
Discount Rates and Cash Flows:
A Local Projection Approach ∗

Matthijs Lof † Henri Nyberg ‡

September 18, 2019

Abstract

We develop a volatility decomposition derived from flexible and robust local projections
to quantify the relative contributions of expected discount rates and cash flows to the vari-
ation of dividend yields. Local projections enable the incorporation of large information
sets, the use of monthly data along with annual data, and to consider time variation in the
volatility decomposition. While the variation of expected discount rates remains the dom-
inant contributor to market volatility, we find that the contribution of expected cash flows
is non-negligible when moving beyond the standard model with the dividend yield as the
single state variable.

Keywords: volatility decomposition, dividend growth, local projections, LASSO
JEL classification: C32, G12

∗ We thank Zhi Da, Jari-Pekka Heinonen, Òscar Jordà, Samu Kärkkäinen, Matti Suominen, and conference
and seminar participants at the EEA-ESEM 2019 (Manchester), Finnish Economic Association 2019 (Oulu), Nordic
Econometric Meeting 2019 (Stockholm), Aalto University, University of Helsinki, University of Nottingham, and
the University of Turku for useful discussions. We gratefully acknowledge the Finnish Foundation for Share Pro-
motion and (Nyberg) the Emil Aaltonen Foundation and the Academy of Finland (grant 321968) for financial sup-
port.
† Aalto University School of Business. P.O.Box 21220, FI-00076 Aalto, Finland. matthijs.lof@aalto.fi. +358

504014448.
‡ University of Turku, Department of Mathematic and Statistics; and Tampere University, Faculty of Manage-

ment and Business. FI-20014 University of Turku. Finland. henri.nyberg@utu.fi. +358294504322



1 Introduction

The value of a stock should equal expected discounted cash flows. Understanding the relative

contribution of expected discount rates (returns) and cash flows (dividends) to the volatility

of equity markets is one of the classic topics in asset pricing research. A voluminous literature

demonstrates that expected dividends contribute only marginally, if at all, to the volatility of

prices (see, e.g., the early evidence in Shiller, 1981; LeRoy and Porter, 1981; Campbell and

Shiller, 1988b; and Cochrane, 1992, 2008). In response to these findings, the focus of asset

pricing research in recent decades has primarily been on the analysis of discount rate variation

(see, e.g., Cochrane 2011, 2017 for recent surveys).

To analyze the discount rate vs. cash flow conundrum, the typical starting point is the

Campbell and Shiller (1988b) log-linear present value model, which decomposes the dividend

yield into expected discount rates and expected cash flow growth. The empirical implementa-

tion in Campbell and Shiller (1988b), Cochrane (2008) and many other studies utilizes a vector

autoregressive (VAR) representation describing the dynamics of (log) market returns, dividend

yields, (log) dividend growth, and possibly additional variables. The estimated VAR coeffi-

cients are subsequently used to infer long-run expectations of discount rates and cash flow

growth. Specifically, Cochrane (2008) uses the lagged dividend yield as the only state vari-

able to predict future returns and dividend growth rates and finds, since the dividend yield

is a poor predictor of future dividend growth, a negligible contribution of expected dividend

growth to price volatility.

In this study, we also build upon the log-linear present value model but introduce an al-

ternative methodology to empirically quantify the relative contributions of expected discount

rates and cash flows in a more general environment than in the past approaches. Our approach

is in spirit similar to Campbell and Shiller (1988b) and Cochrane (2008) as we use regression-

based techniques to infer cash flow and discount rate expectations. However, instead of infer-

ring implied long-run expectations from the VAR, we obtain the required predictions for the

discounted (cumulative) expected returns and dividend growth rates as well as the discounted

dividend yield using (forecast) horizon-specific single-equation regressions, which we refer to,

following Jordà (2005), as ’local projections’.

These flexible and information-rich local projections, which facilitate modern data-driven

machine (statistical) learning methods as a part of the analysis, enable us to reconcile the
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mounting evidence of both return and dividend predictability and the prior VAR-based volatil-

ity decompositions implying that dividend expectations are flat (i.e., they do not contribute to

market volatility). That is, we are able to integrate vast past research effort emphasizing the

role of various other state variables besides the dividend yield as predictors of returns at dif-

ferent horizons.1 Similarly for dividend growth, Lettau and Ludvigson (2005) emphasize the

role of consumption ratios at longer horizons, while Ang and Bekaert (2007) and Møller and

Sander (2017) find the earnings yield as a useful predictor of future cash flows. Moreover,

Engsted and Pedersen (2010) and Rangvid, Schmeling and Schrimpf (2014) find international

evidence in favor of predictability of dividend growth by the dividend yield and other vari-

ables. In line with these findings, our main empirical result is that the estimated contribution

of long-run cash flow expectations to market volatility is considerably larger than estimates

based on the VAR approach (e.g. Cochrane, 2008) and recent latent variable approaches (see

van Binsbergen and Koijen, 2010; Zhu, 2015; and Choi, Kim and Park, 2017).

In his seminal work, Jordà (2005) proposes local projections as an alternative to VARs for

computing macroeconomic impulse response functions. We apply local projections in a dif-

ferent context: to infer long-run expectations of discount rates and cash flow growth of in-

terest for the dividend yield volatility decomposition. Instead of the conventional approach

of extrapolating an estimated one-period VAR model over multiple periods, the idea of local

projections is to construct predictions at each horizon of interest separately. Following Jordà

(2005), this is more robust to misspecification than the VAR approach, which is built upon

the strong assumption that the underlying VAR representation is correctly specified. In prac-

tice, however, the estimated VAR, like any econometric model, is likely to be misspecified,

providing at best an approximation to the true correct asset pricing process. As Jordà (2005)

puts it, misspecification errors are hence ’compounded with the forecast horizon’ with a VAR,

whereas horizon-specific local projections are optimized to minimize misspecification error at

each horizon separately, not requiring an exact specification of the true multivariate dynamic

system, and are thus generally more robust to misspecification.2

1 These variables include, e.g., valuation ratios (Campbell and Shiller, 1988a; Fama and French, 1988; Lamont,
1998), interest rates and interest rate spreads (Ang and Bekaert, 2007; Fama and French, 1989), stock market volatil-
ity (Guo, 2006; Martin, 2017) and the consumption-wealth ratio (Lettau and Ludvigson, 2001; 2005), to name just
a few. See Koijen and Van Nieuwerburgh (2011) and Rapach and Zhou (2013) for recent surveys. Several studies
have nevertheless also questioned the predictive power of the dividend yield and other valuation ratios for returns,
even at long horizons (see, e.g., Ang and Bekaert, 2007; Welch and Goyal, 2008; and Boudoukh, Richardson and
Whitelaw, 2008).

2 Local projections have recently gained popularity as a tool for structural inference in macroeconomic applica-
tions. See, e.g., Owyang, Ramey, and Zubairy, 2013; Ramey, 2016; Gorodnichenko and Lee, 2017; and Ramey and
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A clear example of a situation where extrapolating short-run predictions does not provide

optimal long-run predictions is the corporate policy of dividend smoothing. Short-run divi-

dend smoothing adversely affects the predictability of dividends in the short run. As Chen,

Da, and Priestley (2012) demonstrate, this lack of short-run predictability induces a negative

bias to the VAR-implied contribution of cash flow news: they show by simulation that even

if dividends are predictable in the long run, this predictability is for the most part not uncov-

ered by a VAR in the presence of short-run dividend smoothing. Since dividend growth rates

over longer horizons (say, 10 or 15 years) are less affected by dividend smoothing policies, our

local projections largely circumvent the concerns raised by Chen, Da, and Priestley (2012), by

making direct (as opposed to VAR-implied) predictions of long-run dividend growth.

In addition to minimizing misspecification concerns, raised partly by the above vastly vary-

ing findings in return and dividend growth predictability research, the use of local projections

has a number of clear-cut advantages compared to the VAR approach. First, local projections

enable the incorporation of potentially large sets of economic and financial state variables. We

apply advanced model averaging and statistical learning-based methods to facilitate large in-

formation sets, while avoiding dimensionality concerns. Second, in contrast to the existing

VAR and latent variable based decompositions with a fixed infinite horizon, our volatility de-

composition can be estimated at short, intermediate and long-run horizons, which allows for

selecting the set of predictive variables at each horizon of interest separately. Third, we show

that local projections can be estimated with higher-frequency data, such as monthly data, while

the seasonality of dividend data has restricted prior studies using the VAR-based approaches

to rely solely on annual data (see, e.g., the survey by Koijen and van Nieuwerburgh, 2011).

Fourth, due to the enlarged sample sizes resulting from the use of monthly data, we are able

to evaluate possibly important time variation of the volatility decomposition by estimating the

local projections recursively with time-varying estimation windows. These advantages, with

the resulting main empirical implications, are briefly outlined below.

In our empirical analysis, we start by applying local projections with the lagged dividend

yield as a single state variable and find that the contribution to market volatility of expected

cash flow growth is indeed marginal compared to expected discount rates, which is consistent

Zubairy, 2018. Cochrane and Piazzesi (2002) provide an early example of impulse response functions constructed
by direct regressions. The robustness of local projections in terms of potential misspecification is also supported
by comparisons between ’direct’ and ’iterative’ multiperiod forecasting methods (see, e.g., Marcellino, Stock, and
Watson, 2006; and Chevillon, 2007). To the best our knowledge, this is the first study to systematically integrate
local projections in an empirical asset pricing application.
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with the findings by Cochrane (2008, 2011). We then first extend the information set by includ-

ing lagged (cumulative) returns and dividend growth rates along with the lagged dividend

yield, and find increased predictability of both returns and dividend growth. Importantly,

the incremental predictive power obtained from increasing the information set is particularly

significant when predicting dividend growth. As a result, we find that the contribution of

expected cash flow (dividend) growth increases considerably. In other words, even though

discount rate variation remains the primary component of market volatility, we find the role

of expected dividends to be far from negligible when incorporating predictive information

beyond the lagged dividend yield.

We proceed by extending the information set to include a broader set of potential state

variables. As the aforementioned list of potential state variables is long, we offer two specific

data-driven solutions facilitated by local projections in a data-rich environment: Model aver-

aging and LASSO (Least Absolute Shrinkage and Selection Operator). Both approaches can be

seen as shrinkage (i.e., penalization-based) methods to obtain guard against overfitting. Ra-

pach, Strauss, and Zhou (2010) are among the first ones to document strong evidence on the

superiority of model averaging in (out-of-sample) return forecasting by taking a simple aver-

age of predictive regression models containing a single predictor (see also Timmermann, 2006;

and Rapach and Zhou, 2013). This ultimately stems from the highly uncertain, complex and

potentially continuously evolving underlying data generating processes for expected returns,

dividend growth rates and the dividend yield, which are difficult to approximate with a single

and relatively parsimonious model such as a VAR. Model averaging reduces this uncertainty

and instability risk associated with reliance on a single model and importantly circumvents

overfitting despite the use of large predictor datasets.

The LASSO is a machine learning method popularized by Tibshirani (1996) that performs

variable selection (from a potentially large set of predictive variables) and parameter estima-

tion simultaneously to enhance the prediction accuracy and interpretability of the econometric

model it produces. LASSO is generally more robust than alternative approaches to variable

selection and parameter estimation such as backward or forward stepwise regressions. To the

best of our knowledge, this is the first study integrating the LASSO, or any modern machine

(statistical) learning-based method, within the context of assessing the relative importance of

discount rate and cash flow expectations to market volatility. Overall, the resulting volatility

decompositions from model averages and LASSO estimation yield very similar conclusions
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as the above-mentioned case of three state variable (i.e., lagged returns, dividend growth and

dividend yield): expected discounted rates dominate but the cash flow component is also very

much present.

VAR-based volatility decompositions of the dividend yield are typically based on annual

data due to pervasive seasonal patterns in monthly dividends (e.g., Koijen and van Nieuwer-

burgh, 2011). On the contrary, the aforementioned studies on the predictability of returns and

dividend growth typically analyze monthly data. As pointed out, local projections enable us to

establish an approximative model to incorporate dividend growth also at monthly frequency,

despite the seasonality of monthly dividends data, by including monthly updated annual-

ized (i.e., 12-month) cumulative dividend growth rates. The use of monthly data increases

the number of observations considerably which facilitates meaningful examination of possi-

ble time-variation in the discount rate and cash flow contributions over time. The empirical

results of the full sample (time-invariant) and in particular the time-varying decompositions

at the monthly frequency provide additional robustness to the finding of a nonzero impact of

expected cash flows. In the time-varying decomposition, expected cash flows are at times even

the dominant component, relative to the discount rate component.

The remainder of this paper is organized as follows. Section 2 presents the methodological

advancement around local projections and over the previous volatility decomposition stud-

ies. These include model averaging and LASSO-based local projections and the approximate

monthly approach. Section 3 presents the main empirical results. We provide a discussion of

our findings in Section 4 and Section 5 concludes. Appendix A provides detailed descriptions

of prior volatility decomposition methods. Supplementary empirical results are documented

in our Internet Appendix.

2 Methodology

2.1 Present-value framework

Our starting point is the log-linearized present value model by Campbell and Shiller (1988b),

who show that the return on holding an asset for one period (Rt+1 = Pt+1+Dt+1

Pt
) can be ap-

proximated by a linear equation:

rt+1 = κ− ρdpt+1 + dpt + ∆dt+1, (1)
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where rt ≡ log (Rt), dpt ≡ log
(
Dt
Pt

)
, and ∆dt ≡ log

(
Dt
Dt−1

)
. In (1), all variables are typically

interpreted as deviations from means, such that the constant term κ can be omitted from the

model:

rt+1 = −ρdpt+1 + dpt + ∆dt+1, (2)

where ρ is required to be below, but close to 1. Empirically, ρ is typically estimated as

ρ̂ =
ed̄p

1 + ed̄p
, (3)

where d̄p is the sample average of the log dividend yield dpt. Rearranging (2) and iterating

forward results in the dividend yield expressed in terms of discounted future returns, dividend

growth rates, and dividend yields:

dpt =

k∑
j=1

ρj−1rt+j −
k∑
j=1

ρj−1∆dt+j +ρkdpt+k. (4)

The identity (4) should hold ex-post as well as ex-ante conditional on any information set

Ωt (see, e.g., Campbell and Shiller, 1988b; Campbell, 1991; and Cochrane, 2008). Therefore,

taking expectations of (4), conditional on the information set Ωt available at time t (i.e., Et(·) ≡

E(·|Ωt)), results in

dpt = Et

k∑
j=1

ρj−1rt+j − Et

k∑
j=1

ρj−1∆dt+j + Etρ
kdpt+k.

≡ δ
(r,k)
t − δ

(d,k)
t + δ

(dp,k)
t .

(5)

The finite-horizon expression (5) implies that the dividend yield contains three components:

(i) discounted expected returns up to k periods δ(r,k)
t , (ii) discounted expected dividend growth

rates up to k periods δ(d,k)
t , and (iii) the discounted expected dividend yield in k periods, δ(dp,k)

t ,

which in turn implies expectations of both returns and dividends over horizons longer than k

periods. Quantifying the relative magnitudes of these three components at different horizons

k is the key objective of this paper.

In the existing literature, researchers almost solely focus on infinite horizons (k −→ ∞),

combined with the assumption that rational bubbles cannot exist (i.e., the transversality con-
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dition limk→∞Et
[
ρkdpt+k

]
= 0 holds). Under these conditions, the identity (5) converges to:

dpt = Et

∞∑
j=1

ρj−1rt+j − Et

∞∑
j=1

ρj−1∆dt+j

≡ δ
(r,∞)
t − δ

(d,∞)
t .

(6)

The level of the dividend yield dpt thus reflects expected discounted returns and dividend

growth rates, both up to infinite horizons. This representation yields the important insight,

as emphasized by Cochrane (2008), that observing variation in the dividend yield implies that

either future returns or dividends, or both, are predictable.

Prior studies, such as Campbell and Shiller (1988b) and Cochrane (2008), apply a vector

autoregression (VAR) to evaluate the relative contributions of the infinite-horizon components

in (6). These VAR-based approaches are briefly outlined in Appendix A. The essential idea is to

obtain long-run discounted expectations on future returns (δ(r,∞)
t ) and dividend growth rates

(δ(d,∞)
t ) by iterating forward the predictions of a one-period VAR. Assuming that one wants to

evaluate the expected components only at an infinite horizon (k −→ ∞), the linear structure

of the VAR has the advantage of allowing for closed form solutions of the infinite horizon

predictions (see Campbell and Shiller (1988b), Cochrane (2008) and Appendix A for details).

