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Abstract

The functioning of real-world pollution markets suggests that firms face persistent price

forecast errors in making abatement decisions. The residual uncertainty in allowance

trading means that pollution markets may fail to deliver cost-effective abatement, in

contrast to price-based policies where firms set marginal abatement cost equal to an

emission tax. We develop a theoretical model of firm behavior in an allowance trading

market that accounts for price uncertainty and dynamic investment in abatement.

We show how the additional cost of forecast errors under quantity-based programs

can be incorporated into a standard Weitzman-style analysis. Finally, we simulate

the potential magnitude of forecast errors in cap-and-trade markets using parameters

calibrated to historical and modeled climate policies. Future work will examine the

interaction between allowance price uncertainty and abatement cost uncertainty.
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1 Introduction

Policy uncertainty significantly influences firms’ investment decisions. Firms may opt to

delay investment until resolving uncertainty about its returns – especially uncertainty related

to a pending policy decision, such as over monetary policy, tax policy, and other issues that

affect the volatility and uncertainty of a firm’s economic context (Dixit and Pindyck, 1994;

Arrow and Fisher, 1974; Bernanke, 1983; Rodrik, 1991; Hassett and Metcalf, 1999; Baker

et al., 2016). A special case of policy uncertainty occurs when the government decides upon

a policy framework, but residual uncertainty over returns to firm investment remain due to

the inherent characteristics of policy implementation. For example, suppose that a regulator

decides to price a technological externality, such as carbon dioxide emissions, through a cap-

and-trade program instead of a carbon tax. The inherent uncertainty of tradable allowance

prices under cap-and-trade exceeds that of the tax alternative. We examine the impact of

this residual policy uncertainty on the relative efficiencies of price- versus quantity-based

policies abating carbon dioxide emissions.

Much of the literature comparing cap-and-trade programs and emission taxes has focused

on the regulator’s information deficit (Weitzman, 1974). Firms typically know their marginal

abatement costs with greater precision than the regulator, and firms may not have the incen-

tive to reveal their true marginal abatement costs to the regulator (and to their competitors).

However, under cap-and-trade programs, this information asymmetry affects not only the

regulator, but also each firm with respect to other firms’ marginal abatement costs. Consider

the problem a firm faces in complying with an emission tax versus a cap-and-trade program.

Under any policy instrument, firms must first resolve uncertainty surrounding policy design.

Then, if the regulator chooses a tax, the firm learns the tax rate, identifies its abatement

options, and complies with the policy by investing in abatement that equates marginal cost

with the tax. If the regulator instead chooses a cap-and-trade program, the firm not only

must identify its abatement options as in the tax case, but also must form expectations

about the market-clearing price for emissions allowances which will then guide the firm’s
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investment.

Our paper examines this residual uncertainty about allowance prices, inherent to quantity-

based instruments such as cap-and-trade programs and tradable performance standards,

which increases the risk that firms may not equate their marginal abatement costs and

hence increase aggregate costs for any given emission goal. Firms may err in their allowance

price forecasts and make investments that would appear to be optimal ex ante given their

expectations, but, ex post, are recognized as having been too high or too low. Such forecast

errors may reflect different expectations about (1) abatement technology costs; (2) economic

output; (3) overlapping public policies that may restrict abatement decisions and influence

the clearing price in allowance markets. Given the common role of banking in cap-and-trade

programs, these expectations would need to reflect a dynamic assessment of these factors.

This residual uncertainty coupled with irreversible investments can increase the welfare costs

of choosing a quantity-based instrument, such as cap-and-trade, relative to a carbon tax.

Given the potential scale of tradable allowance markets, such forecast errors under cap-and-

trade could be economically significant.

