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Abstract: 

 

We integrate a hedonic housing rent model (econometric approach) into a state-space 

model (reinforcement machine learning approach). We adopt the kalman filter and 

smoother recursive algorithm and the expectation maximization algorithm (statistical 

estimation methods) to estimate the proposed state-space housing rent hedonic model. 

The method is applied to the Singapore public open rental housing market to construct 

housing rent indexes. Compared with the conventional econometric methods in index 

construction, the proposed model has three advantages. Firstly, a state-space modeling 

approach technically allows us to construct neighborhood level housing rent indexes 

through a reinforcement learning process regardless the sample size in a neighborhood. 

Secondly, the expectation maximization algorithm effectively enhances the robustness 

of maximum likelihood estimation for a dataset being repleted with unobservable 

information, for example, fewer or zero transactions in certain time periods. Thirdly 

Kalman filter and smoother recursive algorithm optimizes the estimates by capturing 

all information (before and after a time point) to predict a housing rent at a time point. 

This helps reduce the bias caused by sticky rents. The paper empirically proves that the 

proposed model outperforms other types of index models in prediction accuracy, hence 

produces more accurate housnig rent indexes at neighborhood level.    

 

Accurately constructing neighborhood housing rent indexes are impotant in real estate 

valuation, real estate investment returns and risk analyses. This is because the spatial 

patterns of housing price distribution may change over time, which is resulted from 

urban developments. To illustrate it, we apply K-shape clustering algorithm in 

unsupervised machine learning literature to the neighborhood housing rent indexes to 

analyze the dynamic patterns of the spatial distribution of housing rents. We find the 

spatial discontinuity of housing rent dynamics. The housing rent indexes in some 

spatially disconnected neighborhoods appear to have similar dynamic pattern, while 

different dynamic patterns are found in some spatially adjacent neighbothoods.  
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1. Introduction 

A housing price index construction method derived from the conventional econometric 

approaches often claims that it can capture certain information (Sun et al, 2005; Tu et 

al, 2007) or correct certain biases, such as, non-constant quality bias (Wu et al, 2014), 

recall bias (Crone, 2001) or the vacancy component of nonresponse bias (Ambrose et 

al, 2015). Thus, the proposed method can produce a more accurate index number. This 

is not always true as a new method often creates a new problem after correcting an old 

one ( Eichholtz et al, 2012).   

 

The classic hedonic housing price model conceptualizes a quality-constant index 

(Wyngarden, 1927). The disapproval is some hedonic variables, especially those fine-

grained spatial and temporal information, are often unmeasurable. Repeat-sales method 

(Shiller,1991) reduces the impacts of omitted hedonic variables, but giving rise to the 

sample selection bias (Meese and Wallace, 1997) and the inconsistent estimates of 

indexes because some temporal variations are left in the residuals (Giannetti Antoine, 

2018). The locally weighted quantile model, which is an advanced spatial statistical 

model, can demonstrate the impacts of hidden information by showing the 

distributional changes of housing prices overtime (McMillen, 2014). However, the 

application of the model to constructing neighborbood housing indexes is questioned 

due to the reduction of sample size at neighborhood level and the uncaptured spatial 

and temporal information which differentiates neighborhoods. Furthermore, the 

exsiting housing price index construction methods are mainly derived from 

economietric approaches, requiring both random sample with an acceptable sample size 

and the satisfcations of model assumptions. The machine learning approach neither  

requires excessive hypothesis tests under a sample deistribution assumption nor the 

minimum sample size. The approach makes no assumptions about the causal 

relationships among variables and the estimated model is less sensitive to an 

institutional environment on predictability (Grimmer,2015). These advantages motivate 

us to ask how a machine learing approach may help improve the accuracy of 

neighborhood housing price index construction.       

 

The current housing rent index construction methods have addressed but are unable to 

effectively correct the bias arising from the sticky rent. Eichholtz et al. (2012) studied 

the sticky rent problem and identified a temporal aggregation bias in housing rent index 

construction using the re-contract sample established by checking on the rent contract 

dates. However, the method may also give rise to the sample selection bias. Ambrose 

et al. (2015) compared the move-in date and the date of the first rental payment to 

distinguish new tenants from renewal tenants to resolve the sticky rent problem. Re-

contract rents can be higher (a tenant may accept a higher rent if he is unwilling to more) 

or lower (a landloard may offer a lower rent if he wants to keep a good tenant) than a 

market rent. This may cause biases in rent index construction. Physically, we may see 

excessive spikes or bumps in an index series. Differentiating new rents from recontract 

rents is practically difficult and time consuming. How can we mitigate the impacts of 
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sticky rents?   

 

It is observed that housing market structure evolves over time. Literature has attempted 

to identify housing market spatial pattern at a time point (Keskin and Watkins 2017) or 

to explore the driving forces behind the pattern changes (Jeanty, Partridge, Irwin 2010). 

Little research has been done to uncover the dynamics of a housing market spatial 

structure. This is important because the Neil Smith’s rent-gap hypothesis (Boulay 2012) 

points out that investment in real estate will only be made if a rent gap exists over time. 

One of the advantages in machine learning approaches is to identify patterns. This 

motivates us to adopt maching learning clustering method to demonstrate the dynamic 

patterns of neighborhood housing rent indexes.  

 

To answer the above questions, this paper extends the work of Ren, Fox and Bruce 

(2017) in two ways. Firstly we integrate a hedonic housing rent model (econometrics) 

into a state-space model (reinforcement machine learning). Secondly, we adopt and 

clearly explain how to apply the kalman filter and smoother recursive (KR) algorithm  

(Kalman 1960; Rauch et al., 1965) and the expectation maximization (EM) algorithm 

(Holmes, 2012) to statistically improve the estimation of a state-space housing rent 

hedonic model (SSH_KREM model). Using this model, we construct housing rent 

indexes at pre-defined neighborhood level. The SSH_KREM model is applied to the 

Singapore public open rental housing market, where neighborhoods are highly 

homogeneous and only fine-grained spatial temporal information can differentiate them, 

yet they are often unmeasurable.  

