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ABSTRACT

This paper explores how the premature death of an inventor affects the productivity and career trajec-
tories of co-inventors. To this end, we develop and analyze a dataset covering the careers of 152,350
German inventors. The data combines highly precise employer-employee data from official social se-
curity registers with patent office information covering the period from 1980-2014. Departing from
about 799 registered premature deaths of inventors and the same number of matched inventors, we
study how co-inventors were affected by the death of their peers. Using a difference-in-differences and
an event study design, we investigate the reaction of the co-inventors’ patenting activities, career ad-
vancement and job mobility. Using a number of measures and robustness checks, our results show that
the premature death of a co-inventor reduces the productivity of the surviving co-inventors. The effect
sets in immediately and survivors do not seem to recover from the shock in the five years following.
We argue that employers will seek to retain co-inventors under certain conditions in order to continue
lines of research and invention. The empirical results confirm our expectations: surviving inventors are
significantly less likely to move to a different employer and are more likely to be promoted compared to
inventors in the control group. These effects seem to diminish after about two years. (212 words)
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1 Introduction

Teams are groups of individuals working together towards a common objective. They can be un-

derstood as social communities that can realize efficiency gains (Kogut and Zander, 1996). An

important mechanism through which these gains can be realized is social capital, a set of resources

rooted in relationships between team members. These relationships form the foundation of trust,

cooperation, and collective action (Jacobs, 1961; Nahapiet and Ghoshal, 1998; Mawdsley and So-

maya, 2016). But what happens if these relationships are destroyed, i.e., if part of the social capital

is unexpectedly and irretrievably lost? For firms, this question is relevant, since teams play an essen-

tial role in the creation and sharing of knowledge necessary for coming up with innovation (Akcigit

et al., 2018; Azoulay et al., 2010; Jaravel et al., 2018; Wu et al., 2019; Wuchty et al., 2007). For

individuals, this question is important, since an unexpected death of a co-inventor may radically

change the future career prospects of the survivors.

Earlier studies have shown that an unexpected and permanent loss of team social capital, e.g.,

by losing one of the team members, decreases the productivity of the remaining members of the

team (Azoulay et al., 2010; Jaravel et al., 2018; Jones, 2009). We are interested in teams consisting

of knowledge workers, since tacit knowledge held by any of the members cannot be replaced in the

short run. We build on the existing literature on the relationship between social capital and team

performance and investigate the consequences of a loss of team social capital of knowledge workers

(i.e., via the premature death of co-inventors) for the career trajectories of the remaining team

members. Career trajectories are characterized in this paper in terms of employees’ job mobility and

in terms of promotions.

We argue that an unexpected and permanent loss of team social capital, i.e., via the premature

death of one of the inventors, has two opposing effects. First, the loss of an inventor leaves a gap

which will have to be filled if the benefits of continuing particular lines of research and invention are

sufficiently high. This ‘filling the gap requirement’ makes the remaining inventors more attractive

for the employer, as it is more efficient to expand and complement the existing team than to restart

invention activities from scratch. Second, the premature death of a fellow-inventor reduces the

social capital and productivity of the surviving inventors. This decrease in productivity makes them

less attractive in the short run, both for their own employer and for the labor market in general.

To isolate the various effects at work, we distinguish between two settings: (1) the deceased

inventor worked for the same establishment as the surviving co-inventors and (2) the deceased

inventor and his or her co-inventors worked in different organizational sub-units (establishments)

or companies.1

In the first scenario, we expect that surviving co-inventors are less likely to move to other em-

ployers. This is because despite of the gap left by the deceased inventor, coordination costs within

1The concept of establishments as used in the IAB data is not equivalent to firms. Firms can have their
social security data recorded in multiple establishments. We argue that establishments are self-contained
units, that collaboration across establishment boundaries always involves ‘boundary-spanning’ activities and
coordination efforts not required in projects undertaken within the same establishment. Rebuilding a team is
therefore more costly if the deceased inventor was part of the labor force of a different establishment.
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the establishment will be relatively low and it is likely that the line of research and invention can

be continued profitably. But the surviving inventors serve an important function in ‘filling the gap,’

which in turn induces the current employer to offer the remaining team members favorable condi-

tions in order to keep them from leaving (Chang and Wang, 1996; Greenwald, 1986). Additionally,

the decrease in productivity reduces the outside options of the inventors (Hoisl, 2007).

Similar arguments apply for a possible promotion into a management position. We expect a

promotion to become more likely in case the deceased inventor had a management position. Inven-

tors usually assume such a position when the coordination requirements are high. In this case the

surviving inventors would, again, substitute for the deceased inventors. In case the deceased inven-

tor did not have a management position, we do not expect to find a positive effect on promotion,

since coordination requirements are likely to be relatively low. Hence, no management gap needs

to be filled and the decrease in productivity makes it unlikely that the surviving inventors will be

promoted for other reasons, such as performance.

In the second scenario, in which the deceased inventor worked for a different establishment,

we expect a considerably smaller change in the probability of the survivors to move or to receive

a promotion. This is because the continuation of research projects and inventions will have to be

coordinated between establishments and their managers. The rebuild the team, the surviving co-

inventors would have to move between firms or their sub-organizations. This would lead to high

coordination costs. Furthermore, we expect that the decrease in productivity prevents both attractive

outside job offers and promotion as a reward for exceptional achievements.

The analysis of the causal effect of a negative shock to the team social capital on the career

trajectories of the team members requires random variation of the team social capital. We use an

empirical setting that comes close to the ideal experiment. We follow up on the empirical strategy

established by Azoulay et al. (2010) in the context of scientific publications, and more recently used

in the context of patented inventions by Jaravel et al. (2018). We exploit premature, sudden deaths

of active inventors as plausibly exogenous variation in the inventor teams’ social capital.

We use a novel and unique employer-employee dataset, the INV-BIO dataset (Dorner et al., 2018)

which records complete biographies of 152,350 inventors from 1980 until 2014. For this period,

inventor records based on patent registers of the European Patent Office (EPO) and the German

Patent and Trademark Office (DPMA), and labor market biographies originating from social security

data were combined in a research data set. The sampling frame of the INV-BIO data is the population

of inventors who are listed on patent applications filed with the EPO between 1999 and 2011 with a

German residential address. The identification of unique inventors relies on a sophisticated method

that combines probabilistic record linkage and machine learning techniques. Based on their names

and residential addresses, the disambiguated inventor IDs are linked to entries in the social security

data between 1999 and 2011. This procedure resulted in 152,350 unique inventors who were

employed in a total of 148,965 unique establishments over the period from 1980 to 2014.

In a next step, we added the patent histories of the inventors comprising all patents filed between

1980 and 2014 with the EPO, the DPMA, or the WIPO (World Intellectual Property Office). The

matching was done based on inventor names, as well as on applicant/employer data recorded in
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the patent register and the social security data. The INV-BIO data include 643,856 patent families.

This represents approximately 71.4% of the inventions for which an EP patent was filed by at least

one inventor residing in Germany during the time window from 1999 until 2011.2

The linked employer-employee data enable us to track each inventor’s employment status and

inventive output over time and across firms at the highest precision. We identify in our data about

800 registered premature deaths of inventors at the age of 60 or younger (the regular retirement

age at the time underlying our study was between the age of 61 and 63) and had worked full-

time in the preceding months. We construct a matched control group that comprises surviving, or

‘pseudo-deceased,’ inventors with whom the deceased inventors share the same (or highly similar)

characteristics right before the time of death.

Using difference-in-differences (DiD), event study, and hazard model estimations, we investigate

the effect of the premature death of an inventor on the career trajectories (job mobility and promo-

tion) of the surviving co-inventors (about 3,000 for each group). As an extension to the analysis,

we also consider whether the deceased inventor was a highly productive ‘star’ inventor.

