand, when

the RRA is less than one, the sentiment premium dominates, which leads to return

reversal.

For finite horizons, we show that equilibrium exists with and without extrapo-

lation bias, so extrapolation in itself does not lead to instability. However, with

an infinite horizon, equilibrium may not exist due to violation of the transversality

condition, which happens even in the rational benchmark. Extrapolation leads to a

stricter transversality condition. More importantly, we show that the instability is

not caused by the feedback, different from the popular argument in the extrapolation

literature.

Barberis, Greenwood, Jin and Shleifer (2015) (BGJS) also studies asset pricing

with extrapolative expectations and is closely related to our paper. BGJS assumes

that the agents have a constant absolute risk aversion (CARA) utility and the con-

sumption follows a Brownian motion with drift. More importantly, BGJS assumes

that the short rate is a constant. BGJS obtains the closed-form solution with two

agents, one has extrapolative expectation while the other has rational expectation.

Their model generates many asset return features that are consistent with empirical

findings.

One key difference between BGJS and our model is in the short rate. Constant

short rate is a key assumption of BGJS and is a standard assumption under its set-

ting; however, the consumption goods market does not clear under this assumption.3

This allows for more freedom to fit data, and likely due to this, their model captures

3Loewenstein and Willard (2006) show that market clearing is important to avoid some problematic
implications on asset prices, such as arbitrage opportunities.
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many return features observed in the data. In our model, the short rate is endoge-

nous and volatile; in fact, the variation in the short rate (not the risk premium)

contributes to most variation in the expected return.

In Jin and Sui (2018), the aggregate consumption and the dividend of the ag-

gregate market follow different processes, and extrapolation significantly impacts

dividend while it slightly impacts the aggregate consumption. With extra flexibility

of recursive utility, they show that their model can explain many features of asset

returns observed in the data.

Nagel and Xu (2018) study asset pricing with fading memory. The best forecast

of consumption growth is a geometrically-decaying weighted average of past con-

sumption growth, similar to the best forecast of stock return under our model. The

decaying rate is small in their model, leading to a less volatile short rate, which fits

the data, while the decaying rate is large in the extrapolation literature, leading to

a volatile short rate in our paper. More significantly, they model fading memory

using loss of information. As a result, the agent’s information structure is not a fil-

tration, the law of iterated expectations does not hold, and buy-and-hold valuation

differs from resale valuation. This setup is a large and innovative departure from

the standard asset pricing framework. They also use a recursive utility and assume

that dividend is different from the aggregate consumption. With these assumptions,

their model can generate many return features observed in the data.

In summary, return extrapolation has large effects on stock prices but does not

help resolve asset pricing puzzles. Rather, it actually exacerbates these puzzles; it

leads to volatile short rate, deficient return volatility, and low equity premium (even

lower than the rational counterpart). Our results suggest that the extrapolation-

based resolutions of these puzzles in recent studies are due to additional assumptions

therein.

The remainder of the paper is organized as follows. Section 2 presents our model

setup. Section 3 solves for equilibrium. Section 4 studies asset pricing implications

of extrapolation. We discuss several effects specific to the extrapolation literature

in Section 5. Section 6 concludes. Appendix provides the proofs.

2. Model Setup

In this section, we build a Lucas-type model with return extrapolation. Our

objective is to isolate the effects of return extrapolation rather than to fit the real

data. Our model is standard except that the rational expectation is replaced by

an extrapolative expectation. This enables us to focus on and isolate the effects of

extrapolation bias.

Consider a continuous-time Lucas (1978) economy with one consumption good

and a representative agent with CRRA preference. There are two assets in the
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economy. One is a risky asset, the stock market, that is the claim to a continuous

aggregate consumption stream. Assume that the consumption follows

dCt = Ct(µcdt+ σcdZt), (2.1)

where the consumption growth rate µc and volatility σc are constants, and Z is

a standard Brownian motion under the physical measure P. The other asset is a

riskless asset with short rate rf that is determined in equilibrium. The riskless asset

is in net zero supply.

The agent maximizes the expected utility over consumption with a subjective dis-

count rate ρ > 0 by choosing consumption {Ct} and the fraction of wealth invested

in the stock {ϕt}:

max
{Ct,ϕt}Tt=0

Ee
0

[ ∫ T

0

e−ρt C
1−γ
t

1− γ
dt

]
, (2.2)

subject to the budget constraint

dWt =
[
Wt

(
rf + ϕt(µ

e
p − rf )

)
− Ct

]
dt+WtϕtσpdZ

e
t , (2.3)

where Ee
0[·] is the expectation under the agent’s subjective probability measure Pe,

which is equivalent to but can be different from the physical measure P. T is horizon.

When T → ∞, the economy has an infinite horizon. In this case, we need to impose

appropriate transversality condition. Our analytical results hold for both finite and

infinite horizons. The constant γ is relative risk aversion coefficient and also is the

inverse of the elasticity of intertemporal substitution (EIS), µe
p is the expected stock

return under Pe, σp is stock return volatility, and Ze is a standard Brownian motion

under Pe. When γ = 1, the utility in (2.2) is replaced by ln(Ct).

2.1. Subjective Expectations.

For CRRA utility, stock price is completely determined by the agent’s subjective

expectation about consumption growth in consumption-based asset pricing mod-

els. The survey data analyzed by Vissing-Jorgensen (2004), Bacchetta et al. (2009),

Greenwood and Shleifer (2014), and Adam, Matveev and Nagel (2018), among oth-

ers, show that investors’ expectations about stock returns are inconsistent with

rational return expectations. This implies that the agent’s subjective expectation

about consumption growth is also different from the rational expectation. Espe-

cially, many individual and institutional investors have extrapolative expectations:

they believe that stock prices will continue rising (falling) after a sequence of high

(low) past returns. We focus on extrapolative expectation in this paper. If the de-

viations from rational expectations are restricted to change of measure, our method

can also be used.

2.1.1. Extrapolative Expectation.

Motivated by the survey evidence, we assume that the representative agent forms
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expectations about future stock return (scaled by volatility) by extrapolating past

realized returns,

Ee
t

[
dRt

σpt

]
= (α0 + αSt)dt, (2.4)

where dRt = (dPt+Ctdt)/Pt is the instantaneous stock return, σp is return volatility,

and S is defined as

St =

∫ t

−∞
κe−κ(t−u)dRu

σpu
, (2.5)

a weighted average of stock returns (scaled by volatility) over all historical obser-

vations with exponentially decaying weights. We call S sentiment by following the

literature. It reflects the agent’s belief about expected return. Because the agent’s

belief depends on equilibrium prices, which are endogenous, the equilibrium pricing

problem is more difficult than standard equilibrium pricing problems where agents’

beliefs are exogenous.

In (2.4), α0 measures the optimism/pessimism of the agent in the sense that an

increase in α0 increases the agent’s unconditional expected return. When α = 0

and α0 ̸= µr/σc, the agent is irrational but her irrationality does not depend on the

state of the economy. In this paper, we choose

α0 = (1− α)µr/σc. (2.6)

That is, the agent has a correct unconditional expectation about volatility-scaled

return. Under this specification, the degree of irrationality is completely determined

by α. For α = 0, the agent is fully rational and the economy reduces to the rational

benchmark in Subsection 2.1.4. The higher the absolute value of α is, the larger

the deviations from the rational benchmark are. Our solution also works for other

choices of α0.

The choice of α0 in (2.6) also implies that the unconditional mean of S under the

subjective measure equals that in the rational benchmark. In fact, we have

dSt = κ(µe
p/σp − St)dt+ κdZe

t

= κ
[
α0 − (1− α)St

]
dt+ κdZe

t

= (1− α)κ(µr/σc − St)dt+ κdZe
t .

(2.7)

The first equality follows from the definition of sentiment (2.5), the second equality

follows from the definition of extrapolation (2.4), and the third equality follows from

(2.6). So S mean-reverts to α0/(1− α) = µr/σc under the subjective measure.

In the rational benchmark, if we define S by (2.5), then we have

dSt = κ(µr/σc − St)dt+ κdZt, (2.8)
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which has the same form as the first equation of (2.7), as expected. The uncondi-

tional mean of S under the physical measure also equals µr/σc. Therefore, the agent

also has a correct unconditional expectation about S.

For α > 0, the agent believes that returns have momentum and we call her extrap-

olator in this paper by following the literature (e.g., BGJS). In this case, α measures

the level of extrapolation. For α < 0, the agent has a contrarian expectation. For

α = 0, the agent does not extrapolate historical returns.

In this paper, we focus on the case 0 < α ≤ 1 to study extrapolation. Note that

S is not stationary when α > 1, see (2.7). For α = 1, the sentiment becomes a

martingale under the subjective measure, which is the case studied in BGJS. In this

case, the transversality condition is defined but the unconditional distributions are

not. For unconditional distributions to be defined, we need S to have an invariant

distribution (S needs to be mean-reverting, i.e., α < 1).

In (2.5), κ > 0 measures the decaying rate of the weights on past returns. An agent

with a higher decaying rate relies more heavily on recent versus distant returns when

predicting future returns. In particular, for κ → ∞, the weights are concentrated

on the current return. For κ → 0, the agent assigns equal weights on all historical

returns.

The assumption that the agent extrapolates the return scaled by volatility in

(2.4)-(2.5) is consistent with the finding in Da, Huang and Jin (2018) that higher

volatility increases the difficulties for extrapolators to infer a trend. This assumption

leads to closed-form solutions. Our main conclusions about the risk premium, short

rate, return predictability and excess volatility do not change if we alternatively

assume that the agent extrapolates return. In fact, the variation in volatility in our

model is small for typical parameters, and hence plays a marginal role, as to be

shown later.

BGJS model extrapolation where the agents extrapolate price changes. Instead,

we model extrapolation in terms of percentage return. This is in line with the

evidence on how investors form expectations about future stock returns documented

in Greenwood and Shleifer (2014).

One can also produce closed-form solutions if we alternatively assume that the

agent extrapolates excess return. Instead, in this paper, we study extrapolation

of gross return to be consistent with the survey evidence, e.g., Greenwood and

Shleifer (2014). Although we consider a representative agent (the extrapolator) in

the economy, our insights can be extended to a more general setting with both

extrapolators and rational investors.

Definition 2.1. An equilibrium is a set of processes {Pt, St, rft}Tt=0 and of con-

sumption and investment policies {C∗
t , ϕ

∗
t}Tt=0 such that consumption and investment

policies solve the dynamic optimization problem (2.2) for the agent, given processes
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{Pt, St, rft}Tt=0, and that the markets for consumption and for both securities clear,

that is, C∗
t = Ct and ϕ

∗
t = 1 for t ∈ [0, T ].

Note that we require both asset market and consumption good market clear.

2.1.2. Subjective Expectation about Consumption Growth.

Given a subjective expectation about consumption growth µe
c, the short rate sat-

isfies

rf = ρ+ γµe
c −

γ(γ + 1)σ2
c

2
, (2.9)

where γµe
c represents intertemporal substitution and −γ(γ + 1)σ2

c/2 represents pre-

cautionary savings. The subjective risk premium satisfies

µe
p − rf = γσcσp. (2.10)

Then the subjective expected return (the sum of the short rate and subjective risk

premium) is given by

µe
p = ρ+ γµe

c −
γ(γ + 1)σ2

c

2
+ γσcσp. (2.11)

Note that, in (2.9)–(2.11), we do not specify the subjective expected consumption

growth. Therefore, (2.11) provides a generic relationship between the subjective ex-

pected return and subjective expected consumption growth under the CRRA utility.

In our model, the subjective expected return is specified as

µe
p = σp(α0 + αS)

by the definition of return extrapolation (2.4)-(2.5). Substituting it into (2.11), we

obtain the subjective expected consumption growth rate

µe
c = σp

α0 + αS

γ
− ρ

γ
− σcσp +

(γ + 1)σ2
c

2
. (2.12)

It shows that the expected consumption growth depends positively on the sentiment

under the subjective measure, rather than a constant as under the physical measure.

The extrapolator’s biased expectation about consumption growth is due to the fact

that the expectations about consumption growth and return determine each other,

as generally shown in (2.11).

We rewrite (2.11) as

µe
p − µr = γ

[
µe
c − µc + σc(σp − σc)

]
, (2.13)

where µr is the expected return under the rational benchmark given by (2.19). Equa-

tion (2.13) links models of non-rational expectations with the rational benchmark.