 

A state-space model originates from the reinforcement machine learning literature 

(Akaike 1976). It was first used in the field of control engineering (Kalman 1960). In 

the recent years, it is used for modeling housing prices (Schulz and Werwatz 2004; 

Zhang, Hudson and Manahov 2015; Ren, Fox and Bruce 2017). “State” represents a 

time series (such as a series of housing rent indexes) in a “Space” or a “system”, (it is 

a neighborhood in this paper). The state at a time point (a housing rent in this paper) is 

determined by a set of variables associated with the “Space”. A state-space model 

estimates and predicts the “State” at any time point through a reinforcement machine 

learning process within the “Space” regardless of the sample size and sample 

distribution. This technically makes neighborhood housing rent index construction 

feasible. 

 

The Singapore public open rental housing market at neighborhood level are typically a 

thin market. In certain time periods, we may get fewer or even zero transactions. To 

minimize the impacts of sample size on estimation, we adopt the expectation 

maximization algorithm. The EM statistical estimation algorithm can effectively 

enhances the robustness of maximum likelihood estimation for a dataset being repleted 

with scarce observations or missing values.  

 

In a rental housing dataset, a housing unit is typically associated with both new rents 
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and recontract rents. The latter gives rise to an estimation bias called as sticky rent 

problem. The Kalman filter and smoother recursive algorithm, firstly used in the Apollo 

spacecraft's navigation computer (Kalman ,1960), can optimize the estimates by 

capturing all information (before and after a time point) to predict a “State” (a housing 

rent in this paper) at a time point. The estimation approach, to certain degree, reconciles 

the difference between new rents and recontrcat rents, mitigating the impacts of sticky 

rent problem on rent prediction.  

 

At last, the paper applies a K-shape clustering algorithm introduced in machine learning 

literature to the neighborhood housing rent indexes to analyze the dynamics of the 

spatial distribution of neighborhood housing rents. Based on it, we classifiy the 

neighborhoods into groups within which the neighbrohoods share similar pattern of 

housing price dynamics, while across the groups, there are larger variations in the 

patterns of housing rent dynamics. This exercise provides insightful information to both 

the public authority and housing investors to estimate the investment returns and risk 

analyses.  

 

 

The main findings are that the SSH_KREM housing rent indexes outperform the 

conventional rent indexes because the model captures more unobserved or unmeasured 

information as well as use more information embedded in a dataset as compared to a 

conventional model. We also find the spatial discontinuity of housing rent dynamics. 

The housing rent indexes in some spatially disconnected neighborhoods appear to have 

similar dynamic pattern, while different dynamic patterns are found in some spatially 

adjacent neighbothoods. The findings have meanful implications to real estate valuation, 

real estate investment returns and risk analyses.     

  

The next section summarizes the related literature. The data and methodology are 

introduced in Section 3. Empirical findings are reported in Section 4. Section 5 

concludes.  

2. Literature Review 

Three streams of housing price or rent index construction methods are reviewed. This 

is followed by a review of state-space modelling approach, Klaman filter and smoother 

recursive and expectation maximixation algorithms.  

 

One stream of housing price index construction literature follows the concept of 

hedonic housing price theory. Rosen (1974) proposed the theory of hedonic housing 

price and illustrated how housing prices change over time after controlling the qualify 

changes of a housing unit. The weaknesses are that the hedonic housing price theory 

cannot determine the true functional form and we are not able to obtain a full set of 

hedonic characteristics. In addition, a hedonic housing price model often assumes that 

a hedonic coefficient is constant across time, space and housing units. Meese and 
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Wallance (1994) extended a hedonic housing price model to a locally weighted hedonic 

regression, which allowed varying coefficients. They proved that the model could better 

predict housing prices. McMillen (2012) proposed a matching estimator, which was 

applied to the Singapore residential and commercial housing markets by Deng et al. 

(2012, 2014). Brunauer et al. (2013) presented a multilevel structured additive 

regression model by leveraging the hierarchical structure of neighborhood attributes 

and house-level hedonics. These methods have improved the prediction accuracy, but 

are still unable to resolve the problems of uncaptured variables and the problem of 

functional forms.     

 

The second stream of literature follows the repeat-sales modeling approach, proposed 

by Bailey et al. (1973). A repeat-sales housing price index construction method may, to 

certain degree, avoid the impacts of omitted variables but give rise to the problem of 

sample selection bias. Besides, the approach assumes that the quality of housing 

attributes are constant over time. However, housing quality changes with the age and 

the renovations of a housing unit. Case and Shiller (1987, 1989) extended a repeat-sales 

model to a weighted repeat-sales model, attempting to correct heteroscedastic errors. 

Gatzlaff and Haurin (1997) developed a repeat-sales model to reduce the baises caused 

by sale frequencies. Shiller (1991) and Goetzmann and Peng (2002) proposed an 

arithmetic average repeat-sales estimator to replace the original geometric average 

estimator. The method is adopted by Standard and Poors to produce the S&P/Case–

Shiller Home Price Index. Nagaraja et al (2011) proposed an autoregressive repeat-sales 

method using all sales’ information but without engaging any hedonic information. 

Repeat-sales method typically requires a relatively large sample including sufficient 

number of repeated transactions, which constrains its application to neighborhood 

housing price index construction.       

 

The third stream of literature adopts the spatio-temporal modeling approach. Holly et. 

al. (2010) applied a Pesaran common correlated effect estimator to a panel dataset. They 

explored the interactions between geographical proximity and unobserved common 

factors. Baltagi et al. (2014) proved that the method produced robust findings and 

MÁRCIO et al. (2016) further used Bayesian estimation method to improve the model 

estimation. However, these models have an inherent problem that we don’t know how 

time and space interacts to determine a housing price, thus, the relation function 

between time and space is often assumed. A space has two dimentions but can have 

unlimited directionality, such as, from north to south or from west to east, or any 

direction in between, while time is unidimensional and can only move in one direction 

which is “FORWARD”. Thus the interactions between time and space are too 

complicated to be modelled.  

 

Housing rent index construction typically adopts the methods used in housing price 

index constructions. Wheaton et al. (1994) identified a pure rent and pointed out that 

furniture, water and electricity bills differentiated an observed rent from its pure rent. 