We build a theoretical model that starts from the perspective of the firm choosing emis-

sion abatement investments in the presence of uncertainty over the price of carbon in a

tradable allowance market. In contrast to many papers the literature in which firms can

instantaneously adjust emission abatement to move up or down their firm-specific marginal

abatement cost function as allowance prices evolve, our model includes irreversible invest-

ment, uncertainty, and intertemporal emission allowance trading. Our model first shows that

price trajectories still follow a Hotelling rule in expectation, but the overall price process is

determined by volatility as well as this expected drift. This volatility creates potentially sig-

nificant forecast errors, as the realized trajectory of prices does not follow a smooth Hotelling

trajectory. Instead, our model is consistent with what is observed in allowance markets in

practice – a frequent jumping from one Hotelling trajectory to another as shocks to allowance

prices are realized.
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The fact that firms often make dynamic decisions to invest in long-lived abatement capital

magnifies the impact of these forecast errors. By deriving the necessary optimality conditions

for firm investment in abatement, we show that firms not only set their marginal abatement

costs equal to the discounted expected stream of allowance prices, as in standard models of

abatement as a variable input, but also seek to smooth their rate of investment over time.

Given uncertainty over allowance prices, the value of smoothing also depends on the extent

of price volatility. This finding introduces the possibility that firms might err not only in

their expectations of the realized allowance price, but also in their beliefs about the overall

price process, as the volatility parameter depends on many different random processes, only

some of which are observable to individual firms.

To examine the welfare impacts of these forecast errors, we develop a modified version of

Weitzman’s canonical prices versus quantities comparison. In our version, quantity orders are

not imposed directly on individual firms, as in Weitzman (1974) and much of the subsequent

literature, but are instead transmitted to firms through some market-clearing price, as in

modern allowance and credit trading markets. We show that firm-level forecast errors push

the regulator to favor price-based instruments over quantity-based instruments, with the

relative benefit of price instruments increasing in the variance of the forecast error term.

To understand the potential magnitude of these forecast errors, we turn to simulations

calibrated to the performance of actual and modeled climate policies. We first simulate

stochastic allowance price trajectories, with drift and volatility parameters estimated from

historical prices from the European Union’s Emissions Trading System (EU ETS). We model

the corresponding abatement investment response by firms using an abatement cost function

estimated from models of U.S. carbon pricing policy. We then identify the smoothly increas-

ing “Hotelling” price trajectories that would achieve the same overall emissions reductions

as each of the stochastic price simulations, and compare the total resource cost required to

achieve a particular level of emissions reductions under the two pricing scenarios. We show

that the “Hotelling” scenario serves as a lower bound on total resource costs for achieving a
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given level of emissions control, by eliminating forecast errors on the part of regulated firms.

We find that the median percentage difference in abatement costs between a stochastic price

scenario and the corresponding Hotelling price scenario is approximately 20 percent. In

ongoing work, we also illustrate how a hybrid policy instrument – such as a cap-and-trade

program with price collars – can reduce the adverse economic impacts of forecast errors.

The structure of the paper follows. Section 2 presents evidence of cost-effectiveness

anomalies in cap-and-trade and tradable performance programs in practice that illustrates

the economic significance of this residual policy uncertainty inherent to quantity-based ap-

proaches. Section 3 develops our theoretical model of firm abatement decisions given invest-

ment in long-lived abatement capital and uncertainty over future allowance prices. Section 4

discusses how we can interpret price forecast errors in a Weitzman-style prices versus quan-

tities welfare comparison. Section 5 calibrates a simulation model to illustrate the potential

magnitude of forecast errors in these markets, using parameters calibrated to historical and

modeled climate policies. Finally, Section 6 concludes and offers directions for future re-

search.

2 Cost-Effectiveness Anomalies in the Implementation

of Market-Based Instruments

Since the 1980s, policymakers have employed two major types of quantity-oriented,

market-based instruments to address environmental and energy objectives: cap-and-trade

programs and tradable performance standards. A cap-and-trade program establishes an

emission cap that limits the aggregate quantity of emissions among all sources covered by

the program. The cap is subdivided into emission allowances that grant the holder the right

to emit a unit of pollution, and the government typically allocates these allowances through

an auction and/or freely to sources based on their historic emissions. Firms must hold suffi-

cient allowances to cover their emissions to demonstrate compliance, and a secondary market
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in emission allowances emerges where firms may buy and sell allowances. Policymakers have

designed such markets for sulfur dioxide (SO2), nitrogen oxides (NOx), and carbon dioxide

(CO2).