It implies that the two economies can be directly compared in terms of (subjective)

expected return or expected consumption growth.
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The left-hand side of (2.13) depends positively on the sentiment and does not

depend directly on γ by the definition of return extrapolation. Therefore, (2.13)

implies that the sensitivity of the subjective expected consumption growth µe
c to the

sentiment becomes smaller as γ increases. This is due to the substitution effect.

2.1.3. Market Price of Sentiment.

In models with biased expectations, the subjective measure (the measure of the

agent) differs from the physical measure (the measure of an outside econometrician).

As a result, the market prices of risk under the two measures are also different.

The difference between them characterizes the “market price of sentiment”. More

specifically, we define the market price of sentiment η as

η =
µp − rf
σp

−
µe
p − rf

σp
=
µp − µe

p

σp
=
µc − µe

c

σc
, (2.14)

where µp is the physical expected return (the expected return under the physical

measure).4 The last equality is due to the fact that return (consumption) volatilities

are the same under both measures.5 It further leads to the following relationship

between the two measures:

dZe
t = ηdt+ dZt. (2.15)

Substituting (2.13) into (2.14), we have the following proposition.

Proposition 2.2. The market price of sentiment is given by

η(S, t) =
µc − µe

c

σc
= −σp(α0 + αS)− µr

γσc
+ σp − σc. (2.16)

It depends negatively on S.

The subjective market price of risk is a constant γσc. However, the physical

market price of risk given by γσc + η depends negatively on the sentiment by not-

ing that η depends negatively on the sentiment in Proposition 2.2. Indeed, the

deviation of the subjective expectation from the rational expectation leads to an

expectation adjustment (a common feature of the equilibrium pricing models with

biased expectations). The sentiment price η accounts for the difference between the

two measures. When the sentiment is high, the extrapolator expects a high future

return and hence a high consumption growth rate. However, under the physical

measure, the consumption growth is a constant and the expected return should not

be as high as expected by the extrapolator. As a result, although the risk price

under the subjective measure is a constant, the price of a dollar in each state under

the physical measure depends negatively on the sentiment.

4It worth noting that (2.14) holds generally for any biased expectations (about either return or
about consumption growth). For example, if the agent instead extrapolates consumption growth
as studied in Appendix C, the market price of sentiment η is still governed by (2.14).
5It follows from µpdt+ σpdZ = µe

pdt+ σpdZ
e and µcdt+ σcdZ = µe

cdt+ σcdZ
e.
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Further, the product σpη of the sentiment price and return volatility represents

a sentiment premium. Proposition 2.2 shows that it depends negatively on the

sentiment. Therefore, an outside econometrician always negatively adjusts the ex-

trapolator’s biased expectation about the future return:

µp = µe
p + σpη. (2.17)

2.1.4. Rational Benchmark.

Before studying extrapolative expectation, we first present the rational benchmark

in which the agent has rational expectation (Pe = P). We consider the limiting

case T → ∞, through which we can discuss the existence of equilibrium.6 The

following proposition characterizes the equilibrium, where the superscript “r” is an

abbreviation for “rational benchmark”.

Proposition 2.3. (Rational benchmark.) Assume that the agent is fully rational

and T → ∞.

(1) The equilibrium stock price P satisfies

dPt + Ctdt

Pt

= µrdt+ σr
pdZt, (2.18)

where

µr = ρ+ γ
[
µc −

(γ − 1)σ2
c

2

]
, σr

p = σc, (2.19)

the short rate is given by

rrf = ρ+ γ
[
µc −

(γ + 1)σ2
c

2

]
, (2.20)

and price-consumption ratio is given by

Φr =
1

ρ+ (γ − 1)(µc − γσ2
c/2)

. (2.21)

(2) The equilibrium exists if and only if (transversality condition)

ρ+ (γ − 1)
(
µc −

γσ2
c

2

)
> 0. (2.22)

The relationship between price-consumption ratio Φr and consumption growth

µc depends on γ. Φr decreases with µc when γ > 1, and increases with µc when

γ < 1. We will show later that the dependence of Φr on expected consumption

growth determines the role played by extrapolation and also determines many key

features of returns, such as return predictability.

The second part of Proposition 2.3 is a result of the transversality condition. The

first γ in (2.22) is the inverse of the agent’s EIS, and the term “γ − 1” reflects the

relative strength of the income effect and the intertemporal substitution effect. The

6For T < ∞, the transversality condition is not needed and equilibrium always exists.



11

second γ is the risk aversion coefficient, which disappears if there is no uncertainty

(σc = 0). The above two statements can be verified explicitly with recursive utility.

Equation (2.22) leads to two bounds of γ,

γr =
σ2
c/2 + µc +

√
(σ2

c/2− µc)2 + 2ρσ2
c

σ2
c

, and

γr =
σ2
c/2 + µc −

√
(σ2

c/2− µc)2 + 2ρσ2
c

σ2
c

,

(2.23)

between which the equilibrium exists.

The upper bound γr arises as follows. The expected return has two components,

the short rate and the risk premium. Proposition 2.3 shows that the risk premium is

given by γσ2
c , while the short rate is given by ρ+ γµc− γ(γ+1)σ2

c/2. The term γµc

represents intertemporal substitution and −γ(γ + 1)σ2
c/2 represents precautionary

savings. While the risk premium increases linearly with γ, the precautionary savings

component decreases quadratically with γ. When γ is large enough, precautionary

savings can be very negative, leading to a low discount rate. The transversality

condition is violated.

The lower bound γr depends on the relative level of consumption growth rate µc to

the subjective discount rate ρ. Especially, for γ → 0 (infinite EIS), the consumption

growth rate must be lower than the subjective discount rate; otherwise, perfect

substitution leads to an infinite utility, and hence the nonexistence of equilibrium.

Note that the upper bound always exists, but the lower bound exists if and only

if µc ≥ ρ.

3. Equilibrium

In this section, we derive the equilibrium under extrapolation. The agent’s value

function solves the following Hamilton-Jacobi-Bellman (HJB) equation (Merton,

1971):

0 =max
C,ϕ

{
e−ρt C

1−γ

1− γ
+
∂J

∂t
+
[
W

(
rf + ϕ(σp(α0 + αS)− rf )

)
− C

] ∂J
∂W

+ κ
[
α0 − (1− α)S

]∂J
∂S

+
1

2
W 2ϕ2σ2

p

∂2J

∂W 2
+ κWϕσp

∂2J

∂W∂S
+
κ2

2

∂2J

∂S2

}
,

(3.1)

with boundary condition JT = 0. The value function J has the form:

J(S,W, t) = e−ρtW
1−γ

1− γ

[
Φ(S, t)

]γ
. (3.2)

Substituting it into (3.1) and using FOC, we obtain

C∗ = WΦ−1, ϕ∗ =
σp(α0 + αS)− rf

γσ2
p

+
κ

σp

∂ lnΦ

∂S
. (3.3)



12

Equation (3.3) shows that Φ = W/C is the price-consumption ratio. Substituting

(3.3) into (3.1), we obtain a PDE of Φ:

∂Φ

∂t
+
κ2

2

∂2Φ

∂S2
+
γ − 1

2
κ2Φ−1

(∂Φ
∂S

)2

+ κ
[
α0 − (1− α)S − (γ − 1)σp

]∂Φ
∂S

−
[(

1− 1

γ

)
σp(α0 + αS)−

(γ − 1)σ2
p

2
+
ρ

γ

]
Φ + 1 = 0,

(3.4)

with boundary condition Φ(S, T ) = 0. Applying Ito’s lemma to Φ = P/C, we obtain

dCt = Ct

[
µe
cdt+

(
σp − κ

∂ lnΦ

∂S

)
dZe

t

]
, (3.5)

where

µe
c(S, t) =

σc
γ
(α0 + αS)− ρ

γ
+ κ

∂ lnΦ

∂S

(α0 + αS

γ
− σc

)
+

(γ − 1)σ2
c

2
. (3.6)

By matching consumption volatility in (2.1) and (3.5), we have

σp(S, t) = σc + κ
∂ lnΦ

∂S
. (3.7)

Using the market clearing condition, ϕ∗ = 1, we have

rf (S, t) = σp(α0 + αS − γσc). (3.8)

It follows from (2.4) and (3.8) that, with a representative agent and a constant

consumption volatility, the market price of risk under Pe is always a constant (γσc).

By substituting (3.7) into (3.4), we obtain

∂Φ

∂t
+
κ2

2

∂2Φ

∂S2
+
κ

γ

[
(α− γ)S + α0

]∂Φ
∂S

−
[(

1− 1

γ

)
σc(α0 + αS)− (γ − 1)σ2

c

2
+
ρ

γ

]
Φ + 1 = 0,

(3.9)

with boundary condition Φ(S, T ) = 0. Following Liu (2007), we define Φ̂(S, t) such

that

Φ =

∫ T

t

Φ̂(S, u)du.

Then Φ̂ satisfies

∂Φ̂

∂t
+
κ2

2

∂2Φ̂

∂S2
+
κ

γ

[
(α− γ)S + α0

]∂Φ̂
∂S

−
[(

1− 1

γ

)
σc(α0 + αS)− (γ − 1)σ2

c

2
+
ρ

γ

]
Φ̂ = 0,

(3.10)

with boundary condition Φ̂(S, T ) = 1. By conjecturing that

Φ̂(S, t) = eA(t)S+B(t),
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and substituting it into (3.10), we obtain

A′ + κ
(α
γ
− 1

)
A− ασc

(
1− 1

γ

)
= 0,

B′ +
κ2

2
A2 +

κα0

γ
A−

(
1− 1

γ

)
σcα0 −

ρ

γ
+

(γ − 1)σ2
c

2
= 0,

(3.11)

with terminal conditions A(T ) = B(T ) = 0, where the operator “ ′ ” denotes the

derivative with respect to t. Appendix D.1 presents the solution of (3.11). It shows

that A(t) ≤ 0 for γ > 1 and A(t) ≥ 0 for γ < 1. Proposition 3.1 summarizes the

equilibrium under the subjective measure, which has closed-form solutions.

Proposition 3.1. (Return under subjective measure.) The equilibrium stock price

under the subjective measure Pe satisfies

dPt + Ctdt

Pt

= µe
pdt+ σpdZ

e
t ,

where

µe
p = σp(α0 + αS), σp = σc + κ

∫ T

t
A(u)eA(u)S+B(u)du∫ T

t
eA(u)S+B(u)du

, (3.12)

and A and B are deterministic functions governed by (3.11). The short rate is given

by

rf = σp(α0 + αS − γσc), (3.13)

the subjective risk premium (the risk premium under Pe) is given by

µe
p − rf = γσcσp, (3.14)

and price-consumption ratio is given by

Φ =

∫ T

t

eA(u)S+B(u)du. (3.15)

Especially for α = 0, the agent is fully rational and the equilibrium reduces to that

characterized in Proposition 2.3.

Proposition 3.2 provides the condition for the existence of the equilibrium.

Proposition 3.2. (Existence of equilibrium.)

(1) Suppose T <∞. The equilibrium characterized in Proposition 3.1 exists for

all γ > 0.

(2) Suppose T = ∞. The equilibrium exists if and only if

γ ≥ α and ∆(γ, α) > 0, (3.16)
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where ∆ is given by (A.4). Especially for α = 0, condition (3.16) reduces to

(2.22) in Proposition 2.3; for α = 1, condition (3.16) becomes

1 ≤ γ <
√
2ρ/σc. (3.17)

Using the relationship (2.15) between the two measures, Proposition 3.3 summa-

rizes the equilibrium return under the physical measure.

Proposition 3.3. (Return under physical measure.) Under the physical measure P,
the stock price satisfies

dPt + Ctdt

Pt

= µpdt+ σpdZt, (3.18)

where

µp = σp(ψ0 + ψS), ψ = α
(
1− σp

γσc

)
, ψ0 = α0

(
1− σp

γσc

)
+

µr

γσc
+ σp − σc,

(3.19)

and σp follows (3.12), and the sentiment follows

dSt = κ
[
ψ0 − (1− ψ)St

]
dt+ κdZt. (3.20)

Note that the change of measure does not affect the short rate and price-consumption

ratio that are given by (3.13) and (3.15) respectively.