Margo (1996) argued that the houses with furniture charge significant higher rents than 
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the houses without furniture. Webb and Fisher (1996) estimated efficient rent defined 

as the annual-equivalent cash flows of the present value of all cash flows that are 

explicitly identified in the lease contracts. Eichholtz et al. (2012) addressed temporal 

aggregation bias and sticky rent problems using the re-contract rental housing 

transaction sample established by checking the contract dates. However, the method 

may also give rise to sample selection bias. Ambrose et al. (2015) compared the move-

in date and the date of the first rental payment to distinguish new tenants from renewed 

tenants to solve sticky rent problem. An et al. (2016) engaged a panel dataset to 

construct commercial real estate rent indexes by adopting an autoregressive model with 

age adjustment. Hu et al. (2019) incorporated a machine-learning method into the 

hedonic housing price approach to predict rents but addressed little on what and why 

we can benefit from the method in rent index construction. 

 

A state-space model belongs to the family of reinforcement learning in machine 

learning literature. It is different from the supervised and unsupervised learnings (Chart 

A_1 in the Appd) that don’t help build indexes. Unsupervised learning helps get better 

sensory cognition but don’t produce coefficients, while supervised learning, such as, 

random forest, can estimate coefficients but without economic meanings. A state-space 

model has increasingly attracted the attentions from urban researchers. Schulz and 

Werwatz (2004) developed a state-space model guided by asset pricing theory to 

estimate the investment returns of single-family houses. Zhang, Hudson and Manahov 

(2015) proposed a relative valuation approach to quantify a bubble in housing by 

incorporating the housing user cost into a state-space model. Ren, Fox and Bruce (2017) 

constructed a hybrid model of a state-space model and a hedonic model to provide more 

accurate predictions of housing prices. Tao et al. (2018) adopted it to analyze the 

dynamic determinants of a time series. Katagiri (2018) used it to investigate the 

developments of housing price synchronization across the countries.  

 

The present paper enriches the literature in two ways. It proposes a SSH_KREM model 

and applies it to construct neighborhood rent indexes. The model outperforms the 

conventional econometric housing rent index contruction models. It applies K-shape 

clustering method to the constructed neighborhood housing rent indexes and explores 

the spatial dynamics of neighborhood rental housing market.     

 

3.Data Collection and Research Design 

3.1 Data Collection  

 

The working dataset is drawn from the SRX that is the publically available real estate 

transaction database in Singapore. The distance information is self-calculated using 

GIS.The descriptive statistics and variables are given in Table 1. The “HDB” stands 

for the Housing Development Board in Singapore. This is the Singapore public 

housing authority providing fully subsidized rental housing to low income 
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Singaporean households, partially subsidized owner occupied housing to 

Singaporeans or permanent residents and non subsidized rental housing to all through 

the HDB open rental housing market. 

 

TABLE 1.a 

Descriptive Statistics of the Singapore HDB open rental housing transactions between  

1st May 2006 and 30th April 2018  

Variable Obs Mean  Std.Dev. Min Max 

Pub_Rent (S$) 186,740 2165.241 441.366 250 10000 

Size (m2) 186,740 94.42846 28.22823 8 1636 

Floor (storey) 186,740 8.136639 4.894714 1 80 

Age (year) 186,740 25.51478 10.57679 0 52 

Dis_Bus_Interchange (m) 186,740 1292.333 773.3795 54.51022 4222.508 

Dis_CBDCentral (m) 186,740 11293.3 4592.27 578.9364 20060.56 

Dis_Hospital (m) 186,740 5406.633 3598.582 29.13114 14423.77 

Dis_MRT (m) 186,740 613.0877 385.9335 21.93404 2133.387 

Dis_Park (m) 186,740 356.6549 243.757 4.72818 1396.32 

Dis_Shoppingmall (m) 186,740 802.4818 463.5725 5.340025 2579.894 

Rental transacts (times) 186,740 4.146 2.719 1 24 

   Source:  SRX and the geographic information are calculated by author by GIS 

 

TABLE 1.b 

Defination of variables in TABLE 1.a 

Variable Defination 

Pub_Rent Monthly rent of a housing unit in Singapore dollar (S$).  

Size  The size of a housing unit (m2). 

Floor  The floor level of a housing unit locates at (storey). 

Age The age of a housing unit at a transaction date (Year). 

Dis_Bus_Interchange Distance to nearest bus interchange (m). 

Dis_CBDCentral Distance to the CBD (m).   

Dis_Hospital Distance to the nearst hospital (m). 

Dis_MRT Distance to the nearest Mass rail transit station (m). 

Dis_Park Distance to the nearest park (m). 

Dis_Shoppingmall Distance to the nearest shopping mall (m). 

Rental transacts(times) How many time a housing unit has been transacted during the 

period (tmes). 

 

It is noted that in the HDB open rental housing market, a rental contract is pro-

landlord and the rental period of each contract should be longer than 6 monthes. A 

rental contract is typically renewed yearly. Sticky rent problem is expected to be 

serious. In a HDB housing estate, housing units and neighborhoods are highly 

homogenous, often differentiated by fine-grained spatial factors after a location is 

controlled.  
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In this paper, we construct the HDB neighborhood housing rent indexes. We divide the 

HDB housing estatets into 123 neighborhoods using the first three digits of a postcode. 

The neighborhood sample size varies from 64 to 10,680 (Table A in the Appendix Table 

A gives more details). We then apply a SSH-KREM model (see section 3.2) to estimate 

the state variable for each neighbornood, generating a series of neighborhood indexes.  

 

3.2 Research Design 

 

The estimation procedure of the proposed SSH_KREM model is introduced first. This 

is followed by an introduction of the K-shape clustering method. At last we present nine 

randomly selected neighborhoods which are used to demonstrate the empirical results.   

 

3.2.1 A state-space hedonic model with kalman filter and smoother and expectation 

maximization algorithms (SSH_KREM model) 

 

The proposed state-space hedonic housing rent model with the kalman filter and 

smoother recursive (KR) algorithm and the expectation maximization (EM) algorithm 

(SSH_KREM model) is an extention of Ren, Fox and Bruce (2017). We firstly 

incorporate a hedonic housing rent model into a state-space model. The advantage of 

adopting reinforcement machine learning approach is discussed. We secondly adopt the 

KR and EM algorithms to estimate the model as well as carefully justify the advantages 

of uing these algorithms in constructing housing rent indexes.  