Tradable performance standards establish a quantitative benchmark that firms must

meet. If a firm beats the benchmark, its overcompliance generates a credit that may be

traded to another firm, such as one that fails to meet the benchmark. Policymakers have

designed such markets to reduce lead in gasoline, promote fuel economy among vehicle

manufacturers, increase the renewable share of electricity generation, and raise the biofuel

share of transportation fuel markets.

The theoretical appeal of cap-and-trade programs and tradable performance standards

lies in the potential for the market to allocate effort in a cost-effective manner, just as in

any other, efficient market. Montgomery (1972) formally showed how firms operating under

a cap-and-trade program each have an incentive to equate their marginal abatement costs

with the allowance price and, as a result, marginal abatement costs are equalized among

all firms in the market. Complementing this static cost-effectiveness across firms, Rubin

(1996) and Kling and Rubin (1997) demonstrate the potential for dynamic cost-effectiveness

in cap-and-trade programs that permit intertemporal trading (banking allowances for future

compliance purposes, or borrowing future vintage allowances for contemporary compliance

purposes), with a Hotelling-style allowance price path over time emerging. In practice, the

behavior in a variety of cap-and-trade programs and tradable performance standards deviate

from these conditions in the underlying theory. This increases the costs of achieving any

emission goal or energy objective.

2.1 Heterogeneity in Allowance Prices

Pollution markets deliver cost-effective abatement when firms equate their marginal

abatement costs to the price of an emission allowance or credit (Montgomery, 1972). In

order for firms to do this, there must be a single allowance or credit price. With many
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such markets, trading occurs via brokers, with less transparency about prices than under

exchange-based trading. As a result, prices may deviate significantly across transactions.

Consider the California Low Carbon Fuel Standard (LCFS), which requires refineries to

satisfy a performance benchmark based on the carbon content of transportation fuels. Since

April 2016, the State of California has reported transaction-level data (credit prices and

number of credits) on credit trades on 842 days (through December 1, 2019).1 On 83 percent

of these days with trades, California reported at least two completed credit trades – what

we refer to as a multi-transaction trading days. On only 15 of these 699 multi-transaction

trading days did the transactions include the same credit prices. The within-trading day

credit price standard deviation averaged about $10/tCO2. The maximum price paid for

credits exceeded the minimum price for credits by more than 20 percent, on average, within

multi-trade trading days. There are as many credit days in which the maximum price paid

was double the minimum price paid as there are days with identical credit prices across

transactions. If buying firms are equating their marginal costs of compliance with the credit

price paid on the date of transaction, then this market is not resulting in the equating of

marginal costs of compliance among firms.

2.2 Absence of Hotelling Price Path

The dynamic cost-effectiveness condition for cap-and-trade programs with banking calls

for allowance prices to increase with the rate of interest. As Figure 1 illustrates for the SO2,

NOx, EU ETS CO2, and LCFS markets, prices are quite volatile, reveal occasional spikes

and troughs, and do not follow what would be interpreted, even loosely, as a price path that

increases with the rate of interest. This extreme volatility suggests that uncertainty about

future prices may be substantial.

Under the EU ETS, market-clearing prices for carbon have ranged from over e30 per ton

of CO2 to under e5 per ton in the span of five years. Likewise, prices for SO2 allowances

1We accessed these data on December 5, 2019 from: https://ww3.arb.ca.gov/fuels/lcfs/credit/

Weekly%20LCFS%20Credit%20Activity%20%28upto%201%20December,%202019%29.xlsx.

