
Running head: IS FADEOUT A SCALING ARTEFACT  

Is Intervention Fadeout a Scaling Artefact? 

Sirui Wan1, Timothy N. Bond2, Kevin Lang3, Douglas H. Clements4, Julie Sarama4, and Drew H. 

Bailey1 

1 University of California, Irvine 

2 Purdue University 

3 Boston University 

4 University of Denver 

Author note: We thank Greg Duncan and Jade Jenkins for feedback on prior drafts and 

presentations of this project. This research was supported by a Jacobs Foundation Fellowship to 

D. Bailey, by the Institute of Education Sciences, U.S. Department of Education, through Grants 

R305K05157 and R305A120813 to D. Clements and J. Sarama. The content and opinions 

expressed are those solely of the authors and do not necessarily represent the official views of the 

U.S. Department of Education.  

 



IS FADEOUT A SCALING ARTEFACT 2 
 

 

Abstract 

To determine whether scaling decisions might account for fadeout of impacts in early education 

interventions, we reanalyze data from a well-known early mathematics RCT intervention that 

showed substantial fadeout in the two years following the intervention ended. We examine how 

various order-preserving transformations of the scale affect the relative mathematics 

achievement of the control and experimental groups by age. Although fadeout was robust to 

most transformations, we were able to eliminate fadeout by emphasizing differences in scores 

near typical levels of first-graders while treating differences elsewhere as unimportant. The 

findings suggest substantial implications for interpreting the effects of educational interventions.  
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Is Intervention Fadeout a Scaling Artefact? 

I. Introduction 

The impacts of early educational interventions on cognitive scores often fade over time, such that 

there are smaller or no discernible differences between treatment and control children a year or 

more following the end of treatment (for review, see Bailey, Duncan, Odgers, & Yu, 2017).  

Such fadeout occurs despite strong theoretical reasons to expect persistent effects, and, in some 

cases, evidence for beneficial effects on adult outcomes (e.g., Deming, 2009). One explanation 

for this pattern is that fadeout of cognitive effects is a statistical artefact of the way the tests are 

scaled across age. By scaling we mean assigning numbers to increasing levels of performance on 

a test. Perhaps a different way of scaling the test would produce constant or even increasing 

advantages for treatment-group children, thus showing no fadeout or even amplification of the 

treatment effect. 

Suppose preschool mathematics curriculum has a persistent effect on children’s 

mathematics learning after the intervention ends. Children who receive the curriculum learn 

more mathematics skills than children in the control group at the end of the one-year 

intervention, and they have the same amount of more learning than children in the control group 

in each of the subsequent years. When the same amount of learning is worth fewer points on later 

achievement tests relative to learning in earlier years, it will create the illusion of fadeout. This 

will happen if the variance of knowledge increases over time but the test is always scaled to have 

the same variance at each time point. However, under a different scale, the same amount of 

learning might later be worth the same number or even more points on the achievement test than 

at the end of the intervention. As a result, we will see no fadeout or even a reversal of fadeout.  
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 Previous studies have suggested that scale choice may cause artificial fadeout. Lang 

(2010) points out that fadeout can be a mechanical result of the convention of renormalizing each 

year’s scores to have mean zero and variance one. Cascio & Staiger (2012) find evidence of such 

an effect but conclude that it is only of modest importance. Outside the intervention literature, 

Bond & Lang (2013, 2018) find that changes in the black-white reading test score gap across 

grade are highly sensitive to how tests are scaled. They propose that scaling matters when 

comparing changes across groups, which of course includes studying fadeout of intervention 

effects.  

The current study tests the robustness of the fadeout effect to scaling choice. It draws on 

both the scaling explanation of fadeout hypothesized by Cascio & Staiger (2012) and Lang 

(2010) and a complementary set of data-driven methods – a fadeout minimizing and fadeout 

maximizing scale – that identify the theoretically possible levels of fadeout and persistence, 

analogously to Bond & Lang (2013). We revisit the results of a well-known randomized 

controlled trial of an early mathematics intervention, the Technology-enhanced, Research-based, 

Instruction, Assessment, and professional Development (TRIAD) evaluation study, which in the 

original analysis showed substantial fadeout from spring of preschool through the spring of first 

grade (Clements, Sarama, Wolfe, & Spitler, 2013). We examine how various scale 

transformations, which all preserve the order of the original scale, affect the evolution of the 

mathematics achievement test-score gap between children in the control and treatment groups 

over this period.  

We find that fadeout is robust when we constrain scale variance to be constant across 

waves, and under the transformation that maximizes the ability of early scores to predict later 
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scores. We can, however, eliminate fadeout using scales optimized to do so. These scales largely 

shrink scale differences for performance levels commonly found in preschoolers and enlarge 

differences for performance at levels typical of first graders, regardless of the age at which the 

child is tested. This causes the variance in math achievement to increase dramatically with age. 