 

Assuming that a SSH_KREM model is applied to a set of rental housing transactions 

in neighborhood i to construct neighborhood housing rent indexes.  

 

In the first step, a hedonic model is estimated using equation 3.2.1.  𝑦𝑖,𝑗,𝑡 indicates a 

housing rent for housing unit j in neighborhood i at time t, t = 1,2,3,…,T. T is equal to 

156, representing 156 months between May 2006 and April 2018. The exogenous 

hedonic attributes are represented by a vector of 𝑍𝑛,𝑗,𝑡. N indicates the total number of 

hedonic attributes and n indicates a hedonic attribute. η is residual, following the 

conventional assumetions in a linear hedonic model and β is a vector of coefficients. 

Let �̃�𝑖,𝑗,𝑡 indicate ∑ 𝛽𝑖,𝑛𝑍𝑛,𝑗,𝑡 
𝑁
𝑛=1 . 

 

𝑦𝑖,𝑗,𝑡 = ∑ 𝛽𝑖,𝑛𝑍𝑛,𝑗,𝑡 
𝑁
𝑛=1 + 𝜂𝑖,𝑗,𝑡                (3.2.1) 

 

In the second step, we estimate the proposed state-space model. It contains the 

Transition Equation (3.2.2) which is the training equation and the Measurement 

Equation (3.2.3) which is the reinforcement learning equation. The model has two 
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assumptions, a) the mean value of the initial state, �̃�0,𝑖, is an input parameter with the 

default value of zero; b) in any time, the residual terms 𝜀𝑡,𝑖 and 𝑣𝑡,𝑖,𝑙 are independent 

of each other, and they are not related to the initial state �̃�0,𝑖. In both equations, we 

also assume the residuals are normally distributed. But in machine learning approach, 

this assumption will not affect the iteration to converge. �̃�𝑡,𝑖 in Transition Equation 

3.2.2 is a latent variable or a hidden state. 

 

The difference between the observed, 𝑦𝑖,𝑗,𝑡 , and the estimated, �̃�𝑖,𝑗,𝑡 , is 𝑦𝑖,𝑗,𝑡 -�̃�𝑖,𝑗,𝑡 , 

which contains all the information in a space (neighborhood i), and, is used as the 

dependent variable in Measurement Equation 3.2.3 . Through a reinforcement deep 

learning process using all the information in the space, the equation helps improve the 

estimation of hidden state �̃�𝑡,𝑖 , generated by the training equation of Transition 

Equation 3.2.2. Then, the improved estimate of hidden state �̃�𝑡,𝑖 is brought back to 

Transition equation (3.2.2.) to get the hidden state of �̃�𝑡+1,𝑖. The process continutes till 

we estimate all hidden states, obtaining a series of housing rent indexes for 

neighborhood i.  

 

 

         �̃�𝑡,𝑖 = 𝑎𝑖�̃�𝑡−1,𝑖 + 𝜀𝑡,𝑖 ,           𝜀𝑡,𝑖~𝒩(0, 𝜎𝑖
2)           (3.2.2) 

y𝑡,𝑖,𝑗  − �̃�𝑡,𝑖,𝑗  =  𝑏𝑡�̃�𝑡,𝑖 + 𝑣𝑡,𝑖,𝑗 ,           𝑣𝑡,𝑖,𝑗~𝒩(0,𝑅𝑖
2)      (3.2.3)    

 

 

The estimated states, �̃�𝑡,𝑖, t=1,2,…T, directly capture the dynamics of housing rents n 

neighborhood i, giving rise to neighborhood housing rent indexes. Therefore, a state-

space hedonic housing rent model allows us to construct neighborhood housing rent 

indexes regardless the sample size and distribution, overcoming the drawbacks of 

econometric rent index construction methods.       

   

The calibration of equations 3.2.2 and 3.2.3 involves the estimation of the 

hyperparameters of 𝑏𝑡 𝑎𝑛𝑑 𝑅𝑖  in Measurement Equation and 𝑎𝑖 , 𝜎𝑖  in Transition 

Equation, represented by Φ and the hidden state �̃�𝑡,𝑖 , 𝑡 = 1, 2…𝑇 , for neighborhood i. 

The reinforcement learning process is made possible using the Kalman filter and 

smoother algorithm (KR) and the expectation maximization algorithm (EM). The EM 

estimation involves a two-step’s iteration process. In the first step of each EM iteration, 

the KR algorithm is used to estimate the hidden state �̃�𝑡,𝑖 . KR is also an iteration 

process till �̃�𝑡,𝑖  converges. The estimation moves to the second step of the EM 

estimation to get an estimate of Φ. Then, the iteration goes back the first step, till Φ 

converges as well as �̃�𝑡,𝑖 converges, for t=1,2,…T (see Table A_2 in Appd).  

 

Through the iteration process, the EM is able to produce robust maximum likelihood 

estimates for the data with unobserved samples. This can happen if there are few 

housing rental transactions in certain months in a neighborhood. This is also the 
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advantage of using KM algorithm.   

 

KR algothrim includes two estimation procedures: the Kalman filter (KF) and kalman 

smoother (KS). KF gives the optimal (lowest mean square error) estimate of the hidden 

state �̃�𝑡,𝑖, using the observed data up to time t. The KS also gives the optimal (lowest 

mean square error) estimate of the hidden state �̃�𝑡,𝑖, but using all information before 

and after time t. When both Kalman filter and smoother estimations converges, the 

hidden state �̃�𝑡,𝑖 is estimated. It is an optimal estimate and orthogonal to 𝑣𝑡,𝑖,𝑗 and 𝜀𝑡,𝑖.  

 

KR algorithm helps mitigate the estimation bias caused by sticky rents. For example, if 

a rental housing unit has two new rents and a few recontract rents between the two new 

rents, the KS algorithm will use both two new rents and all recontract rents to predict a 

rent at a time point. To certain degree, it reduces the bias caused by recontract rents 

(sticky rents).     