4. Asset Pricing Implications of Extrapolation

In this section, we study asset pricing implications of return extrapolation. We

show that, for γ > 1, price-consumption ratio decreases with the sentiment and

stock return has deficient volatility; return extrapolation generates low and stable

risk premium and volatile short rate. The results are both demonstrated analytically

and illustrated numerically. Unless specified otherwise, in numerical examples of this

paper, we set ρ = 0.02, µc = 0.018, σc = 0.032 (e.g., Basak and Cuoco, 1998), and

T = 100 in annual terms. We also set κ = 2.3 according to Greenwood and Shleifer

(2014)7 and α = 0.5 to study extrapolation.

4.1. Price-Consumption Ratio.

Proposition 3.1 shows that price-consumption ratio Φ is a decreasing function of

the sentiment when γ > 1. It varies from zero to positive infinity as the sentiment

varies from positive infinity to negative infinity. Therefore, the sentiment can lead

to large deviations from the rational benchmark where Φ is a constant.

7According to equation (3) in Greenwood and Shleifer (2014), the ratio of the weights on returns
in quarter t and t − 1 equals λ, so κ in our paper and λ satisfy eκ/4 = 1/λ. We set κ = 2.3,
corresponding to λ = 0.56, which is the average of the estimates for λ reported in Table 4 of
Greenwood and Shleifer (2014).
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Intuitively, under extrapolation, high past returns (high sentiment) lead the ex-

trapolator to expect both high discount rate (substitution effect) and high con-

sumption growth (income effect). The substitution effect dominates the income

effect when γ > 1. As a result, high sentiment decreases price-consumption ratio.

Note that the discount rate under the physical measure depends on the market

price of sentiment (due to the change of measure (2.15)) and differs from the dis-

count rate under the subjective measure. Under the physical measure, because the

expected consumption growth is a constant, the variation of price-consumption ratio

is completely due to the variation of the physical expected discount rate.

Because Φ depends on the sentiment and the sentiment is stochastic in the long-

run, the price-consumption ratio does not necessarily converge to the rational coun-

terpart in the long-run. If there are rational investors in our economy, in addition to

extrapolators, as the case studied in BGJS, we expect that equilibrium may converge

to the rational benchmark.8

Price-consumption ratio follows the opposite pattern when γ < 1.

4.2. Return Volatility.

Proposition 4.1 summarizes the properties of return volatility.

Proposition 4.1. Return volatility σp is positive and depends positively on the sen-

timent S:
∂σp
∂S

> 0.

It satisfies 
σc > σp >

(1−α)γ
γ−α

σc, for γ > 1,

σp = σc, for γ = 1,
(1−α)γ
γ−α

σc > σp > σc, for γ < 1.

(4.1)

Several observations follows from Proposition 4.1. First, return volatility is lower

than consumption volatility for γ > 1. Therefore, extrapolation makes the excess

volatility puzzle (e.g., LeRoy and Porter, 1981; Shiller, 1981) even more puzzling.9

This is because the extrapolator believes that the sentiment positively predicts

future returns, leading to a (conditionally) positive correlation of the sentiment and

consumption. According to the accounting identity of P = CΦ, return volatility

equals the sum of consumption volatility and price-consumption ratio volatility:

8When both rational investors and irrational investors have constant beliefs and have the same
CRRA utility, Yan (2008) shows that the rational agents will dominate the market in the long-run.
However, this result may not hold if the agents have different preferences (e.g., Yan, 2008) or if
the agents have recursive preferences (e.g., Borovička, 2018; Dindo, 2019).
9In this case, even if we assume dividend and consumption follow different processes, return volatil-
ity is still lower than dividend volatility by noting that consumption volatility is lower than dividend
volatility in the real data.



16

Figure 4.1. The impact of S on the return volatility, short rate,
subjective risk premium, and physical risk premium. Here S̄ denotes
the unconditional mean of S under the physical measure.

σp = σc+κ
∂ lnΦ
∂S

. Price-consumption ratio Φ depends negatively on the sentiment S,

and hence is negatively correlated with consumption when γ > 1. The movement in

consumption is partially offset by the movement in Φ, leading to deficient volatility.

This is different from some pricing models, in which state variables negatively fore-

cast returns and hence produce excess volatility for γ > 1.10 In our model, excess

volatility occurs for γ < 1.

Second, return volatility σp increases with the sentiment S. However, (4.1) shows

that σp is bounded from both above and below. With extreme sentiment (S → ±∞),

σp tends to one of the two boundaries. Proposition 4.1 also shows that return

volatility is always positive.

The upper panel of Fig. 4.1 shows that the variation of return volatility with

respect to the sentiment and hence with respect to time is very small for both γ > 1

and γ < 1. As a result, the effect of the sentiment on return volatility is much less

10For example, when the agent is a contrarian as discussed in Section 5.6, the sentiment negatively
forecast returns, leading to excess volatility for γ > 1.
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than that on the short rate. This is consistent with (4.1), which demonstrates that

return volatility σp is very stable and close to the rational benchmark level.

It is worth noting that in Fig. 4.1 all equilibrium quantities, including price-

consumption ratio, return volatility, the short rate, the risk premiums and expected

returns under both measures, are monotonic functions of the sentiment (within, e.g.,

two standard deviations of its unconditional mean). Appendix A.1 further proves

that this result also holds for large sentiment (S → ±∞).11 This property provides

a very clear understanding of the effect of the sentiment. When the sentiment is

close to its unconditional mean, the equilibrium behavior is close to the rational

counterpart. However, the agent becomes more irrational when the sentiment de-

viates from the unconditional mean, generating large deviations from the rational

benchmark.

4.3. Risk Premium.

The subjective risk premium is a constant γσcσp. The physical risk premium

given by

µp − rf = σpη + (µe
p − rf ) = − σp

γσc

[
σp(α0 + αS)− µr

]
+ σ2

p + (γ − 1)σcσp, (4.2)

depends negatively on the sentiment S. Equation (4.2) also shows that the sentiment

has marginal impact on both subjective risk premium and physical risk premium for

γ > 1, even though it significantly affects subjective expected return by definition.

The sentiment has more significant effect on the physical risk premium for γ < 1. In

this case, although the subjective risk premium is still insensitive to the sentiment,

the sentiment premium becomes more sensitive to the sentiment. The results are

numerically demonstrated in the lower panel of Fig. 4.1.

Although the subjective risk premium is always positive, the physical risk pre-

mium can be negative when the sentiment is high. This holds for both γ > 1 and

γ < 1. The negative risk premium is due to the large and negative sentiment pre-

mium for high sentiment. In words, the short rate increases with the sentiment

faster than does the physical expected return because the effect of the sentiment is

largely on the short rate. The negative risk premium is also found in the empirical

literature, e.g., in Greenwood and Hanson (2013) and Cassella and Gulen (2018).12

The subjective risk premium is lower (higher) than the rational counterpart for

γ > 1 (γ < 1) due to deficient (excess) volatility. More importantly, the risk

11Numerical simulations (not reported here) verify that the result is robust to different sets of
parameters.
12In this case, the agent’s myopic demand is negative; while her positive total demand (ϕ∗ = 1) is
due to positive intertemporal hedging. In a dynamic asset allocation problem, Li and Liu (2019)
show that an investor with CRRA preference and γ > 1 may long (short) a risky asset with negative
(positive) momentum to effectively home-make an asset with return reversal.
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premium is much lower (higher) than the rational counterpart when the sentiment

is sufficiently high (low) due to the negative sentiment premium.

Now we study the unconditional mean of the risk premium. In this paper, we dis-

cuss the unconditional distributions of the equilibrium mainly through the limiting

case of large κ, in which the unconditional properties are qualitatively comparable

to those for typical κ. This case allows for closed-form solutions. All equilibrium

quantities in this case is also consistent with the limiting cases of large sentiment

(S → ±∞) studied in Appendix A.1. We will also present the results for small κ

later.

For unconditional expectations to be defined, we need the sentiment S to have

an invariant distribution (S needs to be mean-reverting). So we assume α < 1

when studying unconditional distributions in the paper. However, the conditional

results is this paper also hold for α = 1. Let Ee and E denote the unconditional

expectations under the subjective and physical measures respectively. Corollary 4.2

presents the unconditional mean of the risk premium for large κ.

Corollary 4.2. To the leading order of 1/κ, the unconditional means of risk pre-

mium under the subjective measure and the physical measure are given, respectively,

by

Ee[µe
p − rf ] =

1− α

γ − α
γ2σ2

c ,

E[µp − rf ] =
α(1− α)(γ − 1)

γ(γ − α)
ρ+

α(1− α)(γ − 1)

γ − α
µc

+
1− α

γ − α

[
γ2 − α(γ − 1)2

2
− αγ(γ − 1)

γ − α
+
α2(1− α)γ(γ − 1)

2(γ − α)2

]
σ2
c .

(4.3)

In the second equation of (4.3), the unconditional mean of risk premium under

the physical measure depends on ρ and µc, which, however, do not affect the risk

premium in rational equilibrium pricing models. This dependence is caused by the

market price of sentiment.

The unconditional mean of risk premium under the subjective measure is close to

the rational benchmark level (γσ2
c ); and under the physical measure it is too small to

explain the equity premium puzzle (e.g., Mehra and Prescott, 1985) when γ > 1.13

The unconditional mean of risk premium can be very large under the subjective

measure but tends to be negative under the physical measure when γ < 1.

Fig. 4.2 (A) plots the unconditional mean of risk premium under the physical mea-

sure against γ for the extrapolation model with large κ. To satisfy the transversality

condition, we need γ > α (= 0.5). For comparison, we also plot the risk premium

µr − rrf for the rational benchmark. In both cases, the unconditional means of the

13It is dominated by the second term, which is less than µc/4.
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Figure 4.2. The impacts of γ and α on the unconditional means
of the risk premium and short rate under the physical measure for
the extrapolation model (Corollaries 4.2 and 4.3) and the rational
benchmark (Proposition 2.3). Here α = 0.5 in panels (A) and (C),
and γ = 5 in (B) and (D).

physical risk premium increase with γ, which is intuitive. The unconditional mean

in the extrapolation model equals the rational benchmark level for γ = 1. When γ

is low, it decreases fast with γ and becomes negative. It can be very negative when

γ approaches α because of very negative sentiment premium. In contrast, the risk

premium in the rational benchmark equals γσ2
c , which is positive for all γ > 0.

Due to the deficient volatility for large γ, the unconditional mean of risk premium

grows slower with γ and is lower than the rational benchmark level. It means that,

to have a high risk premium, we need to set a much higher risk aversion coefficient

than in the rational benchmark.

Fig. 4.2 (B) shows that, for α = 0, the agent is fully rational and the uncondi-

tional mean of risk premium is at the rational benchmark level. For 0 < α < 0.7,

extrapolation slightly amplifies the risk premium (by comparing with the rational

benchmark). In this case, extrapolation helps relieve the equity premium puzzle but
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is far not enough. When α is close to one, extrapolation makes the risk premium

puzzle even worse. In this case, stock return volatility converges to zero because

consumption volatility is completely offset by extrapolation (deficient volatility) as

shown in Corollary 4.2. As a result, the unconditional mean of risk premium tends

to zero. Numerical simulations in Table 4.1 show that the unconditional mean of

the physical risk premium for typical κ is also low.

In sum, we show that extrapolation alone is unlikely to solve the equity premium

puzzle. BGJS also find that extrapolation cannot account for the equity premium

puzzle. Our finding is also consistent with the arguments in Cochrane (2011, 2017).

4.4. Short Rate.

Extrapolation leads the short rate to depend positively on the sentiment as shown

in (2.9). Intertemporal substitution component in the second term depends signifi-

cantly on the sentiment, but precautionary savings component in the third term is

a constant and does not offset the changes in intertemporal substitution component

with the sentiment. Therefore, the short rate changes proportionally with the sen-

timent and is volatile. As the sentiment changes, the short rate varies widely from

negative to very positive (see Fig. 4.1).14

It is worth noting that the sentiment affects the short rate more than the subjec-

tive risk premium. Intuitively, return extrapolation by definition directly specifies

the subjective expected return, while it has an indirect impact on the return volatil-

ity. The short rate is mainly driven by the subjective expected consumption growth,

on which the extrapolation has significant impact; while the subjective risk premium

depends only on risk aversion, consumption volatility, and stock volatility, which are

either constant or insensitive to extrapolation as shown in Section 4.2.

The sentiment affects the short rate more than the physical risk premium for large

γ by noting that the sentiment premium is insensitive to the sentiment as shown in

Section 2.1.3. The above results can be also understood from the example of pure

change of expectation in Appendix B. In this case, the biased expectation does not

change return volatility. The effect of expectation bias is mainly reflected in the

short rate rather than the risk premium.