The DiD estimates show a sizeable and statistically significant negative average treatment effect

of inventor death on co-inventor productivity. On average, the co-inventors of a deceased inventor

file about 5% fewer patents per year compared to the co-inventors of a pseudo-deceased inventor.

The effects become even stronger when we account for patent quality (citations, patent family size).

In a first set of heterogeneity tests, we find differentials in the effect depending on the deceased

inventor’s as well as the co-inventor’s previous productivity. The death of a star inventor has a much

stronger effect on co-inventor productivity than the death of a less productive co-inventor. These

results replicate the findings of previous studies such as Jaravel et al. (2018).

We contribute new results to the literature by analyzing the time dimension of the changes in

productivity following the premature death of a co-inventor. From event study estimates, we can

infer that the effect sets in immediately (already in the year of the death). Moreover, we do not

see a clear trend in the subsequent five years that would suggest a convergence back to the average

productivity level of the control group. In summary, a loss of team social capital has an immediate

and lasting negative effect on inventor productivity. This suggests that inventors and their employers

face considerable difficulties in rebuilding team social capital.

With respect to mobility we find that inventors who lost one of their co-inventors prematurely

are less likely to leave their current employer compared to the inventors in the control group, who

did not experience such a loss. The effect is, as expected, only significant in case the deceased and

the surviving co-inventors worked in the same establishment. We also find a lower likelihood of a

move of the survivors in case the deceased inventor was a star, i.e., a highly productive, inventor.

These results provide support for the explanation that the survivors play a role in continuing previous

research and in replacing the deceased co-inventor. Hence, the employers will attempt to keep their

employees from leaving. We further find an increase in the likelihood that the surviving inventors

are promoted into a management positions but, as expected, only if the deceased and the surviving

2The IAB employment data contains employees subject to social security contributions. Hence, self-
employed inventors, freelancers, civil servants, retirees, or students are not covered.
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inventors worked for the same establishment and in case the deceased inventors held a management

position before they died unexpectedly. Due to coordination costs and competition, surviving co-

inventors are unlikely to move between establishments or companies.

Our results have important implications for the literature on knowledge creation and knowl-

edge sharing by showing that the loss of social team capital leads to a decrease in productivity of

the survivors and to a decrease in job mobility. We also contribute to the understanding of learning

in the team context. After experiencing an unexpected loss of the team social capital, the remain-

ing team members do not seem to be able to compensate fully for the loss. Hence, even though

inventors generate spillovers onto their co-authors, part of the knowledge, possibly the tacit part of

the knowledge, seems to be lost forever. Finally, the paper also contributes to the literature on the

careers of knowledge workers by showing that exogenous shocks can re-route career trajectories,

both in terms of promotion and in terms of between-firm mobility.

2 Theory

2.1 Prior literature

Both in terms of identification strategy and our interpretation of the nature of collaboration in

knowledge-intensive jobs, we build on the seminal work of Azoulay et al. (2010) who study the

impact of an unexpected death of a star scientist on the productivity of her co-authors. According to

Azoulay et al. (2010), the decrease in productivity of the co-authors may be explained by imperfect

skill substitution. Author teams are created to pool the expertise of scientists, who, as individuals

would face the ‘burden of knowledge’ problem, which was identified by Jones (2009). After the

death of a key collaborator, other team members might not be able to (immediately) replace the

knowledge that was embodied in the star. Stars may have acted as gatekeepers, providing their col-

laborators with important resources within or beyond their organizational boundaries. Furthermore,

stars may have generated knowledge spillovers onto their co-authors.

Using data on US inventors, Jaravel et al. (2018) argue that inventors may be more productive

in case they repeatedly work with the same co-inventors. This is because team-specific capital,

comprising skills, expertise and knowledge that are useful only in a particular collaboration, makes

a team unique and improves its output. In case collaborations exogenously end and co-inventors

(or their contribution to the team-specific capital) cannot easily be replaced, this has a negative

long-lasting negative impact on the inventive output of the remaining inventors. The authors also

carefully delienate their results from alternative explanations such as firm disruption, network effects

and top-down spill-overs. Their results appear to be in line with the view that closely-nit teams are

characterized by reduced moral hazard which would be consistent with Holmstrom (1982), and by

increased trust in the line of arguments developed by Simmel (1908).

Mohnen (2018) investigates the importance of network position for the productivity of scientists.

As a natural experiment, she uses 122 premature deaths of star scientists in a co-author network.
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Analyzing 19 million publications in biosciences between 1965 and 2013, she finds that depend-

ing on the network position of the deceased star scientist, the productivity of average co-authors

decreases up to between 11% (average scientists) and 49% (brokers). The productivity decrease

seems to be permanent, i.e., she does not find a convergence back to the average productivity level

that was observed before the star scientist deceased.

Bernstein et al. (2019) match 236 million partial US social security numbers to US patents to

identify immigrants. When analyzing premature inventor deaths, they find that deceased immi-

grants incite particularly negative consequences for their co-inventors. Immigrants are found to

be especially productive and are argued to have unique knowledge backgrounds, which drives the

stronger effect. The effects gradually increase and persist. For an immigrant co-inventor, the decline

is about 26%, for US-born inventors, it is only about 10%.

Jaeger and Heining (2019) use matched employer-employee data extracted from the popula-

tion of German social security records and investigate the substitutability of workers following un-

expected deaths of 34,000 co-workers. The unexpected death of a high-skilled co-worker leads to

an increase in the wages and the retention probabilities of co-workers in the same occupation. This

increase lasts for a period of several years. Workers in other occupations experience wage decreases

in case a highly skilled co-worker dies. Hence, whereas co-workers in the same occupation seem to

be substitutes, co-workers in other occupations seem to be complements.

Liu et al. (2011) provide further evidence of how deceased co-workers are substituted. The

authors use publication data retrieved from PubMED to analyze the effect of premature deaths of

star scientists on their collaborators’ network. In terms of network structure, the premature death of

a scientist is equivalent to removing the center of an egocentric network. Scientists are connected in

case they co-authored a journal article in the past. Liu et al. (2011) do not find a negative effect of the

death of a star scientist on the topological development of the residual network. They explain this

finding by the redundancy of the structure of the network, which acts as a protection mechanism

against network disruption. In other words, the existing co-authors substitute for the decreased

scientist.

In summary, the existing literature shows that the premature death of a co-worker negatively

affects the productivity of the survivors. The effect becomes more pronounced in case the decreased

co-workers were stars or held a broker position in the co-worker network. Furthermore, the studies

indicate that the survivors seem to substitute for the deceased co-workers. However, the existing

literature is largely silent about how a negative shock to an inventor’s team social capital affects her

career trajectory, i.e., employees’ job mobility and promotions. One of the reasons for this is a lack of

precise mobility and job status information. With the exception of Jäger and Heining (2019), other

studies that rely on patent or publication data have to deduce mobility events from information about

the applicants or affiliations. Sufficiently precise mobility information is only available for highly

productive inventors (scientists), since it requires continuous patenting (publishing). Information

about promotions are not contained in patent or publication data at all.

6



2.2 Premature death and career trajectories

We argue that an unexpected death of an inventor has two opposing effects on the co-inventors: a

positive replacement effect and a negative productivity effect.

First, the gap left by the deceased inventor must be filled. The gap can be filled by outside

workers, i.e., by hiring a suitable new worker. This would mean that the premature death of a

co-inventor does not affect the demand for the remaining, already employed co-inventors (Jaeger

and Heining, 2019). Outside inventors are, however, only imperfect substitutes of the decreased

inventors in case the job relies heavily on firm-specific human capital. Whereas general human

capital consists of knowledge and skills that are applicable to different firms, firm-specific human

capital is only relevant to a particular firm (Hashimoto, 1981; Lazear, 2009). Additionally, labor

market frictions, i.e., factors that constrain labor mobility, may prevent hiring a perfect substitute

for the deceased inventor. In particular, firms may be unable to identify the right inventor because

they cannot assess the quality of the human capital of the potential hire or they are not able to

convince the identified inventor to move (Campbell et al., 2012; Mawdsley and Somaya, 2016). If

the gap cannot be filled by an external hire, an internal inventor can replace the deceased inventor.