 

As for model diagnosis, K-fold cross-validation (CV) is often used to justify the model 

fit and to compare and select a best model among several machine learning models. CV 

is easy to be understood and implemented and has a lower bias than other methods 
(Geisser, 1993; James, 2013) 

    

At last, we put the estimated states �̃�𝑡,𝑖 into the hedonic regression (3.2.1) to predict a 

SSH_KREM housing rent 𝑦𝑖,𝑗,𝑡
𝑝𝑟𝑒𝑑

:  

𝑦𝑖,𝑗,𝑡
𝑝𝑟𝑒𝑑

= ∑ 𝛽𝑖,𝑛𝑍𝑛,𝑗,𝑡 
𝑁
𝑛=1 +  �̃�𝑡,𝑖              (3.2.4) 

 

In summary, the proposed SSH_KREM model has three advantages in housing rent 

index construction. A state-space process directly estimates rent index series for a 

neighborhood regardless of the sameple size and sample distribution in the 

neighborhood. The EM algorithm ensures that the estimation is robust in the presence 

of missing observations (when market is thin). The KR algorithm produces optimal 

estimates and a rent is predicted using full set of information before and after a time 

point t, mitigating the impacts of sticky rent.  

  

A disadvantage of a SSH_KREM model is that it cannot catch the missing information 

at unit level, for example, the impacts of furniture or renovation on a rent. Besides, any 

problems associated with missing data in a variable or data inaccuracy are not solved 

by the model.  

 

3.3  Identifying the dynamics of rental housing market structure: k-shape clustering 

 

K-shape clustering method is a noval algorithm in time series clustering. It replies on a 

scalable iterative refinement procedure to create well separate clusters. The time series 
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in the same cluster have similar shapes while, across the clusters, they have different 

shapes. In order to compare the shapes of two time series when clustering, K-shape 

adopts a normalized version of the cross-correlation statistical measure to compute 

cluster centroids, then to update the members of each cluster using the centroids. This 

is the scalable iterative refinement procedure (Yang et al, 2017 ), which is illustrated by 

eq. 3.3.1 

 

           SBD(�⃗⃗� , �⃗� ) = 1 − max (
𝐶𝐶𝑤(�⃗⃗⃗� ,�⃗� )

√𝐷0(�⃗⃗⃗� ,�⃗⃗⃗� )∗𝐷0(�⃗� ,�⃗� )
)         (3.3.1) 

Where  

           𝐶𝐶𝑤(�⃗⃗� , �⃗� ) = 𝐷𝑤−𝑇(�⃗⃗� , �⃗� )    𝑤(1,2 , ……，2𝑇 − 1)   

And 

         𝐷𝑘(�⃗⃗� , �⃗� ) = {
∑ 𝑚𝑙+𝑘 · 𝑛𝑙

𝑇−𝑘
𝑙=1 , 𝑘 ≥ 0

𝐷−𝑘(�⃗� , �⃗⃗� ), 𝑘  0
  

 

Eq. 3.3.1 gives the shape based distance (SBD) between two time series of  �⃗⃗� =

(𝑚1, . . . , 𝑚𝑇) and �⃗� = (𝑛1, . . . , 𝑛𝑇). Its values fall between -2 and 2, with 0 indicating 

perfect similarity between two time series. It is used to update the cluster memberships.  

 

Cross-correlation is a measure of similarity for time-lagged signals that is widely used 

for signal and image processing.  𝐷𝑘(�⃗⃗� , �⃗� )  demonstrates the original explanation 

function of Cross-correlation measurement. 𝐶𝐶𝑤(�⃗⃗� , �⃗� ), measures the shape similarity 

of the two time series, 𝐷0(�⃗⃗� , �⃗⃗� ) is the matric norm of time series �⃗⃗� , which is used 

to nomalised the cross-correlation. A position “w” is found when 
𝐶𝐶𝑤(�⃗⃗⃗� ,�⃗� )

√𝐷0(�⃗⃗⃗� ,�⃗⃗⃗� )∗𝐷0(�⃗� ,�⃗� )
 

is maximized, which means we move the time series of �⃗⃗�  when time point w has the 

same position as time point t in �⃗� , the shapes of �⃗⃗� , �⃗�  is most similar. This calculate 

help us solve the misorientation in time series. 

 

 

Applying K-shape algorithm to neighborhood housing rent indexes, we can identify the 

neighborhoods which rent indexes have similar dynamic patterns, indicating the renal 

housing markets in these neighborhoods have experienced similar transformations. We 

can also identify the neighborhoods which have had different dynamic patterns.  

 

The methodology presented in this section is illustrated by Chart A_2 in the appendix.  

 

 

 

3.4 Identifying neighborhoods 
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In the Singapore HDB open rental hosuing market, each building has its own 6-digit 

postcode. The buildings are grouped into a neighborhood if their first three digits of 

postcodes are the same. The definition ensures that each neighborhood is 

geographically enclosed. We obtain 123 neighborhhods (or postal sectors). The size of 

a neighborhood is approximately 1 square kilometer in diameter on average. The full 

smaple is then divided into 123 rental housing transaction subsamples between May 

2006 and Aprirl 2018.  

 

We applied the SSH_KREM model to each of 123 neighborhhods to consrtuct 

neighborhhod indexes. To illustate the results, we choose 9 neighborhoods from 9 

different HDB Towns in Singapore as shown in Figure 1.  

 

  

 

FIG. 1. The selected 9 neighborhoods (postal sectors) in Singapore.  

 

 

4. Empirical Results 

We firstly compare the model fits and predictability using a hedonic model, a Locally 

weighted regression, a state-space model and the proposed SSH_KREM model in 

Section 4.1. We then present the national and neighborhood indexes for the Singapore 

HDB open rental housing market (Section 4.2). Finally, we demonstrate the results of 

k-shape clustering in Section 4.3 

 

4.1 The Evaluation of SSH_KREM Model 

 

Theoretically, a SSH_KREM model is free from selection bias, sticky problem and 
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partly solves the problem caused by unobserved samples. Thus, it should outperform 

the exsiting econometrically based index construction models in model fits and 

predictability. To empirically prove it, a hedonic linear regression, a locally weighted 

regression and a state-space model without EM and KR algorithms are chosen to 

compare with the SSH_KREM model.  