While we cannot rule out the hypothesis that fadeout is a scaling artefact because we do not 

know which transformation of the scale is correct (in some sense, they may all be correct), 

adopting the fadeout-eliminating scale would have substantial implications for interpreting the 

effects of educational interventions.  

II. Evidence of and Explanations for Fadeout 

Fadeout is common in longitudinal studies of early interventions. For example, many studies 

have found fadeout in early mathematics interventions, despite impressive initial effects (Bailey, 

Fuchs, Gilbert, Geary, & Fuchs, 2018; Clarke et al., 2016; Clements et al., 2013; Hassler 

Hallstedt, Klingberg, & Ghaderi, 2018; Smith, Cobb, Farran, Cordray, & Munter, 2013). In a 

meta-analysis of 67 early childhood education interventions published between 1960 and 2007, 

impacts on cognitive outcomes fell, on average, by over half in the year after treatment ended, 

and the meta-analytic estimate was statistically insignificant 2-4 years after treatment ended (Li 

et al., 2017). The Head Start Impact Study, perhaps the early childhood intervention RCT best 

known to economists, also shows little or no effect of Head Start on either cognitive or 

noncognitive measures in the early school years after the program ended (Puma et al., 2012).  

Psychologists have proposed several explanations for fadeout of the effects of initially 

successful interventions. Cognitive-processing theoretic explanations suggest fadeout results, in 

part, from children in the treatment group forgetting information they learned from the treatment 
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(Campbell & Frey, 1970; Kang, Duncan, Clements, Sarama, & Bailey, in press). Alternatively, 

environmental explanations suggest that, after a successful intervention, children are not exposed 

to content sufficiently advanced to allow them to build on the extra knowledge they gained 

(Engel, Claessens, & Finch, 2013; McCormick, Hsueh, Weiland, & Bangser, 2017).1  

On the other hand, there are reasons to suspect that cognitive test-score fadeout is 

misleading. Despite such fadeout, there is good quasi-experimental evidence of long-term effects 

for Head Start on educational attainment and other employment relevant outcomes (Deming, 

2009; Garces, Thomas, & Currie, 2002; Gibbs, Ludwig, & Miller, 2013; Johnson & Jackson, 

2017). In several other classic studies of early educational programs such as Abecedarian and 

Perry, initial fadeout is also followed by long-term impacts on adult outcomes such as 

educational attainment and reduced incarceration rates (Campbell et al., 2014; Schweinhart et al., 

2005). One explanation is that these interventions instead affect noncognitive skills (Deming, 

2009; Heckman, 2006) through which these interventions produce long-run impacts.2 Another 

possibility is that the interventions influenced cognitive skills in ways that are not reflected on 

standardized cognitive tests but persist into adulthood.  

This raises the possibility that fadeout is at least partially a methodological artefact. 

Perhaps impact of early interventions do not really fade over time. Instead, fadeout merely 

reflects defects in how researchers measure learning across development. Specifically, fadeout 

                                                
 

1 Currie and Thomas (1998) make a similar argument for the absence of cognitive effects of Head Start 
among African American children. 
2 See also Cunha, Heckman, Lochner, and Masterov (2006), Cunha and Heckman (2007), and Cunha, 
Heckman, and Schennach (2010). 
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may be partially a statistical artefact of the way achievement tests are scaled. If we measure gaps 

in standard deviation units (rescaling scores to have mean zero and variance one), which 

implicitly assumes that the standard deviation of learning is constant over time, we will almost 

certainly observe fadeout (Lang, 2010). To see this, suppose that on a scale, after the intervention 

children in the experimental group have cumulative learning with mean µ0+1 while the controls 

have mean µ0. Assume the variance in learning of the control group is s2 and, to keep the 

example simple, that the control group is much larger so that the variance of the full sample is 

approximately the control-group variance (i.e., s2).  A year after the intervention ends, all 

individuals have obtain additional skills with a mean gain of µ1 in both groups. Now children in 

the experimental group have a mean learning of µ0+µ1+1 while the controls have mean µ0+µ1. 

Because both initial levels and learning vary across students, variance in the full sample one year 

after the intervention has doubled (i.e., 2*s2). Scaling effect sizes to the new population standard 

deviation will yield a much smaller standardized effect size. Thus, the initial gap measured in 

standard deviations is 1/s while the later gap falls by a factor of 2-.5, indicating some degree of 

fadeout.    