The VAR approach, however, also has several disadvantages. First, it assumes that the esti-

mated VAR is the correct data generating process for all three components in (5) at all horizons

k, while in reality the VAR parameters are noisy due to estimation and possible misspecifi-

cation errors. Iterating the VAR-based predictions forward therefore likely leads to poor esti-

mates of the (long-run) expected components in (5). The direct regressions (local projections)

that we propose in the next section are specified for each horizon separately, thereby minimiz-

ing misspecification bias. Second, VARs have limited capacity to incorporate large sets of state

variables since the number of parameters increases quadratically in the number of variables.

Our local projections allow for the implied expected returns and expected dividend growth

to depend on different state variables, selected even locally for each horizon of interest, and

from a large set of potential state variables. Third, VARs are restrictive also in a sense that

they do not allow the ‘mixed-frequency’ matching between annual and monthly data. Within

the local projection approach, we are able to include monthly data, even if dividends are mea-

sured over rolling twelve-month windows. The use of monthly data increases the number of

observations, which is particularly useful when investigating potential time variation in the
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parameters.

2.2 Local projections and volatility decomposition

In this section, we introduce a novel volatility decomposition that is built upon flexible local

projections to evaluate the relative magnitudes of the contributions of expected returns (dis-

count rates) and expected growth in dividends (cash flows) to the variation of the dividend

yield. The use of local projections (hereafter often LPs) in structural econometric inference orig-

inates from the work of Jordà (2005). At the heart of this approach lie forecast horizon-specific

predictions of the three components of interest in the identity (5). These predictions form the

basis for a flexible dividend yield volatility decomposition where the forecast horizon k can

freely vary between short, intermediate and long-term horizons. That is, we construct (linear)

local projections for the k-period ahead cumulative returns, cumulative dividend growth rates,

and the k-period ahead dividend yield as dependent variables:

k∑
j=1

ρj−1rt+j = α(r,k) + x
(r,k)
t β(r,k) + ε

(r,k)
t+k

k∑
j=1

ρj−1∆dt+j = α(d,k) + x
(d,k)
t β(d,k) + ε

(d,k)
t+k

ρkdpt+k = α(dp,k) + x
(dp,k)
t β(dp,k) + ε

(dp,k)
t+k ,

(7)

where x(a,k)
t and ε(a,k)

t+k , a ∈ {r, d, dp}, are the vectors of state variables (or predictors) and zero-

mean error terms, respectively. Therefore, due to the linear structure of (7), each equation can

be consistently estimated by ordinary least squares (OLS) under general conditions. The con-

ditional expectations (or fitted values) of the left-hand-side (LHS) variables in (7), conditional

on the information set at time t and the estimated parameters, are the empirical counterparts

of δ(r,k)
t , δ(d,k)

t , and δ(dp,k)
t in (5):

δ̂
(a,k)
t = α̂(a,k) + x

(a,k)
t β̂

(a,k)
a ∈ {r, d, dp}. (8)

Due to the flexible structure of LPs, the resulting estimates δ̂(a,k)
t from (7)–(8) are expected

to be more informative and less prone to misspecification error than the estimates obtained

from the VAR approaches discussed in Section 2.1 and Appendix A. Importantly, if it in fact

turns out that the VAR is the correct data generating process, the LPs containing the same state

variables are asymptotically equivalent to the VAR predictions, whereas the reverse does not

8



apply (Jordà, 2005). Therefore, in large samples, nothing is lost in terms of the construction of

δ
(a,k)
t when using the LPs instead of the VAR-based approaches.

In addition to the VAR-based approach, Cochrane (2008, 2011) also obtains the volatility

decomposition using ‘direct regressions’ with the dividend yield as the only state variable.

This can be seen as a restricted case of the local projections (7), where x(a,k)
t = dpt for all k and

for a ∈ {r, d, dp}. Cochrane’s contribution is the starting point of our analysis: we estimate the

components δ(r,k)
t , δ(d,k)

t , and δ
(dp,k)
t by fitting the regressions (7) using the dividend yield dpt

as the single state variable.

There is no a priori reason to assume that the dividend yield should be the only relevant

predictor of long-run dividends and returns. Lettau and Ludvigson (2005) demonstrate that,

even if identity (6) holds, expected returns and dividends may share a common component

that is independent of the dividend yield, implying that additional variables beyond the div-

idend yield may be of use in predicting long run returns and dividend growth. We therefore

proceed by estimating the same set of regressions using not only lagged dividend yields, but

also lagged cumulative returns and lagged dividend growth rates as state variables. That is:

x
(a,k)
t =

 k∑
j=1

ρj−1rt+j−k,
k∑
j=1

ρj−1∆dt+j−k, dpt

 a ∈ {r, d, dp}, (9)

indicating that the predictive power of lags of all left-hand-side variables of the system (7) are

now utilized. For clarity, in the case of multiple state variables, x(a,k)
t and β(a,k) refer to row-

and column-vectors, respectively. In addition to these three state variables, we also explore a

larger set of financial and economic variables. To incorporate large sets of potential variables,

we estimate the LPs (7) using a LASSO approach and model averaging, on which we provide

more details in Section 2.3.

After estimating the local projections with a given set of state variables, the empirical coun-

terparts of δ(r,k)
t , δ(d,k)

t , and δ(dp,k)
t provide the necessary ingredients to form our dividend yield

volatility decomposition. Taking variances of the present-value identity (5) gives:

Var (dpt) = Var
(
δ

(r,k)
t

)
+ Var

(
δ

(d,k)
t

)
+ Var

(
δ

(dp,k)
t

)
−2
[
Cov

(
δ

(r,k)
t , δ

(d,k)
t

)
− Cov

(
δ

(r,k)
t , δ

(dp,k)
t

)
+ Cov

(
δ

(d,k)
t , δ

(dp,k)
t

)]
.

(10)

The estimated relative contributions of the first three components to the variance of the divi-
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dend yield are:

Var(δ̂t
(r,k)

)

Var(dpt)
,

Var(δ̂t
(d,k)

)

Var(dpt)
,

Var(δ̂t
(dp,k)

)

Var(dpt)
. (11)

As equation (10) suggest, the relative variance contributions (11) do not generally sum up to

one due to neglected covariance terms in (10). Following the prior literature (e.g., Cochrane,

2008, 2011; van Binsbergen and Koijen, 2010; Zhu, 2015; and Choi, Kim, and Park, 2017), we are

primarily interested in the relative variance terms (11) rather than the covariance terms. For

ease of interpretation and to allow explicit comparison with the VAR-based decompositions as

considered by Campbell and Shiller (1988b) and Cochrane (2008) (see details in Appendix A),

we report the square roots of the variance ratios (11). This results in our volatility decomposi-

tion:

σ̂(r, k) =
Std(δ̂t

(r,k)
)

Std(dpt)
, σ̂(d, k) =

Std(δ̂t
(d,k)

)

Std(dpt)
, σ̂(dp, k) =

Std(δ̂t
(dp,k)

)

Std(dpt)
, (12)

where k is the forecast horizon of interest as in (5). In the remainder of this paper, we use

these three measures (σ̂(r, k), σ̂(d, k), and σ̂(dp, k)) to quantify the relative contributions to

the volatility of the dividend yield generated by expected discount rates, expected cash flow

growth, and the expected future dividend yield, respectively.

Ultimately, we are primarily interested in measuring the relative importance of expected

discount rate and cash flow variation:

σ̂(d, k)

σ̂(r, k)
=

Std(δ̂t
(d,k)

)

Std(δ̂t
(r,k)

)
. (13)

If the state variables in (7) do not hold explanatory power on dividend growth, the fitted val-

ues δ̂t
(d,k)

will be essentially constant over time, such that the ratio (13) is close to zero. When

moving from one to multiple state variables, it is expected that the volatility of both δ̂t
(d,k)

and

δ̂t
(r,k)

will increase, because of the improved fit of the local projections. However, the relative

sensitivity of the volatility of expected dividend growth and expected returns to different in-

formation sets, and therefore the behavior of the ratio (13), remains an open question that we

aim to answer in this paper.

2.3 Data-rich local projections: Model averaging and LASSO

As already surveyed in the Introduction, a vast literature compiles evidence that various vari-

ables besides the dividend yield predict stock returns as well as dividend growth rates at dif-
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ferent frequencies and forecast horizons. To accommodate the integration of a large set of

predictors while keeping concerns on possible overfitting to a minimum, we apply two com-

mon data-driven methodologies from the machine and statistical learning literature: model

averaging and the LASSO (Least Absolute Shrinkage and Selection Operator).

In this study, similar to the frequentist model averaging approach by Rapach, Strauss, and

Zhou (2010), the model averages of expected returns, dividend growth rates and dividend

yields are constructed at each period as the equal-weighted averages of the predictions ob-

tained from the local projections (7) with different sets of state variables. Formally this can be

written as:

δ̂
(a,k)
t =

1

na

na∑
j=1

(
α̂

(a,k)
j + x

(a,k)
jt β̂

(a,k)

j

)
, a ∈ {r, d, dp}, (14)

where k is the horizon, α̂(a,k)
j and β̂

(a,k)

j are the OLS estimates from the predictor-specific LPs

generated by the state variables included in x(i,k)
jt . The number of relevant candidate state

variables is denoted by na and described more detail in Section 3.1. In our empirical analy-

sis, x(i,k)
jt includes a fixed set of pre-selected variables (e.g., the dividend yield) supplemented

by one additional predictor (indexed by j) at the time. Giving equal weight to the na pre-

dictions is in accordance with prior studies generally showing that equal-weighted model av-

erages (forecast combinations) typically outperform more complicated alternatives (see, e.g.,

Timmermann, 2006; Rapach, Strauss, and Zhou, 2010; and Baetje, 2018).

The other method that we use to accommodate a data-rich information set is the LASSO.

The LASSO estimator, as popularized by Tibshirani (1996), is an alternative to the usual OLS

estimator where the idea in short is to select the optimal state variables, by shrinking the pa-

rameters of irrelevant state variables to zero, without taking a prior standpoint on which vari-

ables should be included. This shrinkage (or penalization) based method allows us to consider

a potentially large number of state variables simultaneously. In our context, this means that

the LASSO estimator will select the state variables separately for all three components in (5)

and for all horizons k, without causing excessive computational burden.

The LASSO estimator for parameters ϕ(a,k) = (α(a,k),β(a,k)), a ∈ {r, d, dp}, is defined as

(k ≥ 1)

ϕ̂
(a,k)
LASSO = arg min

ϕ(a,k)

{
1

2T

T∑
t=1

(
LHS(a)− α(a,k) − x(a,k)

t β(a,k)
)2

+ λ

na∑
j=1

∣∣∣β(a,k)
j

∣∣∣}, (15)
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whereLHS(a) is one of the three left hand side variables in (7), T is the number of observations

in the estimation sample (depending also on the horizon k), and all the other notations are the

same as above in (14). The essential difference to (14) is that now all na candidate predictors,

for which the shrinkage is set to apply, are initially included simultaneously in x(a,k)
t (i.e.: x(a,k)

t

is an 1 × na vector) whereas the predictors are considered one by one in the model averaging

method. Intuitively, the aim of the LASSO estimator is to find a set of coefficient estimates that

lead to the smallest residual sum of squares, subject to the constraint set by the penalty term∑na
j=1 |β

(a,k)
j |.3

The amount of shrinkage is controlled by the tuning parameter λ: Increasing λ results in

greater shrinkage toward zero in β̂(a,k)
j . We follow Medeiros and Mendes (2016) and Medeiros

and Vasconcelos (2016), who recommend in a time-series context to determine λ by the Bayesian

information criterion (BIC), as opposed to the cross-validation typically used in cross-sectional

LASSO analyses. For a sufficiently large value of λ, the LASSO estimator shrinks some β̂(a,k)
j

exactly to zero (e.g., Hastie, Tibshirani, and Friedman, 2009, Section 3.4), performing thus pa-

rameter estimation and model selection at the same time. This is effective and in practice

highly useful in our context, producing automatically the required horizon-specific local pro-

jections where the optimal state variables are selected depending on the horizon k. As a result,

the estimated local projections generated from the LASSO are ‘sparse’ and circumvent overfit-

ting since only a subset of the full set of potential state variables is involved.4

2.4 Monthly local projections

Prior studies on dividend yield volatility decompositions are implemented with annual data

(see, e.g., Campbell and Shiller 1988b; Cochrane, 1992, 2008, 2011; van Binsbergen and Koijen,

2010; Zhu, 2015; and Choi, Kim, and Park, 2017). Since dividend payments are highly sea-

sonal, dividend growth rates are often considered informative only on an annualized basis.5

One of our contributions is that local projections allow for the use of monthly (or even higher-

3 For simplicity, the notation for state variables x
(a,k)
t is the same throughout this study. Following common

practice, we standardize the predictors within the construction of the LASSO estimator (15) when determining the
penalty function, but for the construction of the LPs (Eq. 7–8) the original variables are used and the OLS estimator
is just replaced by the LASSO estimator (15).

4 All computations in this paper are carried out in R. Specifically, the LASSO-based local projections are con-
structed with the glmnet package and BIC-based tuning parameter λ selection (see, e.g., Medeiros and Vasconcelos,
2016).

5 Closely related return decomposition studies do use monthly data, but compared to (7), these studies only
model expected returns explicitly and treat the contribution of expected dividend growth as a residual term (see,
e.g., Campbell, 1991; Campbell and Ammer, 1993; and Chen and Zhao, 2009).
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frequency) data explicitly when modelling the component δ(d,k)
t associated with the expected

dividend growth in (5). From an empirical point of view, the introduction of a volatility de-

composition based on monthly data implies substantially more observations and hence greater

statistical accuracy than the annual case. This provides additional robustness and enables var-

ious extensions to the annual decompositions, such as examining potential time variation and

time-varying parameters in the discount rate and cash flow dynamics (see Section 3.5).

Instead of the annual frequency, as implicitly assumed in the previous sections, we now

let the time index t be monthly. The essential challenge at the monthly frequency is the mea-

surement of dividends. Even though dividend data are available at the monthly frequency,

these figures have strong seasonalities, resulting in highly erratic behaviour of the monthly

dividend yield (dpt) and dividend growth rate (∆dt). Therefore, in the following we treat the

monthly dividend growth rates as unobserved while cumulative 12-month dividend growth

rates are observable each month. Monthly dividend yields refer, as common in the literature,

to the cumulative 12-month dividend yield. Finally, return series are simply monthly returns.

Section 3.1 below provides further details on the variable definitions.

In the absence of reliable observable monthly dividend growth rates, instead of accumulat-

ing dividend growth rates month by month, we accumulate the growth rates by groups of 12

months:

k∑
j=1

ρj−1∆dt+j ≈
k∑
j=1

ρ∗j∆
∗dt+j = ρ12∆∗dt+12 + ρ24∆∗dt+24 + · · · , (16)

where ρ∗j ≡ ρj−1 if j ∈ {12, 24, 36, ...} and 0 otherwise, and ∆∗dt+j ≡ dt+j − dt+j−12 is the

12-month cumulative dividend growth. Since ∆∗dt =
∑11

i=0 ∆dt−i, the approximation is exact

if ρ = 1 and holds closely when the difference between ρj−1 and ρj−12 is small, which is the

case when ρ is close to one, as assumed in (3) and estimated hereafter in this study. Thus, to

obtain the monthly volatility decomposition of the dividend yield, we replace the (unobserved)

monthly dividend growth component in identity (5) and the local projections (7) by the right

hand side of (16), which is based on monthly observations of 12-month cumulative dividend

growth rates.

The approximation (16) implies that the (monthly) forecast horizon k needs to be a multiple

of 12 (i.e., k ∈ {12, 24, 36, ...}). In other words, despite basing the analysis on the monthly fre-

quency data, we report the monthly decompositions only for annualized horizons. Neverthe-
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less, although we are considering annualized horizons, the local projection approach enables

us to use updated data in every month, thereby greatly increasing the number of observations

and therefore statistical power. The increased number of observations in turn allows us to

study time variation of the volatility decomposition.

3 Empirical results

This section first describes the data and then presents the estimated volatility decompositions

based on local projections with different sets of state variables.