7

https://ww3.arb.ca.gov/fuels/lcfs/credit/Weekly%20LCFS%20Credit%20Activity%20%28upto%201%20December,%202019%29.xlsx.
https://ww3.arb.ca.gov/fuels/lcfs/credit/Weekly%20LCFS%20Credit%20Activity%20%28upto%201%20December,%202019%29.xlsx.


under the U.S. Acid Rain Program have ranged from $1600 per ton to $100 per ton in a five-

year period, and prices for NOx allowances have ranged from $4,500 per ton to $800 per ton

under the NOx Budget Trading Program. Note that the observed volatility in these markets

is not simply a function of the volatility of the underlying energy commodities, whether oil,

natural gas, or coal. Indeed, the allowance price volatility observed under the EU ETS and

the U.S. Acid Rain Program exceeds the volatility of oil or natural gas futures prices over

comparable periods (see Figure 2). In all four markets, the volatility of allowance or credit

prices exceeds the volatility of S&P 500 index prices over a comparable period.

(a) Emissions Trading System CO2 Allowance
Price (EU)

(b) Low Carbon Fuel Standard Allowance Price
(California)

(c) SO2 Allowance Price (U.S.) (d) NOx Allowance Price (U.S.)

Figure 1: Historical Prices in Allowance and Credit Trading Markets
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(a) Emissions Trading System CO2 Allowance
Price Volatility (EU)

(b) Low Carbon Fuel Standard Allowance Price
Volatility (California)

(c) SO2 Allowance Price Volatility (U.S.) (d) NOx Allowance Price Volatility (U.S.)

Figure 2: Average Annualized Month-to-Month Price Volatility in Allowance and Credit
Trading Markets

2.3 Economic Shocks

The failure to observe Hotelling-like price paths can reflect shocks to the system. For

example, the California RECLAIM program witnessed NOx allowance prices increase from

about $1,000 per ton in 1999, to more than $20,000 per ton in 2000, to more than $120,000

per ton in 2001 (Fowlie et al., 2012). The dramatic run-up in allowance prices over 2000-

2001 resulted from the California electricity crisis when insufficient generation existed to

meet demand, causing the dirtiest generators, often relied on to meet occasional peak load,
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to run much more often during the crisis. This kind of output shock translated increased

demand for pollution-intensive output into increased demand for emission allowances. As

we noted in the introduction, firms need to acquire information about the actions of other

firms in the market to form expectations about allowance prices. The start-up of the EU

ETS signaled how poorly firms had done this. In April 2006, EU member states released

data on the previous year’s emissions of facilities covered by the ETS. The emission levels

for 2005 suggested less allowance scarcity than the market had been pricing in. In a period

of two weeks, the weekly average allowance prices fell from more than e31/tCO2 to about

e13/tCO2. This represents a decline in market value of allowances of more than $50 billion.

2.4 Overlapping Regulations: Economic Regulation

In the U.S. power sector, cap-and-trade programs may cross jurisdictional boundaries that

separate power plants operating in competitive markets from those plants subject to state

economic regulation (typically some form of cost-of-service rate regulation). This variation in

economic regulation may influence the investment decisions and abatement behavior under

the cap-and-trade program. For example, both Fowlie (2010) and Cicala (2015) show that

deregulated firms may have underinvested in capital-intensive compliance strategies for SO2

and NOx cap-and-trade programs, combined with evidence of overinvestment by regulated

firms. This may also help explain the finding by Carlson et al. (2000) that more than half

of the units operating in Phase I of the SO2 cap-and-trade program failed to minimize costs

during at least part of the study period.

2.5 Overlapping Regulations: Environmental Regulation

As Goulder and Stavins (2011) describe, implementing an environmental mandate on top

of an existing cap-and-trade program can cause firms to modify abatement investment to

satisfy the mandate, which would increase costs, but would not increase emission reductions

so long as the cap under the cap-and-trade program is binding. In effect, the mandate – to
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the extent it is binding – causes firms to undertake abatement investment that is not cost-

effective and reduces the residual effort necessary to comply with the cap-and-trade program.

The mandate imposes a pecuniary externality on the balance of the emission sources in the

cap-and-trade program through lower allowance prices.