Two empirical regularities are consistent with the claim that fadeout is partially a scaling 

artefact. First, Cascio and Staiger (2012) found that variance in knowledge rose as children 

progress through school, particularly in the early school years. On two different tests, the North 

Carolina end of grade exams in math for grades 3 to 8 and the Peabody Individual Achievement 

Tests (PIAT) of math for children age 5 through 14, they find scaling the earlier tests to have the 

later test’s standard deviation reduced fadeout by approximately 20%, arguably a non-trivial 

amount. However, they did not use a test specially designed for use in early childhood, and so 
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changes in variance across grade may not generalize to measures more sensitive to differences in 

young children’s knowledge.  

Second, the natural growth in vertically scaled test scores of both reading and math 

declines as students age. That is, children’s learning, expressed in standard deviations, grows 

more slowly from year to year. Across a large set of nationally normed tests administered to U.S. 

students, the average annual math gain was approximately 1 standard deviation for Grades 1-2,  

but only .4 standard deviations for Grades 5-6 (Hill, Bloom, Black, & Lipsey, 2008). If children 

actually learn the same amount each year, and gains each year are equally variable and 

uncorrelated with previous knowledge, a standard deviation encompasses more knowledge 

among older than younger children. In our example above, if we assume µ0 = µ1, learning is 

constant between the two periods, but in standardized form children learn µ0/s in the first period 

and µ0/(2.5s ) in the second. 

Researchers have hypothesized that changes in gaps between groups may also be scaling 

artefacts. Bond and Lang (2013) show that scaling matters for assessing the growth of the black-

white achievement gap, which had previously been estimated to emerge only in the early school 

years, after controlling for other factors, rather than in early childhood (Fryer & Levitt, 2006). 

They used transformations of the original scale in two large national U.S. samples, the ECLS-K, 

which Fryer and Levitt used, and the CNLSY to re-estimate black-white gaps. They maximized 

the growth of the black-white gap by compressing the middle of the distribution of kindergarten 

achievement. Under that transformation, the maximum possible test gap, computed by assuming 

that black children had all the lowest scores and white children all the highest, is much larger in 

3rd grade than in kindergarten. This contrasts with the baseline scale for which the observed gap 
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as a percentage of the maximum possible gap is similar in kindergarten and 3rd grade. Perhaps 

most importantly, an a priori plausible method for selecting a scale that is comparable across 

years, choosing the transformation maximizing the correlation between kindergarten and grade 3 

achievement scores, decreases the gap growth in both datasets and reverses it in one.  

Bond and Lang (2018) rescale test scores in the CNLSY by tying them to an external 

metric so that a one unit change in the new scale corresponds to a one-year difference in 

predicted education. They show that the black-white gap based on this predicted outcome is 

constant from kindergarten through grade 7. Indeed, much of the variance in kindergarten scores 

on the test they use is measurement error so that the apparent growth in the gap is largely an 

artefact of dividing by a standard deviation of test scores that includes more measurement error 

in the early grades.   

These findings have unclear implications for the possibility that fadeout is a measurement 

artefact. On one hand, they show that relying on a single scale for evidence of changes in gaps 

across time may yield misleading results. However, if low reliability of psychometric measures 

administered to young children is general rather than particular to the tests they used, initial 

treatment effects would be plausibly under- rather than over-estimated, leading to an 

underestimate, not an overestimate, of fadeout. Additionally, fadeout has been observed after 

mathematics interventions including children from preschool to grade 3 (Bailey et al., 2018; 

Clarke et al., 2016; Clements et al., 2013; Smith et al., 2013), and grades 3-6 (Jacob, Lefgren, & 

Sims, 2010) and grades 6-8 (Taylor, 2014), grades for which Bond and Lang do not find 

decreasing measurement error. 

However, the direction of bias in gap growth estimates may be test specific. Bond and 
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Lang (2018) also show that, in these same data, there exists a large racial gap on the PPVT, a test 

of general aptitude given to children before they enrolled in kindergarten. They do not address 

whether measurement error in the PPVT changes as children age. One important factor to 

consider is the age range for which the test was developed: if a test is optimized to measure 

knowledge in grade G, measurement error might be higher in grade G-1 and grade G+1. Finally, 

differences in measurement error are far from the only reason to be interested in alternative test 

scales. The shape of the relation between number correct and the value of learning could vary 

wildly under different test designs.3  

III. Data and Methods 

We test the robustness of the fadeout effect to a variety of different scaling decisions that 

determine changes in variance across time and the intervals between scores across the score 

distribution. We use data from an RCT evaluating an early mathematics curriculum: the 

Technology-enhanced, Research-based, Instruction, Assessment, and professional Development 

(TRIAD) evaluation study (Clements, Sarama, Spitler, Lange, & Wolfe, 2011; Clements et al., 