This makes the surviving inventors more attractive for the employer, i.e., the labor demand for the

existing inventors increases. A higher demand results in higher wages, since firms share their rents

with these valuable survivors to keep them from leaving the firm (Becker, 1964; Jaeger and Heining,

2019).

We are interested in the consequences of an unexpected loss of team social capital of knowledge

workers (i.e., inventors) for the career trajectories of the survivors. Both, the fact that inventors

are knowledge workers and that they work in teams affect the decision of hiring an inventor from

outside vs. replacing the deceased inventor with one of the surviving co-inventors.

Teams are special in the sense that they do not only convey human capital but also social (or

relational) capital. Whereas human capital is mobile, since it is tied to one particular individual,

social capital is rooted in the relationships between the team members and is, therefore, immobile

(Jacobs, 1961; Nahapiet and Ghoshal, 1998; Mawdsley and Somaya, 2016). In case one co-worker

dies unexpectedly, part of the social capital is destroyed. Even if the firm can find a substitute for

the (general) human capital, the relational capital has to be rebuilt in the long term.

Knowledge workers are workers who are highly educated and who apply and recombine knowl-

edge to develop new products and services (Drucker, 1959; Nelson and Winter, 2009). The most

valuable type of knowledge is tacit knowledge, i.e., conscious and unconscious knowledge which is

stored in the heads of individuals and, consequently, only accessible to the originator of the knowl-

edge (Grant, 1996; Howells, 2002). Codified or explicit knowledge, on the contrary, is accessible to

other people than the originator of the knowledge, as well. Even though part of the tacit knowledge

can be converted into explicit knowledge, intuition and gut feeling are hard, if not even impossible

to make accessible to others (Leonard and Sensiper, 1998; Spender, 1993). Or as Sorenson (2018)

noted, whereas codified knowledge, like articles published in scientific journals, focus on things that

worked, especially important information about failures, i.e., about what not to do, remains inacces-
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sible if tacit knowledge cannot be retrieved. Teams dispose of collective tacit knowledge which was

developed jointly over time. Hiring an external worker does not replace the individual tacit knowl-

edge that was held by the deceased co-worker and does also not contribute to the collective tacit

knowledge of the team, at least not in the short run. This would again speak in favor of replacing

the deceased inventor by an internal inventor.

Second, the premature death of a co-inventor results in an unexpected loss of social capital.

Nahapiet and Ghoshal (1998, p. 243) refer to social capital as ‘a set of resources rooted in rela-

tionships.’ Social capital has three dimensions, a structural, a relational, and a cognitive dimension

(Nahapiet and Ghoshal, 1998). Structural social capital refers to the structure of the network that

ties together different individuals. It is related to the amount and value of the information that is

shared between ties (Burt, 1997). Relational social capital induces trust and reciprocity and en-

ables cooperation and collective action (Kale et al., 2000; Jacobs, 1961). Finally, cognitive social

capital refers to shared representations, values and language and, hence, affects coordination costs

(Mawdsley and Somaya, 2016).

Networks provide access to knowledge, which may otherwise be beyond an individual’s reach or

(too) costly to create. A loss of structural social capital means that a social network decreases in size.

The larger a network is, the more diverse the knowledge from which inventors can draw. Knowledge

diversity was shown to increase the likelihood that inventors produce more novel and creative output

(Tzabbar and Vestal, 2015). The loss of relational social capital is particularly pronounced in case

the deceased inventor was a gatekeeper or an intermediary (Mohnen, 2018), whom others trusted.

If an intermediary is gone, this could mean either that less valuable knowledge is shared or that

knowledge flows decline considerably (Granovetter, 1973). Cognitive social capital leads to a shared

understanding. This is important, since it means that team members are aware of who knows what

and how the expertise of the different team members can help to solve problems (Srikanth and

Puranam, 2011; Reagans et al., 2005). A disruption of cognitive social capital, therefore, increases

the coordination and communication costs within teams and decreases performance. Any decline in

social capital, regardless of which dimension is affected, will lead to a decline in the productivity of

survivors. A lower productivity, in turn, decreases the attractiveness of the workers, both for their

own employer and for the labor market in general.

In summary, if a co-inventor dies unexpectedly, the gap has to be filled. From the literature

we know that it is difficult to fill the gap left by a knowledge worker in a team with an external

knowledge worker. This increases the attractiveness of the survivors for the current employer, since

they are likely to be the best available replacement for the deceased inventor. Consequently, the

employers will provide the survivors with incentives to keep them from leaving the firm (Chang and

Wang, 1996; Greenwald, 1986). This decreases the probability of a move. Similar arguments apply

for a possible promotion to a management position. We expect a promotion to become more likely.

In case the deceased inventor had a management position and the position has to be filled, again,

a former co-inventor, i.e., an inventor from inside, may be the optimal substitute of the deceased

inventor.

However, at the same time, the premature death of a co-inventor decreases the productivity of
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the survivors due to a loss of social capital. This makes the survivors less attractive for the current

employer and the external labor market (Hoisl, 2007) and there is no reason to reward the inventor

with a promotion (except for the substitution). In case the deceased inventor and the surviving co-

inventors had been employed at the same establishment, we assume that the positive replacement

effect outweighs the negative productivity effect. This leads to our first two hypotheses:

Hypothesis 1: A premature death of a co-inventor from the same establishment decreases the prob-

ability of a move of the surviving co-inventors.

Hypothesis 2: A premature death of a co-inventor from the same establishment increases the prob-

ability of a promotion of the surviving co-inventors, but only if the deceased inventor had a man-

agement position.

According to Jaravel et al. (2018), the premature death of an inventor only affects the direct co-

inventors. Second-degree connections in an inventor network (i.e., co-inventors of co-inventors) are

not significantly affected by the death of the vocal inventor. We distinguish between co-inventors em-

ployed by the same vs. by different establishments or companies. In case the deceased co-inventor

was employed by a different establishment or company than the surviving co-inventors, we expect a

considerably smaller change in the probability of the survivors to move. This is because the surviving

co-inventors would have to move between establishments or companies. This would lead to high

coordination costs. Furthermore, the current employer of the survivors does not have an incentive

to leave her employees to potential competitors. The drop in productivity means that the current

employer does not make a special effort to keep the survivors from leaving. However, there won’t

be (attractive) job offers from outside, either. The same applies to a possible promotion. On the

one hand, coordination costs and competition prevent across establishment or company moves and,

on the other hand, the surviving inventors do not deserve promotion due to their lower productiv-

ity. Hence, in case the deceased and the surviving inventors worked for the same establishment or

company, there is no positive replacement effect, the negative productivity effect, however, prevails.

Hypothesis 3: A premature death of a co-inventor from a different establishment does not affect the

probability of a move of the surviving co-inventors.

Hypothesis 4: A premature death of a co-inventor from a different establishment does not affect the

probability of a promotion of the surviving co-inventors.
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3 Data and Empirical Strategy

3.1 Data

Our linked inventor biography data cover 152,350 inventors in Germany who were active as inven-

tors between 1999 and 2011. This data set combines labor market biographies as recorded in social

security data and patent register data of the European Patent Office and the German Patent and

Trademark Office. It comprises a rich set of socio-demographic variables on the inventor, detailed

patent track records, and characteristics of the employing establishment. For a detailed account of

the dataset construction, see Dorner et al. (2018).