3.1 Data

For our monthly analysis, our main variables are the monthly value-weighted market returns

reported by the Center for Research in Security Prices (CRSP), the dividend-price ratio (divi-

dend yield), and the 12-month dividend growth rate. Following Cochrane (2008), the annual-

ized log dividend yield in each month is computed as follows:

dpt = log

(
Rt−11:t

Rxt−11:t
− 1

)
(17)

where Rt−11:t refers to the cumulative gross CRSP value-weighted market return over the 12-

month period ending in month t, and Rxt refers to the cumulative gross CRSP value-weighted

market return over the same period excluding dividends.

Following Koijen and van Nieuwerburgh (2011), among others, we compute monthly div-

idends by Dt = (Rt − Rxt)Pt−1. To avoid seasonality concerns, monthly dividends are com-

pounded over 12 months to compute 12-month (log) growth rates, as discussed in Section 2.4.

Monthly dividends are compounded under the assumption that dividends paid out during the

12-month periods are at the end of each month reinvested in the risk-free rate of return, follow-

ing Chen (2009), van Binsbergen and Koijen (2010), and others. Alternatively, Cochrane (2008)

assumes that dividends are re-invested in the market portfolio. Chen (2009) discusses the im-

plications of these different assumptions on the predictability of dividends and argues that it is

difficult to disentangle return predictability from dividend predictability when dividends are

reinvested in the market.6

6 For robustness, we report in Section IV of the the Internet Appendix our main results computed using market-
reinvested and non-reinvested dividends. In addition, we also consider S&P 500 returns instead of CRSP market
returns. Overall, these variations of the data lead to qualitatively similar results.
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For our analysis of annual data, we use cumulative returns over each calendar year (January–

December), and the end of year (December) observations of the 12-month dividend growth

rate and dividend yield.

Table 1: A list of additional candidate state variables
List of candidate state variables obtained from the datasets of Welch and Goyal (2008) and Rapach and Zhou
(2013). Here ‘(A)’ and ‘(M)’ denote annual and monthly data availability only. Default yield spread (DFY ) is the
difference between BAA- and AAA-rated corporate bond yields. Following Campbell (1991), RREL is the
difference between the short-term interest rate and its average in the past 12 months. The monthly CAY series is
obtained from linear interpolation of the quarterly CAY series (following, e.g., Guo and Whitelaw, 2006).
Specifically, in the first month of each quarter, the CAY is the weighted average of the prior quarter’s CAY and the
current quarter’s CAY with weights 1

3
and 2

3
, respectively. In the second month of the quarter, the respective

weights are 2
3

and 1
3

. In the last month of the quarter, the monthly CAY is equal to the same-quarter CAY
observation.

EP Log earnings-price ratio (S&P 500 earnings yield)
DE Log dividend-payout ratio
SV AR Realized volatility (monthly sum of squared daily returns on the S&P 500)
BM Book-to-market value ratio for the DJIA (Dow Jones Industrial Average).
NTIS Net equity expansion
TBL Treasury bill rate (three-month Treasury bill, secondary market)
LTY Long-term government bond yield
RFREE Risk-free rate
TMS Term spread: LTY − TBL
LTR Return on long-term government bonds
CORPR Return on long-term corporate bond
DFY Default yield spread
DFR Default return spread: CORPR− LTR
INFL Inflation (CPI inflation)
CAY Consumption-wealth ratio
EQIS (A) Percent equity issuing
IK (A) Investment-to-capital ratio
RREL (M) Stochastically detrended risk-free rate

Table 1 lists the additional state variables that we consider in the local projections over and

above the three state variables given in (9). The set of additional variables is based on prior

literature on the predictability of returns and dividends (see the discussion in the Introduction,

as well as, e.g., Welch and Goyal, 2008; and Rapach and Zhou, 2013). These additional vari-

ables are obtained from the updated dataset of Welch and Goyal (2008), who provide detailed

descriptions of the data and their sources.7

In our main analysis, we consider the sample period starting from 1952 until the end of

2017. Monthly observations start in March 1952. This choice of starting point is mainly driven

by the data availability ofCAY , which the prior literature has found to be an important predic-

tor of both dividends and returns. The starting point of our sample coincides with Cochrane

(2011) and Campbell and Ammer (1993) and is very close to the ones in Cochrane (2008), Let-

7 Monthly and annual data updated up to 2017 can be found at Amit Goyal’s website http://www.hec.
unil.ch/agoyal/docs/PredictorData2017.xlsx.
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tau and Ludvigson (2005) and van Binsbergen and Koijen (2010). Section IV of the Internet

Appendix reports the results for subsamples and earlier data (1928–1951).

3.2 One state variable

We start by estimating the local projections (7) over the full annual sample, for k ∈ {1, 2, . . . , 15}

years, using the last observed dividend yield as a single predictor (state variable). That is, we

select x(a,k)
t = dpt for a ∈ {r,∆d, dp}, which is the same single state variable as considered by

Cochrane (2008). The maximum horizon of 15 years is the same as the longest horizon applied

by Cochrane (2011) in his direct regressions.

Figure 1 plots the estimated components δ̂t
(r,k)

, δ̂t
(d,k)

, and δ̂t
(dp,k)

(i.e., the fitted values of

the local projections (7)), for k = 1 and k = 15 years. Due to the maximum horizon of k = 15

years, the first 15 years of the sample are missing from the figures. The first panel of Figure 1

shows that, at short horizons, only little dividend yield variation can be explained by expected

discount rates or cash flows: the time-series δ̂t
(r,1)

and δ̂t
(d,1)

are mostly flat, while δ̂t
(dp,1)

is

highly volatile. This means that most of the volatility of the dividend yield is attributed to

discount rate and cash flow expectations over horizons beyond one year. At longer horizons

(k = 15 years), a substantial part of dividend yield variation is captured by expected discount

rate variation (δ̂(r,15)
t ). The cash flow component δ̂(d,15)

t remains rather flat, suggesting that cash

flow expectations, even at longer horizons, can explain only a minor part of observed market

volatility.

Following Eq. (5), the final panel of Figure 1 plots the observed dividend yield and the

implied dividend yield obtained as δ̂(r,k)
t − δ̂

(d,k)
t + δ̂

(dp,k)
t for k = 1 and k = 15. The plot

provides supporting evidence on the accuracy of the LP-based estimates of the components

in the the present-value relation (5), both at short and long horizons, as the implied dividend

yields closely trace the observed yield.

Panel A in Table 2, reporting the volatility decomposition (12) at the annual frequency,

shows a highly similar pattern to Figure 1. The volatility contribution of expected returns

(σ̂(r, k)) increases over the horizon k, up to a maximum of 0.80 at 15-year horizon, implying

that 80 percent of dividend yield volatility can be attributed to expected discount rates. The

contribution of expected dividends (σ̂(d, k)) remains very low, if not exactly zero: the ratio
σ̂(d,k)
σ̂(r,k) peaks at the 15-year horizon at 0.10, but is mostly close to zero. Overall, these results

are highly consistent with the results reported by Cochrane (2008), who argues that expected
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Figure 1: Time-series plots of the the components δ̂(r,k)t , δ̂(d,k)t , and δ̂(dp,k)t (see (5)), estimated from the annual local
projections (7), using dpt as the single explanatory variable, for k = 1 year (left panel) and k = 15 years (middle
panel). The right panel shows the observed dividend yield dpt and the implied dividend yield δ̂(r,k)t −δ̂(d,k)t +δ̂

(dp,k)
t ,

for k = 1 year and k = 15 years.

cash flow variation hardly contributes to price volatility. In fact, Cohrane’s (2008) long-run

coefficients can be backed out from our local projections with k = 1 and the lagged dividend

yield as the only predictor (see Appendix A). We find that the long-run coefficients in his VAR-

based approach are b̂lrr = 1.04 and b̂lrd = 0.03, confirming that discount rates, in the long run

(i.e., the infinite horizon k −→∞), are the major drivers of price volatility.8

Panel B of Table 2 presents the volatility decomposition (12) estimated with monthly data

for horizons of one up to 15 years (i.e., k = 12 to k = 180 months) and utilizing the approxima-

tion (16). The relative contributions of discount rates and cash flows are very similar, although

not fully equivalent, to those reported in Panel A. Another notable result in Table 2 is that

the relative impact of the forward dividend yield (σ̂(dp, k)) is diminishing monotonically with

the forecast horizon. At the 15-year horizon, the contribution of the expected dividend yield

is close to zero. This implies that the lagged dividend yield by itself does not contain any

predictive power on the future dividend yield over horizons exceeding 15 years.

3.3 Three state variables

Instead of a single state variable (dividend yield) in Section 3.2, in this section we move to three

state variables as specified in (9). That is, lagged cumulative returns and dividend growth rates

are included as additional state variables in the estimated local projections.

8 Full regression (estimation) results of the annual and monthly local projections (7) on all horizons k are re-
ported in Section I and II of the Internet Appendix. This is also the case for the three state variable system to be
examined in the next section (Section 3.3).
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Table 2: Volatility decomposition: one state variable
This table reports the annual (Panel A) and monthly (Panel B) volatility decomposition of the dividend yield (12),
based on the local projections (7), using dpt as the single explanatory variable for different horizons k. The columns
report the relative contributions of expected discount rates σ̂(r, k), cash flow growth σ̂(d, k) and forward dividend
yields σ̂(dp, k), as well as the ratio σ̂(d,k)

σ̂(r,k)
given in (13).

A: Annual B: Monthly

k (years) σ̂(r, k) σ̂(d, k) σ̂(dp, k)
σ̂(d, k)

σ̂(r, k)
k (months) σ̂(r, k) σ̂(d, k) σ̂(dp, k)

σ̂(d, k)

σ̂(r, k)
1 0.13 0.00 0.90 0.03 12 0.12 0.00 0.90 0.02
2 0.23 0.02 0.80 0.07 24 0.21 0.02 0.80 0.09
3 0.28 0.03 0.73 0.10 36 0.28 0.03 0.73 0.11
4 0.33 0.02 0.66 0.06 48 0.33 0.02 0.66 0.07
5 0.40 0.00 0.57 0.00 60 0.40 0.00 0.57 0.01
6 0.47 0.01 0.49 0.03 72 0.45 0.00 0.49 0.01
7 0.53 0.01 0.42 0.03 84 0.51 0.00 0.41 0.01
8 0.59 0.01 0.36 0.01 96 0.58 0.00 0.35 0.00
9 0.65 0.00 0.28 0.00 108 0.64 0.00 0.28 0.00

10 0.70 0.01 0.24 0.01 120 0.68 0.00 0.23 0.01
11 0.73 0.01 0.19 0.01 132 0.70 0.01 0.19 0.01
12 0.73 0.03 0.15 0.04 144 0.71 0.03 0.15 0.04
13 0.74 0.05 0.12 0.07 156 0.71 0.04 0.12 0.06
14 0.76 0.07 0.09 0.09 168 0.73 0.04 0.09 0.06
15 0.79 0.08 0.04 0.10 180 0.77 0.05 0.04 0.06

Moving beyond the one state variable model, in Table 3 we see that the discount rate con-

tribution further increases, but in particular the cash flow contribution is now clearly nonzero.

This increase in the volatility of all components is as expected due to additional full-sample

predictive power that the lagged cumulative returns and dividend growth rates provide. In

Table 2, ratios (13) between the cash flow and discount rate contributions are mostly below 0.1,

whereas in Table 3 these ratios are roughly between 0.25–0.5, depending on the horizon k. In

other words, the discount rate channel maintains its dominant role but the cash flow contri-

bution is substantially more important when moving ahead from the standard model with the

dividend yield as the single state variable.

The additional state variables predict also the future dividend yield. When compared to

Table 2, the volatility shares σ̂(dp, k) reported in Table 3 are clearly higher than zero at the long

forecast horizons. It is worth noting that this result does not imply rejection of the transver-

sality assumption or the existence of (rational) bubbles: it just suggests that the dividend yield

itself is predictable by other factors, even at long but finite horizons.9

Figure 2 plots the estimates δ̂(r,k)
t , δ̂(d,k)

t and δ̂
(dp,k)
t for the case of three state variables. At

9 When considering horizons beyond k = 15 years, the share σ̂(dp, k) does converge to zero, which is consistent
with the transversality assumption. This convergence is nevertheless much slower than when the dividend yield
is the single state variable (see Table 2).

18



Table 3: Volatility decomposition: three state variables
This table reports the annual (Panel A) and monthly (Panel B) volatility decomposition (12) based on the local

projections (7) using three state variables (9): x(a,k)
t =

(
k∑
j=1

ρj−1rt+j−k,

k∑
j=1

ρj−1∆dt+j−k, dpt

)
for a ∈ {r, d, dp},

for different horizons k. The columns report the relative contributions of expected discount rates σ̂(r, k), cash flow
growth σ̂(d, k), forward dividend yields σ̂(dp, k), and the ratio σ̂(d,k)

σ̂(r,k)
given in (13).

A: Annual B: Monthly

k (years) σ̂(r, k) σ̂(d, k) σ̂(dp, k)
σ̂(d, k)

σ̂(r, k)
k (months) σ̂(r, k) σ̂(d, k) σ̂(dp, k)

σ̂(d, k)

σ̂(r, k)
1 0.15 0.12 0.92 0.76 12 0.14 0.16 0.91 1.17
2 0.30 0.08 0.80 0.25 24 0.24 0.10 0.81 0.42
3 0.28 0.17 0.77 0.62 36 0.31 0.14 0.77 0.43
4 0.40 0.27 0.73 0.66 48 0.41 0.25 0.73 0.61
5 0.48 0.23 0.66 0.48 60 0.44 0.22 0.66 0.50
6 0.49 0.19 0.59 0.38 72 0.45 0.16 0.58 0.35
7 0.53 0.15 0.52 0.28 84 0.52 0.15 0.52 0.28
8 0.64 0.17 0.47 0.27 96 0.61 0.17 0.49 0.28
9 0.69 0.23 0.41 0.33 108 0.67 0.26 0.46 0.39

10 0.74 0.32 0.48 0.43 120 0.71 0.32 0.53 0.45
11 0.76 0.34 0.48 0.45 132 0.73 0.35 0.51 0.48
12 0.77 0.36 0.44 0.46 144 0.75 0.35 0.46 0.46
13 0.79 0.32 0.35 0.41 156 0.77 0.32 0.37 0.41
14 0.84 0.27 0.32 0.32 168 0.82 0.28 0.33 0.34
15 0.89 0.25 0.27 0.29 180 0.88 0.26 0.29 0.30

short horizons, the picture is similar to Figure 1, with both expected returns and expected

dividends being fairly flat. At longer horizons, the dividend growth and dividend yield com-

ponents δ̂(d,15)
t and δ̂

(dp,15)
t are now strikingly more volatile than in Figure 1, thereby clearly

contributing to the volatility of the dividend yield. The final panel of Figure 2 shows that the

approximate present value relation (5) holds accurately also when the implied dividend yield

is based on these multivariate local projections.

The interpretation of our decomposition based on three state variables is that variation in

expected discount rates is not the sole driver of market volatility. Expectations on future divi-

dends do in fact contribute significantly to the variation of the dividend yield. Conditional on

the lagged dividend yield only, expected dividend growth rates are flat (Figure 1). However,

after adding lagged returns and dividend growth rates to the information set, these expec-

tations do vary over time. This result corroborates the conclusions by Menzly, Santos, and

Veronesi (2004), Lettau and Ludvigson (2005), Ang and Bekaert (2007), van Binsbergen and

Koijen (2010), and others, who document dividend growth rate predictability by other factors

than the lagged dividend yield. The flexibility of local projections allow us to integrate this

predictability into the volatility decomposition.
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Figure 2: Time-series plots of the components δ̂(r,k)t , δ̂(d,k)t , and δ̂(dp,k)t (see (5)), estimated from the annual local pro-

jections (7), using three fixed state variables: x(a,k)
t =

(
k∑
j=1

ρj−1rt+j−k,

k∑
j=1

ρj−1∆dt+j−k, dpt

)
for a ∈ {r, d, dp},

for k = 1 year (left panel) and k = 15 years (middle panel). The right panel shows the observed dividend yield dpt
and the implied dividend yield δ̂(r,k)t − δ̂(d,k)t + δ̂

(dp,k)
t , for k = 1 year and k = 15 years.