2013; Sarama, Clements, Wolfe, & Spitler, 2012). Forty-two low-income schools in Buffalo, NY, 

and Boston, MA, were randomly assigned to one of three conditions: 1) control (n = 378; school 

N = 16), 2) Building Blocks preschool mathematics curriculum treatment in preschool (n = 456; 

school N = 14), or 3) Building Blocks treatment in preschool with follow-through (n = 471; 

school N = 12). In both Building Blocks treatment conditions, teachers received pedagogical 

                                                
 

3 One other scaling choice that economists might also be interested in is scales that reflect differences in 
the extent to which items predict, or better, affect outcomes of interest. However, the current study does 
not consider such scales. 
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development and implemented the Building Blocks mathematics curriculum during preschool. 

For schools in the Building Blocks with follow-through condition, the kindergarten and first 

grade teachers also received additional professional development on mathematics learning 

trajectories. Schools in the control condition kept their pre-existing preschool mathematics 

programs. We use only the first two groups, because previous research shows the largest fadeout 

occurred between these two groups (Clements et al., 2013). 

The Building Blocks curriculum was designed to help children develop conceptual 

understanding, procedural skill, and problem solving competencies in various foundational areas 

of mathematics (e.g., counting, comparing number, measurement, and geometry). It included the 

Building Blocks software, which further helped teachers personalize instruction to each child’s 

unique needs. The curriculum was designed to take approximately 15 to 30 minutes each day. 

Implementation of the curriculum was assessed with two instruments, the Building Blocks 

Fidelity of Implementation (Fidelity) and Classroom Observation of Early Mathematics 

Environment and Teaching (COEMET). Both instruments measured how mathematics was 

taught in each classroom. Previous studies using this dataset showed that the instruments have 

high reliability and validity, and teachers implemented the curriculum with adequate fidelity 

(Clements & Sarama, 2008; Clements et al., 2011).  

We limit the sample to children with mathematics achievement scores at spring of 

preschool, spring of kindergarten, and spring of first grade. This affects approximately 15% of 

the control and 20% of the Building Blocks group, resulting in a final sample of 720 

observations. See Figure 1 for the cumulative distribution functions and Figure S1 for the density 

plots of scores for both groups. Table 1 gives descriptive statistics for this sample. The p-values 
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are calculated using simple regression models with clustered standard errors at the school level 

(for math scores and age), and logistic regression models with clustered standard errors at the 

school level (for sex and ethnicity). The table shows that the original randomization, after 

attrition, matched the control groups well in terms of sex, age, and ethnicity.  

During the spring of preschool, spring of kindergarten, and spring of first grade, 

mathematics achievement was assessed using the Research-based Early Math Assessment 

(REMA). The REMA was designed to measure the mathematics understanding of children 

between age 3 and 8 (Clements, Sarama, & Liu, 2008). It was administered through two one-on-

one interviews, which were taped and coded, and students were rated on both their correctness 

and strategy use. Test items were ordered by difficulty. Testing ceased after children answered 

four consecutive questions incorrectly. The exam covered counting, number recognition, addition 

and subtraction, patterning, measurement, and shape recognition. This measure defined 

mathematics achievement as a latent trait using the Rasch model, a one parameter IRT model, 

which allows for accurate comparisons of scores between groups and across ages (Clements et 

al., 2011). The measure has been found to have high internal consistency (Cronbach’s a = .94) 

and to correlate highly (r = .74) with the Woodcock-Johnson Applied Problems subtest 

(Clements, Sarama, & Wolfe, 2011).  

Table 1 provides the basic evidence for fadeout. At the end of the intervention (spring of 

preschool) when the children were, on average, five years old, the gap is .401 on the Rasch scale, 

but falls to .134 a year later and to .040 two years later, at which point it ceases to be statistically 

significant. We define the test score gap as the standardized treatment effect: the difference 

between the mean mathematics test scores of the Building Blocks (BB) group and control group 
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divided by the overall standard deviation of test scores of the full sample in that grade. We note, 

however, that if as discussed in section II, the true variance is increasing over time, this will lead 

to us finding fadeout. 

We take two broad approaches to testing whether fadeout is a scaling artefact. We use a 

theory-driven approach, in which we start with a reason why fadeout might be a scaling artefact, 

and then attempt to correct for these potential explanations and test whether we still observe 

fadeout. For example, Casio and Staiger (2012) start with the intuitive hypothesis that the 

variance of knowledge is increasing across grades and examined whether it could account for 

fadeout of intervention effects in test scores. They attempt to adjust for this potential statistical 

artefact by assuming constant test reliability across grades and rescaling the test to the time 

specific standard deviation. Another example is from Bond and Lang (2013), who transform 

earlier and later test scores to maximize the correlation between the two. If we were worried that 

there is a difference in test reliability, or some nonlinearity in the relation between cognitive 

skills and earlier or later test scores, including range restriction, then the correlation-maximizing 

transformation could make fadeout smaller or even go away. In this paper, we use both variance-

equating and correlation-maximization to test for the robustness of fadeout to possible variations 

in test score variance and test reliability across time. 