Social security data on labor market careers in Germany have been used extensively in research

on productivity and human capital of workers and firms (Dustmann et al., 2009, 2017; Fuest et al.,

2018; Jaeger and Heining, 2019). Administrative labor market data has important advantages over

using only patent-based datasets because they contain additional complementary information. Em-

ployees can be tracked even when they do not patent. In our study, we will exploit knowledge about

detailed occupation classifications, unavailable in more traditional data sources. In particular, the

role of employees in (middle) management occupations will be important. Further, the place of

work is available on the detailed establishment (plant) level, which allows to distinguish inventors

working at the same physical location from such that collaborate over a distance.

Most important of all, these data record deaths of employees with great precisions. In particular,

when employees leave an employer, the employer has to report the reason for the separation. Death

of an employee has a specific code in the social security data. This information has previously been

used by Jaeger and Heining (2019), who have also established that death notifications are exogenous

events and unrelated to employment spells and employer characteristics, but we will confirm this

finding for the subset of inventors.

Despite its coverage and level of detail, the data set has some shortcomings, which, however,

can partly be addressed by the combination with patent data. First and foremost, the data do not

record the organizational structure within the firm establishments, i.e. which workers actually work

together. By using matched inventor-employee data, we can infer with higher precision who has

actually worked together as recorded on patents. We exploit the information on teams and collabo-

rations of inventors in combination with the recorded deaths to examine the productivity impact of

exogenous changes in teams inventor networks on the productivity of survivor inventors. Further,

income information is top-coded, so that for the high-income knowledge workers that are typically

listed on patents, hardly any variance is left. Here, we can use patent data to learn about individual

productivity. Finally, whether two establishments belong to the same firm or holding structure is not

relevant for social security purposes and therefore difficult to know.

In the subsequent analysis, we will occasionally refer to star inventors – individuals who have in

the past shown exceptionally high productivity levels, as measured by cumulative patent application

counts. We operationalize this concept by considering inventors – deceased and surviving – as stars

if they belong to the top 5% of the productivity distribution two years before the premature death.
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Some interesting differences in results will be observable when comparing a co-inventor death

occurring in the same establishment with a co-inventor death occurring in a difference establish-

ment. Co-inventor deaths in a different establishment can occur in several ways. First, recall that

the definition of co-inventors looks at the patenting history of the deceased inventor in the past ten

years. In some cases, the deceased inventor and the co-inventor were in the same establishment

in the past but one of them moved. Then, the impact of the death is likely smaller. Both inventors

used to know each other and are possibly still in contact, but do not currently work together. Sec-

ond, it is possible that deceased inventor and co-inventor are currently working together, across the

boundaries of two establishments. Here, it is important to note that two establishments can, but

need not belong to the same firm. Figure A-1 in the Appendix shows the frequency of patents which

were developed across establishment borders. Especially in areas around chemistry, 30−40% of all

patents are developed with inventors from two or more establishments. In some engineering areas,

that number is smaller than 20%.

Promotions are a distinctive and important event in the career of each employee. In particular,

promotions to (middle) management occupations are critical as they delineate a shift in roles. We

define management occupations according to the five-digit classification of occupations3. Manage-

ment occupations are not employees tasked with overseeing whole companies, such as employees

in the C-suite, but have overseer or management functions within the lines of work of the company,

i.e. middle management.4

Figure A-2 in the Appendix investigates usage of management occupations in inventor teams.

In particular, team size and the number of different occupations – both excluding employees with

management occupations – are investigated regarding their reliance on co-inventor with manage-

ment function. We find that both team size and number of occupations seems to increase the use

of managers, but the combination of both really sees the most frequent usage. Bringing together

many employees, especially if they are endowed with diverse knowledge, require management to

integrate personnel and knowledge. Indeed, a related analysis in Figure A-3 in the Appendix shows

that this nexus of many employees and many occupations is exactly where the integration of various

technology streams into one patent (high originality score) is possible.

3.2 Empirical strategy

For identification, we exploit the quasi-natural experiment of the premature death of a co-inventor.

Estimation strategies based on death assume that the death of a coworker removes a person from a

workplace or team, which potentially reduces social (team) capital, leads to a loss of tacit knowledge,

and creates temporary disturbances.

We consider the co-inventors of a prematurely deceased inventor. We create a one-to-one control

3This classification is based on the Klassifikation der Berufe 2010 (Bundesagentur fuer Arbeit, 2011)
4For example, the group ‘41494’ would indicate that this employee works in physics (3-digit code 414) but

has management responsibility (digit 9) on expert level (last digit 4). Managers themselves have distinctive
occupations (digits 71XXX) and thus not considered here.
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group and match each deceased inventor to a surviving pseudo-deceased inventor with whom he/she

shares the same (or highly similar) observational characteristics right before the time of death. We

estimate effects by comparing co-inventors of the deceased and pseudo-deceased inventors. While

one group is affected by a premature death, the other is not. We call these groups treatment and

control group, respectively. We demonstrate that while trends in outcome variables before the death

are very similar, they show important differences afterwards.

Using the treatment and control groups, differences-in-difference (DiD) estimates can be ob-

tained, which under typical assumptions yield causal effects of the death of a co-inventor. Using

event studies, we can investigate the exact timing of the effects. We use DiD estimates to study

inventor productivity using canonical measures of patenting. A second set of outcomes relates to

labor market events. Job transitions and promotions are important events in the careers of each

employee. However, the different nature of this outcome variable (events) necessitates a different

estimation strategy. Here, we rely on survival analysis, i.e. the analysis of timing until the first such

event occurs. Again, we compare treatment and control group.

Inventor matching

Our empirical approach proceeds stepwise. First, the social security data allows us to precisely

identify inventors who prematurely died. We further restrict our selection of deaths to employees

that died with age 60 or below. Figure 1 shows the distribution of ages at death for the deceased

inventors as well as the years in our data. In our population of inventors, a large fraction is still

employed after reaching the age of 60 and still contribute with patents. The retirement age in the

period in question slowly rises from 65 years (cohort of 1946 and earlier) to 67 years (cohort of

1964 and later).

Figure 1: Inventor deaths by year and age
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Notes: The graphs show death year (left) and death age (right) for the deceased inventors.

In our estimation strategy, we follow Jaravel et al. (2018) by selecting comparable pseudo-
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deceased inventors who did not die. We do so iteratively, by selecting pseudo-deceased inventors

for earlier death years first. Inventors are selected to have the exact same age, gender, patenting

count, firm size, and technological focus. In case of ties in the match, we further restricted the

set of control group candidates to inventors who have firm tenure, last patenting date and exact

number of patents as similar as possible to the deceased inventor, in that order.5 From the control

group candidates set, we exclude any inventor who was employed in the same establishment as the

deceased inventor and has ever had a joint patent with the deceased inventor.

To each matched pseudo-deceased inventor, we assign the (pseudo) death date of the deceased

inventor. For the real and the pseudo-deceased inventors, we setup up the inventor network up the

first degree of separation, i.e. those inventors who were listed on a patent filing with the deceased

inventor within the 10 calendar years prior to the year of the death date. We also drop all inventors

that are within one degree of separation for more than one (pseudo-)deceased inventor to avoid

contamination.

The (surviving) co-inventors in the networks of deceased and pseudo-deceased inventors are

units of interest in our empirical analysis. We investigate potential differences in inventor produc-

tivity and labor market outcomes between co-inventors after the death of the deceased inventor

compared to co-inventors of the pseudo-death of the matched inventor.