 More specifically, a hedonic regression is treated as the benchmark. A locally 

weighted regression (LWR) is a noval spatial model which allows us to estimate varying 

coefficients across space . A boostrap mothed is sued to decide the optimal bandwide 

of LWR and the Generalized Linear Model (GLM) is used to estimate the model. A 

state-space model is estimated by the quasi-Newton method.  

 

Table 2 reports the K-fold cross-validation (k = 5) results of the estimated models. 

The CV errors are measured by “Root Mean Squared Error (RMSE)” and “Mean 

Absolute Error (MAE)”. MAE is generally smaller than RMSE. It is noted that using 

the square in RMSE makes the measure substantially larger although the errors may be 

small and acceptable, and, MAE is the most natural diagnostic measure (Willmott and 

Matsuura 1995). 

 

TABLE 2 

Model Comparisons by Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) 

  （1） （2） （3） （4） （5） 

  Hedonic Hedonic+time LWR State-Space SS_KREM 

N_1 RMSE 397.75  379.18  395.13  326.91  309.92  

MAE 263.79  287.04  285.83  223.14  213.90  

N_2 RMSE 355.52  427.61  341.99  273.29  251.03  

MAE 269.51  257.61  244.13  202.60  186.63  

N_3 RMSE 368.66  342.44  357.37  279.76  262.07  

MAE 286.69  252.06  251.73  212.03  197.68  

N_4 RMSE 341.74  548.23  346.00  244.04  210.01  

MAE 354.32  266.62  263.43  187.15  158.82  

N_5 RMSE 344.30  605.25  323.23  273.25  248.13  

MAE 276.94  401.70  240.31  209.92  183.88  

N_6 RMSE 325.50  275.48  315.90  249.73  217.08  

MAE 260.18  205.00  245.49  190.88  166.79  

N_7 RMSE 292.82  291.13  293.41  220.98  208.45  

MAE 233.04  192.62  227.75  162.54  151.07  

N_8 RMSE 291.42  262.36  282.32  190.49  165.79  

MAE 241.88  241.88  209.49  140.61  122.93  

N_9 RMSE 419.18  423.23  407.79  369.59  353.98  

MAE 327.27  321.87  311.42  274.72  257.71  

Note:  

1. Column_1 “Hedonic” means just use hedonic attributes like age, floor, size; 

2. Column_2: “Hedonic+time” means hedonic attributes and monthly time dummies; 
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3.  Column_3: “LWR” means locally weighted regression; 

4.  Column_4: “State-space” means state-space model without EM and KR algorithm; 

5.  And N_1, N_2… N_9 represent 9 neighborhoods. N_1 indicate “Sector 141”, “Sector 321”, 

“Sector 410”, “Sector 522”, “Sector 601”, “Sector 644”, “Sector 731”, “Sector 792”, “Sector 

800”(see Fig 1). 

 

Table 2 shows that the CV errors of SSH_KREM is consistently the lowest in both 

RMSE and MAE measures. Generally speaking, SSH_KREM model reduces more than 

30% prediction error when comparing it with the hedonic regression. The KR and EM 

algorithms contribute 10% reduction in prediction errors. SSH_KREM model performs 

well in retrieving both spatial and temporal information from the exsting sample, so it 

outperforms the other methods. 

 

To examinate if the state variable captures any hidden information. We add the state 

variables {�̃�𝑡,𝑖  } into a hedonic model. Table 3b shows the estimations of state-space 

hedonic housing rent models in 9 neighborhoods. Comparing the results in Table 3a and 

3b, the adjusted R2 across 9 neighborhoods are dramatically improved. On average, R2 

rises from around 0.3 to around 0.6. Furthermore, the Standard Error of Mean (SEM) 

of each coefficient is reduced, which proves that the residuals are significantly 

decreased after adding the state variables. The findings are consistent for the rest of the 

123 neighborhoods and the results are available at request.  

 

TABLE 3a 

Classic hedonic housing rent regressions in the 9 neighborhoods  

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 N_1 N_2 N_3 N_4 N_5 N_6 N_7 N_8 N_9 

Age -10.527*** -0.758 17.976*** -8.443*** -5.083 16.429*** -12.862*** -10.572** -5.177*** 

 (1.363) (1.573) (3.754) (2.669) (3.941) (5.595) (2.265) (4.075) (1.906) 

Floor 4.145** 6.886*** 1.915 8.799* 2.331 -1.326 6.499** -0.220 7.072*** 

 (1.858) (2.126) (2.871) (4.886) (5.072) (2.747) (3.070) (1.765) (1.900) 

Size_Sqm 13.301*** 9.260*** 8.778*** 2.275** 10.309*** 6.604*** 6.969*** 7.719*** 13.386*** 

 (0.634) (0.661) (0.778) (1.050) (0.894) (1.009) (0.765) (1.025) (0.974) 

N 772 557 720 271 230 421 602 355 602 

Adjusted R2 0.601 0.246 0.185 0.102 0.479 0.109 0.224 0.171 0.239 

Note: the dependent variable is housing rent. N_1 to N_9 are defined in Table 2.  

 

TABLE 3.2 

 SSH_KREM hedonic housing rent regressions in the 9 neighborhoods 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 N_1 N_2 N_3 N_4 N_5 N_6 N_7 N_8 N_9 

Age -10.616*** -0.890 23.41*** -10.317***  -0.847 18.986*** -9.774*** -15.891*** -4.939*** 

 (1.218) (1.228) (2.449) (1.935) (2.561) (2.811) (1.694) (2.683) (1.535) 

Floor  4.321*** 5.243*** 1.996 6.113* 13.764** -3.178 10.602** 0.169 8.547*** 

 (1.601) (1.767) (2.469) (3.603) (3.362) (2.375) (2.511) (1.440) (1.721) 
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Size_Sqm 13.072*** 9.475*** 8.673*** 4.353*** 9.078*** 6.129*** 7.428*** 7.962*** 13.386*** 

 (0.570) (0.559) (0.657) (0.744) (0 .628) (0.884) (0.619) (0.766) (0.974) 

State variable 0.955*** 1.009*** 0.972*** 0.971*** 0.981*** 0.982*** 0.977*** 0.982*** 0.971*** 

 (0.042) (0.043) (0.036) (0.045) (0.068) (0.042) (0.040) (0.035) (0.061) 

N 772 557 720 271 230 421 602 355 602 

Adjusted R2 0.758 0.619 0.589 0.668 0.729 0.606 0.703 0.736 0.463 

Note: “state variable” is the state series �̃�𝑡,𝑖  . the dependent variable is housing rent. 

the dependent variable is housing rent. N_1 to N_9 are defined in Table 2. 