The EU ETS has experienced low allowance prices due to both low economic output – and

hence demand for energy – and aggressive renewable power policies in some member states.

The latter results in considerable divergence in implicit carbon prices between investment

induced only by the cap-and-trade program and investment driven by high feed-in tariffs

for wind and solar power. Marcantonini and Ellerman (2015) estimate that the German

subsidies for wind and solar cost one and two orders of magnitude more, respectively, than

the going EU ETS allowance price over 2007-2010. The State of California likewise employs

a wide array of climate-oriented energy policies – a renewable portfolio standard, a solar roof

mandate, an energy efficiency resource standard, the LCFS – that all overlap with the CO2

cap-and-trade program. Any changes in the stringency of these overlapping instruments – or

the introduction of new policies – would then affect the allowance prices in the cap-and-trade

program.

Frey (2013) finds, for example, that overlapping state regulations limited the cost-effectiveness

of Phase I of the Acid Rain Program, by inducing higher-cost units to invest in scrubbers.

Under an allowance trading program, the impact of such state policies would not only affect

the units directly subject to state regulation, but also all other units in the allowance trad-

ing market. Uncertainty about the impact of overlapping policies translates into uncertainty

about the net quantity limit in the allowance trading program, which then translates into

further uncertainty over the market-clearing price that should guide compliance investments.

More recently, the implementation of the Clean Air Interstate Rule and the Cross-State Air

Pollution Rule contributed to the collapse in the SO2 emission allowance prices by requiring

additional state-specific SO2 emission reductions such that the cap under the Acid Rain

Program is no longer binding. In contrast, under a price-based program, the presence of
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Figure 3: Global Carbon Emissions Covered by Policy (Ramstein et al., 2018).

overlapping policies does not affect the investment decisions of other firms in the market.

2.6 Prospect for Anomalies in Future Carbon Markets

Policymakers at the supranational, national, and sub-national levels are moving forward

with carbon pricing policies. The World Bank recently estimated that nearly 20 percent of

the world’s carbon dioxide emissions are covered (or will soon be covered) by some carbon

pricing policy (see Figure 3). While numerous hybrid policies exist, the majority of existing

or planned policies are emissions trading programs rooted in quantity targets, rather than

tax policies. Moreover, about one-half of the nations pledging to mitigation emissions under

the 2015 Paris Agreement signaled an interest in using carbon markets to do so.

In the United States, regulators have also exhibited strong revealed preference for using

allowance or credit trading programs to correct for carbon dioxide as well as other environ-

mental externalities. For example, virtually all energy produced or consumed is subject to

some sort allowance or credit trading program because of an environmental attribute. These
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programs range from state-level trading programs for renewable energy credits as part of Re-

newable Portfolio Standards, to the nationwide sulfur and benzene credit trading program

for gasoline, to the Acid Rain Program and the NOx Budget Trading Program for controlling

SO2 and NOx emissions, respectively, to the credit trading under the nationwide renewable

fuel standard for gasoline and diesel markets, to the carbon dioxide cap-and-trade programs

in California and the Regional Greenhouse Gas Initiative in the northeast and mid-Atlantic

states, to the Low Carbon Fuel Standard in California.

The overlapping nature of energy and climate policies at the state and federal level also

raise questions about how firms would formulate expectations over carbon allowance prices.

Indeed, firms have signaled quite varying expectations over carbon prices in the “internal

carbon prices” they have employed in their investment analysis and strategic planning (Aldy

and Gianfrate, 2019). According to the Carbon Disclosure Project (CDP), the average

carbon price among U.S. firms disclosing use of an internal carbon price in their operations

was about $40/tCO2 in 2017, with a standard deviation of $33/tCO2. Of course, this omits

consideration of the mass of firms that implicitly use a price of zero and do not participate

in such disclosure efforts. Even within the same industry and country, there is substantial

variation: ExxonMobil uses $80/tCO2, ConocoPhillips uses $43/tCO2, and Devon Energy

uses $24/tCO2.