Econometric models

Our DiD estimation strategy is as follows:

log(1+ Yit) = αi + deathi × βt>0 + γZit +δt + εit. (Eq 1)

All DiD specification use inventor-specific fixed effects, which incorporate death year fixed ef-

fects. Further, we include relative time period fixed effects. The variable Z contains additional,

time-varying control variables on the inventor level, particularly age and age squared. Standard

errors are clustered on the inventor level. This estimation strategy delivers the causal effect of an

inventor death on the coworkers if, absent the death, productivity of the deceased and the network

would have evolved as in the matched control group.

In the event study specification, this expands to

log(1+ Yit) = αi + deathi ×
5
∑

k=−5;k 6=−2

βk + γZit +δt + εit. (Eq 2)

For each deceased or surviving inventor, we consider the years t = −5 to t = 5 around the

death year. We use t − 2 as the baseline period to observe potential differences already in the pre-

5We coarsen the patenting count to groups of 10-14, 15-19, 10s between 20 and 100, 50s between 100
and 300, and a final one for 400 and everything above. Firm size is coarsened in group of <50, 50-249, 250-
999, 1,000+. Technology fields are broadly grouped into five main technology areas (Chemistry, Instruments,
Electrical Engineering, Mechanical Engineering, Other) using the modal value within inventors. The reason
for the additional weak matching criteria is to strike a balance between stable matching and retaining a high
number of successful matches.
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period. The reason for choosing t − 2 is that due to the nature of the patent system, it is possible

that the death of a co-inventor already has effects on productivity outcomes in prior years. For

example, if a patent application was pursued using the PCT system and the death of an inventor

renders prosecution or further development impossible, the PCT application may never materialize

at the EPO or the German patent office. Similar, additional patent applications in other jurisdictions

may now be missing, creating pre-trends in patent family size measures. Similarly, if the death

impedes follow-on work, self-references contained in future patent applications will be missing in

the treatment group. Hence, pre-trends may be conceivable in forward-citation measures as well.

Choosing an earlier time period allows us to highlight these effects where they exist.

In a second set of analyses, we analyze the effect of inventor death on the duration outcome of

co-inventor labor market events, i.e. the first post-death career change. We use a Cox proportional

hazard rate model with time-invariant regressors which is specified as a continuous-time hazard

rate function. The model consists of a nonparametric baseline hazard rate and a multiplicative term

allowing the regressors to have a proportional impact relative to the baseline. We let hchange denote

the hazard rate of a labor market event, stratified by the surviving inventor’s modal technology area

l. We further include inventor characteristics, Z , and death calendar year fixed effects, yeari , as

control variables. The model is then as follows:

hchange (t|deathi , li , Zi) = hli (t) exp(α+ β deathi + γZi + εi). (Eq 3)

where β represents the effect of a truly deceased co-inventor on the change hazard rate. The

potential bias from a correlation between death and unobserved heterogeneity in the hazard rate,

εi , should be minimized given our carefully selected control group.6 To capture the influence of

inventor life-cycle and macro-economic events on the baseline hazard rate of change, we control for

age, age squared and the year of death, which are all part of the vector Zi .

We consider two dependent variables in the hazard rate analysis. For both job separation (leave)

and promotion to management (promotion), only the first post-death event for an inventor is con-

sidered. For heterogeneity analysis, the death variable is included in the regression fully interacted

with the heterogeneity variable of interest. Since Kaplan-Meier estimates indicate heterogeneous

effects depending on the time frame, we truncate the event data at different time spans: 200, 400,

600 and 800 days.

6We however assume that death is independent of εi given our matching procedure, the stratification and
control variables such as age and death year. The estimation strategy is not diff-in-diff as above as the pre-post
difference is not considered. Therefore, the parallel trends assumption is not sufficient for the causality of
estimates. Instead, similar mobility rates in treatment and control group absent the death have to be assumed.
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4 Results

Match quality and pre-trends

Of about 850 deceased inventors that we observe in our data, 799 are successfully matched to

observationally similar pseudo-deceased inventors. Figure 2 and Table 1 illustrate that our matching

exercise was successful by testing the balancedness of a large covariates set. We find that matched as

well as unmatched characteristics are strikingly similar between focal and co-inventors. The small

relative differences in means (and medians) provide strong support for the quality of our match.

Figure 2: Mean differences comparison of (co-)inventor pre-death characteristics

(a) Deceased inventors
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(b) Surviving co-inventors
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Notes: The two graphs present comparisons of mean differences of key pre-death characteristics of the de-
ceased inventors (left) and their surviving co-inventors (right). The unit of observation is at the inventor
level.

Figure A-4 in the Appendix further investigates whether the levels and trends of productivity

between deceased and pseudo-deceased inventors is similar. As expected, the individual productivity

of the actually deceased inventors drops to zero in the year following the death, while before the

death, levels and trends are comparable between them and the group of pseudo-deceased inventors.

Productivity effects

The most immediate outcome of a co-inventor death – and which has also been the focus of prior

studies – is a change in individual productivity (Jaravel et al., 2018; Bernstein et al., 2019) Here,

we replicate their analyses to confirm their findings in the German context.

Figure 3 and 4 each show event study estimates for the full sample of deceased inventors and by

subgroups of previous productivity.7 In Figure 3 depicts estimates of simple patent count (at family

level). We find moderate decreases in patenting of around 4%. These decreases set in immediately

after the death and can also be found in later time periods. Analyzing sub-groups, we explore

7These estimates are also shown as tables in the Appendix (A-1 to A-2).
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Table 1: Pre-death characteristics of focal inventors and their co-inventors

Deceased inventors Deceased (N= 799) Pseudo-deceased (N= 799)

Mean Median Std. Error Mean Median Std. Error Diff. p-value

Age 49.37 51.00 7.40 49.35 51.00 7.41 0.01 0.976
Expert 0.54 1.00 0.50 0.55 1.00 0.50 −0.01 0.581
Science & eng. worker 0.39 0.00 0.49 0.42 0.00 0.49 −0.03 0.241
Firm tenure (in years) 12.04 10.00 9.24 11.41 9.00 8.87 0.63 0.164
Years since last patent 2.93 2.00 3.20 2.94 2.00 3.37 −0.01 0.933
Career patent families 6.18 3.00 10.51 6.00 3.00 9.69 0.18 0.725
Career 5yr EP citations 7.79 2.00 17.69 6.71 2.00 13.94 1.08 0.175
Patent generality (avg) 0.06 0.00 0.16 0.06 0.00 0.16 0.00 0.631
Patent originality (avg) 0.08 0.00 0.19 0.09 0.00 0.20 −0.01 0.302
Network size 3.73 3.00 2.80 3.62 3.00 2.83 0.11 0.424
Firm size (employees) 4050.89 772.00 9150.28 4112.63 791.50 8921.01 −61.73 0.891
Manufacturing firm 0.75 1.00 0.43 0.76 1.00 0.43 0.00 0.873
Firm age 22.39 26.00 11.71 22.49 26.00 11.74 −0.10 0.869

Surviving co-inventors Deceased (N= 3308) Pseudo-deceased (N= 3210)

Mean Median Std. Error Mean Median Std. Error Diff. p-value

Age 45.05 44.00 8.47 44.67 44.00 8.48 0.38 0.080∗

Female 0.07 0.00 0.25 0.07 0.00 0.26 −0.01 0.403
Expert 0.60 1.00 0.49 0.61 1.00 0.49 −0.02 0.169
Science & eng. worker 0.49 0.00 0.50 0.50 1.00 0.50 −0.01 0.505
Firm tenure (in years) 10.35 8.00 8.25 9.92 8.00 7.96 0.44 0.037∗∗

Years since last patent 1.58 1.00 2.14 1.50 1.00 2.06 0.08 0.136
Career patent families 13.50 7.00 19.38 13.47 6.00 20.89 0.03 0.953
Career 5yr EP citations 19.92 7.00 37.49 19.72 7.00 38.15 0.20 0.835
Patent generality (avg) 0.10 0.00 0.19 0.10 0.00 0.18 0.00 0.298
Patent originality (avg) 0.14 0.00 0.22 0.15 0.00 0.23 −0.01 0.362
Network size 6.15 8.00 2.36 6.28 8.00 2.33 −0.13 0.033∗∗

Firm size (employees) 5185.34 1350.50 9790.26 5200.75 1531.00 9757.85 −15.41 0.951
Manufacturing firm 0.80 1.00 0.40 0.80 1.00 0.40 0.00 0.775
Firm age 22.75 27.00 11.78 22.76 27.00 11.92 −0.01 0.978

Notes: This table presents summary statistics of pre-death characteristics of focal inventors and their matched
control group. The unit of observation is at the inventor level. Reported p-values based on an unpaired t-test.
Significance levels: * p<0.1, ** p<0.05, *** p<0.01.

the origin of the effects. In particular, the death of star inventors seems to especially matter for

their former co-inventors. Interestingly, the effect is strongest when both deceased inventor and

co-inventor were highly productive individuals. The exact reason requires further investigation, but

below we provide evidence that these individuals did possibly patent together particularly frequently.