We also use a data-driven approach, similar to Bond and Lang (2013), to test the 

robustness of fadeout: we look for the transformations that maximize or fully eliminate fadeout, 

and then assess what the new scales imply about whether fadeout is plausibly a scaling artefact.  

Although both approaches may provide useful evidence about whether fadeout is a 

substantive phenomenon or a measurement artefact, conclusions can be strongest when these 
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different methods yield converging results. For example, in one analysis, Bond and Lang (2013) 

find that both maximizing the correlation and minimizing the gap growth lead to reducing the 

gap in later grades while keeping the gap at entry grade similar to that of the original scale. In 

other words, the black-white gap does not widen if it is measured based on predicted future 

outcomes or based on the growth-minimizing transformation. Both the theory-driven and data-

driven transformations in Bond and Lang (2013) provide support for the idea that the test score 

gap growth is an artefact of higher measurement error in the early grades. 

Our data-driven approach draws on Bond and Lang (2013). We look for the bounds of the 

transformations, the one that: i) maximizes the gap growth (and thus minimizes fadeout) from 

the end of treatment in preschool to the spring of grade 1; ii) minimizes gap growth (and 

maximizes fadeout). To impose smoothness, we use a sixth-degree polynomial given by !(u ) = 

#0 + #1(u − k) + #2(u − k)2 + #3(u − k)3 + #4(u − k)4 + #5(u − k)5 + #6(u − k)6, where T is the 

transformed score, u represents untransformed score, #0	-	#6 and k are constants. We use an 

optimization function in Stata/SE 14.0 to search for the values of #0 - #6 and k that minimize the 

objective function given by '()* = min	(01 − 03), where G1 is the test score gap in grade 1, Gp 

is the test gap in preschool, and D is the gap growth from preschool to grade 1. Similarly, we 

maximize the objective function given by Dmax. Since the sixth-degree polynomial does not 

require monotonicity, our algorithm checks for it and rejects parameters that violate the 

condition.4 Figures 2 and 3 show the densities of the scores of different scales, while Figure 4 

                                                
 

4 In the algorithm, if monotonicity fails at any score within the range of observed scores, the objective 
function is penalized one unit. This will lead to a discontinuity in the objective function and create many 
local minima or maxima. Therefore, we tried several different starting values and picked the best one. 
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shows the relation among them.  

In a complementary set of analyses designed to test the limits of how much fadeout can 

be manipulated, we relax smoothness and only assume monotonicity of our transformations, 

making the approach even more data-driven. We discretize the scale by obtaining percentile 

ranks associated with each test score across preschool and first grade in the data. We impose the 

transformation !(5 + 1) = !(5) + 89:1; , where T represents the transformed score, u represents 

score in the discrete scale, and 89:1 is a real number. We again use an optimization function in 

Stata/SE 14.0 to search for the values of 8;	- 81<<	that minimize (maximize) the objective 

function given by Dmin (Dmax). The histograms of the transformation scores are presented in 

Figure S2 and Figure S3, and the relation among them is displayed in Figure 5. 

Following Cascio and Staiger (2012), our theory-driven approach scales down initial 

treatment impact by multiplying the baseline treatment impact by the ratio of the earlier to the 

later standard deviation of test scores. We also use the sixth-degree polynomial discussed above 

to find the transformation that maximizes the correlation between end of treatment and grade 1 

scores in the control group. As discussed, this addresses our concerns about possible differences 

in test reliability and the test range restriction. 

IV. Results 

Figure 1 shows the cumulative distribution functions of scores, re-normed to range from 

0 (the lowest score in the spring of preschool) to 1 (the highest score in the spring of first grade), 

for both groups (see Figure S1 for the density plots). It is evident that in the early period no 

student scores above .7 while in the later period no student scores below .4. Moreover, we 

observe first-order stochastic dominance (FOSD) in the initial period so that any scale that 
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distinguishes among scores in the 0 to .7 range will show a positive effect of the intervention 

right after its completion. In particular, no treated student scores below about .17. We do not 

observe stochastic dominance two years following treatment, but we do observe a higher density 

of scores among the treated group almost everywhere above about .7. It follows that we can get a 

very large fadeout effect if we treat the differences between scores below about .4 as very large 

and those above .7 as unimportant. In that case, we will observe a very big score gap between 

treatment group and control group in preschool but a nearly zero gap in grade 1. In contrast, if 

differences in scores below .7 are minimal, there is almost no immediate treatment effect, but we 

can choose values of the remaining scores that produce a large long-term effect. The remainder 

of our analysis largely formalizes these intuitions.  