In all, we show that the sentiment significantly affects the equilibrium. Extrapo-

lation in general has a first order effect on the subjective expected return, physical

expected return and short rate, while it has a second order effect on the return

volatility, subjective risk premium, and physical risk premium. The effect of the

sentiment is largely reflected in the short rate, leading to volatile short rate while

14This result holds even if the dividend follows a different process from the aggregate consumption
because state price density is completely determined by the consumption process in consumption-
based asset pricing models.
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stable risk premium, when γ > 1. The effect of the sentiment is mainly on the

sentiment premium, leading to negative risk premium, when γ < 1.

Now we study the unconditional mean of the short rate.

Corollary 4.3. To the leading order of 1/κ, the unconditional means of the short

rate under the subjective measure and the physical measure are given, respectively,

by

Ee[rf ] =
γ − γα

γ − α
rrf , E[rf ] =

(
1− γ − 1

γ
α
)
rrf .

Corollary 4.3 shows that, when κ is large, the unconditional mean of the short rate

under the physical measure E[rf ] is higher than rrf (i.e., the rational counterpart)

for γ < 1, equal to rrf for γ = 1, and lower than rrf for γ > 1. This is also illustrated

in Fig. 4.2 (C).

In addition, Fig. 4.2 (D) shows that E[rf ] decreases with α in the extrapolation

model but is independent of α in the rational benchmark. With large α, extrapo-

lation generates low short rate. This is largely due to our choice of α0. Under our

current choice (2.6), Ee[rf ] is lower than the rational counterpart for γ > 1 because

E[σp] < σc. Alternatively, when we choose α0 such that the unconditional subjective

average of µp equals µr (i.e., the agent has an unbiased belief about the mean of

return), Ee[rf ] is higher than the rational counterpart also because E[σp] < σc.
15 In

this case, extrapolation still cannot resolve the riskless rate puzzle and actually even

exacerbates the puzzle.

Table 4.1 reports the unconditional mean of different variables in the equilibrium.

It shows that the unconditional mean of the short rate for typical κ is also high

(much higher than the level for the real data).

Table 4.1 also shows that the unconditional mean S̄ of the sentiment is higher

(lower) than its counterpart in the rational benchmark Sr = µr/σc for γ > 1 (γ <

1).16 In addition, relative to the rational benchmark, extrapolation decreases the

unconditional expected return, short rate and return volatility, while it slightly

increases the risk premium for γ > 1. Untabulated numerical simulations show that

the unconditional risk premium is lower than the rational counterpart for large α.

The results for typical κ in Table 4.1 are in line with the results for large κ proved

in Corollaries 4.2 and 4.3 and illustrated in Fig. 4.2. All the results consistently

show that extrapolation alone cannot resolve the asset pricing puzzles. Our finding is

consistent with the survey evidence analyzed in Giglio, Maggiori, Stroebel and Utkus

(2019), which suggests that frictionless macro-finance models, whether rational or

15In addition, if we choose α0 such that Ee[µe
c] = µc, then Ee[rf ] = rrf .

16The unconditional mean of S under the physical measure can be decomposed into two compo-

nents: S̄ = Sr + E
[ rrf (σc−σp)

γσ2
c [1−α(1− σp

γσc
)]

]
. It shows that S̄ > Sr for γ > 1 because σc > σp. Similarly,

S̄ < Sr for γ < 1.
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Table 4.1. This table reports the unconditional means of different
variables in equilibrium, as well as the rational benchmark counter-
parts. Here the superscript “r” stands for the rational benchmark.
The unconditional distribution of S under the physical measure is
derived using Fokker-Planck equation, and the unconditional distri-
butions of the other variables that are functions of S are derived based
on S’s distribution.

γ = 0.8 γ = 5

Sentiment E[S] 0.73 3.58

Sr 1.08 3.12

Price-consumption ratio E[Φ] 73.35 21.24

Φr 60.67 12.23

Consumption growth E[µe
c] 2.27× 10−2 1.06× 10−2

E[µc] 1.80× 10−2 1.80× 10−2

Return volatility E[σp] 4.25× 10−2 1.81× 10−2

σr 3.20× 10−2 3.20× 10−2

Short rate E[rf ] 3.74× 10−2 5.77× 10−2

rrf 3.37× 10−2 9.46× 10−2

Risk premium E[µp − rf ] −0.52× 10−2 0.71× 10−2

E[µe
p − rf ] 0.10× 10−2 0.29× 10−2

µr − rrf 20.08× 10−2 0.51× 10−2

Sentiment premium E[σpη] −0.62× 10−2 0.42× 10−2

behavioral, are likely to overstate the power of expectation changes in explaining

asset price movements.17

In our model, the agent has CRRA utility. We speculate that replacing it by recur-

sive utility cannot ease the riskless rate puzzle either. This is because the expected

return is specified by extrapolation, which limits the effect of EIS on intertemporal

substitution. This limitation is more clearly seen from the example of pure change of

expectations in Appendix B. However, this is different from the rational benchmark

with IID consumption growth where recursive utility can help resolve the puzzle. In

this case, if the agent has a CRRA utility, an increase in risk aversion increases both

expected return and risk premium. Therefore, recursive utility can ease the riskless

rate puzzle by adjusting both EIS and risk aversion to obtain proper intertemporal

substitution and precautionary savings.

17By administering a newly-designed survey to a large panel of retail investors, Giglio et al. (2019)
find that the sensitivity of portfolios to beliefs is substantially lower than predicted by frictionless
macro-finance models. In addition, their findings on the relationship amongst investors’ expecta-
tions about cash flows and returns, and price-dividend ratio (corresponding to price-consumption
ratio in our model) are consistent with our model for γ > 1.
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The unconditional results in Corollaries 4.2 and 4.3 are for large κ. The following

corollary shows that unconditional properties for small κ are comparable to those

in the rational benchmark.

Corollary 4.4. To the leading order of κ, the unconditional means of risk premium

and the short rate under the subjective measure and the physical measure are given,

respectively, by

Ee[µe
p − rf ] = E[µp − rf ] = γσ2

c , Ee[rf ] = E[rf ] = rrf .

The sentiment becomes the historical mean of stock returns and is stable over

time for κ → 0. So the agent tends to have a constant belief. As a result, the

unconditional means of the risk premium and short rate under both measures equal

the rational benchmark levels.

The sentiment has an invariant distribution. The short rate and risk premium as

functions of the sentiment also have invariant distributions. The following corollary

presents the volatilities of the short rate and risk premium under the invariant

distributions.

Corollary 4.5. Under the physical measure, for γ > 1, the unconditional volatility

of the short rate is greater than the unconditional volatility of the risk premium for

both small κ and large κ.

Corollary 4.5 shows that extrapolation causes the short rate more volatile than

risk premium in the long-run. This is consistent with the conditional effect of the

sentiment. According to (3.13), the instantaneous volatility of the short rate is

approximately equal to κασp. If the decaying rate κ is large as documented in

the extrapolation literature, κασp is large, leading to nonpersistent sentiment and

volatile short rate.

5. Further Discussions

The previous section studies the asset pricing implications of extrapolation. In

this section, we discuss some effects specific to the extrapolation literature.

5.1. Feedback Effect.

The feedback effect documents the impact of the sentiment on price-consumption

ratio. Past returns affect extrapolator’s expectation about future returns – (past)

price impact on expectation (characterized by S). The price impact is always positive

in the sense that an extrapolator expects high consumption growth after a sequence

of high past returns. On the other hand, an investor’s expectation in turn feeds

into asset prices in the sense that it determines consumption growth that further

determines current price – expectation impact on (current) price.
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For γ < 1, the expectation impact is positive. The combined effect of the positive

expectation impact and the positive price impact leads to a positive feedback (that is,

high past returns increase price-consumption ratio Φ). It is called “infinite feedback

loop” in BGJS in the sense that

if good cash-flow news pushes the stock market up, this price increase

feeds into extrapolators’ expectations about future price changes, which

then leads them to push the current price up even higher. However,

this then further increases extrapolators’ expectations about future

price changes, leading them to push the current price still higher,

and so on.

With CARA utility, the extant literature shows that an extrapolator always leads to

a positive feedback (e.g., De Long, Shleifer, Summers and Waldmann, 1990; Cutler,

Poterba and Summers, 1990; Hong and Stein, 1999; BGJS).

However, in our model, the expectation impact is negative for γ > 1 due to the

dominance of the substitution effect over the income effect. It, together with the

positive price impact, leads to a negative feedback in the sense that Φ decreases in

the sentiment. As a result, high past returns tends to “pull down” (rather than

“push up”) price-consumption ratio. This differs from the popular argument that

price-consumption ratio is pulled back by the rational traders (note that we do not

have rational traders in the model).18

In fact, a high extrapolator’s expectation about future stock returns leads her to

expect both high discount rates and high consumption growth rates in the future. If

the increase in discount rate dominates (substitution effect dominates income effect),

then Φ decreases, leading to a negative feedback.19 This highlights the effect of the

discount rate.20 However, the discussion on feedback by BGJS above only mentions

the expectation about future cash flows but not on the expectation about discount

rate (equivalently pricing kernel). An increase in the sentiment increases both; the

combined effect on current price depends on γ.

The mechanism in generating positive (negative) feedback has been also reflected

by the rational benchmark in Section 2.1.4. When the agent is fully rational, Propo-

sition 2.3 shows that high expected consumption growth decreases Φ for γ > 1.

18In addition, the term “good cash-flow news” may be ambiguous. Good news (a positive shock)
under the physical measure could be bad news under the subjective measure, and vice versa.
19A sequence of high past returns (high sentiment) increases both price and consumption. For
γ > 1, consumption increases faster than price, amplifying Φ. However, in the rational benchmark,
a positive shock increases price and consumption proportionally, leading to a constant Φ that does
not depend on market states. Put differently, an agent’s optimal demand does not only depend on
the expected return. It also depends on the intertemporal hedging, short rate, and volatility.
20Indeed, under the physical measure, although the consumption growth is constant, an increase
in the sentiment leads to a decrease in the expected return when the substitution effect dominates.
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When the agent is an extrapolator, she expects high consumption growth after high

realized returns (high sentiment), and hence pulls down Φ.

In addition, the negative expectation impact generates negative price-consumption

ratio volatility and hence deficient return volatility.

5.2. Momentum and Reversal.

Short-run momentum and long-run reversal in returns are two of the most promi-

nent financial market anomalies, and have been extensively documented in the liter-

ature, e.g., Jegadeesh and Titman (1993) and Moskowitz, Ooi and Pedersen (2012)

for momentum; De Bondt and Thaler (1985), Fama and French (1988b) and Poterba

and Summers (1988) for reversal; and Cutler, Poterba and Summers (1991) for both,

among others.

5.2.1. The Effect of γ.

In our model, momentum and reversal depend on γ. Indeed, as shown in Propo-

sition 2.2, an increase in γ decreases the sensitivity of the market price of sentiment

η to the sentiment, due to the substitution effect. To understand the effect of γ,

we first examine a special case of γ = 1. In this case, the agent is myopic and

Propositions 3.1 and 3.3 reduce to the following corollary.

Corollary 5.1. For γ = 1, the subjective expected return, market price of sentiment,

and physical expected return are given, respectively, by

µe
p = σc(α0 + αS), η = −(α0 + αS) + µr, µp = ρ+ µc,

and the return volatility, short rate, and price-consumption ratio are given, respec-

tively, by

σp = σc, rf = σc(α0 + αS − σc), Φ = ρ−1
[
1− e−ρ(T−t)

]
.

The extrapolator believes that the sentiment is able to positively predict stock

returns. Stock returns turn out to be unpredictable under the physical measure

when γ = 1. In this case, the effect of the sentiment on stock price is completely

offset by the expectation adjustment. However, all the effect of extrapolation is

reflected in the short rate.

The magnitude of the sentiment price η is low when γ > 1 by noting that the

sensitivity of η to the sentiment decreases with γ. The small sentiment price only

partially offsets the effect of the sentiment (a smaller adjustment relative to the case

γ = 1). Thus, high sentiment still predicts high future returns under the physical

measure. In contrast, small γ (γ < 1) produces large sentiment price that can even

reverse the effect of the sentiment, leading the sentiment to negatively predict future

returns under the physical measure. In this case, the price impact (on expectation)

has the opposite patterns under the two measures.
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Figure 5.1. The impact of the sentiment S on the subjective ex-
pected return µe

p, sentiment premium σpη, and the physical expected

return µp. Here S̄ denotes the unconditional mean of S under the
physical measure.