The analysis elicits even more pronounced effects when looking at the quality dimension in Figure

4. Here, it becomes clear that the effects are immediate, strong and long-lasting. However, the
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effect seems to set in already in the year before the death. As discussed above, this can be driven by

contamination through missing self-references from later patent filings in the treatment group. The

previously observed pattern concerning productivity differentials is corroborated: when a star dies,

co-inventors are especially affected, which is again driven by surviving stars. This pattern can also

be found when using a quality weighted patent count based on the patent family size (Table A-3 in

the Appendix).

Figure 3: Impact of inventor death on co-inventor productivity (event study estimates)
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Notes: The two graphs present plotted point estimates of the variable death interacted with event year dum-
mies. The unit of observation is the individual surviving co-inventor-year. Baseline year is t − 2. The graphs
correspond to the coefficients reported in Table A-1. Confidence intervals are at the 95% level.

We can confirm these productivity results in reduced DiD specifications, where dynamics are

ignored and a single effect for the treatment group can be calculated. Tables A-4 to A-6 in the

Appendix list such specifications. On average, elasticities between −4% (simple counts) and −6%

(weighted by family size) can be found. These elasticities are consistently stronger in subsamples

where either the deceased inventor or the surviving co-inventor were highly productive. In split

samples, effects in the range of −7% to −11% (patent applications) or −9% to −14% (family size

weighting) are found. The interacting star status of the deceased drives a large part of the average

effect in the full sample. This confirms findings from the previous literature on the death of star

scientists, i.e., the loss of highly productive peers matters most.
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Figure 4: Impact of inventor death on co-inventor productivity (event study estimates)
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Notes: The two graphs present plotted point estimates of the variable death interacted with event year dum-
mies. The unit of observation is the individual surviving co-inventor-year. Baseline year is t − 2. The graphs
correspond to the coefficients reported in Table A-2. Confidence intervals are at the 95% level.

Labor market events

We investigate the effect of premature deaths on labor market events in two stages. First, we esti-

mate failure rates using Kaplan-Meier estimators and visually inspect the results. Subsequently, we

estimate Cox proportional hazard models and control for additional variables.

The first set of estimates analyzes the probability of a job separation event in the treatment group

relative to the control group. Figure 5 plots in a first panel Kaplan-Maier estimates, distinguishing

by co-inventors who were in the same establishment as the focal inventor in the year of the death.

In comparison, the second panel looks at co-inventors who were in a different establishment at the

time of death. In both cases, around 20% of inventors have left their initial employer by day 800,

indicating frequent turnover of highly skilled knowledge workers.

We find that for co-inventors in the same establishment, separation probability is significantly re-

duced in the first 400 days, but the difference between the rates subsequently decreases and becomes

small. Regression estimates in Table A-7 in the Appendix confirm this pattern, initial significant dif-

ferences level off. The treatment group catches up by a higher rate of leaves at a later point in

time. For co-inventors in different establishments, the separation probability of the treatment group
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Figure 5: Leave events by establishment of deceased and survivor (Kaplan-Meier estimates)

0

.05

.1

.15

.2
Le

av
e

0 200 400 600 800

Treated
Control

Same establishment

0

.05

.1

.15

.2

Le
av

e

0 200 400 600 800

Treated
Control

Different establishment

exactly tracks the control group. This is confirmed by the regression estimates in the lower part of

Table A-7 in the Appendix. These findings confirm Hypothesis 1 and Hypothesis 3.

It is difficult to infer from standard patent data the exact role an inventor had in a team and how

essential her specific contribution was. With administrative labor market data, we can achieve some

progress in this matter. In particular, we leverage available occupation information to determine

whether a particular inventor held a management occupation during a specific employment spell.

As discussed in Section 3, management occupations refer to employees with management responsi-

bilities within a specific field of work. They do not refer to general management, such as CEOs, but

rather describe middle management positions.8

We proceed to estimate the probability of promotion to a management occupation following a

premature death. Figure 6 shows Kaplan-Meier estimates for this event, when the focal inventor

and co-inventor worked in the same establishment. We further distinguish whether the deceased

inventor was in a management occupation. The probability of a promotion towards a management

position approaches 8% by day 800 when the deceased inventor was not in a management position.

In contrast, when the focal inventor was in a management position, the treated co-inventors show

a substantially and persistently higher probability to advance to a management occupation. At day

800, the treatment group has – on average – a cumulative promotion probability that is twice as

large as that of the matched control group (8% vs. 4%). This finding confirms Hypothesis 2.

8We disregard occupation changes where the inventor had already been in a management occupation
before the occupation change.
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Figure 6: Promotion to management, same establishment (Kaplan-Meier estimates)
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Finally, Figure 7 compares the probability of promotion to a management occupation when

deceased and surviving inventor worked in a different establishment. According to our reasoning in

Section 2, we would not expect an effect here, as there is no immediate gap at the surviving inventor’s

establishment to be filled. However, the estimates in Figure 7 contradicts with this hypothesis. Even

when deceased and surviving inventor worked in different establishments, the premature death

event increases the survivor’s probability of promotion. Therefore, we fail to confirm Hypothesis 4.

A possible explanation for this failure is that management capability in complex teams is actually

a boundary-spanning function. Perhaps it is important that in long-term collaboration between two

establishments a manager is present, but immaterial which of the two establishments contributes

the manager. Instead, management ability and prior experience may be more decisive for deciding

who enters a management position.
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Figure 7: Promotion to management, different establishment (Kaplan-Meier estimates)
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5 Conclusion

This paper has studied the effects of premature deaths on inventor teams. We use a unique new

dataset combining register data from various patent offices with employer-employee panel data

derived from social security records in Germany. The overall dataset comprises information on the

career paths of more than 150.000 inventors from 1980 to 2014. We identify 799 cases of premature

deaths and construct a control group of pseudo-deceased inventors. We study then the patenting

output and patent quality of the co-inventors of these focal individuals, using both DiD and event

study designs.

We confirm that such a loss affects co-inventors negatively, and that the effects are immediate,

strong and long-lasting. Patent counts typically decline by 4%, citation-weighted counts by 6%. The

effects are much stronger when either the deceased inventor or the surviving co-inventors are ‘stars’

(particularly productive). Then the pure quantity effects range between 7% and 11%, and quality-

weighted counts decline by 9% to 14%. The effects are strongly driven by the presence of stars

among the deceased inventors or the surviving co-inventors. These results confirm earlier studies of

inventor teams (e.g., Jaravel et al., 2018) for the US labor market.