3.4 LASSO and model averaging results

In this section, we enlarge the information set from three state variables (9) to the more general

case where all the potential state variables described in Table 1 are involved in the construc-

tion of local projections. That is, we are moving to the data-rich model averaging and LASSO

approaches as introduced in Section 2.3 where, importantly, the built-in regularization mecha-

nisms control the potential hazards of overfitting.

Before moving to the empirical results, let us clarify a couple of modelling selections made

in this section. According to the regression results in Section 3.3 and also LASSO model selec-

tions (especially based on the monthly data), we pre-specify model averages so that the model

always includes lagged cumulative returns, dividend growth and the dividend yield (i.e., all

three state variables in (9)). The model averages are then constructed as in (14), by including a

fourth predictor that varies across specifications j and is one of the variables listed in Table 1.

Moreover, in the LASSO estimation we do not apply shrinkage to the dividend yield (i.e., the

penalty term in (15) does not include the regression coefficient related to the lagged dividend

yield), due to its essential role in the benchmark volatility decompositions (see Section 2 and

also Engsted, Pedersen, and Tanggaard, 2012). This implies that dpt is always included in the

resulting local projections.10

10 Internet Appendix Section III presents annual and monthly results where the dividend yield is also subject to
shrinkage. It turns out that the dividend yield is typically included in all local projections and hence the resulting
volatility decompositions are very close to those reported in Table 4.
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Figure 3: Time-series plots of the the components δ̂(r,k)t , δ̂(d,k)t , and δ̂(dp,k)t (see (5)), estimated from the annual local
projections (7), using the LASSO (upper panel) and model averaging (below panel) approaches, for k = 1 year (left
panel) and k = 15 years (middle panel). The right panel shows the observed dividend yield dpt and the implied
dividend yield δ̂(r,k)t − δ̂(d,k)t + δ̂

(dp,k)
t , for k = 1 year and k = 15 years.

Table 4 presents the volatility decomposition using local projections estimated by the LASSO

and model averaging. Overall, the results are qualitatively in line with those obtained with

three state variables. Our main result in Table 3, that expected cash flow variation is by no

means negligible relative to expected discount rate variation, is robust to expansion of the pre-

dictive information set. Even though long-run expected returns remains the dominant factor,

the ratio (13) of dividend yield volatility that can be attributed to expected long-run (15-year)

cash flow growth relative to expected discount rates is 0.46 (0.43) when estimated with an-

nual (monthly) data. This is considerably higher than the share of 0.10 (0.06) found with the

dividend yield as the single state variable in Table 2.

Table 5 presents detailed LASSO regression results, i.e., the estimated local projection mod-

els at different forecast horizons. These results include both the variable selection (i.e., the
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Table 4: Volatility decomposition: LASSO and model averaging
This table reports the annual and monthly volatility decomposition of the dividend yield (12), based on the local
projections (7), using the LASSO and model averaging approaches for different horizons k. The columns report
the relative contributions of expected discount rates σ̂(r, k), cash flow growth σ̂(d, k) and forward dividend yields
σ̂(dp, k), as well as the ratio σ̂(d,k)

σ̂(r,k)
given in (13).

A: LASSO - Annual B: LASSO - Monthly

k (years) σ̂(r, k) σ̂(d, k) σ̂(dp, k)
σ̂(d, k)

σ̂(r, k)
k (months) σ̂(r, k) σ̂(d, k) σ̂(dp, k)

σ̂(d, k)

σ̂(r, k)
1 0.13 0.12 0.90 0.91 12 0.23 0.24 0.94 1.06
2 0.24 0.19 0.81 0.77 24 0.39 0.28 0.86 0.74
3 0.34 0.24 0.82 0.70 36 0.52 0.31 0.82 0.59
4 0.56 0.27 0.78 0.49 48 0.62 0.31 0.80 0.50
5 0.62 0.30 0.73 0.49 60 0.72 0.31 0.76 0.43
6 0.72 0.30 0.70 0.41 72 0.80 0.32 0.79 0.40
7 0.75 0.24 0.67 0.32 84 0.83 0.32 0.76 0.38
8 0.86 0.27 0.66 0.31 96 0.95 0.33 0.74 0.35
9 0.94 0.29 0.66 0.31 108 0.92 0.39 0.75 0.43

10 0.94 0.28 0.62 0.29 120 0.91 0.38 0.70 0.42
11 0.92 0.32 0.67 0.35 132 0.92 0.48 0.68 0.52
12 0.96 0.51 0.54 0.53 144 0.93 0.54 0.65 0.58
13 0.96 0.38 0.54 0.40 156 0.94 0.52 0.61 0.56
14 0.94 0.36 0.54 0.38 168 0.92 0.49 0.54 0.54
15 0.93 0.42 0.50 0.46 180 0.95 0.40 0.55 0.43

C: Model averaging - Annual D: Model averaging - Monthly

k (years) σ̂(r, k) σ̂(d, k) σ̂(dp, k)
σ̂(d, k)

σ̂(r, k)
k (months) σ̂(r, k) σ̂(d, k) σ̂(dp, k)

σ̂(d, k)

σ̂(r, k)
1 0.15 0.12 0.92 0.78 12 0.14 0.17 0.92 1.20
2 0.30 0.08 0.81 0.27 24 0.24 0.10 0.81 0.44
3 0.28 0.17 0.78 0.62 36 0.31 0.14 0.78 0.45
4 0.41 0.27 0.73 0.66 48 0.41 0.25 0.73 0.61
5 0.49 0.23 0.67 0.48 60 0.44 0.22 0.66 0.50
6 0.50 0.19 0.59 0.38 72 0.46 0.16 0.59 0.35
7 0.54 0.16 0.52 0.29 84 0.53 0.15 0.52 0.28
8 0.65 0.18 0.48 0.27 96 0.62 0.18 0.49 0.28
9 0.70 0.23 0.42 0.33 108 0.68 0.25 0.45 0.37

10 0.75 0.31 0.47 0.42 120 0.73 0.32 0.53 0.44
11 0.76 0.36 0.48 0.47 132 0.74 0.37 0.52 0.50
12 0.77 0.37 0.44 0.48 144 0.76 0.37 0.47 0.49
13 0.80 0.34 0.36 0.42 156 0.77 0.34 0.37 0.44
14 0.85 0.29 0.33 0.34 168 0.83 0.30 0.33 0.36
15 0.89 0.26 0.28 0.29 180 0.87 0.27 0.29 0.31

inclusion and exclusion of state variables), and the specific estimated LASSO coefficients (see

(15)). The results in Table 5 are based on annual data: monthly model selection results are

reported in Section III of the Internet Appendix. First of all, we can clearly see that the selected

LASSO local projections are indeed horizon-specific so that different state variables are valu-

able for different horizons. For returns, the best predictors in terms of systematic inclusions,

along with the dividend yield, are lagged cumulative returns, term spread (TMS), volatility

(SV AR), investment-to-capital ratio (IK), and consumption-wealth ratio (CAY ). As reviewed
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in the Introduction and Section 3.1, these are largely the variables that are expected to have pre-

dictive power (see Fama and French, 1989; Martin, 2017; Lettau and Ludvigson, 2001, 2005). In

contrast, earnings yield (EP ), book-to-market ratio (BM ), and short-term interest rates (TBL

and RFREE) are typically excluded. For the dividend growth local projections, also CAY ap-

pears to be an important predictor, as well as the dividend-payout ratio (DE) and net equity

expansion (NTIS). For the dividend yield local projections, we get more exclusions (i.e., we

select a smaller set of state variables), but also here CAY is a relevant predictor at almost all

horizons k.

Even if the LASSO and model averaging approaches exploit larger information sets, the

resulting volatility decompositions in Table 4 are overall not too different from those obtained

with three fixed state variables. Also the time series plots of δ̂(r,k), δ̂(d,k), and δ̂(dp,k) in Figure 3

are largely similar to those in Figure 2, while the final panels in these figures again reaffirm the

validation of the approximate present-value relation (5). In addition, the monthly and annual

results in Table 4 are generally very similar for both LASSO and model averaging.

In Section III of the Internet Appendix, we still report the monthly LASSO estimates and

model selection results. Compared to the annual case (Table 5), there are clearly less exclusions

(i.e., more state variables are included in for the monthly frequency), presumably due to the

larger number of observations in estimation, but this turns out have only marginal impact

on the resulting volatility decomposition, as seen in Table 4. Furthermore, we also extend

the presented LASSO procedure with a cross-validation-based determination of the tuning

parameter (cf. remarks below Eq. (15)), a post-LASSO estimation step, and the elastic net

method. It is important to keep in mind that in addition to selecting state variables, such as

presented in Table 5, the LASSO estimator shrinks all the coefficients towards zero. However,

in the post-LASSO step the idea is to first select the state variables with the LASSO and perform

the final estimation by OLS. The elastic net respectively combines the LASSO with the closely

related ridge regression, leading to an important robustness check for the penalty (shrinkage)

term as defined in (15). Overall, it turns out that all the main conclusions on the importance

of the discount rate and cash flow channels in the volatility decomposition are intact (i.e., the

main results are robust to alternative LASSO specifications).
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3.5 Time-varying parameters

The larger sample size, resulting from the use of monthly data in our local projection approach,

facilitates us to allow the underlying parameters of our volatility decompositions to be time-

varying. In the traditional VAR approach with annual data, this would be infeasible in practice

because of the inevitably limited sample size.

The motivation for studying potential time-variation of our volatility decomposition is

grounded in recent and mounting empirical and theoretical evidence suggesting that return

predictability is time-varying (e.g., Timmermann, 2008; Rapach, Strauss, and Zhou, 2010;

Henkel, Martin, and Nardari, 2011; Dangl and Halling, 2012; Zhu, 2015; Zhu and Zhu, 2013;

Farmer, Schmidt, and Timmermann, 2018; and Cochrane, 2017), which may originate from

various economic reasons, including business cycle fluctuations, time-varying risk aversion,

and rare disasters. As summarized by Timmermann (2008), investors’ search for successful

predictive models is expected to cause the data generating process to change over time, which

means that single return prediction models can, at best, hope to uncover evidence of local pre-

dictability. Recent findings suggest that the predictive power often concentrates during bad

times in financial markets (see Henkel, Martin, and Nardari, 2011; Zhu and Zhu, 2013; Cujean

and Hasler, 2017). Zhu (2015) also finds that time-varying predictability of return and divi-

dend growth is a tug-of-war: when returns are predictable, dividend growth is not, and vice

versa. Furthermore, Choi, Kim, and Park (2017) find that incorporating regime shifts into the

present-value framework of van Binsbergen and Koijen (2010) strengthens the importance of

dividend growth variation in explaining both the price-dividend ratio and unexpected stock

returns in the post-1951 sample.

As argued in the previous sections, the use of horizon-specific local projections reduces

model misspecification concerns. However, allowing time-variation in the parameter coeffi-

cients may further increase the accuracy of the estimated discount rate and cash flow compo-

nents. Therefore, we extend the local projections (7) by allowing for time-varying parameters:

k∑
j=1

ρj−1
t rt+j = α

(r,k)
t + x

(r,k)
t β

(r,k)
t + ε

(r,k)
t+k

k∑
j=1

ρj−1
t ∆dt+j = α

(d,k)
t + x

(d,k)
t β

(d,k)
t + ε

(d,k)
t+k

ρkt dpt+k = α
(dp,k)
t + x

(dp,k)
t β

(dp,k)
t + ε

(dp,k)
t+k ,

(18)
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where the parameters α(a,k)
t and β(a,k)

t are now time-varying.11

Specifically, we allow for time-variation by estimating the coefficients in (18) recursively

using Exponentially Weighted Least Squares (EWLS), which is a particular case of Weighted

Least Squares estimation in which the weight of each observation i in a sample of size t is given

by
(

t∑
i=0
φi
)−1

φi. The decay parameter φ is a number between zero and one. Following the con-

vention in the literature, we calibrate the decay parameter φ at 0.97, which is suggested by J.P.

Morgan’s (1996) Riskmetrics report as the optimal exponential decay parameter for modeling

volatility using monthly data. Applying an expanding window estimation approach combined

with exponential weighting ensures that most weight is given to recent observations, while the

weights of distant past observations gradually fade.12

In addition to the regression parameters, we allow ρ to vary over time, by applying a sim-

ilar expanding window scheme combined with exponential weights. That is, instead of esti-

mating ρ over the full sample (cf. Eq. (3)):

ρ̂t =
ed̄pt

1 + ed̄pt
, (19)

where d̄pt is the exponentially weighted moving average (EWMA) of the dividend yield up to

period t:

d̄pt =

(
t∑
i=0
φt−i

)−1 t∑
i=0
φt−idpt, (20)

where, as in the regressions (18), the decay parameter φ is set at 0.97.

In addition to allowing for time-varying coefficients in prediction as such, Lettau and van

Nieuwerburgh (2008) show that the poor performance of financial ratios as predictors of re-

turns can be improved if the assumption of a fixed and time-invariant steady state mean of the

economy is relaxed. That is, adjusting the dividend yield, but also the earnings yield (EP ) and

book-to-market (BM ) ratio, for level shifts increases the predictive performance substantially.

Lettau and Nieuwerburgh (2008) correct these nonstationarities by estimating the timing of

structural break points. Locating the exact timing of breaks or identifying regime switching

patterns (cf. Zhu, 2015; and Choi, Kim and Park, 2017) is in general a difficult task, in particu-

lar in small samples. Therefore, we handle time-variation of the steady-state levels of variables

11 As argued by Granger (2008), any nonlinear model can be approximated by linear models with time-varying
parameters. Hence the LPs in (18) are able to accommodate various nonlinear patterns that may have an impact on
the volatility decomposition.

12 See Taylor (2008), Kofman and McGlenchy (2005), and Hallerbach and Menkveld (2004) for applications of
EWLS.
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by detrending not only the dividend yield, but also all other variables using the same recursive

EWMA filtration as in (20). Specifically, in our time-varying local projections (18), we recur-

sively detrend all variables by subtracting at each point in time the exponentially weighted

moving average, as opposed to demeaning these variables over the full sample, as we have

done so far. Thereby, we implicitly also allow the parameter κ in the log-linear present value

model (1) to vary over time.

Table 6: Monthly volatility decompositions with time-varying parameters
This table reports the monthly (unconditional) volatility decomposition of the dividend yield (12), based on the
local projections (18) estimated by Exponentially Weighted Least Squares (EWLS) using an expanding window
approach. The local projections contain one (dividend yield) and three state variables (9) along with the LASSO and
model averaging strategies for various (annualized) horizons of k months. All variables are demeaned recursively
using EWMA filtration.