The impacts of γ and the sentiment on the expected returns and sentiment pre-

mium are numerically illustrated in Fig. 5.1. The left panel of Fig. 5.1 shows that

the subjective expected return depends positively on the sentiment for both γ > 1

and γ < 1 by definition. As demonstrated in Proposition 2.2 and illustrated in

the middle panel, the sentiment premium depends negatively on the sentiment, and

its sensitivity to the sentiment increases as γ decreases. As a result, the physical

expected return depends positively (negatively) on the sentiment for γ > 1 (γ < 1)

as illustrated in the right panel.

Fig. 5.1 also illustrates the unconditional mean S̄ of the sentiment under the

physical measure. When the sentiment is sufficiently high, the subjective expected

return is always higher than the rational counterpart, while the physical expected

return is higher (lower) than the rational counterpart for γ > 1 (γ < 1).

5.2.2. Momentum and Reversal.

The different impacts of γ on the sentiment price determine whether stock has

momentum or reversal. Denote by rpt =
∫ t

t−∆
dPu+Cudu

Pu
the stock return during

[t − ∆, t]. The serial correlation of stock returns at lag h is defined as ACF (h) =

cov(rp,t+h∆, rpt)/var(rpt).

Corollary 5.2. To the order of α, the expected stock returns under the subjective

measure and the physical measure are given, respectively, by

µe
p = ασcSt + α0σp, µp =

γ − 1

γ
ασcSt + a2(t), (5.1)
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Figure 5.2. The first order serial correlations of excess returns for
different γ. The results are based on Monte Carlo simulations. Here
α = 0.95.

where σp = σc[1 − γ−1
γ
αa1(t)], and both a1(t) ∈ [0, 1) and a2(t) are deterministic

functions of t given by (D.10) in Appendix D.5. In this case, the serial correlation

of gross returns at lag h satisfies

ACF (h)


> 0 if γ > 1;

= 0 if γ = 1;

< 0 if γ < 1,

(5.2)

for α > 0, and the sign of the serial correlation has the opposite pattern for α < 0.

The absolute value of series correlation decreases with h.

Corollary 5.2 highlights the impact of γ on momentum and reversal. Indeed, the

agent reacts to past returns and then affects prices in two dimensions. The first

is extrapolation that forms the agent’s expectation about future returns, and the

second is γ, which determines the degree of response. Small γ leads to a large

response that produces overreaction to past returns (sentiment) and subsequent

return reversal. Reversal is typically found in the extrapolation literature. However,

we show that large γ can also lead to underreaction to past returns and produce

momentum, which is different from the extant literature that exploits only the first

dimension (i.e., extrapolation) but overlooks the second (i.e., γ).

Corollary 5.3. The serial correlations of excess returns are positive when both γ

and α are large.

The mechanism in generating momentum and reversal in gross returns also pro-

duces momentum and reversal in excess returns accordingly. However, the short rate
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depends positively on the sentiment, leading to smaller series correlations of excess

returns relative to those of gross returns. As proved in Corollary 5.3 and verified

by Fig. 5.2, excess returns exhibit momentum with small bias adjustment (large γ)

and reversal with large bias adjustment (small γ).

In our model, return reversal is not caused by either the counteraction of rational

investors or overvaluation generated from extrapolation as argued in most extrapola-

tion literature. On the one hand, there is no rational investor who uses the physical

measure in our economy. On the other hand, there is no time-series overvaluation in

our economy. In fact, the stock price is determined by a full equilibrium, which has

taken into account all future effects of a current consumption change, and is correct

by definition. Therefore, there is no adjustment in the long-run, and the momentum

in both gross returns and excess returns does not reverse in the long-run.

BGJS find that their model can generate momentum by instead putting some

delays in the reaction to past prices when extrapolators are forming expectations.

We show that our model can generate momentum for large γ even without the

assumption of delayed reaction. Our mechanism in generating momentum is also

different from that of underreaction proposed in Hong and Stein (1999), where the

underreaction is caused by the gradual diffusion of information. However, there

is no underreaction to information in our model because price is determined by a

full equilibrium where a consumption shock (under the physical measure) is imme-

diately and correctly priced in our economy without any requirements for future

adjustments. Our results are related to the findings in Peng and Wang (2019) that

the positive feedback trading of mutual funds generates momentum because of its

price pressure.

5.3. Is Extrapolation Destabilizing?

Proposition 3.2 shows that the equilibrium always exists for finite horizons. So

extrapolation in itself does not lead to instability. For an infinite-horizon economy

(T = ∞), the equilibrium exists under condition (3.16) due to the transversality

condition. Therefore, condition (3.16) does not depend on the level of the senti-

ment S. The transversality condition is affected by extrapolation (α). When the

transversality condition is violated, the price explodes (price goes to infinity).

Fig. 5.3 shows that, for an infinite-horizon economy, there are two bounds of γ,

between which equilibrium exists. Due to the transversality condition, the economy

may not have equilibrium even if there is no extrapolation (α = 0), as discussed in

Section 2.1.4 for the rational benchmark.

There is a positive feedback for γ < 1. It may or may not lead to “explosion” in

the sense that there is no equilibrium because of extrapolation. When γr < γ ≤ γ,
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Figure 5.3. This figure illustrates the upper boundary (γ) and lower
boundary (γ) for γ, between which equilibrium exists. For α = 0,
γr and γr are the upper and lower boundaries for γ in the rational
benchmark. Here µc = 0.03 (> ρ).

there is explosion caused by extrapolation, as illustrated by the shaded area in Fig.

5.3.21 When γ < γ < 1, there is no explosion and the positive feedback does not

destabilize the equilibrium.

There is a negative feedback for γ > 1. However, interestingly, extrapolation may

also destabilize the equilibrium. This happens when γr < γ ≤ γ (the shaded area in

Fig. 5.3). In this case, the implied discount rate is higher than implied consumption

growth rate.

When α increases, the extrapolation effect increases as can be seen from smaller

interval of γ for stable equilibrium. The reduced region for stable equilibrium is

essentially caused by the time-varying consumption growth resulting from extrapo-

lation rather than caused by the positive (or negative) feedback.22 This is different

from the popular argument in the extrapolation literature that relates the nonex-

istence of equilibrium to the positive feedback. As shown above, the former is due

to violation of the transversality condition while the latter depends on the relative

strength of the substitution effect and the income effect.

21We set ρ < µc in Fig. 5.3. In this case, both the upper bound γr and the lower bound γr exist
in the rational benchmark, see Proposition 2.3. If we set ρ > µc, the lower bound (γr) does not
exist. The interval of γ in which positive feedback causes explosion becomes 0 < γ ≤ γ.
22For example, let’s consider a rational Lucas-type model where the expected consumption growth
is linear in an Ornstein-Uhlenbeck process that has the same innovation as consumption, and a
representative agent has a CRRA utility. The interval of γ for stable equilibrium also reduces when
the coefficient of the Ornstein-Uhlenbeck process in the expected consumption growth increases,
even if there is no such feedback defined above. The calculations are available upon request.
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Proposition 2.3 shows that γ needs to be greater than the level of extrapolation

α. Especially, for α = 1, the equilibrium exists if and only if 1 ≤ γ <
√
2ρ/σc.

Therefore, small subjective discount rate ρ or large consumption volatility σc tends

to destabilize the equilibrium, consistent with the rational benchmark (2.22). More

importantly, the equilibrium exists only for γ ≥ 1. In this case, most return prop-

erties follow the oppositive patterns to BGJS, who choose α = 1 in their paper.

Indeed, the nonexistence of equilibrium in our model, which leads to price diver-

gence, is different from the nonexistence of equilibrium in BGJS, which may not

lead to price divergence. By clearing only the risky asset market, the nonexistence

of equilibrium in BGJS is not due to the transversality condition, but defined as

the nonexistence of such solution that stock price is linear in state variables and the

short rate is a constant. Such solution may be not consistent with the state price

density.

Further, the assumption of a constant short rate in BGJS also reduces the re-

gion in which the equilibrium exists. If we instead consider that the short rate is

endogenously determined in the equilibrium, then the short rate increases with the

sentiment, decreasing extrapolators’ demand for the risky asset when the sentiment

is high. This tends to prevent their expected utility from approaching infinity, and

tends to preserve the equilibrium.

When γ approaches its upper or lower boundary, price-consumption ratio Φ goes

to infinity. Although return volatility depends on Φ, it is bounded from both above

and below and does not go to infinity as γ approaches the boundary as proved in

Proposition 4.1. In addition, the short rate and expected return do not go to infinity

either, as shown in Proposition A.1.

In contrast, a contrarian (α < 0) plays a stabilizing role and tends to preserve

equilibrium. There can be even no lower bound for γ when α < 0.

5.4. Return Predictability.

The extrapolator thinks that the sentiment predicts future returns and that con-

sumption growth depends on the sentiment. This gives rise to the dependence of

price-consumption ratio Φ on the sentiment in (3.15), and further relates Φ to future

returns. However, in the rational benchmark, because the consumption growth is

IID, Φ does not vary and return is not predictable.

Corollary 5.4. Future return is negatively predicted by Φ for γ ̸= 1, but is not

predictable for γ = 1.

Price-consumption ratio is negatively related to the sentiment and the sentiment

is positively related to the physical expected return (due to the small sentiment

premium) when γ > 1. In this case, Φ negatively predicts future return. Price-

consumption ratio still negatively predicts future return when γ < 1 because it
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is positively related to the sentiment, and the sentiment is negatively related to

future return (large sentiment premium). The negative predictability of Φ has been

documented by Campbell and Shiller (1988) and Fama and French (1988a), among

others.

However, because most variation of total expected return is due to the short

rate, price-consumption ratio Φ forecasts mostly the short rate rather than the risk

premium, especially for the case of γ > 1.

Return predictability is related to excess volatility: the negative relationship be-

tween price-consumption ratio and the sentiment leads to the excess volatility. How-

ever, excess volatility is not always consistent with the predictability of returns. For

γ > 1, Φ negatively predicts future returns, but return volatility is lower than con-

sumption volatility, showing that return predictability can be easily generated by

time-variation of the risk premium that may not necessarily lead to excess volatil-

ity. The positive predictability of returns still exists for contrarian expectations

(α < 0) as shown in Section 5.6. This differs from the argument that excess volatil-

ity of prices is exactly the same phenomenon as the predictability of returns, e.g.,

Cochrane (2017).

5.5. Correspondence with Rational Benchmark.

When the sentiment is around its unconditional mean, Proposition 3.1 shows that

Φ decreases (increases) with extrapolation measured by α when γ > 1 (γ < 1).23

In this case, extrapolation leads to “undervaluation” (“overvaluation”) relative to

the rational benchmark for γ > 1 (γ < 1) in the sense that the price level decreases

(increases) with extrapolation α given a consumption process.

However, there is no rationale for the relative undervaluation/overvaluation to

the rational benchmark to be corrected in the long-run in our model. As discussed

before, there is no undervaluation/overvaluation in time series in our economy.

Therefore, Φ under extrapolation does not converge to its rational benchmark level

in the long-run, even though the agent is assumed to have a correct unconditional

expectation about return. It further implies that it is inappropriate to attribute

price features produced by extrapolation to the overvaluation (either in time series

or relative to the rational benchmark) as did in the literature. Numerical simulations

in Table 4.1 further confirm that the unconditional distributions of different variables

under extrapolation do not converge to the rational benchmark levels.

5.6. Contrarian Expectations.

When α < 0, the agent has contrarian expectations. Table 5.1 summarizes the

23Proposition 3.1 shows that Φ =
∫ T

t
eA(u)S+B(u)du. For γ > 1 (γ < 1), (D.1) shows that both A

and B decrease (increase) with α. Here we consider a fixed α0 so that a change in α affects only
extrapolation. In addition, large κ decreases (increases) price level for γ > 1 (γ < 1).
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effects of the sentiment on equilibrium under both extrapolative expectation (α > 0)

and contrarian expectation (α < 0).

Table 5.1. Extrapolative expectation versus contrarian expectation.