The relation between the original and polynomial transformed scales is shown in Figure 

4. As suggested by Figure 1, the fadeout-maximizing scale treats differences in the baseline 

scores between roughly .58 and .85 as essentially unimportant. In contrast, the transformation 

that minimizes the fadeout effect does its best to eliminate all meaningful differences in scores at 

the end of preschool while emphasizing the importance of differences in the scores that no 

student obtains in preschool.  

The fact that the fadeout-maximizing scale shows differences among results close to one 

while the fadeout-minimizing scale does so at very low scores may reflect the requirement of 

continuity and the restriction on curvature imposed by the polynomial. To address this directly, 

Figure 5 shows the test scores using a discretized scale. As we surmised based on Figure 1, the 

fadeout-maximizing scale treats differences among scores below roughly .2 as inconsequential 

while magnifying differences among scores between roughly .25 and .65 and above .9. In 
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contrast, the fadeout-minimizing scale eliminates all differences among the scores received by 

preschoolers and magnifies the differences among most scores in the upper range. 

Finally, the transformation that maximizes the correlation between end of treatment and 

first grade scores in the control group produces results almost identical to those obtained with the 

untransformed scores. So does the transformation that constrains variance to be constant across 

grades. Table 2 shows the mathematics test score gap from the spring of preschool through the 

spring of first grade under the original scale and different transformed scales. The Baseline 

column shows the baseline pattern. The treatment effect decreases from .561 SD in preschool 

to .059 SD by 1st grade. We observe a similar pattern under the gap-growth-minimizing (and 

fadeout-maximizing) polynomial transformed scale, but the effect in first grade is approximately 

0. The change is even more extreme when we allow for discrete jumps in the scale (column 6); 

the gap at the end of 1st grade is reversed although it is not statistically significant. The gap-

growth-maximizing (and fadeout-minimizing) polynomial transformation reduces the gap at the 

spring of preschool to .239 SD, but the gap in first grade remains close to 0. However, if we 

allow for a discrete scale, fadeout becomes amplification, although the growth in the gap is not 

statistically significant.5 

Following Bond and Lang (2013), an alternative way of expressing gaps under different 

transformations is to calculate what the test score gap would be in each grade, under each 

transformation, if the control group had all the lowest scores and treatment group all the highest. 

                                                
 

5 While the density plot shows no students in preschool scoring above approximately .7, this is not quite 
accurate. The discrete scale thus does produce a small difference between the mean scores of the two 
groups and a small standard deviation rather than producing something undefined. 
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This is the maximum possible test gap; we express the observed gap for each time-

transformation combination  as a proportion of this maximum. Table 3 shows the results of this 

exercise. Again, results are similar across most transformations: the treatment effect is about 1/3 

of the maximum possible gap in preschool and less than 5% of the maximum possible gap in first 

grade. Under the baseline and correlation maximizing polynomial transformed scales, the 

maximum possible gap is nearly identical at both waves, suggesting that restriction of range is 

not causing gaps at one wave to be underestimated compared to gaps at another wave. In the 

fadeout-minimizing polynomial transformed scales, the maximum possible gap drops to .37 SD, 

approximately 1/4 of the baseline maximum possible gap. Notably, under this transformation, 

fadeout is actually larger, expressed as a difference in proportions of the maximum possible gap, 

than it is under other transformations. As with the polynomial transformations, the gaps in 

preschool are comparable across discrete transformations and again actually largest under the 

fadeout-minimizing discrete transformation, wherein the maximum possible gap is reduced 

dramatically. The first grade gaps, expressed as a proportion of the maximum possible gap, are 

similar across discrete transformations. The variance in the fadeout-minimizing discrete 

transformation is again greatly reduced, such that the maximum possible test gap increases by a 

factor of greater than 10, from .162 SD at the spring of preschool to 1.820 SD in first grade.  

Histograms of test scores at the end of treatment in preschool and spring of first grade for 

each discrete values-transformed scale are displayed in Figures S2 and S3. The relation between 

the original and discrete values transformed scales appears in Figure 5. The discrete fadeout-

minimizing transformation is a more severe version of the polynomial fadeout-minimizing 

transformation: it almost fully compresses the part of the distribution where preschool scores fall, 
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and increases the test’s sensitivity in the area of the distribution in which the treatment group 

continued to outperform the control group in first grade in Figure 1.  