While it is possible that financial instruments would help regulated firms to mitigate un-

certainty associated with volatile allowance and credit prices, evidence on hedging decisions

more generally suggests that firms are likely to hedge incompletely, if at all. In studying

hedging of input fuel prices by U.S. airlines, Rampini et al. (2014) find that the airlines in

their sample hedge only 20% of expected next-year jet fuel expenses – despite the fact that

financial instruments are widely available in this market and jet fuel represents a substantial

and highly volatile operating expense for these firms. The authors attribute this imperfect

hedging partly to firm financial constraints, which would certainly be relevant in our set-

ting. Moreover, firms may also be unable to hedge their full exposure to uncertain allowance
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prices since the total quantity of allowances demanded depends on both the uncertain future

price and potential additional uncertainties around future abatement cost. Finally, since al-

lowance and credit trading markets are created virtually overnight through regulation, there

is considerable uncertainty associated with the start-up of these markets which may reduce

the availability of financial instruments in their early phases. To illustrate the potential mag-

nitude of this start-up uncertainty, consider that proposals for U.S. economy-wide carbon

cap-and-trade programs under the Kyoto Protocol and the Waxman-Markey Bill would have

created multi-billion dollar markets in their first year of operation, without any historical

data on market performance to guide the supply of financial instruments. Even regulators

designing these programs predicted a wide range of initial market values through their mod-

eling scenarios, ranging from $177 to $683 billion under the Kyoto Protocol and from $54 to

$254 billion under the Waxman-Markey Bill (in 2018 $).

2.7 Building a Theory to Account for Such Anomalies

Our paper seeks to develop existing theories of cap-and-trade markets to account for these

observations. Existing studies of allowance trading markets have generally adopted one of

two assumptions which are incompatible with the actual functioning of these programs. On

the one hand, papers in the spirit of Weitzman’s canonical work on the relative advantage of

price versus quantity advantage instruments have assumed that quantity orders are imposed

directly on individual firms (Hoel and Karp, 2002; Pizer, 2002; Newell and Pizer, 2003).

These papers generally focus on uncertainties on the part of the regulator rather than on the

part of regulated firms; one exception is Yohe (1978), which considers the possibility that

firms may not know their own abatement cost functions with certainty, so quantity orders

imposed directly on firms may not be achieved exactly. By contrast, in real-world allowance

and credit trading markets, aggregate quantity orders are transmitted to firms through some

(uncertain) market clearing price. One consequence of the complex price formation process is

that all types of shocks affect the equilibrium price, so regulated firms are not only impacted
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by direct shocks to their own abatement cost functions.

On the other hand, another body of existing literature that has explicitly modeled the

market-clearing price associated with a given quantity limit has instead assumed that prices

follow a Hotelling trajectory given banking and borrowing (Rubin, 1996; Cronshaw and

Kruse, 1996; Newell et al., 2005). In these models, equilibrium allowance prices are pinned

down by an inter-temporal arbitrage condition which requires prices to rise smoothly at the

rate of interest. While Rubin (1996) achieves this Hotelling trajectory by assuming perfect

certainty in the allowance trading market, Newell et al. (2005) examine how to maintain this

smooth trajectory when shocks to abatement cost functions are realized each period. They

show that banking and borrowing combined with a commitment on the part of the regulator

to fix the last period expected price at a certain level will achieve this price trajectory.

However, they do not explore how firm behavior would differ if allowance prices were allowed

to remain stochastic, which is the focus of this paper. Real-world allowance prices evidently

do not follow this smooth trajectory, perhaps suggesting that allowance prices are continually

jumping from one Hotelling path to another as shocks are realized in the market, which we

explore further below.