Panel α > 0 & γ > 1 α > 0 & γ < 1 α < 0 & γ > 1 α < 0 & γ < 1

A ∂µp/∂S > 0 ∂µp/∂S < 0 ∂µp/∂S < 0 ∂µp/∂S > 0

∂Φ/∂S < 0 ∂Φ/∂S > 0 ∂Φ/∂S > 0 ∂Φ/∂S < 0

σc > σp σc < σp σc < σp σc > σp

B ∂rf/∂S > 0 ∂rf/∂S > 0 ∂rf/∂S < 0 ∂rf/∂S < 0

∂η/∂S < 0 ∂η/∂S < 0 ∂η/∂S > 0 ∂η/∂S > 0

∂(µp − rf )/∂S < 0 ∂(µp − rf )/∂S < 0 ∂(µp − rf )/∂S > 0 ∂(µp − rf )/∂S > 0

destabilizing destabilizing stabilizing stabilizing

C negative feedback positive feedback negative feedback positive feedback

D ∂µp/∂Φ < 0 ∂µp/∂Φ < 0 ∂µp/∂Φ < 0 ∂µp/∂Φ < 0

The results on contrarian expectation become straightforward given the analy-

sis on extrapolative expectation. First, some price properties, including momen-

tum/reversal (the sign of ∂µp/∂S), excess volatility, and the dependence of Φ on

the sentiment (the sign of ∂Φ/∂S) depends on both α and γ as shown in Panel A.

Changing the sign of α or the sign of γ−1 can qualitatively change these properties.

Second, Panel B shows that α significantly affects the following properties: the

effect of the sentiment on the short rate (the sign of ∂rf/∂S), sentiment premium

(the sign of ∂η/∂S), and physical risk premium (the sign of ∂(µp − rf )/∂S), and

the transversality condition (a contrarian tends to preserve the equilibrium). They

are qualitatively different when the sign of α is changed. But changing the sign of

γ − 1 does not qualitatively affect these properties.

Third, Panel C shows that feedback is determined by γ. There is negative feedback

for γ > 1 and positive feedback for γ < 1, regardless of the sign of α.

Fourth, Panel D shows that price-consumption ratio Φ negatively predicts future

return (i.e., ∂µp/∂Φ < 0) for both γ > 1 and γ < 1 and for both α > 0 and α < 0.

5.7. CARA Utility.

Many papers on extrapolation use a setup with normally distributed consumption,

an exogenous short rate, and CARA utility, e.g., De Long, Shleifer, Summers and

Waldmann (1990), Cutler, Poterba and Summers (1990), Hong and Stein (1999),

and BGJS, among others. We provide the rational benchmark for CARA preference

in this subsection for comparison. Assume consumption growth is IID: dCt = µcdt+
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σcdZt, the short rate rf is exogenously given, and utility is given by

E0

[
−

∫ ∞

0

e−ρt−ACt

A
dt
]
,

where A is the absolute risk aversion coefficient. BGJS show that the price of the

risky asset is given by

Pt =
µc

r2f
− Aσ2

cQ

r2f
+
Ct

rf
, (5.3)

where Q is a constant per-capita supply of the risky asset.

The riskless asset is in perfectly elastic supply and the risky asset has unlimited

liability. This setup cannot define percentage returns, while the empirical literature

studies percentage returns, e.g., Greenwood and Shleifer (2014). In contrast, under

our setup, the stock price is positive and percentage returns are well defined, allowing

for a direct correspondence with the empirical studies. For example, extrapolation

in our paper is defined over returns, as in the survey data, instead of over price

changes as in many existing models.24

Price-consumption ratio is measured by P −C/rf in BGJS, and (5.3) shows that

it always increases with consumption growth rate µc, like the case of γ < 1 in our

rational benchmark with CRRA preference. However, we also show that it decreases

with µc in our benchmark for γ > 1. This difference between the two preferences will

be preserved under extrapolation. Under extrapolation, how historical returns (the

sentiment) affect future return and price-consumption ratio through the expected

consumption growth depends on γ. In contrast, P−C/rf in BGJS depends positively

on the consumption growth rate under the subjective measure, as in their rational

benchmark. As a result, many return properties are similar to those in our model

with γ < 1.

More importantly, the assumption of a non-clearing good market in these mod-

els has a significant effect on price behavior. In fact, the effect of extrapolation

on the short rate is absorbed by the difference between optimal consumption and

aggregate consumption.25 In our setup, we show that extrapolation leads to large

time variations of the short rate and hence the short rate is not a constant under

24The setup with normally distributed consumption and CARA utility also ignores the wealth
effect. However, Giglio et al. (2019) find that the sensitivity of portfolios to beliefs is significantly
affected by investor wealth.
25The short rate and return volatility are constants in BGJS’s model with CARA utility, due to non-
clearing markets. There are three markets in the economy studied by BGJS, namely, the markets
for the risky asset, for the riskless asset, and for the consumption good. The risky asset market is
assumed to clear, while the remaining two markets do not clear. If we set the rational-benchmark

short rate in (5.3) as rf = ρ+Aµc− A2σ2
c

2 , as determined by the state price density e−ρt−ACt , then
all markets clear. In this special case with rational agents only, the short rate happens to be a
constant as assumed in BGJS. But their results for the general case in the presence of extrapolation
cannot be consistent with the equilibrium determined by the state price density, which implies that
the short rate depends on the sentiment and cannot be a constant anymore. We refer readers to
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extrapolation. In fact, many return features are mainly driven by the short rate,

rather than the risk premium. However, it is difficult to differentiate short rate and

risk premium in most extrapolation models with an exogenous short rate.

6. Conclusion

We find that extrapolative expectation, in an otherwise standard asset pricing

model, has large effects on the short rate and stock prices. However, extrapolation

actually exacerbates asset pricing puzzles; it leads to volatile interest rates, deficient

volatility (lower volatility than the rational counterpart), and low equity premium

(even lower than the rational counterpart).

We show that extrapolation can generate a negative feedback and momentum

(when the risk aversion is greater than one), in addition to a positive feedback and

reversal (when the risk aversion is less than one). Extrapolation leads to overvalu-

ation relative to the rational benchmark and the overvaluation is never corrected.

We also find that extrapolation changes the transversality condition, which is a

destabilizing feature of the extrapolation.

Our analytical results suggest that non-rational expectation alone cannot resolve

the asset pricing puzzles.

Dudley and Montmarquette (1984), Bénassy (1993, 2006), and Loewenstein and Willard (2006)
for the effects of non-clearing markets.
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Appendix A. A Limiting Case with Infinite Horizon

For an infinite-horizon economy (T → ∞), the HJB equation (3.1) still holds

except that the boundary condition becomes Ee
t [JT ] → 0 as T → ∞. The value

function J has the form (Liu, 2007):

J(S,W, t) = e−ρtW
1−γ

1− γ

[
Φ(S)

]γ
,

where Φ is not an explicit function of time t anymore. Therefore, equations (3.3)-

(2.12) still hold, but PDE (3.9) becomes an ODE

κ2

2

∂2Φ

∂S2
+
κ

γ

[
(α− γ)S + α0

]∂Φ
∂S

−
[(

1− 1

γ

)
σc(α0 + αS)− (γ − 1)σ2

c

2
+
ρ

γ

]
Φ + 1 = 0.

We define Φ̂(S, t) such that

Φ =

∫ ∞

0

Φ̂(S, u)du. (A.1)

Then Φ̂ satisfies

− ∂Φ̂

∂t
+
κ2

2

∂2Φ̂

∂S2
+
κ

γ

[
(α− γ)S + α0

]∂Φ̂
∂S

−
[(

1− 1

γ

)
σc(α0 + αS)− (γ − 1)σ2

c

2
+
ρ

γ

]
Φ̂ = 0,

(A.2)

with Φ̂(S, 0) = 1 and Φ̂(S,∞) = 0.

It can be verified that (3.16) is the condition for the existence of equilibrium.

Under this condition, the solution to (A.2) is given by

Φ̂(S, t) = ea(t)S+b(t), (A.3)

where, for α ̸= γ, a and b are given by

a(t) = −(γ − 1)ασc
1− e−κ(γ−α)t/γ

κ(γ − α)
,

b(t) = c1

[
1− e−κ(γ−α)t/γ

]
+ c2

[
1− e−2κ(γ−α)t/γ

]
−∆t,

c1 = −γ(γ − 1)ασc
κ(γ − α)2

[(γ − 1)ασc
γ − α

− α0

γ

]
, c2 =

γ(γ − 1)2α2σ2
c

4κ(γ − α)3
,

∆ =
ρ

γ
+

(γ − 1)α0σc
γ − α

− γ(γ − 1)(α2 − 2α + γ)σ2
c

2(γ − α)2
;

(A.4)

and, for α = γ,

a(t) = σc(1− γ)t,

b(t) =
κ2σ2

c (1− γ)2

6
t3 +

κα0σc(1− γ)

2γ
t2 +

(1− γ

γ
σcα0 −

ρ

γ
− 1− γ

2
σ2
c

)
t.

(A.5)
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Equations (A.1) and (A.3) show that

∂Φ

∂S
=

∫ ∞

0

a(u)ea(u)S+b(u)du

< 0, if γ > 1,

> 0, if γ < 1.
(A.6)

Proposition A.1 summarizes the equilibrium, which has the same form as that in

Proposition 3.3 except that the integral in Φ is from 0 to infinity.

Proposition A.1. Under the physical measure P, the stock return satisfies

dRt = µpdt+ σpdZt, µp = σp(ψ0 + ψS), σp = σc + κ

∫∞
0
a(u)ea(u)S+b(u)du∫∞
0
ea(u)S+b(u)du

,

where

ψ(σp) = α
(
1− σp

γσc

)
, ψ0(σp) = α0

(
1− σp

γσc

)
+

µr

γσc
+ σp − σc,

and a, b are given by (A.4). The short rate is given by

rf = σp(α0 + αS − γσc),

Φ is given by

Φ =

∫ ∞

0

ea(u)S+b(u)du,

and sentiment follows

dSt = κ
[
ψ0 − (1− ψ)St

]
dt+ κdZt. (A.7)

A.1. Large S → ±∞ Limits.

In this subsection, we present the equilibrium for large S → ±∞ limits. The

limiting cases provide more insights into and clear understanding of the equilibrium:

we will see that all variables in equilibrium are monotonic functions of S, a very

nice property. Especially, the short rate, market price of sentiment, expected returns

under both measures are linear in S. The results are consistent with those to the

leading order of 1/κ (or κ) studied in Appendix D.4.

Suppose that γ < 1 and S → +∞. In this case, a(t) increases monotonically from

0 to (1−γ)ασc

κ(γ−α)
, therefore, when S → +∞,

ea(t)S+b(t) → e
(1−γ)ασc
κ(γ−α)

Sec1+c2e−
(1−γ)ασc
κ(γ−α)

Se
−κ(γ−α)

γ t−∆t.

So

Φ → e
(1−γ)ασc
κ(γ−α)

Sec1+c2

∫ ∞

0

e−
(1−γ)ασc
κ(γ−α)

Se
−κ(γ−α)

γ t−∆tdt

which equals to

e
(1−γ)ασc
κ(γ−α)

Sec1+c2

(
(1− γ)ασc
κ(γ − α)

S

)− ∆γ
κ(γ−α)

∫ (1−γ)σσc
κ(γ−α)

S

0

e−uu
∆γ

κ(γ−α)
du

u
,
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due to a change of variable u = (1−γ)ασc

κ(γ−α)
Se−

κ(γ−α)
γ

t. Note that the integral is finite

with S goes to infinity∫ (1−γ)σσc
κ(γ−α)

S

0

e−uu
∆γ

κ(γ−α)
du

u
→

∫ +∞

0

e−uu
∆γ

κ(γ−α)
du

u
= Γ(

∆γ

κ(γ − α)
),

where Γ(·) is the Gamma function. Finally, the asymptotic behavior of Φ when

S → +∞ (for γ < 1) is

Φ → ec1+c2Γ(
∆γ

κ(γ − α)
)e

(1−γ)ασc
κ(γ−α)

S

(
(1− γ)ασc
κ(γ − α)

S

)− ∆γ
κ(γ−α)

.

Therefore,

σp → σc + (Φ′/Φ)κ = σc +
(1− γ)ασc
(γ − α)

=
(1− α)γ

γ − α
σc. (A.8)

For γ > 1 and S → −∞, we can use the same method and get the same result

(A.8). Note that (A.8) is independent of S and is the same as the result to the

leading order of 1/κ to be studied in Appendix D.4.