 

We further test the sensitivity of the SSH_KREM model estimation to sample 

size. Table 4a shows the Mean Absolute Percentage Error(MAPE) of the CV errors 

across 9 neighborhoods, MAPE doesn’t not change significantly as sample size. In 

order to validate the test, we use a single neighborhood (sector 141 in Fig 1) and 

stepwisely drop 20% samlple randomly, the changes in MAPE are very small and can 

be neglected (Table 4b) 

 

TABLE 4a 

SSH_KREM model sample size sensitive analysis：across neighborhoods 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 N_1 N_2 N_3 N_4 N_5 N_6 N_7 N_8 N_9 

MAPE 0.091 0.078 0.078 0.067 0.078 0.069 0.075 0.060 0.094 

Obs 772 557 720 271 230 421 602 355 602 

 

TABLE 4b 

SSH_KREM model sample size sensitive analysis: in a single neighborhood 

  (1) （2） （3） （4） （5） 

 100% 80% 60% 40% 20% 

N_1 MAPE 0.091 0.088 0.094 0.098  0.097 

Obs 772 617 463  308  154 

 

In summery, SSH_KREM model retrieves the hidden information from the existing 

dataset through its reinforment leaning process and beats the hedonic regression, locally 

weighted regression and state-space regression in prediction. The performance of 

SSH_KREM model is robust with sample size. 

 

4.2 The SSH_KREM Housing Rent Indexes 

 

We demonstrate the estimated SSH_KREM housing rent indexes at both national  

and neighborhood levels in the Singapore HDB open rental housing market. Then we 

demonstrate a few applications of SSH_KREM model.   

 

4.2.1 National HDB Housing Rent Indexes in Singapore  
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The national HDB housing rent indexes are estimated by weighted averaging the 

123 neighborhood indexes. The weight is the monthly frequency of rental housing 

transactions in each neighborhood. The SSH_KREM national indexes are compared 

with the repeat sales indexes and the hedonic indexes (Fig 2). The index baseline is 

March 2009. 

 

It is noted that we didn’t include locally weighted housing rent indexes. This is 

because LWS model can’t estimate temporal coeffients. To derive indexes, we need to 

repeatedly run a regression at each time point. This also explains why the existing LWS 

indexes are all yearly based indexes.  

 

 
FIG. 2. Housing Rent Indexes: the repeat sales indexes (Repeat), hedonic method (Hedonic) and 

SSH_KREM indexes  

 

The FIG. 2 Shows that the three indexes series have similar trend between January 

2006 and April 2018. But SSH_KREM national index series is smoother than both 

repeat sales and hedonic indexes. This is because the KR algorism reduces the impacts 

of sticky rents.  

 

4.2.2 Neighborhood Housing Rent Indexes   

 

The Figures 3.1-3.9 show the neighborhood housing rent indexes of 9 neighborhoods 

with 95% confidence interval. The figures illustrate housing rent dynamics vary 

significantly across space.  
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FIG. 3.1. The housing rent indexes in N_1       FIG. 3.2. The housing rent indexes in N_2   

 

 

 

 

FIG. 3.3. The housing rent indexes in N_3       FIG. 3.4. The housing rent indexes in N_4  

 

 

 

 

FIG. 3.5. The housing rent indexes in N_5       FIG. 3.6. The housing rent indexes in N_6  
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FIG. 3.7. The housing rent indexes in N_7       FIG. 3.8. The housing rent indexes in N_8 

 

 

 

 

FIG. 3.9. The housing rent indexes in N_9 

 

 

 

4.2.3 The applications of SSH_KREM model 

 

Housing rent is “sticky” as it often doesn’t change during a contract period. The 

SSH_KREM model can predict a rent for each housing unit at any time point. To 

illustrate it, we choose a housing unit located at “407B FERNVALE ROAD #14-09, 

Sengkang, Singapore”.    
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FIG. 4. Predicted rent series for a housing unit and the 95% predictive confidence interval 

 

The unit locates in N_8 (Sector 792 in Fig 1). Between 1st July 2007 and 30th April 

2018, the unit was transacted 10 times. We obtain 10 transacted rents (the dots in Fig 

4), but we cannot identify which are new rents and which are recontract rents. Using 

the SSH_KREM model estimated for this neighborhood, we predict the 10 rents (see 

the line “pre-Rent” and its 95% confidence intervals).  

 

  The SSH_KREM model can forecast future rents. FIG. 5 shows the state variable 

forecasts for the next 5 months in N_8 (Sector 792 in Fig 1). However, we observe the 

95% confidence interval becomes much wider during the forecast period. 

 

FIG. 5. Five months’ state variable forecast N_8 (Sector 792 in Fig 1) 

 

 

4.3 The dynamic patterns of the Singapore HDB open rental housing Market 

 

  The K-shape clustering method can help identify which neighborhoods have 
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more stable investment returns or if the rents across some beighborhoods may share 

the similar dynamic patterns. The housing units locating in the different 

neighborhoods but sharing similar dynamic pattern, may provide insightful 

information for investors. The K-shape clustering method is applied to 123 

neighborhhod indexes. Six clusters are formed (Fig 6). K-shape cluatering method is 

sensitive to missing values, we use mean interpolation method to fill in the missing 

index numvers in each time series. It is noted that missing index numbers in a index 

series is caused by zero transactions in that month. The interpolation index numbers 

take account of 15% of all.  

 

 
FIG. 6.  The trends of 6 clusters in the Singapore HDB open rental housing market 

 

 

AS we mentioned before,when processing K-shape clustering, every time series is 

normalized between -2 to 2. Fig 6 shows the normalized SSH_KREM rental indexes. 