We therefore develop a model of cap-and-trade markets that integrates the two key em-

pirical facts – one, that market-clearing allowance prices are volatile and uncertain and, two,

that many abatement options are long-lived capital investments. Our approach combines

three modeling strategies: Rubin’s work on allowance trading markets with certainty and

variable abatement decisions; Anderson et al. (2018) on dynamic investment decisions in

natural resource extraction; and Pindyck (1980) on natural resource extraction under uncer-

tainty. Our model recognizes that quantity orders are transmitted to individual firms through

an uncertain market-clearing price; that firms may take into account price uncertainty in

making abatement decisions; and that abatement decisions are linked over time.

The two papers that relate most closely to this paper in directly accounting for firm

investment decisions given allowance price uncertainty are Chao and Wilson (1993) and Zhao

15



(2003). Chao and Wilson estimate the option value component of the SO2 allowance price in

the Acid Rain Program; this option value term reflects the fact that purchasing allowances

may provide regulated firms with greater flexibility given uncertainty about future market

conditions, as compared to investing in long-lived scrubbers. Then, Zhao (2003) considers

how firm investment depends on uncertainty over the abatement cost function, where firms

may invest in long-lived abatement capital or “technology” that reduces the cost of achieving

a given level of abatement; in his model, actual compliance decisions are modeled as variable

inputs. In comparing the impact of abatement cost uncertainty on both tradeable allowance

programs and emission taxes, Zhao finds that tradeable allowance programs can be beneficial

for responding to these uncertainties, as prices adjust to leave the overall quantity of variable

abatement unaffected.

Our paper serves as a useful complement to this earlier work. Zhao’s model considers how

both firm-level and market-wide shocks affect firm investment in abatement technology but

assumes that only market-wide shocks directly affect equilibrium prices or firms’ marginal

abatement costs. In contrast, our model allows price volatility to stem from any of the myriad

random shocks affecting allowance trading markets, only some of which would affect firm

abatement costs directly. Zhao’s model also assumes a rational expectations equilibrium,

whereas our paper explicitly considers the welfare consequences of forecast errors as part of

the trade-off between price- and quantity-based policy instruments. Finally, unlike Zhao’s

model, our approach incorporates banking and borrowing of allowances, thereby allowing us

to recover a version of the Hotelling rule for the expected growth in allowance prices that

embeds existing models of allowance trading as a special case.

3 Theoretical Model of Abatement Investment

To build intuition for the impact of allowance price uncertainty, we develop a theoretical

model of dynamic abatement investment decisions. This model focuses on the firm’s cost-
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minimizing compliance strategy. We abstract from changes to the firm’s production levels,

though Montgomery (1972) shows how the cost of achieving a certain level of emissions

may include both foregone profit due to deviations from unconstrained optimal production

levels and the direct costs of installing abatement equipment. Our model shows that firms

making abatement decisions will take into account expected price volatility as part of their

optimizing behavior. While the expected price trajectory is pinned down by a Hotelling rule,

as in previous papers, the price volatility depends on a wide variety of random processes

that affect this market. This volatility causes prices to jump from one Hotelling trajectory

to another, thereby causing firms to err in their beliefs about the realized allowance price.

Firms may also not know all of the random processes that determine price volatility, causing

them to err further in their forecasts of the overall price process.

Our model integrates modeling strategies from three related papers. First, we adopt the

basic model of an allowance trading market, with banking and borrowing of allowances across

periods, developed in Rubin (1996). As with much of the standard literature on multi-period

allowance trading markets, Rubin’s model assumes no accumulation of abatement from one

period to the next. We therefore build on Rubin’s work by modeling long-lived investment

as the key margin of firm decision-making around compliance. Our approach is similar in

the spirit to Anderson et al. (2018), which derives a modified version of the Hotelling rule

for natural resource extraction where the key margin of decision-making is investment in

well drilling rather than production from already-drilled wells. Lastly, we also recognize that

firms face a stochastic price process for allowances. We allow firms to take into account

price volatility in their optimization decisions, following methods used in Pindyck (1980) for

natural resource extraction under uncertainty.