Now suppose that γ < 1 and S → −∞. In this case, only ea(t)S has highest value

at t = 0. So Φ ≈
∫∞
0
ea(t)S+b(0)dt =

∫∞
0
ea(t)Sdt and a(t) ≈ (1−γ)ασc

γ
t. Therefore,

Φ ≈
∫ ∞

0

e
(1−γ)ασc

γ
tSdt = − γ

(1− γ)ασcS
.

Note that this integral is positive because S → −∞. Therefore,

σp = σc + κΦ′/Φ = σc −
κ

S
,

which tends to σc as S → −∞. Note that this is independent of S and is same as

the κ → 0 limit to be studied in Appendix D.4. For γ > 1 and S → +∞, we can

use the same method and get the same result.

Now we study the asymptotic behavior of other quantities. When γ > 1 and

S → +∞ or when γ < 1 and S → −∞, the riskfree rate rf is

rf = σp(α0 + αS − γσc) → σc(α0 + αS − γσc),

and the market price of sentiment η is

η = − 1

σc

σp(α0 + αS)− µr

γ
+ (σp − σc) → − 1

σc

σc(α0 + αS)− µr

γ
.

The subjective expected return is

µe
p = σp(α0 + αS) → σc(α0 + αS).

The objective expected return is

µp = σp(α0+αS)+σpη → σc(α0+αS)−
σc(α0 + αS)− µr

γ
= (1− 1

γ
)σc(α0+αS)+

µr

γ
.
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The subjective risk premium is

µe
p − rf = γσpσc → γσ2

c .

The objective risk premium is

µp − rf = µe
p − rf + σpη → γσ2

c −
σc(α0 + αS)− µr

γ
= −1

γ
σc(α0 + αS) +

µr

γ
+ γσ2

c .

When γ > 1 and S → +∞ or when γ < 1 and S → −∞, the riskfree rate rf is

rf = σp(α0 + αS − γσc) →
(1− α)γ

γ − α
σc(α0 + αS − γσc).

The market price of sentiment η is

η = − 1

σc

σp(α0 + αS)− µr

γ
+(σp−σc) → − 1

σc

(1−α)γ
γ−α

σc(α0 + αS)− µr

γ
+(

(1− α)γ

γ − α
−1)σc.

The subjective expected return is

µe
p = σp(α0 + αS) → (1− α)γ

γ − α
σc(α0 + αS).

The objective expected return is

µp = σp(α0+αS)+σpη → σc(α0+αS)−
σc(α0 + αS)− µr

γ
= (1− 1

γ
)σc(α0+αS)+

µr

γ
.

The subjective risk premium is

µe
p − rf = γσpσc →

(1− α)γ

γ − α
γσ2

c .

The objective risk premium is

µp − rf = µe
p − rf + σpη → γσ2

c −
σc(α0 + αS)− µr

γ
= −1

γ
σc(α0 + αS) +

µr

γ
+ γσ2

c .

Appendix B. An Example of Pure Change of Expectation

In this subsection, we provide an example of pure change of expectation to illus-

trate the impact of the deviations from rational expectations. Here we use “pure”

to mean that the expectation bias does not change return volatility.

Suppose that the agent has an incorrect but constant belief about stock return

dRt = µ̂pdt+ σpdẐt,

where µ̂p is a constant. The aggregate consumption follows (2.1) under the physical

measure. In this case, the short rate, the risk premiums under the subjective measure

and the physical measure are given, respectively, by

rf = µ̂p − γσ2
c , µ̂p − rf = γσ2

c , µp − rf = γσ2
c −

1

γ
(µ̂p − µr),
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where µr is the expected return in the rational benchmark given by (2.19). The

return volatility and Φ are given, respectively, by

σp = σc, Φ =
1

ρ+ (γ − 1)(µ̂c − γσ2
c/2)

, where µ̂c = (µ̂p − ρ)/γ + (γ − 1)σ2
c/2.

There are several observations that will help understand the effect of extrapolation

on equilibrium in our full model. First, the subjective risk premium is not affected

by the expectation bias µ̂p, the physical risk premium (the risk premium under

the physical measure) depends negatively on the bias, and the short rate depends

positively on the bias. For γ > 1, a typical range for the CRRA coefficient used in

the literature, biased expectation has more significant effect on the short rate than

on both the subjective risk premium and physical risk premium.

Second, the short rate equals the difference of the subjective expected return

and the subjective risk premium. The subjective expected return is (exogenously)

specified by the biased expectation and hence does not depend on risk aversion γ,

and γ impacts the short rate only through the subjective risk premium. Therefore,

the (constant) biased expectation cannot resolve the riskless rate puzzle, even using

recursive utility in which the effect of EIS is limited by the specification of subjective

expected return.

Third, we consider µ̂c > µc. Relative to the rational benchmark, the (opti-

mistic) bias decreases price (Φ), and accordingly, increases subjective expected re-

turn. Physical expected return is also higher than its rational-benchmark level for

γ > 1, but is lower for γ < 1 by noting that

µp =
(
1− 1

γ

)
µ̂p +

1

γ
µr.

Note that the constant biased expectation has no effect on return volatility, leading

to a pure change of expectation (drift). For state-dependent change of expectation

(such as the extrapolative expectation studied in our paper), high/low sentiment

leads to different µ̂p, so it also simultaneously changes return volatility.

Appendix C. Extrapolation of Fundamentals

The expectation formation literature also studies extrapolation of fundamentals

(e.g., Fuster, Hebert and Laibson, 2011; Choi and Mertens, 2013, and Hirshleifer, Li

and Yu, 2015, among others), in addition to extrapolation of returns (as modelled

in our paper). In this section, we compare both types of extrapolations.

Alternative to extrapolation of returns in (2.4)-(2.5), we assume that the repre-

sentative CRRA agent extrapolates fundamentals:

Ee
t

[
dCt

σcCt

]
= (α0 + αSt)dt, St =

∫ t

−∞
κe−κ(t−u) dCu

σcCu

, (C.1)
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while the consumption process follows (2.1) under the physical measure. It follows

from (C.1) that the subjective expected consumption growth follows an Ornstein-

Uhlenbeck process. A routine calculation leads to the following equilibrium.

Proposition C.1. When the agent extrapolates fundamentals, the equilibrium short

rate, subjective risk premium, market price of sentiment, return volatility, and price-

consumption ratio have the same forms as those in our model with extrapolation of

returns:

rf = ρ+ γµe
c −

γ(1 + γ)σ2
c

2
, µe

p − rf = γσcσp, η =
1

σc
(µc − µe

c),

σp = σc + κ

∫∞
0
â(u)eâ(u)St+b̂(u)du∫∞
0
eâ(u)St+b̂(u)du

, Φ =

∫ ∞

0

eâ(u)St+b̂(u)du,

(C.2)

where the subjective consumption growth rate is given by

µe
c = σc(α0 + αS), (C.3)

and â and b̂ are deterministic functions governed by

â(u) = (1− γ)ασc
1− e−κ(1−α)u

κ(1− α)
,

b̂(u) =
α2σ2

c (1− γ)2

2(1− α)2
1− e−2κ(1−α)u

2κ(1− α)
− α

[σ2
c (1− γ)2

(1− α)2
+
α0σc(1− γ)

1− α

]1− e−κ(1−α)u

κ(1− α)
− ∆̂u,

∆̂ = −α
2 − 2α+ 2

2(1− α)2
σ2
c (1− γ)2 − α0σc(1− γ)

1− α
+
γ(1− γ)σ2

c

2
+ ρ.

(C.4)

Proposition C.1 shows that all the formulas in (C.2) have exactly the same forms

as those in our model with extrapolation of returns. So the only difference between

extrapolation of returns and extrapolation of fundamentals lies in the subjective

consumption growth and the coefficients â and b̂. In our model with extrapolation

of returns, a, which corresponds to â in the model of fundamental extrapolation,

is given by a(u) = (1 − γ)ασc
1−e−κ(1−α/γ)u

κ(γ−α)
, on which parameters have the same

qualitative impact as in (C.4). In addition, stronger extrapolation in this case also

leads to stricter transversality condition, as in our model of return extrapolation.

In our model with extrapolation of returns, the subjective consumption growth

is given by µe
c = σp

α0+αS
γ

− ρ
γ
− σcσp +

(γ+1)σ2
c

2
. By comparing with (C.3), S has

a larger impact when extrapolating returns than extrapolating fundamentals for

small γ, but the reverse occurs for large γ. Indeed, as discussed in Section 2.1.3,

the substitution effect impacts the market price of sentiment when the biased belief

is defined over return (such as the return extrapolation) but will not impact the

market price of sentiment when the biased belief is defined over consumption (such
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as the fundamentals extrapolation). As a result, small γ amplifies the effect of S

when the biased belief is defined over return.

Because excess volatility and return predictability are caused by time-varying

consumption growth in consumption-based models, our conclusions about the short

rate, risk premium, and return volatility still hold here, unless we add other inputs

that significantly increase return volatility to amplify the impact of the sentiment.

Overall, we show that extrapolation of returns and extrapolation of fundamen-

tals qualitatively have similar impact on equilibrium. However, extrapolation of

fundamentals is much easier to study.

Appendix D. Proofs

D.1. The solution of (3.11).

For α ̸= γ, the solution of (3.11) is given by

A(t) =− (γ − 1)ασc
1− e−κ(γ−α)(T−t)/γ

κ(γ − α)
,

B(t) =c1

[
1− e−κ(γ−α)(T−t)/γ

]
+ c2

[
1− e−2κ(γ−α)(T−t)/γ

]
−∆(T − t),

(D.1)

where c1, c2 and ∆ are given by (A.4). For α = γ, the solution of (3.11) is given by

A(t) =σc(1− γ)(T − t),

B(t) =
κ2σ2

c (1− γ)2

6
(T − t)3 +

κα0σc(1− γ)

2γ
(T − t)2 +

(1− γ

γ
σcα0 −

ρ

γ
− 1− γ

2
σ2
c

)
(T − t).

Unless specified otherwise, we focus on the general case α ̸= γ in most analyses of

the paper. Our main conclusions also hold for the case α = γ.

Equation (D.1) shows that, for γ > 1, coefficient A(t) in (3.15) is negative and

bounded:

−(γ − 1)ασc
(γ − α)κ

< A(t) ≤ 0, (D.2)

For γ < 1, A(t) becomes positive, and satisfies

0 ≤ A(t) ≤ A(0), where A(0) = (1− γ)ασc
1− e−κ(γ−α)/γT

κ(γ − α)
. (D.3)

A(0) is bounded for γ ∈ (α, 1); while A(0) can be unbounded for γ ≤ α given that

T can be unbounded. This will affect the existence of equilibrium for an infinite-

horizon economy, as detailed in Section 5.

D.2. Proof of Proposition 3.2.

The equilibrium does not exist for γ = 0. In this case, state price density become

e−ρt, and hence both risk-free rate and expected stock return are constant:

µp = rf = ρ, (D.4)
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implying that there is no equilibrium if the agent believes a time-varying expected

return, such as (2.4). In fact, St is a weighted average of historical returns and

cannot be a constant, so (D.4) cannot hold. In addition, this can be also proved

using (D.1), where A(t), B(t) and ∆ approaches infinity when γ = 0.

Now we prove that, when T = ∞, (3.16) is the necessary and sufficient condition

for the existence of equilibrium.

On the one hand, if the equilibrium exists, then Φ governed by (A.1) and (A.3)

has to be finite. We first look at the case α ̸= γ. To guarantee Φ <∞, (A.4) implies

that γ > α; otherwise, b(t) → ∞, |a(t)| → ∞ and hence Φ → ∞ as t → ∞. When

γ > α, a(t) and the first two terms of b(t) in (A.4) satisfy

a(t) → (1− γ)ασc
κ(γ − α)

, c1

[
1− e−κ(γ−α)t/γ

]
→ c1, c2

[
1− e−2κ(γ−α)t/γ

]
→ c2, when t→ ∞,

(D.5)

and

|a(t)| < |γ − 1|ασc
κ(γ − α)

≡ ā,
∣∣∣c1[1− e−κ(γ−α)t/γ

]∣∣∣ < |c1|,
∣∣∣c2[1− e−2κ(γ−α)t/γ

]∣∣∣ < c2.

If ∆ ≤ 0, then (D.5) implies that ea(u)S+b(u) > 0 is bounded from below for any u;

thus the integral (A.1) is infinite. So ∆ should be positive. We now look at the case

α = γ. To guarantee Φ <∞, (A.5) implies that α = γ = 1. We prove the necessity.