V. Discussion and Conclusions 

We show that the fadeout of the effect of a preschool mathematics intervention is 

preserved across most of the monotonic transformations we considered. Using the discrete 

fadeout-minimizing transformation, fadeout was eliminated because variance during the 

preschool year was nearly eliminated.  

In some respects, our findings resemble Bond and Lang’s (2013) investigation of the 

robustness of growth of the black-white test score gap across different scales. In both studies, 

scales that limited the extent of the maximum possible gap in the early years produced smaller 

early gaps and more positive (in Bond & Lang) or less negative (our study) gap growth. Bond 

and Lang’s gap growth-maximizing transformation and our fadeout-minimization transformation 

best exemplified this pattern. However, the evidence for scaling artefacts differs across these two 

studies. While Bond and Lang found converging evidence across these theory-driven and data-

driven transformations that gap growth is at least partially a measurement artefact, we found that 

almost all rescaling choices show nontrivial fadeout. 

We can eliminate fadeout by using a scale that assigns minimal importance to variation in 

the range of achievement we observe in preschool regardless of whether students are in 

preschool or 1st grade but which emphasizes the importance of variation near typical levels of 

achievement for 1st graders. In effect, this makes the variance of math achievement much higher 

in the later period. 

Given the lack of converging evidence for fadeout’s sensitivity to scaling decisions across 
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other approaches, should we seriously consider this scale? More specifically, why might the true 

score variance of math achievement on a vertically scaled test increase dramatically in a two-

year period? One possibility is that first-grade mathematics knowledge is substantially more 

cognitively complex than preschool mathematics knowledge. The idea has some face validity: 

for example, a first-grader might be asked to solve the problem “8 + _ = 11”. Variation in item 

responses to this question could depend on variation in a variety of underlying knowledge states, 

such as knowing the meaning of the equal sign, the ability to visualize the problem, the ability to 

break 8 + 3 into the easier two problems “8 + 2” and “10 + 1”, and/or the ability to symbolically 

translate the problem to “11 – 8 = _”. This problem shares demands with a problem that might be 

asked of a kindergartener, “Which is larger: 8 or 3?”, in that both problems may require students 

to know the meaning of the symbols “8” and “3”, but the former problem requires additional 

cognitive processing. Indeed, there is some evidence that vertically scaled achievement tests 

administered to older children inadequately account for increases in item complexity, 

underestimating growth in math achievement across years (Bolt, Deng, & Lee, 2014).  

Assuming for the sake of argument that the discrete fadeout-minimizing scale realistically 

expresses individual differences in math achievement and that this carries over to the tests that 

have been used in other studies, this has important implications for the study of individual 

differences and educational interventions. Almost by definition if differences in math 

achievement at levels associated with preschool are minimal, there cannot be gaps associated 

with race or class at this age. Only when differences become meaningful can gaps emerge. Thus 

gaps (e.g., by class and race), when measured in standard deviations, would be substantially 

overestimated in earlier years relative to later years relative to the true gap in achievement on 
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some absolute scale. 

An alternative interpretation of this result is that fadeout may be reconceptualized as 

different items measuring different knowledge states. It seems that the discrete fadeout-

minimizing transformation turns the test into a measure of first grade math achievement instead 

of a measure of math achievement across years. Fadeout may be conceptualized as a 

consequence of small effects of marginal changes to the skills comprising earlier math 

achievement on the skills comprising later math achievement.  

In conclusion, the results seem to reconcile the measurement-based explanation of 

fadeout with the substantive theoretical explanations of fadeout whereby fadeout and persistence 

may happen at the same time. In other words, it may imply that a large impact and its fadeout is 

happening on preschool mathematics skills while a small and persistent impact is happening on 

first grade mathematics skills. It will be both theoretically important and potentially practically 

useful to test whether this is the only way to make fadeout disappear, or whether there are 

interventions where fadeout can be eliminated without compressing the variance of scores at the 

early period. Notably, both interpretations of the discrete fadeout-minimizing transformation 

results make the prediction that teaching more advanced knowledge will yield larger longer-term 

treatment impacts. Educational interventions may be improved if economists and other 

researchers contributed additional effort to further developing and testing the long list of 

substantive explanations of fadeout, along with their educational implications. 
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Table 1 

Descriptive statistics  

Variables Building Blocks  Control group Group 
differences 

p value for group 
differences 

Spring of preschool math -1.842 

(.655) 

-2.243 

(.724) 

.401 .002 

Spring of kindergarten math -1.044 

(.646) 

-1.178 

(.686) 

.134 .217 

Spring of 1st grade math -.089 

(.674) 

-.129 

(.679) 