We go beyond the existing literature by exploring labor market outcomes in terms of mobility

and promotion events. If the employer is confronted with the sudden death of an inventor, he or she

has to consider continuing or abandoning existing lines of research and of invention. If there were

no team- or project-specific capital to consider, then the employer would not be dependent on the

surviving team members. However, we find strong evidence that employers seek to retain surviving

co-inventors. We find that the hazard of leaving the establishment is significantly lowered after a

premature death. Conversely, the chances of promotion of a surviving co-inventor are significantly

enhanced, in particular if the deceased inventor had previously assumed coordinating (i.e., manage-

rial) responsibilities. These results are in line with our theoretical arguments stating that employers

seeking to ‘fill the gap’ are most likely to build their efforts on surviving members of the team.

In further research we intend to provide further robustness checks and analyses regarding the

occupational mix and other forms of heterogeneity in the team. Ultimately we hope to identify the

mechanisms by which firms seek to respond to the loss of critical human capital, and the success of

such responses.
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Appendix

Figure A-1: Number of establishments in inventor teams
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Notes: This graph shows the number of different establishments that inventors listed on a patent are working
in, by technological area. If only one inventor is listed on a patent, the establishment number is one. Note
that two establishments can be part of the same company. Inventors not matched in the German linked
employer-employee data are disregarded.

Figure A-2: Share of inventor teams with an inventor-manager (at patent level)
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Notes: This graph plots the share of inventor teams with at least one inventor-manager among them.
Inventor-managers are listed with an occupation that implies a management role, such as ‘physicist with
supervisory role’, but also exclusive management positions. When calculating the number of occupations and
team sizes, the inventor-managers are excluded.
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Figure A-3: Originality by team size and occupation diversity (at patent level)
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Notes: This graph plots the originality (related to the variety of technology classes in backward references)
by team size and occupation count within the inventor team.

Figure A-4: Average productivity by deceased inventors
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(b) Patent families (citation weighted)
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Notes: The two graphs show the yearly average for patent family counts (left) and citation-weighted patent
counts (right) for deceased inventors.
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Figure A-5: Impact of focal inventor death on productivity (event study estimates)

-.2

-.1

0

.1

.2

-.2

-.1

0

.1

.2

-.2

-.1

0

.1

.2

-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5

Full sample Deaths <= 2005 Deaths <= 2006

Death yr. <= 2007 Deaths <= 2008 Deaths <= 2009

Death yr. <= 2010 Deaths <= 2011 Deaths <= 2012

Patent families (citation weighted)

Notes: The two graphs present plotted point estimates of the variable focal death interacted with event year
dummies. The unit of observation is the individual co-inventor. Baseline year is t − 2. Confidence intervals
are at the 95% level.
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Table A-1: Impact of inventor death on co-inventor productivity (event study estimates)

(1) (2) (3) (4)
DV: log Patents Full sample Deceased Star Deceased Nonstar Both Star

Death year−5 0.065∗∗∗ 0.076∗∗ 0.049∗∗ 0.119∗

(0.020) (0.038) (0.023) (0.072)

Death year−4 0.008 0.002 0.007 0.043
(0.019) (0.034) (0.022) (0.063)

Death year−3 0.026 0.031 0.017 0.022
(0.016) (0.030) (0.020) (0.052)

Death year−2 0.000 0.000 0.000 0.000
(.) (.) (.) (.)

Death year−1 −0.015 0.027 −0.037∗ 0.013
(0.016) (0.028) (0.019) (0.049)

Death year −0.037∗∗ −0.050∗ −0.029 −0.094∗

(0.016) (0.029) (0.019) (0.052)

Death year+1 −0.017 0.013 −0.032∗ −0.027
(0.017) (0.032) (0.019) (0.059)

Death year+2 0.000 −0.033 0.019 −0.031
(0.017) (0.032) (0.021) (0.059)

Death year+3 −0.013 −0.069∗∗ 0.018 −0.101
(0.018) (0.034) (0.021) (0.063)

Death year+4 −0.041∗∗ −0.079∗∗ −0.020 −0.138∗∗

(0.019) (0.035) (0.023) (0.064)

Death year+5 −0.028 −0.047 −0.014 −0.098
(0.020) (0.036) (0.023) (0.069)

N clusters 6518 2203 4315 914
N Observations 65494 22010 43484 9046
Adj. R2 0.07 0.09 0.06 0.17

Notes: Elasticity estimates from a linear regression with inventor and year fixed effects and age, age squared
covariates. Standard errors clustered on the inventor level in parentheses. * p<0.1, ** p<0.05, *** p<0.01.
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Table A-2: Impact of inventor death on co-inventor productivity (event study estimates)

(1) (2) (3) (4)
DV: log EP cit Full sample Deceased Star Deceased Nonstar Both Star

Death year−5 0.039 0.010 0.040 0.059
(0.025) (0.047) (0.030) (0.089)

Death year−4 0.026 −0.059 0.061∗∗ −0.004
(0.024) (0.043) (0.029) (0.080)

Death year−3 0.021 −0.034 0.043 −0.021
(0.022) (0.038) (0.026) (0.068)

Death year−2 0.000 0.000 0.000 0.000
(.) (.) (.) (.)

Death year−1 −0.058∗∗∗ −0.022 −0.077∗∗∗ −0.034
(0.021) (0.036) (0.026) (0.066)

Death year −0.077∗∗∗ −0.123∗∗∗ −0.052∗∗ −0.227∗∗∗

(0.020) (0.036) (0.025) (0.065)

Death year+1 −0.039∗ −0.049 −0.034 −0.124∗

(0.021) (0.039) (0.024) (0.073)

Death year+2 −0.015 −0.092∗∗ 0.024 −0.136∗

(0.022) (0.040) (0.026) (0.078)

Death year+3 −0.054∗∗ −0.141∗∗∗ −0.006 −0.215∗∗∗

(0.023) (0.043) (0.027) (0.082)

Death year+4 −0.036 −0.114∗∗∗ 0.001 −0.188∗∗

(0.024) (0.043) (0.028) (0.081)

Death year+5 −0.028 −0.116∗∗∗ 0.017 −0.172∗∗

(0.024) (0.043) (0.029) (0.084)

N clusters 6518 2203 4315 914
N Observations 65494 22010 43484 9046
Adj. R2 0.07 0.09 0.06 0.17

Notes: Elasticity estimates from a linear regression with inventor and year fixed effects and age, age squared
covariates. Standard errors clustered on the inventor level in parentheses. * p<0.1, ** p<0.05, *** p<0.01.
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Table A-3: Impact of inventor death on co-inventor productivity (event study estimates)

(1) (2) (3) (4)
DV: log Family size Full sample Deceased Star Deceased Nonstar Both Star

Death year−5 0.053∗ 0.024 0.045 0.086
(0.028) (0.049) (0.034) (0.071)

Death year−4 0.035 −0.024 0.054 0.131∗∗

(0.027) (0.045) (0.034) (0.065)

Death year−3 0.050∗∗ 0.043 0.040 0.071
(0.025) (0.043) (0.032) (0.062)

Death year−2 0.000 0.000 0.000 0.000
(.) (.) (.) (.)