The Red lines are the cluster centroids of the six clusters and each gray line is the 

normalized SSH_KREM rental index which belongs to the certain cluster. 
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Cluster 1                            Cluster 2 

 

Cluster 3                            Cluster 4 

 

 

Cluster 5                            Cluster 6 

 

 

FIG. 7. The SSH_KREM neighborhood housing rent indexes by clusters 

 

FIG. 7 gives the 123 neighborhoods K-shape clustering results. The 6 clusters indicate 

six dynamics patterns. We further analyze the attributes of the neighborhoods and find 

that the housing units in cluster 1 mainly locate in the central area, which explain why 

they share similar patterns. However, the neighborhoods in other clusters are not 

necessarily bounded in one geopgraphical area.   
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5. Conclusion 

We present a machine learning method to construct housing rent indexes at a fine-scale 

geographical unit, which outperforms the selected exisiting econometric models. In 

particular, the proposed state-space model generates more precise rental indexes than 

other models and it is also the first state space model that is specifically designed for 

constructing housing rent indexes.  

 

The proposed SSH_KREM model uses a reinforcement learning approach to capture 

hidden spatial and temporal information from the hedonic residuals, which increase 

model prediction accuracy. The prediction accuracy won’t change with the reduction in 

sample size. This enables us to construct housing rent indexes at neighborhood level. 

the adoption of KR algorithm helps correct the bias caused by sticky rents and the EM 

algorithm produces robust likelihood estimates avoiding the problem caused by 

unobserved information, such as fewer or zero transactions in certain months at 

neighborhood level. Moreover, K-shape clustering method in unsupervised learning 

literature can improve our understanding on the dynamics of housing market structure.      
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Appendix 

TABLE A_1 

The sample sizes of the 123 neighborhoods in the HDB open rental housing market 

Postal 

Sector 

Sample 

Size 

Postal 

Sector 

Sample 

Size 

Postal 

Sector 

Sample 

Size 

Postal 

Sector 

Sample 

Size 

Postal 

Sector 

Sample 

Size 

651 64 793 191 644 421 643 1,063 541 2,193 

551 65 734 201 681 425 642 1,097 542 2,261 

653 65 754 202 590 426 210 1,121 521 2,333 

212 66 562 204 732 435 610 1,147 470 2,567 

564 69 165 205 531 443 544 1,148 440 2,708 

211 75 683 221 164 446 350 1,155 140 3,449 

463 77 523 222 753 467 461 1,185 550 4,159 

315 79 601 230 430 491 822 1,238 600 4,343 

602 82 524 234 810 511 641 1,303 670 4,765 

656 83 312 235 431 514 380 1,316 570 4,977 

528 86 505 244 752 522 270 1,324 680 5,661 

794 87 381 252 390 541 370 1,342 510 5,733 

735 91 311 261 901 551 271 1,349 310 6,146 

563 92 152 263 321 557 400 1,377 650 6,414 

323 93 391 267 731 602 900 1,378 640 7,142 

322 102 522 271 800 602 821 1,439 120 7,442 

533 110 162 293 200 665 330 1,453 530 8,049 

603 112 791 307 180 707 100 1,527 730 8,152 

604 118 260 317 410 720 150 1,551 460 8,237 

101 130 190 355 130 731 320 1,700 760 9,246 

526 139 792 355 151 746 540 1,770 560 10,055 

525 144 142 366 751 762 543 1,781 520 10,680 

462 146 682 373 141 772 820 1,803   

532 173 360 384 824 800 160 1,972   

684 185 163 411 823 947 750 2,085   

Note: If The neighborhood sample size outnumber 1500, we use High Performance 

Computer(HPC) to run programs. Because it needs more than 45GB CPU memory 

and will cost more than 24 hours to converge.    
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Table A_2 The iteration process of the KREM algorithms 

 

 

To estimate the hyperparameters (Φ) and the State series X={�̃�𝑡,𝑖, 𝑡 = 1,2…𝑇 } in a 

state-space model for neighborhoopd i, two iterative processes are needed. The EM 

estimation for Φ and �̃�𝑡,𝑖 is completed by an iteration process. In each iteration in 

the EM, the KR estimation for a State �̃�𝑡,𝑖 is completed by another iteration process.   

 

Mathematically, in each iteration of an EM algorithm, the following equation is 

maximized. 

 

      Φ̂2 = 𝑎𝑟𝑔max
Φ

     𝐸𝑋|Φ̂1
[log 𝐿(Φ|𝑌 = 𝑦1

𝑇 , 𝑋)]          

 

Where: 𝑦1
𝑇 means the expectation values of the observable inputs conditioned on 

full time information. This value is calculated by KR algorithm.  𝑎𝑟𝑔max
Φ

() is a 

function means the a certain value set of Φ which makes the function value in () 

is maximum.  

The iterating process is as below: 

 

a) Set an initial set of hyperparameters, Φ̂1; 

b) At E step,  

a. using the state-space model for the hidden state X and 

hyperparameter Φ̂1  to calculate the expected values of State X, 

conditioned on all the data,  𝑦1
𝑇. The calculation is based on the 

iteration process using the Kalman filter and smoother recursive 

algorithm, this gives the 𝑥𝑡
𝑇  output;  

b. calculating the expected values of State X (or Y if there are missing  

using both Transition Equation (3.2.2) and Measurement Equation 

(3.2.3) of state X (or Y if there are missing observations in Y) that 

appear in your expected log-likelihood function, like E[𝑋|𝑌 =

𝑦1
𝑇 , Φ̂1]and E[g(𝑋)|𝑌 = 𝑦1

𝑇 , Φ̂1]. 

 

c) At M step, put those E[𝑋|𝑌 = 𝑦1
𝑇 , Φ̂1]and E[g(𝑋)|𝑌 = 𝑦1

𝑇 , Φ̂1] into your 

expected log-likelihood function in place of X (and g(X)) and maximize 

with respect to Φ. This gives you Φ2. 

d) Repeat the E and M steps until the log likelihood 𝐸𝑋|Φ̂1
[log 𝐿(Φ|𝑌 =

𝑦1
𝑇 , 𝑋)  converges. 
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Chart A_1.  The classifications of machine learning approaches 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Writer summeried form “An Introduction to Statistical Learning”(James, 

2013) 
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Chart A_2  The research design framework 
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