On the other hand, if condition (3.16) is satisfied, then we have

0 < Φ ≤
∫ ∞

0

e|a(u)S+b(u)|du <

∫ ∞

0

eāS+|c1|+c2−∆udu =
1

∆
eāS+|c1|+c2 ,

showing that Φ is finite and positive. So (3.16) is also a sufficient condition for the

existence of equilibrium.

In sum, we prove that (3.16) is the necessary and sufficient condition for the

existence of equilibrium. This can also be proved by studying T → ∞ in (D.1). It

is easy to verify that condition (3.16) reduces to (2.22) when α = 0. When α = 1,

∆ > 0 is equivalent to γ2 < 2ρ/σ2
c , which, together with γ > α, leads to (3.17).

Furthermore, condition (3.16) leads to some intervals of γ, in which the equi-

librium exists. When γ approaches the boundaries of these intervals from inside,

although Φ approaches infinity, return volatility does not. In fact, in this case, either

γ = α and ∆ ≥ 0, (D.6)

or

∆ = 0 and γ > α, (D.7)

occurs. However, (D.6) cannot occur for α ̸= 1. In fact, notice that α is one lower

bound of γ. When γ → α+ (i.e., γ > α and γ → α), (D.1) shows that the last term

of ∆ dominates and approaches −γ2(γ−1)2σ2
c

2(γ−α)2
→ −∞ for α ̸= 1, implying that ∆ < 0
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when γ is in a right neighborhood of α. So (D.6) cannot happen for α ̸= 1. If α = 1

and (D.6), then σp = σc <∞. If (D.7) occurs, then we have

σp < σd + κ

∫∞
0
āea(u)S+b(u)du∫∞

0
ea(u)S+b(u)du

= σd + κā <∞.

Therefore, return volatility has a finite limit when γ approaches the boundaries of

these intervals from inside.

In addition, the above discussion also shows that, if α ̸= 1, then ∆ > 0 implies

γ > α. So condition (3.16) is equivalent to∆(γ, α) > 0, for α ̸= 1,

1 ≤ γ <
√
2ρ/σc, for α = 1.

D.3. Proof of Corollary 4.1.

Equation (D.1) implies that if γ < 1, then A(t) > 0 and σp > σc > 0; if γ = 1,

then A(t) = 0 and σp = σc > 0; and if γ > 1, then A(t) < 0 and σp < σc.

First, we show that σp > 0. If γ > 1, to prove σp > 0, we need to show that∫ T

t

eA(u)S+B(u)du > α(γ − 1)

∫ T

t

1− e−κ(γ−α)/γ(T−u)

γ − α
eA(u)S+B(u)du.

It suffice to show that

1 > α(γ − 1)
1− e−κ(γ−α)/γ(T−u)

γ − α
. (D.8)

In fact, α ≤ 1 leads to α(γ−1)
γ−α

≤ 1, which further leads to (D.8).

In addition, it follows from (3.7) that

∂σp
∂S

= κΦ−2
[∂2Φ
∂S2

Φ−
(∂Φ
∂S

)2]
= κΦ−2

[ ∫ T

t

A(u)2eA(u)S+B(u)du

∫ T

t

eA(u)S+B(u)du−
(∫ T

t

A(u)eA(u)S+B(u)du
)2]

> 0.

So σp increases with S for both γ < 1 and γ > 1.

Appendix A.1, which is for the case T → ∞, has computed the limits of σp when

S approaches infinity. The case with finite T can be also studied using the same

method. It shows that when γ < 1 and S → +∞ or when γ > 1 and S → −∞,

σp → (1−α)γ
γ−α

σc; when γ < 1 and S → −∞ or when γ > 1 and S → +∞, σp → σc.

Because σp in an increasing function of S, the two limits of σp above are the lower

and upper boundaries of σp.

D.4. Proof of Corollaries 4.5, 4.2, 4.3 and 4.4.
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To the leading order of 1/κ, a and b in (A.4) become a(t) = 0, b(t) = −∆t, and

σp =
γ(1− α)

γ − α
σc, µe

p =
γ(1− α)

γ − α
σc(α0 + αS), rf =

γ(1− α)

γ − α
σc(α0 + αS − γσc),

µp =
γ(1− α)

γ − α
σc

[1− α)γ2 + α(γ − 1)

γ(γ − α)

µr

σc
− α(γ − 1)

γ − α
σc +

α(γ − 1)

γ − α
S
]
, Φ =

1

∆
.

Therefore, the unconditional means and variances under the subjective measure and

the physical measure are given by

Ee[S] =
µr

σc
, Vare[S] =

κ

2(1− α)
,

Ee[rf ] =
γ(1− α)

γ − α
rrf , Vare[rf ] =

κα2(1− α)γ2σ2
c

2(γ − α)2
,

Ee[µe
p − rf ] =

γ2(1− α)

γ − α
σ2
c , Vare[µe

p − rf ] = 0,

and

E[S] =
[
1− α(γ − 1)

γ2(1− α)

]µr

σc
− α(γ − 1)

γ(1− α)
σc, Var[S] =

γ − α

γ

κ

2(1− α)
,

E[rf ] =
γ2(1− α) + α2(γ − 1)

γ(γ − α)
rrf , Var[rf ] =

κα2(1− α)γσ2
c

2(γ − α)
,

E[µp − rf ] =
α(1− α)(γ − 1)

γ(γ − α)
ρ+

α(1− α)(γ − 1)

γ − α
µc

+
1− α

γ − α

[
γ2 − α(γ − 1)2

2
− αγ(γ − 1)

γ − α
+
α2(1− α)γ(γ − 1)

2(γ − α)2

]
σ2
c ,

Var[µp − rf ] =
κα2(1− α)3γσ2

c

2(γ − α)3
.

The unconditional mean of return volatility under both the subjective measure

and the physical measure is between those for small κ and large κ. In fact, S

is a mean-reverting process. Denote p(S) its unconditional distribution under the

physical measure. The unconditional mean of volatility under the physical measure

is given by

E[σp] = σc + κ

∫ ∞

−∞

∫∞
0
a(u)ea(u)S+B(u)du∫∞
0
ea(u)S+B(u)du

p(S)dS.

Because −(γ − 1) ασc

κ(γ−α)
< a(u) ≤ 0, we have

γ(1− α)

γ − α
σc = σc − κ(γ − 1)

ασc
κ(γ − α)

< E[σp] < σc.

To the leading order of κ, a and b in (A.4) become

a(t) = −γ − 1

γ
ασct, b(t) =

(γ − 1)ασc
(γ − α)2

[γ − α

γ
α0 −

(γ − 1)ασc
2

]
t−B∗t,
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and

σp = σc, µe
p = σc(α0 + αS), µp =

µr

γ
+
γ − 1

γ
σc(α0 + αS),

rf = σc(α0 + αS − γσc), Φ = γ/[ρ− (1− γ)α0σc + γ(1− γ)σ2
c/2].

Therefore, the unconditional means and variances under the subjective measure and

the physical measure are given by

Ee[S] =
µr

σc
, Vare[S] =

κ

2(1− α)
, E[S] =

µr

σc
, Var[S] =

κ

2[1− α(γ − 1)/γ]
,

Ee[rf ] = rrf , Vare[rf ] =
κα2σ2

c

2(1− α)
, E[rf ] = rrf , Var[rf ] =

κα2σ2
c

2[1− α(γ − 1)/γ]
,

Ee[µe
p − rf ] = γσ2

c , Vare[µe
p − rf ] = 0, E[µp − rf ] = γσ2

c , Var[µp − rf ] =
κα2σ2

c

2γ(γ − γα + α)
.

D.5. Proof of Corollary 5.2.

To the order of α, A(t) and B(t) become

A(t) = −(γ − 1)ασc
γκ

[
1− e−κ(T−t)

]
,

B(t) = −(γ − 1)αα0σc
γ2κ

[
1− e−κ(T−t)

]
+
[(γ − 1)σ2

c

2
− (γ − 1)α0σc

γ

(
1 +

α

γ

)
− ρ

γ

]
(T − t).

(D.9)

Substituting (D.9) into (3.12) and (3.18), σp, µ
e
p and µp are, to the order of α, given

by (5.1), where

a1(t) = 1− a0
a0 + κ

1− e−(a0+κ)(T−t)

1− e−a0(T−t)
,

a2(t) = −γ − 1

γ
α
[
α0σc + µc +

ρ

γ
− (γ + 1)σ2

c

2

]
a1(t) + µc + a0,

a0 = (γ − 1)α0σc/γ − (γ − 1)σ2
c/2 + ρ/γ.

(D.10)

Because a1(t)
′ < 0, we have 0 = a1(T ) ≤ a1(t) ≤ a1(0) = 1− a0

a0+κ
1−e−(a0+κ)T

1−e−a0T
< 1.

To determine the sign of return series correlation, we only need to study cov(rp,t+h∆, rpt).

Because St is, to the order of α, given by

St ≈
∫ t

0

κe−κ(1+ 1−γ
γ

α)(t−u)
[
α0

(
1− σpu

γσc

)
+ σpu +

µc

σc
+

ρ

γσc
− (γ + 1)σc

2

]
du

+ S0e
−κ(1+ 1−γ

γ
α)t + κe−κ(1+ 1−γ

γ
α)(t−u)dZu,

(D.11)
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together with (3.18), we have

cov(rp,t+h∆, rpt)

=cov
(∫ t+h∆

t+(h−1)∆

∫ u

0

κσpuψue
−κ(1+ 1−γ

γ
α)(u−v)dZvdu,

∫ t

t−∆

∫ u

0

κσpuψue
−κ(1+ 1−γ

γ
α)(u−v)dZvdu+ σpudZu

)
=κf(h, t)f0(t),

where

f(h, t) =

∫ t

t−∆

σp,u+h∆ψu+h∆e
−κ(1+ 1−γ

γ
α)(u+h∆)du,

f0(t) =

∫ t

t−∆

σpu

[
κα

(
1− σpu

γσc

)
e−κ(1+ 1−γ

γ
α)u e

2κ(1+ 1−γ
γ

α)u − 1

2κ(1 + 1−γ
γ
α)

+ eκ(1+
1−γ
γ

α)u
]
du.

Because a1(t) > 0, we have 1− σpu

γσc
when γ > 1. In addition, it is easy to verify that

σpu > 0. So f0(t) > 0 when γ > 1. We rewrite f0(t) as

f0(t) =

∫ t

t−∆

σpu

{[
1−

α(σpu

γσc
− 1)

2(1 + 1−γ
γ
α)

]
eκ(1+

1−γ
γ

α)u +
α(σpu

γσc
− 1)

2(1 + 1−γ
γ
α)
e−κ(1+ 1−γ

γ
α)u

}
du.

If γ < 1, then

0 <
α(σpu

γσc
− 1)

2(1 + 1−γ
γ
α)

=
(1− γ)α(1 + α

γ
a1(u))

2γ(1 + 1−γ
γ
α)

<
(1− γ)α

γ + (1− γ)α
< 1,

implying that f0(t) > 0. In all, we have f0(t) > 0, and hence the sign of cov(rp,t+h∆, rpt)

is completely determined by f(h, t), whose sign is determined by ψu. Notice that

ψu = αγ−1
γ

(
1 + αa1(u)

γ

)
, which is positive if γ > 1 and negative if γ < 1. So the

series correlations of return are positive for all lag h if γ > 1 and negative for all h if

γ < 1. If γ = 0, then both expected return and volatility in (5.1) are deterministic,

and hence the series correlations are 0 for all lags.

The series correlation decreases as lag increases because ∂f(h, t)/∂h < 0.

D.6. Proof of Corollary 5.3.

It follows from (5.1) that the excess return satisfies

dPt + Ctdt

Pt

− rftdt =

{
ασcSt

[
− 1

γ
+

(
1− 1

γ

)
αa1(t)

]
+ a2(t)

− σc(α0 − γσc)

[
1−

(
1− 1

γ

)
αa1(t)

]}
dt+ σc

[
1−

(
1− 1

γ

)
αa1(t)

]
dZt.

(D.12)

Note that a1(t) does not depend on α and γ, and that a1(t) and a2(t) are determin-

istic. When both α and γ are sufficiently large, the risk premium in (D.12) depends

positively on S, which is positively related to past return innovations according to

(D.11), leading to positive serial correlations of excess returns for all lags.
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