Death year−1 −0.034 0.019 −0.070∗∗ 0.034
(0.024) (0.040) (0.030) (0.059)

Death year −0.079∗∗∗ −0.112∗∗∗ −0.066∗∗ −0.138∗∗

(0.023) (0.039) (0.029) (0.059)

Death year+1 −0.033 0.012 −0.064∗∗ 0.036
(0.023) (0.039) (0.029) (0.063)

Death year+2 0.000 −0.054 0.021 −0.027
(0.024) (0.041) (0.030) (0.068)

Death year+3 −0.030 −0.118∗∗∗ 0.007 −0.150∗∗

(0.025) (0.043) (0.031) (0.070)

Death year+4 −0.057∗∗ −0.143∗∗∗ −0.021 −0.192∗∗∗

(0.026) (0.045) (0.032) (0.074)

Death year+5 −0.055∗∗ −0.100∗∗ −0.034 −0.122
(0.027) (0.048) (0.033) (0.080)

N clusters 6518 2203 4315 914
N Observations 65494 22010 43484 9046
Adj. R2 0.08 0.10 0.07 0.18

Notes: Elasticity estimates from a linear regression with inventor and year fixed effects and age, age squared
covariates. Standard errors clustered on the inventor level in parentheses. * p<0.1, ** p<0.05, *** p<0.01.
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Table A-4: Impact of inventor death on co-inventor productivity (DiD estimates)

(1) (2) (3) (4) (5)
DV: log Patents Full sample Deceased star Survivor star Full sample Full sample

Post −0.060∗∗∗ −0.029∗ −0.020 −0.050∗∗∗ −0.053∗∗∗

(0.009) (0.018) (0.021) (0.010) (0.009)

Deceased × Post −0.039∗∗∗ −0.067∗∗∗ −0.108∗∗∗ −0.018 −0.015
(0.010) (0.020) (0.025) (0.012) (0.011)

Post × Deceased Star (10%) −0.036∗∗

(0.017)

Deceased × Post
× Deceased Star (10%) −0.048∗∗

(0.023)

Post × Deceased Star (5%) −0.039∗

(0.020)

Deceased × Post
× Deceased Star (5%) −0.084∗∗∗

(0.027)

Individual FE Yes Yes Yes Yes Yes
Death Year FE Yes Yes Yes Yes Yes

N clusters 6518 2203 1871 6518 6518
N Observations 65494 22010 18653 65494 65494
Adj. R2 0.07 0.09 0.16 0.07 0.07

Notes: Elasticity estimates from a linear regression. Regressions further include age and age squared covari-
ates. Standard errors clustered on the inventor level in parentheses. * p<0.1, ** p<0.05, *** p<0.01.
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Table A-5: Impact of inventor death on co-inventor productivity (DiD estimates)

(1) (2) (3) (4) (5)
DV: log EP cit Full sample Deceased star Survivor star Full sample Full sample

Post −0.052∗∗∗ −0.019 −0.004 −0.037∗∗∗ −0.046∗∗∗

(0.011) (0.020) (0.026) (0.012) (0.012)

Deceased × Post −0.049∗∗∗ −0.080∗∗∗ −0.135∗∗∗ −0.026∗ −0.026∗

(0.013) (0.024) (0.031) (0.015) (0.014)

Post × Deceased Star (10%) −0.047∗∗

(0.020)

Deceased × Post
× Deceased Star (10%) −0.052∗

(0.028)

Post × Deceased Star (5%) −0.030
(0.023)

Deceased × Post
× Deceased Star (5%) −0.081∗∗

(0.032)

Individual FE Yes Yes Yes Yes Yes
Death Year FE Yes Yes Yes Yes Yes

N clusters 6518 2203 1871 6518 6518
N Observations 65494 22010 18653 65494 65494
Adj. R2 0.07 0.09 0.16 0.07 0.07

Notes: Elasticity estimates from a linear regression. Regressions further include age and age squared covari-
ates. Standard errors clustered on the inventor level in parentheses. * p<0.1, ** p<0.05, *** p<0.01.
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Table A-6: Impact of inventor death on co-inventor productivity (DiD estimates)

(1) (2) (3) (4) (5)
DV: log Family size Full sample Deceased star Survivor star Full sample Full sample

Post −0.096∗∗∗ −0.058∗∗∗ −0.008 −0.086∗∗∗ −0.093∗∗∗

(0.012) (0.022) (0.023) (0.013) (0.012)

Deceased × Post −0.063∗∗∗ −0.091∗∗∗ −0.140∗∗∗ −0.042∗∗∗ −0.042∗∗∗

(0.013) (0.024) (0.028) (0.016) (0.015)

Post × Deceased Star (10%) −0.034∗

(0.020)

Deceased × Post
× Deceased Star (10%) −0.048∗

(0.029)

Post × Deceased Star (5%) −0.015
(0.023)

Deceased × Post
× Deceased Star (5%) −0.077∗∗

(0.033)

Individual FE Yes Yes Yes Yes Yes
Death Year FE Yes Yes Yes Yes Yes

N clusters 6518 2203 1871 6518 6518
N Observations 65494 22010 18653 65494 65494
Adj. R2 0.08 0.10 0.16 0.08 0.08

Notes: Elasticity estimates from a linear regression. Regressions further include age and age squared covari-
ates. Standard errors clustered on the inventor level in parentheses. * p<0.1, ** p<0.05, *** p<0.01.
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Table A-7: Impact of death on co-inventor leave events (Cox proportional-hazards model
estimates)

(1) (2) (3) (4)
Leave event <200 days <400 days <600 days <800 days

Deceased −0.339∗∗∗ −0.108 0.014 −0.012
(0.105) (0.077) (0.066) (0.059)

N events 383 700 950 1176
N subjects 5939 5939 5939 5939
Pseudo-R2 0.05 0.04 0.04 0.04

(5) (6) (7) (8)
Leave event <200 days <400 days <600 days <800 days

Deceased −0.009 0.025 0.064 0.074
(0.148) (0.109) (0.096) (0.087)

Same establishment 0.052 −0.120 −0.158∗ −0.108
(0.142) (0.108) (0.096) (0.085)

Deceased
× Same establishment −0.676∗∗∗ −0.267∗ −0.101 −0.169

(0.215) (0.156) (0.134) (0.120)

N events 383 700 950 1176
N subjects 5937 5937 5937 5937
Pseudo-R2 0.05 0.04 0.04 0.04

Notes: Leave events are job separations, mostly job-to-job transitions. Hazard ratio estimates from a Cox re-
gression with death year fixed effects and age, age squared covariates. Robust standard errors in parentheses.
Stratified by modal main technology area. * p<0.1, ** p<0.05, *** p<0.01.
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Table A-8: Impact of death on co-inventor promotion events (Cox proportional-hazards
model estimates)

(1) (2) (3) (4)
Full sample <200 days <400 days <600 days <800 days

Deceased 0.583∗∗ 0.144 0.167 0.097
(0.240) (0.150) (0.120) (0.104)

N events 75 183 286 383
N subjects 5954 5954 5954 5954
Pseudo-R2 0.16 0.16 0.12 0.11

(5) (6) (7) (8)
Same establishment <200 days <400 days <600 days <800 days

Deceased 0.770∗∗ 0.025 0.115 0.065
(0.343) (0.209) (0.171) (0.145)

Deceased Manager −0.688 −1.185∗∗ −1.213∗∗∗ −1.223∗∗∗

(0.840) (0.539) (0.462) (0.392)

Deceased
× Deceased Manager 1.166 1.270∗ 1.177∗∗ 1.149∗∗

(0.964) (0.683) (0.552) (0.477)

N events 43 96 153 213
N subjects 3453 3453 3453 3453
Pseudo-R2 0.18 0.20 0.15 0.14

(9) (10) (11) (12)
Different establishment <200 days <400 days <600 days <800 days

Deceased −0.070 −0.223 −0.111 −0.206
(0.364) (0.240) (0.199) (0.174)

Deceased Manager −0.434 −0.676 0.155 −0.111
(0.761) (0.513) (0.299) (0.290)

Deceased
× Deceased Manager −0.220 1.588∗∗ 0.842∗∗ 0.845∗∗

(1.268) (0.630) (0.412) (0.393)

N events 32 86 132 169
N subjects 2413 2413 2413 2413
Pseudo-R2 0.21 0.17 0.13 0.11

Notes: Hazard ratio estimates from a Cox regression with death year fixed effects and age, age squared
covariates. Robust standard errors in parentheses. Stratified by modal main technology area. * p<0.1, **
p<0.05, *** p<0.01.
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