A: One state variable B: Three state variables

k (months) σ̂(r, k) σ̂(d, k) σ̂(dp, k)
σ̂(d, k)

σ̂(r, k)
σ̂(r, k) σ̂(d, k) σ̂(dp, k)

σ̂(d, k)

σ̂(r, k)
12 0.39 0.37 1.06 0.96 0.90 0.57 1.09 0.63
24 1.04 0.60 0.98 0.58 1.49 0.94 1.24 0.63
36 1.40 0.74 1.09 0.53 1.48 1.06 1.28 0.72
48 1.61 0.69 1.30 0.43 1.89 0.76 1.50 0.40
60 1.52 0.64 1.52 0.42 1.47 1.05 1.21 0.72
72 1.00 0.54 1.34 0.54 2.12 0.71 1.47 0.34
84 0.59 0.57 1.00 0.97 1.55 0.59 1.24 0.38
96 0.74 0.65 0.72 0.89 0.87 0.78 0.59 0.89

108 1.23 0.54 0.89 0.44 1.30 0.62 0.84 0.48
120 1.12 0.64 0.90 0.57 1.48 0.67 1.01 0.46
132 1.22 0.85 0.84 0.70 1.49 0.91 0.86 0.61
144 1.04 0.93 0.78 0.89 1.59 0.82 0.78 0.51
156 0.86 0.86 0.80 1.00 1.00 0.87 0.95 0.87
168 0.95 0.67 0.98 0.71 1.56 0.60 1.22 0.38
180 0.72 0.56 0.75 0.78 1.25 0.65 0.80 0.52

C: LASSO D: Model averaging

k (months) σ̂(r, k) σ̂(d, k) σ̂(dp, k)
σ̂(d, k)

σ̂(r, k)
σ̂(r, k) σ̂(d, k) σ̂(dp, k)

σ̂(d, k)

σ̂(r, k)
12 0.61 0.45 0.97 0.74 0.88 0.56 1.10 0.64
24 0.82 0.59 0.87 0.72 1.40 0.80 1.23 0.57
36 0.79 0.61 0.91 0.77 1.32 0.97 1.28 0.74
48 1.01 0.57 0.91 0.56 1.72 0.71 1.39 0.41
60 1.57 0.52 1.25 0.33 1.43 0.99 1.21 0.69
72 1.42 0.50 1.36 0.35 2.07 0.70 1.46 0.34
84 0.89 0.47 0.98 0.53 1.55 0.55 1.25 0.36
96 1.04 0.59 1.00 0.57 0.90 0.75 0.54 0.83

108 1.13 0.59 1.16 0.52 1.25 0.59 0.83 0.47
120 1.28 1.04 0.71 0.81 1.33 0.63 0.98 0.47
132 1.36 0.96 1.08 0.71 1.28 0.84 0.83 0.66
144 1.56 0.99 0.95 0.63 1.53 0.83 0.79 0.54
156 1.66 0.66 0.82 0.40 1.02 0.87 0.90 0.86
168 1.21 0.61 1.17 0.51 1.36 0.59 1.16 0.44
180 1.36 0.73 0.89 0.54 1.26 0.55 0.75 0.44

Table 6 presents the monthly (unconditional) volatility decomposition (12) over different
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horizons for all different choices of state variables considered so far: i.e., one state variable,

three state variables, LASSO selection and model averaging. Note that for computing the

volatility decomposition (12), also the dividend-price ratio dpt is now recursively demeaned

using the EWMA filtration (20). The local projections are estimated with monthly data, by

EWLS and using an expanding window approach with an initial window size of 240 months.

Since reliable implementation of the recursive estimation requires a reasonable number of ob-

servations, we only present results based on monthly data.

The main pattern in Table 6 is very clear: The relative importance of the cash flow variation

turns out to be even higher than with the full-sample results, with the long-run (180 months)

ratio (13) fluctuating between 0.44 and 0.78, depending on the choice of state variables. In other

words, the time-varying local projections provide additional support for our general finding

that local predictability of cash flows does contribute significantly to observed dividend yield

volatility.

It is specifically worth noting in Table 6 that the reported ratios (13) between time-varying

cash flow and discount rate components are in particular high in the case of a single state

variable. That is, allowing time-variation and monthly data, due to the introduction of the

local projections-based methods, reveals strong local predictability of dividend growth by the

dividend yield that is not identified by the conventional and past static full-sample approaches.

In addition to the unconditional (i.e., full sample) volatility decompositions in Table 6, our

expanding window approach in particular allows us to consider the time-varying contribution

of the different components to the dividend yield volatility over time. Since we are in particular

interested in the relative contribution of expected cash flows and expected discount rates, in

line with (13), we compute the time-varying ratio of the conditional standard deviations of the

cash flow and discount rate components:

σ̂t

(
δ̂t

(d,k)
)

σ̂t

(
δ̂t

(r,k)
) , (21)

where the time-varying standard deviations σ̂t(.) are once again computed using an expanding

window and exponential weighting:

σ̂2
t

(
δ

(a,k)
t

)
=

(
t∑
i=0
φt−i

)−1 t∑
i=0
φt−i

(
δ̂t

(a,k)
− δ̄(a,k)

t

)2

. (22)
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Figure 4: Time-series plots of
σ̂t

(
δ̂
(d,k)
t

)
σ̂t

(
δ̂
(r,k)
t

) , with δ̂(d,k)t and δ̂(r,k)t estimated by EWLS from rolling window local pro-

jections (18), with k = 180, using four different information sets: one state variable, three state variables, LASSO
selection, and model averaging.

Figure 4 plots the ratio (21) over time, for all four modelling approaches, with k = 180

(i.e., for a 15-year horizon). The estimated ratios (21) fluctuate considerably over time. The

ratios are mostly below one but clearly higher than zero, fluctuating around 0.5. At times, they

do peak above one, indicating that during these periods the contribution of the variation in

expected cash flow growth exceeds that of the variation in expected discount rates. All in all,

the time-varying dynamics in Figure 4 indicate that both discount rate and cash flow compo-

nents matter (i.e. both are predictable) with a varying degree of importance. Our time-varying

volatility decomposition thus somewhat contradict the ‘tug-of-war’ hypothesis by Zhu (2015),

in which either dividends or returns are predictable. Moreover, we find that the cash flow

contribution is systematically more important than reported in the recent regime switching

studies by Zhu (2015) and Choi, Kim and Park (2017).

4 Discussion

The main empirical result of this study is that expected dividend growth does contribute to

market volatility. The time-varying volatility of the cash flow component δ̂(d,k)
t is by no means

negligible compared to the volatility of the discount rate component δ̂(r,k)
t . Only in the static

baseline case of a single state variable (the dividend yield) and constant parameters over the

full sample (years 1952–2017), we find that expected dividend growth is nearly flat and does

not contribute to the volatility of the dividend yield. When we expand the information set

to contain multiple state variables, we do find evidence of dividend growth predictability

29



(i.e., variation of expected cash flows), even if expected discount rates remain the primary

component in our volatility decomposition. Moreover, when we estimate the local projec-

tions recursively (i.e., allowing for time-varying parameters), we find that expected dividend

growth rates become substantially more important. During various periods, expected divi-

dend growth becomes temporarily the dominant component of market volatility.

Our results provide a new perspective to the puzzling ’stylized fact’ that dividend growth

is not predictable by the dividend yield in the US during the postwar period. As documented

by Engsted and Pedersen (2010), this finding does not hold in general in international equity

markets, while Golez and Koudijs (2018) do find dividend growth predictability in the US

prior to 1945. Chen, Da, and Priestley (2012) attribute this apparent lack of dividend growth

predictability in the postwar period to dividend smoothing, causing dividend yields to be un-

informative of future cash flows, but not necessarily implying that future cash flows are truly

unpredictable. Indeed, various studies have found evidence of dividend growth predictabil-

ity in the US postwar sample (e.g., Lettau and Ludvigson, 2005; Ang and Bekaert, 2007; and

Møller and Sander, 2017). Our local projections allow the existing dividend predictability to

be recognized in the decomposition of dividend yield volatility, by integrating additional state

variables beyond the dividend yield. Moreover, by relying on direct long-run predictions, as

opposed to iterated short-run predictions, we circumvent the diminished predictability caused

by short-run dividend smoothing and its potential disruptive impact on the volatility decom-

position (Chen, Da, and Priestley, 2012).

In terms of return and dividend growth predictability, our results are largely rather con-

sistent with van Binsbergen and Koijen (2010) and the regime switching extensions of their

model in Zhu (2015) and Choi, Kim and Park (2017). These approaches are built upon latent

variable models with Kalman filtering to extract unobserved components in returns and div-

idend growth. Van Binsbergen and Koijen (2010) incorporate the full lagged history returns,

dividend growth, and dividend yield and find the long-term dependence statistically impor-

tant in their analysis. This is in spirit similar to our approach where we employ the cumulative

lagged returns and dividend growth rates as predictors along with the lagged dividend yield

to enlarge the information set. In addition, our approach allows us to extend the information

set set even further beyond lagged returns and dividend growth, and to consider monthly

data. Zhu (2015) and Choi, Kim and Park (2017) find, as we do with time-invariant and also

time-varying parameter local projections, important divergences from the conventional linear
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VAR-based single state variable benchmark. Their results show that it is necessary to allow

regime switches to increase the importance of the cash flow component, while here linear but

otherwise much more flexible and information-rich local projections emphasize the cash flow

component even more. Moreover, as discussed at the end of Section 3.5, we do not obtain

as strong evidence as Zhu (2015) for the ‘tug-of-war’ hypothesis, i.e. alternating return and

dividend growth predictability.

We find that the time-varying volatility decomposition is sensitive to the choice of state

variables (i.e.: the four time-varying ratios plotted in Figure 4 are not highly correlated), which

indicates that different factors predict discount rates and cash flows at different points in time.

We emphasize that the aim of this paper is not to determine which factors forecast cash flows

and returns as such, but rather to evaluate the relative magnitudes of cash flow and return

predictability. Our results are clear in the sense that, regardless of the set of state variables,

we find that allowing for a time-varying volatility decomposition increases the contribution of

dividends relative to discount rates. This is demonstrated by the volatility ratios of cash-flow

predictability to return predictability (13), which are for all choices of state variables higher

with the time-varying-parameter LPs (Section 3.5) than with the time-invariant (i.e., linear)

LPs. This time-varying nature of dividend growth predictability is consistent with dividend

growth being subject to time-varying payout policies, affected by factors including dividend

smoothing and time-varying investor demand for dividends (e.g., Baker and Wurgler, 2004;

Chen, Da, and Priestley, 2012; Larkin, Leary, and Michaely, 2017).

5 Conclusions

We specify horizon-specific local projections to identify the relative contributions of expected

discount rates and expected cash flows to the variation of the dividend yield. Building upon

the well-known vector autoregressive (VAR) approach, we apply our local projection approach

to develop a flexible volatility decomposition. In addition to general flexibility and robustness

to model misspecification, local projections allow us to employ LASSO model selection and

model averaging, and thereby incorporate large sets of potential state variables. Moreover,

despite strong seasonalities in dividend payments, we are able to accommodate monthly data

in addition to annual data. The enlarged sample size due to the use of monthly data allows

us to apply recursive estimation to examine time variation in the the dividend yield volatility
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decomposition.

Our results generally confirm that variation in expected discount rates is the dominant

component of observed dividend yield volatility. However, the cash flow component is also

very much present. Only in the restrictive case of linear (i.e., non-time-varying) local projec-

tions with a single state variable (the dividend yield), we find that the contribution of expected

cash flows is close to zero. Moving beyond this basic static model, by extending the set of

state variables and/or allowing for time-varying parameters, we find that the contribution

of expected cash flows is not negligible: the ratio of expected long-run cash flow volatility

to expected long-run discount rate volatility ranges between 0.2 and 0.5, depending on the

specification. Our time-varying volatility decomposition shows that during certain periods,

expected cash flows in fact contribute more to market volatility than expected discount rates.

By incorporating multiple state variables and time-varying parameters within our local

projection framework, we believe that we provide a more robust volatility decomposition

than prior studies. Indeed, various alternative specifications and robustness checks reported

throughout this paper and the Internet Appendix point to the same main conclusion: variation

in expected dividend growth contributes significantly to dividend yield volatility.

Appendix A VAR-based approaches

In this Appendix, we briefly outline the commonly used vector autoregressive (VAR) ap-

proaches implemented by Campbell and Shiller (1988b) and Cochrane (2008). In contrast to the

local projection approach that we employ, both of these VAR-based approaches are built upon

the assumption that the multivariate system containing stock return (rt), dividend growth rate

(∆dt) and the dividend yield (dpt) follows a VAR representation, from which the long-run con-

tributions of expected dividend growth rates (Et
∞∑
j=1

ρj−1∆dt+j) and expected discount rates

(Et
∞∑
j=1

ρj−1rt+j) can be derived. Due to the linear structure of the VAR, Campbell and Shiller

(1988b) and Cochrane (2008) derive closed form expressions of these long-run predictions.

A.1 Campbell and Shiller (1988b)

Starting from the long-run identity (6) with infinite horizon (k −→ ∞), Campbell and Shiller

(1988b) attempt to estimate the component associated with expected dividend growth
(
δ

(d,∞)
t =
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Et

∞∑
j=1

ρj−1∆dt+j

)
by fitting a bivariate VAR to the annual price-dividend ratio and the annual

dividend growth rate (both measured in logs):

zt ≡

 pdt

4dt

 = Azt−1 + εt. (A.1)

For ease of exposition, we assume a VAR structure with only one lag (VAR(1)) below, but as

Campbell and Shiller (1988b) show, the framework can be straightforwardly adapted to a more

general VAR(p) structure. Also note that Campbell and Shiller model the price-dividend ratio,

while we and others model the dividend-price ratio. Due to the logarithmic transformation

and the linear structure of the models, this choice has no impact on the final results since

pdt = −dpt. The matrix of estimated parameters A in (A.1) and the calibrated parameter ρ

(see, e.g., (3)) can be used to recover the conditional expectations Et∆dt+j , and to compute a

time-series of the VAR-implied dividend growth variable δ(d,∞)
t :

δ
(d,∞)
t = Et

∞∑
i=0
ρi4dt+1+i =

∞∑
i=0
ρi
(
e′2A

izt
)

= e′2A (I− ρA)−1 zt, (A.2)

in which e2 is a vector of zeros in which the second element is replaced by one. A full deriva-

tion is provided by Campbell and Shiller (1988b). The constructed variable δ
(d,∞)
t can be

thought of as a ‘theoretical PD ratio’ that should closely trace the observed PD ratio, if ex-

pected discount rates would be constant (i.e., if all variation in the PD ratio is due to expected

cash flow variation). Campbell and Shiller report the ratio
Std(δ

(d,∞)
t )

Std(pdt)
, which is clearly closely

related to our measure σ(d, k) in (12). The main difference is that, instead of obtaining long-run

predictions by iterating forward a one-period VAR, we obtain these predictions with horizon-

specific direct regressions (7) at different horizons k, which has several advantages as we dis-

cuss in Section 2.
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A.2 Cochrane (2008)

Cochrane (2008) fits a first-order VAR system to the annual returns, dividend growth rates and

dividend yields:

rt+1 = c(r) + b(r) dpt + ε
(r)
t+1

∆dt+1 = c(d) + b(d) dpt + ε
(d)
t+1 (A.3)

dpt+1 = c(dp) + b(dp) dpt + ε
(dp)
t+1 ,

where the lagged dividend yield is the only state variable. As Cochrane (2008) shows, the

(approximate) log-linear present-value identity (1) implies the following link between the VAR

coefficients of (A.3):

b(r) = 1− ρ b(dp) + b(d), (A.4)

which also leads to links between the error terms by ε(r)
t+1 = ε

(d)
t+1 + ρ ε

(dp)
t+1 . The system of three

equations (A.3) is thus overidentified: The regression coefficients and the error term of any of

the three equations are implied by the other two.

Dividing the identity (A.4) by 1 − ρ b(dp) yields the long-run coefficients of returns (b(r,lr))

and dividend growth (b(d,lr)):

b(r,lr) − b(d,lr) =
b(r)

1− ρ b(dp)
− b(d)

1− ρ b(dp)
= 1. (A.5)

As Cochrane (2008) derives, the coefficients b(r,lr) and b(d,lr) can be interpreted as the slope coef-

ficients of hypothetically regressing long-run cumulative discounted returns
(∑∞

j=1 ρ
j−1rt+j

)
and dividend growth

(∑∞
j=1 ρ

j−1∆dt+j

)
on the dividend yield dpt:

b̂(r,lr) =
Cov

(∑∞
j=1 ρ

j−1rt+j , dpt

)
Var(dpt)

and b̂(d,lr) =
Cov

(∑∞
j=1 ρ

j−1∆dt+j , dpt

)
Var(dpt)

. (A.6)

The fitted values of these hypothetical regressions thus correspond to the fitted values of our

local projections (8), in the special case of the dividend yield as the only predictor and the

infinite horizon (k −→∞):

δ̂
(r,∞)
t = ĉ(r,lr) + b̂(r,lr)dpt

δ̂
(d,∞)
t = ĉ(d,lr) + b̂(d,lr)dpt.

(A.7)

34



From (A.7), it is easy to see that our volatility decomposition (12) is closely related to the im-

plied long-run coefficients by Cochrane (2008):

σ̂(a,∞) =

√
Var(δ̂a,∞t )

Var(pdt)
=

√
Var(̂ba,lrdpt)

Var(dpt)
=
∣∣∣̂ba,lr∣∣∣√Var(dpt)

Var(dpt)
=
∣∣∣̂ba,lr∣∣∣ , (A.8)

for a ∈ {r, d}.
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Internet Appendix

Discount Rates and Cash Flows:

A Local Projection Approach

September 18, 2019

This Internet Appendix presents various supplemental results to the main results reported in

the paper. Sections I and II present detailed estimation (regression) results for the local pro-

jections containing one and three state variables which generate the volatility decompositions

reported in Sections 3.2 and 3.3 of the paper. Additional results and extensions to the LASSO

analyses (Section 3.4) are presented in Section III. Together with the parameter estimates of the

LASSO local projections for the monthly data, these include volatility decompositions obtained

with the ‘post-LASSO step’ (i.e. the use of the Ordinary Least Squares in the final estimation

for the LASSO-selected state variables), cross-validation-based tuning parameter selection and

elastic net as an alternative to the LASSO. Finally, Section IV reports the volatility decompo-

sitions using (i) subsamples of the data, (ii) dividends that are market re-invested and cash

re-invested (as opposed to dividends re-invested at the risk-free rate, as in the main paper),

and (iii) S&P 500 index returns and dividends (as opposed to CRSP value-weighted market

returns and dividends, as in the main paper).