.040 .712 

Male .506 .507 -.001 .978 

Ethnicity     

  Black .530 .501 .029 .826 

  Hispanic .182 .248 -.066 .496 

  White .255 .176 .079 .464 

  Ethnicity- Other .034 .075 -.041 .182 

Age (years) fall preschool 4.334 4.391 -.057 .376 

Observations 385 335   

Note. Standard deviations are in parentheses for variables. P-values are got from regressions and 

indicate the extent to which treatment participants different from controls on each variable . In 

each regression, standard errors were adjusted for clustering at the school level (n = 30 schools). 
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Table 2 

Evolution of the BB-Control test gap under various polynomial transformations and discrete transformations of math scores 

Variables Baseline 
 
 
(1) 

Fadeout effect 
maximization 
Polynomial 
(2) 

Fadeout effect 
minimization 
polynomial 
(3) 

Correlation 
maximization 
polynomial 
(4) 

Baseline 
(constant 
variance) 
(5) 

Fadeout effect 
maximization 
discrete 
(6) 

Fadeout effect 
minimization 
discrete 
(7) 

Spring of preschool math .561** 

(.166) 

.548** 

(.167) 

.239* 

(.090) 

.561** 

(.166) 

.561** 

(.166) 

.595** 

(.154) 

.090 

(.060) 

Spring of kindergarten math .200 

(.159) 

.226 

(.146) 

.140 

(.147) 

.204 

(.159) 

.215 

(.171) 

- - 

Spring of 1st grade math .059 

(.158) 

-.004 

(.118) 

.033 

(.144) 

.061 

(.156) 

.063 

(.167) 

-.075 

(.113) 

.142 

(.151) 

Fadeout effect (preschool 

math minus 1st grade math) 

.502*** .552*** .206 .500*** .498*** .670*** -.052 

Note. Test gaps are measured in standard deviations, and standard errors are in parentheses. *p<.05, **p<.01, ***p<.001. 
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Table 3 

The BB-Control test gap as a percentage of boundary under various polynomial transformations and discrete transformations of math 

scores 

Variables Baseline Fadeout effect 
maximization 
polynomial 

Fadeout effect 
minimization 
polynomial 

Correlation 
maximization 
polynomial 

Fadeout effect 
maximization 
discrete 

Fadeout effect 
minimization 
discrete 

Spring of preschool BB-Control test gap .561 .548 .239    .561 .595 .090 

Spring of preschool maximum test gap   1.557   1.547     .368  1.571 1.558 .168 

Spring of preschool % of maximum gap 36.0% 35.4% 64.9% 35.7% 38.2% 53.6% 

Spring of 1st grade BB-Control test gap    .059   -.004 .033    .061 -.075 .142 

Spring of 1st grade maximum test gap  1.595    .790   1.198  1.610 2.506 1.713 

Spring of 1st grade % of maximum gap  3.7%  0.5%   2.8%  3.8% 3.0% 8.3% 

% of 1st grade SD to preschool SD 94.4% 41.5% 90.5% 83.3% 70.6% 859.6% 

Note. Test gaps are measured in standard deviations. Maximum test gap is the test gap that would be observed if all the lowest scores 

belonged to control group and all the highest scores belonged to BB group. 
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Figure 1. Cumulative distribution functions of baseline scores 

 Note: The scores have been normalized to range from 0 to 1. 
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Figure 2. Spring of preschool densities under polynomial transformations 

Note: The figure displays densities of transformed test scores in spring of preschool 

under polynomial transformations that minimize and maximize the fadeout effect. 
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Figure 3. Spring of 1st grade densities under polynomial transformations 

Note: The figure displays densities of transformed test scores in spring of 1st grade under 

polynomial transformations that minimize and maximize the fadeout effect. 
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Figure 4. Polynomial transformation functions 

Note: The figure displays the relation between the original scale and the transformed 

scales: polynomial transformation functions that minimize and maximize the fadeout effect. 

Transformations have been normalized to be over the same range (from 0 to 1) as the original 

scales.  
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Figure 5. Discrete transformation functions 

Note: The figure displays the relation between the original scale and the transformed 

scales: discrete transformation functions that minimize and maximize the fadeout effect. 

Transformations have been normalized to be over the same range (from 0 to 1) as the original 

scales.  
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Appendix  

 

Figure S1. Probability density functions of baseline scores 

Note: The scores have been normalized to range from 0 to 1. 
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 Figure S2. Spring of preschool histograms under discrete transformations 

Note: The figure displays histograms of transformed test scores in spring of preschool 

under discrete transformations that minimize and maximize the fadeout effect. 
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Figure S3. Spring of 1st grade histograms under discrete transformations  

Note: The figure displays histograms of transformed test scores in spring of 1st grade 

under discrete transformations that minimize and maximize the fadeout effect. 
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