I One state variable local projections: Estimation results

This section and Section II describe the detailed estimation (regression) results of the local pro-

jections leading to the dividend yield volatility decompositions reported in Sections 3.2 and 3.3

of the paper.

Tables I and II report the estimated local projections when the dividend yield (dpt) is the

single state variable. As introduced in equation (7) of the paper, the dividend yield at time t is

thus used to predict t+ k-period-ahead left hand side (LHS) variable which is the (discounted)

cumulative return, cumulative dividend growth or the (forward) dividend yield. Similarly as

in the reported volatility decompositions, the horizon k is given in annualized terms from one

year up to 15 years.

As expected, the highest predictive power is obtained for short-term horizons for the div-

idend yield itself. The predictability of cumulative returns (in terms of the adjusted-R2) gen-

erally increases when the horizon increases, consistent with the well-known long-horizon pre-

dictability documented in the literature (see the survey by Welch and Goyal, 2008, and the

critical appraisal of this literature by Boudoukh, Richardson and Whitelaw, 2008). In line with

our reported volatility decompositions (Table 2 in the paper), the predictability of dividend

growth rates is very small in the case of a single state variable (dividend yield).

II Multiple state variable local projections: Estimation results

Tables III and IV present corresponding regression results as Tables I and II with the difference

that now local projections contain three state variables (see equation (9) of the paper, i.e. the

lagged cumulative return, cumulative dividend growth rate and dividend yield are used as

predictors). Compared with the dividend yield as the single state variable, the increasing pre-

dictable patterns in the cumulative dividend growth rate are evident. This applies also to the

dividend yield: lagged cumulative returns and dividend growth rates help to predict them in

the long-run (when the horizon k increases).
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III LASSO extensions

III.I LASSO state variable selection: Monthly data

Table V reports the LASSO estimation and model selection results for the monthly data. When

comparing the corresponding results for the annual data (see Table 5), we obtain clearly less

exclusions (i.e. state variables completely left out from the resulting LASSO estimates and

local projections) than with the annual data. In this monthly case, the most exclusions happen

largely for variables that are also excluded in the annual case, including short-term interest

rates (levels), which have been found useful to predict stock returns in Ang and Bekaert (2007).

However, it is important to note that the relative risk-free rate (RREL) seems systematically

an important state variable for all the LHS variables, so the information transmission from

the (short-term) interest rates is coming strongest through the relative short-rate instead of the

levels.

III.II LASSO: Shrinkage also in dividend yield

In Table VI, we consider the change to the previous LASSO setting so that also the dividend

yield as a state variable is subject to possible shrinkage (penalization) in the local projections.

In practice, the dividend yield turns out to be consistently involved in the estimated local pro-

jections for all the LHS variables in the monthly data and especially for expected returns in the

annual data frequency. These findings, in addition to strong theoretical backing as discussed

in Section 2 of the paper, are the reasons why the main analyses have been carried out by al-

ways including the lagged dividend yield. Given these findings, the volatility decomposition

reported in Table VI is, as expected, very similar to the decomposition reported in Section 3.4

(Table 4).1

1 At the one-year horizon (k = 1, annual data) the discount rate variation, σ̂(r, 1), is zero since all state variables
are excluded by the LASSO model selection. The cash flow–discount rate ratio (equation (13)) is thus not defined as
all volatility is coming from the cash flow variation.
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Table VI: LASSO-based volatility decomposition when the dividend yield is also subject to
shrinkage.
This table reports the annual (Panel A) and monthly (Panel B) volatility decomposition using the LASSO estimator
for different horizons k where the dividend yield as a state variable is also subject to shrinkage (cf. Table 4 in the
paper).

A: LASSO - Annual B: LASSO - Monthly

k (years) σ̂(r, k) σ̂(d, k) σ̂(dp, k)
σ̂(d, k)

σ̂(r, k)
k (months) σ̂(r, k) σ̂(d, k) σ̂(dp, k)

σ̂(d, k)

σ̂(r, k)
1 0.00 0.11 0.90 – 12 0.23 0.24 0.94 1.07
2 0.43 0.19 0.81 0.44 24 0.39 0.28 0.85 0.72
3 0.43 0.24 0.79 0.55 36 0.52 0.31 0.82 0.59
4 0.61 0.22 0.74 0.35 48 0.62 0.30 0.81 0.49
5 0.75 0.30 0.61 0.40 60 0.73 0.30 0.76 0.42
6 0.70 0.30 0.64 0.43 72 0.80 0.32 0.79 0.40
7 0.73 0.30 0.62 0.40 84 0.83 0.31 0.75 0.37
8 0.84 0.33 0.68 0.39 96 0.94 0.34 0.74 0.37
9 0.93 0.30 0.74 0.32 108 0.92 0.39 0.73 0.43

10 0.92 0.28 0.69 0.30 120 0.91 0.40 0.68 0.44
11 0.93 0.32 0.63 0.34 132 0.93 0.47 0.68 0.51
12 0.95 0.50 0.61 0.53 144 0.93 0.53 0.65 0.58
13 0.85 0.39 0.57 0.45 156 0.94 0.53 0.61 0.56
14 0.93 0.37 0.55 0.40 168 0.89 0.49 0.54 0.55
15 0.91 0.39 0.59 0.43 180 0.95 0.40 0.55 0.43

III.III Cross-validation-based tuning parameters

For cross-sectional datasets, the tuning parameter λ in the LASSO estimator (equation (15))

is often determined by using cross-validation. As argued in Section 2.3, our main results are

based on the use of the BIC to determine λ, which follows the conventional use of information

criteria in financial econometrics.

Tables VII–VIII report the estimated coefficients in the annual and monthly local projections

and the resulting volatility decompositions are presented in Table IX. The results are based on

the 10-fold cross-validation instead of the BIC as employed in the results of Section 3.4. It turns

out that the local projections (inclusions and exclusions of the state variables) are in large extent

the same as reported in Table 5 and Table V above (slightly more inclusions due to a typically

somewhat smaller shrinkage than in the BIC case). The resulting volatility decompositions in

Table IX are hence the same in their main conclusions as in Table 4 (Section 3.4).
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Table IX: Volatility decompositions build upon the cross-validation-based LASSO estimator
and resulting local projections (both annual and monthly data).
This table reports the annual and monthly dividend yield volatility decompositions for different horizons k based
on the local projections (equation (7)) where in the LASSO estimator (equation (15)) the tuning parameter λ is
determined by the 10-fold cross-validation, with the value of the parameter λ at which the minimum mean square
error is achieved.

A: Annual B: Monthly

k (years) σ̂(r, k) σ̂(d, k) σ̂(dp, k)
σ̂(d, k)

σ̂(r, k)
k (months) σ̂(r, k) σ̂(d, k) σ̂(dp, k)

σ̂(d, k)

σ̂(r, k)
1 0.14 0.16 0.92 1.14 12 0.23 0.24 0.94 1.08
2 0.42 0.21 0.83 0.50 24 0.39 0.28 0.86 0.72
3 0.54 0.24 0.81 0.45 36 0.52 0.31 0.84 0.60
4 0.56 0.27 0.77 0.49 48 0.63 0.32 0.81 0.51
5 0.61 0.27 0.72 0.44 60 0.73 0.31 0.77 0.43
6 0.71 0.30 0.69 0.43 72 0.81 0.32 0.79 0.40
7 0.73 0.29 0.67 0.40 84 0.84 0.32 0.80 0.38
8 0.85 0.31 0.65 0.36 96 0.95 0.34 0.77 0.36
9 0.90 0.30 0.75 0.34 108 0.93 0.40 0.77 0.42

10 0.96 0.28 0.70 0.29 120 0.91 0.42 0.70 0.46
11 0.95 0.40 0.63 0.42 132 0.92 0.49 0.67 0.53
12 0.96 0.51 0.60 0.53 144 0.93 0.54 0.64 0.57
13 0.96 0.37 0.65 0.38 156 0.94 0.52 0.59 0.56
14 0.93 0.37 0.53 0.40 168 0.92 0.49 0.54 0.54
15 0.91 0.38 0.50 0.42 180 0.95 0.40 0.55 0.43

III.IV Post-LASSO step

Instead of the direct use of the LASSO estimator (equation (15)), we can also consider a ‘post-

LASSO’ step where the state variables for information-rich local projections are first selected

by the LASSO but the final estimation of the selected model is carried out by OLS. Belloni

and Chernozhukov (2013), among others, have shown that the post-LASSO step has the (near)

oracle property, that is the estimator is consistent both in parameter estimation and variable

selection. Put differently, the inference is as efficient as if ‘an oracle’ had revealed the true

model and estimation had been carried out using only the relevant state variables. If the LASSO

selects the ‘true’ model in the first-stage, the OLS estimator in the second stage becomes the

oracle estimator.

Table X reports the volatility decomposition of the post-LASSO step local projections. The

selected state variables for each LHS variable are the same as presented in Table 5 and Table

V above (i.e. the components with non-empty cells), but the final estimation is carried out by

OLS. The essential message is still the same as in the previous analyses: The main contributor

for asset volatility is the discount rate variation but the cash flows also matter. The expected

dividend growth contributions at different horizons k and both data frequencies (annual and

11



monthly) are generally diverging only marginally from the ones in Table 4 obtained with the

LASSO. In other words, replacing the shrinkage-based estimation by the OLS step does not

change the main findings and, hence, our results are robust also to this change of methodology.

Table X: Volatility decompositions based on the post-LASSO step.
This table reports the annual (Panel A) and monthly (Panel B) volatility decomposition of the dividend yield based
on the local projections where the predictors for each LHS and horizon k are selected by the LASSO but the final
estimation of the selected model is carried out with OLS.

A: Annual B: Monthly

k (years) σ̂(r, k) σ̂(d, k) σ̂(dp, k)
σ̂(d, k)

σ̂(r, k)
k (months) σ̂(r, k) σ̂(d, k) σ̂(dp, k)

σ̂(d, k)

σ̂(r, k)
1 0.13 0.15 0.90 1.17 12 0.23 0.25 0.94 1.10
2 0.38 0.23 0.83 0.60 24 0.40 0.29 0.86 0.71
3 0.44 0.28 0.84 0.62 36 0.52 0.31 0.83 0.60
4 0.64 0.31 0.82 0.48 48 0.64 0.32 0.81 0.50
5 0.75 0.31 0.77 0.41 60 0.74 0.32 0.77 0.43
6 0.81 0.33 0.75 0.41 72 0.82 0.32 0.79 0.39
7 0.80 0.31 0.72 0.39 84 0.84 0.32 0.79 0.38
8 0.90 0.32 0.71 0.36 96 0.95 0.35 0.76 0.36
9 0.96 0.34 0.72 0.36 108 0.93 0.40 0.77 0.43

10 0.97 0.35 0.69 0.35 120 0.91 0.43 0.70 0.47
11 0.96 0.40 0.68 0.42 132 0.93 0.49 0.68 0.53
12 0.97 0.51 0.64 0.52 144 0.94 0.54 0.65 0.58
13 0.99 0.41 0.62 0.42 156 0.94 0.53 0.61 0.57
14 0.95 0.44 0.57 0.46 168 0.92 0.50 0.54 0.55
15 0.94 0.44 0.58 0.47 180 0.95 0.41 0.55 0.43

12



III.V Elastic net

In statistical (machine) learning, the elastic net is a regularized regression method that linearly

combines the LASSO and ridge regressions (see Zou and Hastie, 2005, and also, e.g., Hastie,

Tibshirani and Friedman, 2009, pp. 662–663). Ridge regression shrinks parameter estimates

using the l2 penalty, which precludes shrinkage to zero, while the LASSO also performs vari-

able selection by employing the l1 penalty. In the past statistical learning studies, a reported

potential drawback of the LASSO is that it may tend to arbitrarily select a single predictor from

a group of correlated predictors, possibly making it less informative for datasets with several

rather strongly correlated regressors. This is to some extent the case in our study. The elas-

tic net is proposed to avoid this problem by including both l1 (LASSO) and l2 (ridge) penalty

terms. See, e.g., Bai and Ng (2008) for a survey of variable selection and parameter estimation

with a large number of potential predictors and applications of the LASSO and the elastic net

to macroeconomic forecasting.

Formally, like the LASSO estimator introduced in equation (15) of the paper, the elastic net

estimator is based on a penalized sum of squared errors where the penalty (shrinkage) term is

different than in the LASSO:

ϕ̂
(a,k)
EN = argmin

ϕ(a,k)

{
1

2T

T∑
t=1

(
LHS(a)−α(a,k)−x(a,k)

t β(a,k)
)2

+λ
(
ν

na∑
j=1

|β(a,k)
j |+(1−ν)1

2

na∑
j=1

β
2 (a,k)
j

)}
,

where ϕ(a,k) = (α(a,k),β(a,k)), a ∈ {r, d, dp}, and the parameter ν measures the compromise

between the LASSO and ridge penalties (all the other notations as in equation (15)). In finance,

Rapach, Strauss and Zhou (2013) were the first ones to apply (a modification of) the elastic

net estimator in their predictive regressions for international stock returns. We experimented

with a range of ν values (0, 0.25, 0.5, 0.75) (ν = 1 corresponds the LASSO), with essentially the

same main conclusions on the relative importance of expected discount rates and cash flows

channels. Following the common selection in the applications of the elastic net in various fields,

in Table XIII we report the results of ν = 0.5, which gives equal weight to ridge regression and

LASSO. In this case, we benefit both from the feature selection capability of the LASSO and

the ability of ridge regression to handle, for example, the potential multicollinearity issues in

data-rich local projections.

Tables XI–XII present the elastic net-based estimated coefficients in the corresponding lo-

cal projections. In Table XIII, the volatility shares and the ratios between the cash flow and

13



discount rate components are again very close to the ones reported for the LASSO-based local

projections and all the main conclusions are intact. So, when modifying the learning part of the

local projections, which can be interpreted as agents’ (investors’) learning on the useful state

variables, the main findings are the same as obtained with the LASSO in the main text.
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Table XIII: Volatility decompositions based on the elastic net.
This table reports the annual (Panel A) and monthly (Panel B) volatility decomposition based on the elastic net
estimator where ν = 0.5.

A: Annual B: Monthly

k (years) σ̂(r, k) σ̂(d, k) σ̂(dp, k)
σ̂(d, k)

σ̂(r, k)
k (months) σ̂(r, k) σ̂(d, k) σ̂(dp, k)

σ̂(d, k)

σ̂(r, k)
1 0.13 0.12 0.90 0.90 12 0.23 0.24 0.94 1.04
2 0.22 0.19 0.81 0.87 24 0.39 0.28 0.86 0.72
3 0.29 0.25 0.81 0.85 36 0.52 0.30 0.82 0.59
4 0.54 0.24 0.77 0.44 48 0.63 0.31 0.80 0.49
5 0.61 0.24 0.72 0.39 60 0.73 0.30 0.75 0.41
6 0.69 0.30 0.68 0.43 72 0.81 0.32 0.79 0.40
7 0.72 0.29 0.66 0.40 84 0.83 0.32 0.80 0.38
8 0.85 0.25 0.61 0.30 96 0.95 0.34 0.73 0.36
9 0.94 0.32 0.64 0.34 108 0.92 0.39 0.75 0.43

10 0.97 0.26 0.61 0.27 120 0.91 0.41 0.69 0.45
11 0.95 0.30 0.66 0.32 132 0.92 0.48 0.68 0.51
12 0.96 0.50 0.60 0.52 144 0.93 0.54 0.64 0.58
13 0.96 0.40 0.60 0.42 156 0.94 0.52 0.61 0.56
14 0.94 0.45 0.54 0.48 168 0.92 0.49 0.54 0.54
15 0.92 0.42 0.53 0.46 180 0.95 0.40 0.55 0.43
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IV Alternative datasets: Dividends and sample periods

IV.I Subsample analysis

In Section 3.5 of the paper, we provide a volatility decomposition based on local projections

with time-varying parameters. The empirical evidence favours our main conclusions: Allow-

ing for time-varying parameters in (flexible) local projections, the relative importance of ex-

pected cash flows is substantially more important than previously thought in the correspond-

ing volatility decompositions.

Supplementing the time-varying parameter analysis, we provide subsample analyses in

this section: we estimate the volatility decomposition on two (partly overlapping) subsamples:

(i) the period 1952–2007, which excludes the Great Recession of 2008–2009 and it’s aftermath;

and (ii) the period 1985–2017, during which the dividend yield trended downwards (caused by

a prolonged upward trend in stock prices) and reached a lower average level than before. We

consider again one and three state variables, LASSO and model averaging. Due to the reduced

number of observations in these subsamples, we consider exclusively monthly data (facilitated

by the local projection approach). We also investigate the earlier sample of 1928–1951. For this

sample, we only consider the LPs with one or three state variables. We omit the LASSO and

model averaging approaches, since not all variables (listed in Table 1) are available during this

period. Moreover, the shorter data sample allows to estimate the volatility decomposition only

up to horizons of 10 years (120 months).

Results are reported in Tables XIV, XV and XVI. Both in the 1928–1951 and 1952–2007 sam-

ples, the contribution of long-run dividend expectations is substantially higher than in the

later 1985–2017 sample. For example, the ratio (equation (13)) of expected dividend volatil-

ity to expected return volatility reaches 0.90 in the 1952–2007 subsample (using LASSO model

selection), while the ratio even exceeds one in the early 1928–1951 sample (using three state

variables). The declining dividend contribution over time is consistent with patterns docu-

mented by Chen (2009) and Golez and Koudijs (2018). Interestingly, in the later 1985–2017

subsample, the estimated contribution of dividends is still higher than in the benchmark full-

sample results in Table 2. This discrepancy between the full-sample and subsample results is

likely caused by the trending behaviour of the dividend yield, which has been documented to

generate spurious predictability of long-horizon returns (see, e.g., Boudoukh, Richardson and

Whitelaw, 2008).
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Table XIV: Volatility decomposition: Subsample 1952:3–2007:12 (monthly data).
This table reproduces the monthly volatility decompositions as reported in Tables 2–4 of the paper, with the differ-
ence that the local projections are now estimated on the monthly subsample period 1952:3–2007:12.

A: One state variable B: Three state variables

k (months) σ̂(r, k) σ̂(d, k) σ̂(dp, k)
σ̂(d, k)

σ̂(r, k)
σ̂(r, k) σ̂(d, k) σ̂(dp, k)

σ̂(d, k)

σ̂(r, k)
12 0.11 0.00 0.91 0.03 0.13 0.12 0.92 0.92
24 0.19 0.01 0.82 0.05 0.21 0.05 0.83 0.24
36 0.26 0.02 0.75 0.07 0.24 0.13 0.80 0.54
48 0.31 0.02 0.68 0.06 0.35 0.21 0.73 0.62
60 0.39 0.01 0.59 0.01 0.43 0.24 0.66 0.55
72 0.48 0.00 0.52 0.00 0.51 0.24 0.60 0.47
84 0.56 0.01 0.47 0.02 0.67 0.28 0.57 0.41
96 0.63 0.03 0.43 0.05 0.90 0.32 0.62 0.35

108 0.71 0.06 0.34 0.08 0.93 0.35 0.58 0.38
120 0.79 0.07 0.24 0.09 0.97 0.39 0.56 0.40
132 0.89 0.11 0.13 0.12 1.04 0.53 0.60 0.51
144 0.96 0.17 0.00 0.18 1.03 0.64 0.64 0.62
156 1.03 0.22 0.11 0.21 0.96 0.66 0.61 0.69
168 1.13 0.26 0.23 0.23 0.98 0.70 0.64 0.72
180 1.26 0.32 0.41 0.25 1.09 0.66 0.61 0.61

C: LASSO D: Model averaging

k (months) σ̂(r, k) σ̂(d, k) σ̂(dp, k)
σ̂(d, k)

σ̂(r, k)
σ̂(r, k) σ̂(d, k) σ̂(dp, k)

σ̂(d, k)

σ̂(r, k)
12 0.22 0.18 0.95 0.82 0.13 0.12 0.93 0.94
24 0.38 0.22 0.89 0.58 0.21 0.05 0.84 0.25
36 0.49 0.25 0.86 0.51 0.24 0.13 0.80 0.54
48 0.56 0.29 0.83 0.51 0.35 0.22 0.73 0.61
60 0.64 0.32 0.77 0.49 0.44 0.23 0.67 0.53
72 0.70 0.30 0.77 0.43 0.52 0.24 0.60 0.46
84 0.80 0.33 0.77 0.41 0.69 0.27 0.58 0.39
96 0.96 0.33 0.73 0.34 0.93 0.32 0.64 0.34

108 0.87 0.43 0.72 0.49 0.91 0.35 0.60 0.39
120 0.81 0.49 0.67 0.61 0.92 0.39 0.56 0.42
132 0.73 0.52 0.64 0.71 0.96 0.52 0.58 0.54
144 0.69 0.58 0.65 0.83 0.95 0.63 0.60 0.66
156 0.68 0.54 0.66 0.79 0.92 0.64 0.57 0.70
168 0.64 0.53 0.65 0.83 0.96 0.68 0.61 0.71
180 0.63 0.57 0.59 0.90 1.06 0.65 0.59 0.61
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Table XV: Volatility decomposition: Subsample 1985:1–2017:12 (monthly data).
This table reproduces the monthly volatility decompositions as reported in Tables 2–4 of the paper, with the differ-
ence that the local projections are now estimated on the monthly subsample period 1985:1–2017:12.

A: One state variable B: Three state variables

k (months) σ̂(r, k) σ̂(d, k) σ̂(dp, k)
σ̂(d, k)

σ̂(r, k)
σ̂(r, k) σ̂(d, k) σ̂(dp, k)

σ̂(d, k)

σ̂(r, k)
12 0.17 0.05 0.85 0.30 0.17 0.43 0.87 2.60
24 0.30 0.04 0.71 0.15 0.40 0.23 0.71 0.57
36 0.38 0.06 0.59 0.16 0.82 0.49 0.58 0.59
48 0.48 0.11 0.45 0.22 1.08 0.80 0.56 0.74
60 0.56 0.17 0.28 0.31 0.99 0.73 0.57 0.73
72 0.62 0.22 0.16 0.35 0.87 0.36 0.41 0.42
84 0.72 0.24 0.02 0.34 0.97 0.29 0.48 0.30
96 0.84 0.22 0.10 0.26 1.03 0.30 0.40 0.29

108 0.90 0.18 0.20 0.20 1.47 0.26 0.26 0.18
120 0.95 0.16 0.26 0.17 1.61 0.29 0.16 0.18
132 0.96 0.17 0.31 0.18 1.99 0.83 0.10 0.42
144 0.93 0.19 0.33 0.21 1.93 0.77 0.19 0.40
156 0.87 0.21 0.31 0.24 1.29 0.66 0.16 0.51
168 0.82 0.21 0.26 0.25 1.36 0.28 0.51 0.21
180 0.80 0.20 0.24 0.25 1.49 0.16 0.15 0.11

C: LASSO D: Model averaging

k (months) σ̂(r, k) σ̂(d, k) σ̂(dp, k)
σ̂(d, k)

σ̂(r, k)
σ̂(r, k) σ̂(d, k) σ̂(dp, k)

σ̂(d, k)

σ̂(r, k)
12 0.48 0.61 0.84 1.27 0.18 0.45 0.87 2.55
24 0.77 0.80 0.69 1.04 0.42 0.27 0.71 0.63
36 0.94 0.83 0.63 0.88 0.82 0.48 0.58 0.58
48 1.17 0.69 0.66 0.59 1.09 0.79 0.56 0.72
60 1.12 0.74 0.49 0.65 1.02 0.71 0.55 0.70
72 1.41 0.39 0.34 0.28 0.92 0.36 0.38 0.39
84 1.53 0.39 0.31 0.25 0.97 0.29 0.42 0.30
96 1.13 0.44 0.83 0.39 1.04 0.29 0.38 0.28

108 1.27 0.78 0.35 0.61 1.46 0.28 0.26 0.19
120 1.07 0.66 0.65 0.62 1.59 0.36 0.15 0.23
132 1.52 0.68 0.57 0.45 1.96 0.81 0.14 0.41
144 1.88 0.52 0.37 0.28 1.90 0.73 0.18 0.38
156 1.62 0.46 0.51 0.28 1.26 0.63 0.11 0.50
168 0.96 0.25 0.54 0.26 1.28 0.25 0.46 0.20
180 1.38 0.18 0.19 0.13 1.58 0.17 0.14 0.11
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Table XVI: Volatility decomposition: 1928:6–1951:12 (monthly data).
This table reproduces the monthly volatility decompositions as reported in Tables 2–3 of the paper, with the dif-
ference that the local projections are now estimated on the monthly subsample period 1928:6–1951:12. Due to the
reduces sample size, the maximum horizon k considered is 120 months.

A: One state variable B: Three state variables

k (months) σ̂(r, k) σ̂(d, k) σ̂(dp, k)
σ̂(d, k)

σ̂(r, k)
σ̂(r, k) σ̂(d, k) σ̂(dp, k)

σ̂(d, k)

σ̂(r, k)
12 0.53 0.78 0.50 1.49 0.58 0.51 0.51 0.89
24 1.05 0.83 0.02 0.79 0.96 0.76 0.21 0.79
36 1.49 0.74 0.32 0.50 0.75 0.98 0.19 1.30
48 1.59 0.50 0.36 0.32 0.94 0.90 0.34 0.95
60 1.48 0.26 0.09 0.18 1.03 0.64 0.36 0.62
72 1.45 0.14 0.06 0.10 0.90 0.48 0.43 0.54
84 1.37 0.20 0.13 0.14 1.09 0.87 0.37 0.80
96 1.47 0.20 0.14 0.13 1.18 0.57 0.37 0.49

108 1.42 0.09 0.27 0.06 1.06 0.52 0.47 0.49
120 1.30 0.30 0.42 0.23 1.14 1.34 0.29 1.18
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IV.II S&P 500 index returns

In accordance with, e.g., van Binsbergen and Koijen (2010) and their latent variable approach,

we also repeat our empirical analysis for the S&P 500 index returns and dividends, as opposed

to CRSP value weighted returns and dividends. In the return predictability literature, both

the use of CRSP and S&P 500 data are widespread (see, e.g., Ang and Bekaert, 2007; Welch

and Goyal, 2008). We use the S&P 500 returns and S&P 500 12-month cumulative dividends

reported in the (updated) dataset by Welch and Goyal (2008). Other than the dividend series

analyzed in the main paper, the cumulative dividends in the Welch-Goyal dataset are simply

aggregated over 12 months, without a re-investment scheme for dividends received during the

12-month windows. We will more closely investigate the effects of dividend re-investment in

the next subsection.

The results, reported in Tables XVII and XVIII are very similar to the CRSP-based results in

the paper. With a single state variable, the impact of long-run dividend expectations is almost

neglible, while this impact (in particular relative to the impact of long-run return predictabil-

ity) increases substantially when larger information sets (three state variables, LASSO, model

averaging) are used for predicting dividend growth rates.

22



Table XVII: Volatility decomposition: S&P 500 (annual data).
This table reproduces the annual volatility decompositions as reported in Tables 2–4 of the paper, with the difference
that the local projections are estimated with S&P 500 returns and dividends instead of CRSP value-weighted average
returns and dividends.

A: One state variable B: Three state variables

k (years) σ̂(r, k) σ̂(d, k) σ̂(dp, k)
σ̂(d, k)

σ̂(r, k)
σ̂(r, k) σ̂(d, k) σ̂(dp, k)

σ̂(d, k)

σ̂(r, k)
1 0.10 0.02 0.89 0.16 0.12 0.09 0.97 0.77
2 0.18 0.03 0.80 0.16 0.24 0.04 0.81 0.15
3 0.24 0.03 0.72 0.11 0.23 0.13 0.78 0.57
4 0.32 0.01 0.64 0.05 0.35 0.27 0.74 0.76
5 0.37 0.00 0.55 0.01 0.38 0.28 0.66 0.75
6 0.44 0.01 0.49 0.02 0.48 0.20 0.64 0.43
7 0.51 0.00 0.42 0.01 0.60 0.16 0.66 0.27
8 0.58 0.02 0.36 0.03 0.65 0.17 0.62 0.27
9 0.64 0.03 0.30 0.05 0.70 0.17 0.56 0.24

10 0.71 0.03 0.25 0.05 0.75 0.23 0.57 0.31
11 0.73 0.03 0.20 0.03 0.79 0.32 0.55 0.41
12 0.74 0.01 0.16 0.01 0.87 0.35 0.59 0.40
13 0.75 0.01 0.12 0.01 0.96 0.35 0.60 0.37
14 0.77 0.02 0.08 0.03 1.06 0.35 0.64 0.33
15 0.79 0.04 0.04 0.05 1.05 0.35 0.53 0.33

C: LASSO D: Model averaging

k (years) σ̂(r, k) σ̂(d, k) σ̂(dp, k)
σ̂(d, k)

σ̂(r, k)
σ̂(r, k) σ̂(d, k) σ̂(dp, k)

σ̂(d, k)

σ̂(r, k)
1 0.10 0.13 0.97 1.32 0.12 0.09 0.97 0.78
2 0.17 0.14 0.83 0.78 0.24 0.04 0.82 0.17
3 0.22 0.17 0.80 0.74 0.24 0.13 0.78 0.56
4 0.52 0.26 0.78 0.49 0.36 0.27 0.74 0.74
5 0.57 0.29 0.72 0.50 0.39 0.28 0.67 0.73
6 0.72 0.29 0.74 0.40 0.48 0.21 0.65 0.43
7 0.71 0.24 0.72 0.34 0.60 0.17 0.67 0.28
8 0.83 0.27 0.59 0.33 0.65 0.18 0.63 0.28
9 0.90 0.24 0.62 0.26 0.71 0.17 0.56 0.25

10 0.97 0.23 0.65 0.24 0.75 0.23 0.56 0.31
11 0.98 0.23 0.62 0.23 0.78 0.33 0.54 0.42
12 0.96 0.29 0.60 0.30 0.86 0.36 0.57 0.42
13 1.00 0.31 0.63 0.31 0.96 0.37 0.58 0.38
14 0.98 0.37 0.51 0.38 1.06 0.37 0.63 0.35
15 0.96 0.31 0.49 0.32 1.04 0.36 0.52 0.35
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Table XVIII: Volatility decomposition : S&P 500 (monthly data).
This table reproduces the monthly volatility decompositions as reported in Tables 2–4 of the paper, with the differ-
ence that the local projections are estimated with S&P 500 returns and dividends instead of CRSP value-weighted
average returns and dividends.

A: One state variable B: Three state variables

k (months) σ̂(r, k) σ̂(d, k) σ̂(dp, k)
σ̂(d, k)

σ̂(r, k)
σ̂(r, k) σ̂(d, k) σ̂(dp, k)

σ̂(d, k)

σ̂(r, k)
12 0.10 0.02 0.89 0.19 0.12 0.16 0.96 1.38
24 0.18 0.03 0.80 0.16 0.20 0.08 0.82 0.40
36 0.25 0.03 0.71 0.11 0.27 0.11 0.79 0.42
48 0.32 0.02 0.63 0.06 0.34 0.26 0.73 0.76
60 0.38 0.01 0.54 0.02 0.40 0.23 0.66 0.57
72 0.44 0.00 0.48 0.01 0.52 0.16 0.64 0.31
84 0.51 0.01 0.41 0.03 0.59 0.16 0.63 0.27
96 0.58 0.03 0.35 0.04 0.64 0.16 0.59 0.25

108 0.65 0.03 0.29 0.05 0.70 0.20 0.57 0.28
120 0.69 0.03 0.25 0.05 0.73 0.28 0.59 0.38
132 0.71 0.03 0.21 0.04 0.77 0.31 0.58 0.41
144 0.72 0.02 0.17 0.03 0.84 0.34 0.59 0.41
156 0.74 0.01 0.13 0.01 0.91 0.35 0.59 0.38
168 0.75 0.00 0.09 0.00 0.97 0.35 0.54 0.36
180 0.80 0.00 0.05 0.00 0.98 0.32 0.38 0.32

C: LASSO D: Model averaging

k (months) σ̂(r, k) σ̂(d, k) σ̂(dp, k)
σ̂(d, k)

σ̂(r, k)
σ̂(r, k) σ̂(d, k) σ̂(dp, k)

σ̂(d, k)

σ̂(r, k)
12 0.17 0.22 0.97 1.32 0.12 0.17 0.96 1.41
24 0.34 0.24 0.88 0.71 0.20 0.08 0.83 0.42
36 0.50 0.27 0.82 0.54 0.27 0.11 0.79 0.42
48 0.62 0.30 0.79 0.49 0.34 0.26 0.73 0.76
60 0.68 0.28 0.76 0.41 0.40 0.23 0.67 0.57
72 0.75 0.24 0.75 0.33 0.53 0.17 0.66 0.32
84 0.80 0.22 0.75 0.28 0.59 0.17 0.65 0.28
96 0.96 0.23 0.72 0.24 0.64 0.17 0.60 0.26

108 0.94 0.31 0.71 0.33 0.70 0.19 0.57 0.27
120 0.98 0.35 0.70 0.36 0.74 0.27 0.59 0.36
132 0.97 0.41 0.65 0.42 0.77 0.31 0.58 0.41
144 0.95 0.43 0.62 0.45 0.83 0.35 0.58 0.42
156 0.98 0.47 0.58 0.48 0.91 0.37 0.58 0.40
168 0.96 0.46 0.56 0.48 0.97 0.36 0.54 0.38
180 0.98 0.37 0.48 0.37 0.97 0.32 0.38 0.33
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IV.III Dividend re-investment

Finally, we consider the robustness of our results to different re-investment schemes. There is

not a single convention prevailing in the literature. For example, Welch and Goyal (2008) ac-

cumulate dividends without adjusting for returns, Cochrane (2008) assumes that dividends

received during the year are re-invested in the market portfolios, while in van Binsbergen

and Koijen (2010) dividends received during the year are re-invested at the risk-free rate.

Chen (2009) and van Binsbergen and Koijen (2010) caution that the assumption of market-

reinvestment may possibly complicate disentangling dividend predictability from return pre-

dictability because market-reinvested dividends contain a substantial return component.

In the main paper, we follow the assumption by van Binsbergen and Koijen (2010) of risk-

free rate re-investment. In this section, we reproduce our volatility decompositions recon-

structed using market re-invested dividends and non-reinvested dividends, for both monthly

and annual data. The results, reported in Tables XIX–XXII, reveal that our results are not very

sensitive to the choice of re-investment strategy. Our main result of a significant volatility

contribution of long-run dividend expectations when the information set is extended beyond

the single state variable holds for all re-investment assumptions, at both monthly and annual

frequency.
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Table XIX: Volatility decomposition: No dividend re-investment (annual data).
This table reproduces the annual volatility decompositions as reported in Tables 2–4 of the paper, with the difference
that the 12-month dividend growth rates are constructed under the assumption that dividends received during the
12 months are not re-invested.

A: One state variable B: Three state variables

k (years) σ̂(r, k) σ̂(d, k) σ̂(dp, k)
σ̂(d, k)

σ̂(r, k)
σ̂(r, k) σ̂(d, k) σ̂(dp, k)

σ̂(d, k)

σ̂(r, k)
1 0.13 0.00 0.90 0.04 0.15 0.11 0.92 0.72
2 0.23 0.01 0.80 0.06 0.30 0.07 0.80 0.24
3 0.28 0.02 0.73 0.08 0.28 0.16 0.77 0.59
4 0.33 0.01 0.66 0.04 0.40 0.25 0.73 0.63
5 0.40 0.01 0.57 0.01 0.47 0.22 0.66 0.47
6 0.47 0.02 0.49 0.04 0.48 0.18 0.58 0.37
7 0.53 0.02 0.42 0.04 0.53 0.15 0.52 0.28
8 0.59 0.01 0.36 0.02 0.63 0.17 0.46 0.27
9 0.65 0.00 0.28 0.01 0.68 0.22 0.40 0.33

10 0.70 0.00 0.24 0.00 0.74 0.30 0.48 0.41
11 0.73 0.02 0.19 0.02 0.76 0.33 0.48 0.44
12 0.73 0.04 0.15 0.05 0.77 0.34 0.45 0.45
13 0.74 0.06 0.12 0.07 0.79 0.32 0.38 0.40
14 0.76 0.08 0.09 0.10 0.85 0.27 0.36 0.31
15 0.79 0.09 0.04 0.11 0.89 0.26 0.31 0.29

C: LASSO D: Model averaging

k (years) σ̂(r, k) σ̂(d, k) σ̂(dp, k)
σ̂(d, k)

σ̂(r, k)
σ̂(r, k) σ̂(d, k) σ̂(dp, k)

σ̂(d, k)

σ̂(r, k)
1 0.13 0.08 0.90 0.66 0.15 0.11 0.92 0.73
2 0.24 0.19 0.81 0.80 0.30 0.08 0.81 0.25
3 0.34 0.25 0.82 0.72 0.28 0.16 0.78 0.59
4 0.56 0.25 0.75 0.44 0.40 0.25 0.73 0.63
5 0.62 0.26 0.73 0.42 0.48 0.22 0.66 0.47
6 0.72 0.29 0.70 0.39 0.50 0.18 0.59 0.36
7 0.75 0.28 0.67 0.38 0.54 0.15 0.52 0.28
8 0.86 0.24 0.66 0.28 0.64 0.17 0.47 0.27
9 0.95 0.27 0.68 0.28 0.70 0.22 0.42 0.32

10 0.94 0.25 0.62 0.27 0.75 0.30 0.47 0.40
11 0.92 0.30 0.56 0.32 0.76 0.35 0.48 0.45
12 0.96 0.46 0.60 0.48 0.77 0.36 0.45 0.46
13 0.95 0.33 0.55 0.35 0.80 0.33 0.38 0.41
14 0.94 0.31 0.54 0.33 0.86 0.28 0.37 0.32
15 0.92 0.40 0.54 0.43 0.89 0.26 0.30 0.29
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Table XX: Volatility decomposition: No dividend re-investment (monthly data).
This table reproduces the monthly volatility decompositions as reported in Tables 2–4 of the paper, with the differ-
ence that the 12-month dividend growth rates are constructed under the assumption that dividends received during
the 12 months are not re-invested.

A: One state variable B: Three state variables

k (months) σ̂(r, k) σ̂(d, k) σ̂(dp, k)
σ̂(d, k)

σ̂(r, k)
σ̂(r, k) σ̂(d, k) σ̂(dp, k)

σ̂(d, k)

σ̂(r, k)
12 0.12 0.01 0.88 0.12 0.13 0.14 0.88 1.10
24 0.22 0.00 0.78 0.01 0.23 0.09 0.80 0.38
36 0.29 0.02 0.72 0.07 0.31 0.12 0.76 0.38
48 0.34 0.02 0.66 0.07 0.41 0.22 0.72 0.54
60 0.41 0.01 0.57 0.02 0.45 0.20 0.64 0.44
72 0.46 0.00 0.50 0.00 0.46 0.14 0.57 0.31
84 0.52 0.00 0.43 0.00 0.52 0.13 0.50 0.25
96 0.58 0.00 0.38 0.01 0.59 0.16 0.45 0.26

108 0.63 0.00 0.31 0.01 0.65 0.23 0.42 0.36
120 0.66 0.00 0.28 0.01 0.69 0.29 0.47 0.43
132 0.70 0.00 0.24 0.00 0.71 0.33 0.47 0.46
144 0.71 0.02 0.21 0.02 0.72 0.31 0.42 0.44
156 0.74 0.03 0.18 0.04 0.74 0.29 0.38 0.39
168 0.77 0.03 0.14 0.04 0.79 0.25 0.36 0.32
180 0.82 0.04 0.09 0.05 0.84 0.24 0.31 0.28

C: LASSO D: Model averaging

k (months) σ̂(r, k) σ̂(d, k) σ̂(dp, k)
σ̂(d, k)

σ̂(r, k)
σ̂(r, k) σ̂(d, k) σ̂(dp, k)

σ̂(d, k)

σ̂(r, k)
12 0.19 0.21 0.91 1.10 0.13 0.15 0.88 1.13
24 0.35 0.25 0.85 0.72 0.23 0.09 0.81 0.39
36 0.48 0.27 0.81 0.57 0.31 0.12 0.76 0.39
48 0.58 0.28 0.79 0.49 0.41 0.22 0.72 0.55
60 0.68 0.26 0.75 0.39 0.45 0.20 0.64 0.44
72 0.75 0.28 0.78 0.37 0.47 0.15 0.57 0.31
84 0.79 0.28 0.76 0.35 0.52 0.13 0.51 0.26
96 0.89 0.30 0.73 0.33 0.60 0.16 0.45 0.27

108 0.88 0.35 0.72 0.39 0.66 0.23 0.42 0.34
120 0.86 0.35 0.69 0.40 0.70 0.29 0.48 0.42
132 0.88 0.42 0.67 0.48 0.71 0.34 0.48 0.48
144 0.88 0.47 0.62 0.53 0.72 0.33 0.43 0.46
156 0.89 0.45 0.59 0.51 0.74 0.30 0.38 0.41
168 0.86 0.41 0.52 0.47 0.79 0.27 0.36 0.34
180 0.89 0.33 0.52 0.38 0.84 0.24 0.30 0.29
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Table XXI: Volatility decomposition: Market re-investment of dividends (annual data).
This table reproduces the annual volatility decompositions as reported in Tables 2–4 of the paper, with the difference
that the 12-month dividend growth rates are constructed under the assumption that dividends received during the
12 months are re-invested at the market rate of return.

A: One state variable B: Three state variables

k (years) σ̂(r, k) σ̂(d, k) σ̂(dp, k)
σ̂(d, k)

σ̂(r, k)
σ̂(r, k) σ̂(d, k) σ̂(dp, k)

σ̂(d, k)

σ̂(r, k)
1 0.13 0.02 0.90 0.18 0.15 0.12 0.91 0.80
2 0.23 0.03 0.80 0.13 0.29 0.13 0.80 0.43
3 0.28 0.02 0.73 0.08 0.28 0.21 0.77 0.76
4 0.33 0.01 0.66 0.02 0.40 0.30 0.73 0.76
5 0.40 0.01 0.57 0.02 0.50 0.29 0.65 0.58
6 0.47 0.02 0.49 0.04 0.49 0.22 0.58 0.45
7 0.53 0.02 0.42 0.03 0.54 0.24 0.51 0.44
8 0.59 0.01 0.36 0.02 0.63 0.25 0.46 0.40
9 0.65 0.01 0.28 0.02 0.72 0.27 0.44 0.38

10 0.70 0.00 0.24 0.01 0.74 0.33 0.49 0.44
11 0.73 0.02 0.19 0.02 0.76 0.37 0.48 0.49
12 0.73 0.05 0.15 0.07 0.77 0.40 0.44 0.52
13 0.74 0.06 0.12 0.08 0.79 0.36 0.41 0.45
14 0.76 0.08 0.09 0.10 0.85 0.32 0.44 0.38
15 0.79 0.09 0.04 0.11 0.92 0.30 0.52 0.33

C: LASSO D: Model averaging

k (years) σ̂(r, k) σ̂(d, k) σ̂(dp, k)
σ̂(d, k)

σ̂(r, k)
σ̂(r, k) σ̂(d, k) σ̂(dp, k)

σ̂(d, k)

σ̂(r, k)
1 0.13 0.05 0.90 0.38 0.15 0.12 0.92 0.80
2 0.24 0.06 0.81 0.24 0.29 0.13 0.81 0.43
3 0.34 0.12 0.81 0.36 0.28 0.21 0.78 0.75
4 0.62 0.27 0.80 0.43 0.40 0.30 0.73 0.75
5 0.60 0.34 0.72 0.56 0.51 0.29 0.66 0.58
6 0.72 0.29 0.70 0.41 0.51 0.22 0.58 0.44
7 0.75 0.31 0.74 0.42 0.55 0.24 0.52 0.43
8 0.86 0.33 0.66 0.39 0.64 0.25 0.47 0.40
9 0.91 0.36 0.69 0.39 0.74 0.27 0.45 0.37

10 0.95 0.31 0.62 0.32 0.75 0.32 0.48 0.42
11 0.95 0.30 0.56 0.32 0.77 0.38 0.48 0.49
12 0.95 0.48 0.60 0.50 0.77 0.41 0.44 0.53
13 0.93 0.48 0.58 0.51 0.80 0.37 0.39 0.46
14 0.95 0.46 0.56 0.48 0.86 0.33 0.42 0.38
15 0.94 0.51 0.54 0.55 0.92 0.31 0.49 0.33
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Table XXII: Volatility decomposition: Market re-investment of dividends (monthly data).
This table reproduces the monthly volatility decompositions as reported in Tables 2–4 of the paper, with the differ-
ence that the 12-month dividend growth rates are constructed under the assumption that dividends received during
the 12 months are re-invested at the market rate of return.

A: One state variable B: Three state variables

k (months) σ̂(r, k) σ̂(d, k) σ̂(dp, k)
σ̂(d, k)

σ̂(r, k)
σ̂(r, k) σ̂(d, k) σ̂(dp, k)

σ̂(d, k)

σ̂(r, k)
12 0.12 0.05 0.88 0.42 0.13 0.11 0.88 0.85
24 0.22 0.05 0.78 0.21 0.23 0.12 0.81 0.52
36 0.29 0.05 0.72 0.18 0.30 0.19 0.77 0.63
48 0.34 0.05 0.66 0.14 0.38 0.27 0.72 0.70
60 0.41 0.04 0.57 0.11 0.45 0.25 0.64 0.56
72 0.46 0.02 0.50 0.05 0.47 0.20 0.57 0.42
84 0.52 0.02 0.43 0.05 0.52 0.19 0.50 0.36
96 0.58 0.02 0.38 0.04 0.59 0.20 0.45 0.34

108 0.63 0.03 0.31 0.05 0.65 0.26 0.42 0.40
120 0.66 0.02 0.28 0.03 0.69 0.38 0.47 0.55
132 0.70 0.02 0.24 0.03 0.71 0.38 0.47 0.54
144 0.71 0.00 0.21 0.01 0.72 0.40 0.43 0.56
156 0.74 0.01 0.18 0.02 0.74 0.35 0.38 0.47
168 0.77 0.02 0.14 0.02 0.79 0.33 0.39 0.42
180 0.82 0.01 0.09 0.01 0.83 0.29 0.34 0.35

C: LASSO D: Model averaging

k (months) σ̂(r, k) σ̂(d, k) σ̂(dp, k)
σ̂(d, k)

σ̂(r, k)
σ̂(r, k) σ̂(d, k) σ̂(dp, k)

σ̂(d, k)

σ̂(r, k)
12 0.20 0.18 0.91 0.90 0.13 0.11 0.88 0.86
24 0.35 0.26 0.84 0.74 0.23 0.12 0.81 0.53
36 0.48 0.31 0.82 0.65 0.30 0.19 0.77 0.63
48 0.56 0.32 0.79 0.57 0.38 0.27 0.73 0.69
60 0.66 0.32 0.75 0.49 0.45 0.25 0.64 0.55
72 0.75 0.29 0.77 0.39 0.47 0.20 0.57 0.42
84 0.78 0.32 0.77 0.41 0.52 0.19 0.51 0.36
96 0.91 0.31 0.73 0.35 0.60 0.20 0.45 0.34

108 0.87 0.38 0.72 0.44 0.66 0.26 0.42 0.39
120 0.87 0.42 0.70 0.49 0.70 0.39 0.48 0.56
132 0.87 0.48 0.67 0.55 0.71 0.41 0.48 0.57
144 0.89 0.58 0.63 0.65 0.72 0.44 0.43 0.61
156 0.87 0.48 0.58 0.55 0.74 0.38 0.37 0.50
168 0.88 0.49 0.53 0.56 0.79 0.35 0.37 0.44
180 0.89 0.40 0.51 0.45 0.83 0.29 0.32 0.35
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