3.1 Model Set-Up

Assume that a representative firm chooses some optimal rate of abatement investment

A(t) and allowance purchases Y (t) at each instant, where positive Y (t) corresponds to net
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allowances purchases and negative Y (t) corresponds to net allowances sales. The investment

cost function is given by ψ(·) and the instantaneous price of allowances is P (t). The firm

discounts future costs and benefits at some exogenous discount rate r. The firm accumulates

investment in abatement over time, and the total stock of abatement capital is given by K(t);

this stock depreciates at rate δ. The firm is also able to bank unused allowances over time,

where B(t) gives the total size of the firm’s bank at time t. The firm’s baseline emissions

rate is Ē. Therefore, at each instant, the firm’s compliance requirement is Ē −K(t), which

may be positive or negative and which may result in the firm buying or selling allowances or

adding or removing allowances from its bank.2 Finally, following (Anderson et al., 2018), we

define R(t) as the remaining abatement opportunities available to the firm, perhaps due to

technological limitations on the firm’s ability to reduce its emissions rate beyond a particular

amount.

Therefore, at the start of the allowance trading market, the firm’s problem is given by:

max
A,Y

E0[

∫ ∞
0

e−rt{−ψ(A(t))− P (t)Y (t)}dt] (1)

subject to:

K̇ = A(t)− δK(t) (2)

A(t) ≥ 0, K0 given (3)

Ḃ = K(t) + Y (t)− Ē (4)

B(t) ≥ 0, B0 = 0 (5)

Ṙ = −A(t) + δK(t) (6)

R(t) = Ē −K(t) ≥ 0, R0 given (7)

2Firms may also receive some allowances for free (grandfathered) as a function of historic emissions,
and then buy or sell allowances and abate emissions as necessary for compliance. In that case, the firm’s
compliance requirement at each instant would instead be Ē − Ḡ − K(t), where Ḡ represents the flow of
grandfathered allowances. The optimality conditions derived in this section would remain unchanged.
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dP = αPdt+ σPdz , where dz is an increment of a Weiner process (8)

Let us discuss each of these constraints in turn. Equation 2 describes the law of motion

for abatement capital, where K̇ represents the time derivative of capital stock; at each

instant, investment at rate A(t) adds to the stock, while depreciation at rate δK(t) depletes

the stock. Equation 3 sets the initial stock of abatement capital and constrains the rate

of investment to be weakly positive, meaning that firms cannot reverse investments once

they have occurred, besides waiting for depreciation to run its course. Likewise, Equation

4 describes the law of motion for the allowance bank, where Ḃ gives the time derivative of

the allowance bank. Additional allowances are added to the bank at the rate of allowances

purchased Y (t), net of allowances used for compliance Ē −K(t). Equation 5 sets the initial

level of the bank and constrains the bank to be weakly positive (a no-borrowing constraint).

This no-borrowing assumption is easily relaxed, as we discuss below.

Equation 6 gives the law of motion of the stock of abatement opportunities R, where

current investment results in the loss of future opportunities, but depreciation of installed

abatement capital creates additional opportunities. Here we define the stock of abatement

opportunities as total baseline emissions less installed abatement capital, but we could as-

sume technological limitations on the firm’s ability to abate some of its baseline emissions

without altering any of the major results below. Finally, we assume that prices follow a

Geometric Brownian Motion process, with drift parameter α and volatility parameter σ,

following Equation 8. We discuss in detail below the implications of assuming an exogenous

price process in deriving the firm’s optimal behavior.

To solve for the firm’s necessary optimality conditions, we follow Pindyck (1980) and Karp

and Traeger (2013) and define the flow profit function Π and the optimal value function J :

Π(t) = e−rt{−ψ(A(t))− P (t)Y (t)}

J(t, P,K,B,R) = max
A,Y

Et[

∫ ∞
t

e−rτ{−ψ(A(τ))− P (τ)Y (τ)}dτ ]
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We then write the firm’s problem as a dynamic programming equation in continuous time

and expand using Ito’s Lemma:3

0 = max
A,Y

Π(t) +
1

dt
Et[d(J)]

0 = max
A,Y

Π(t) + Jt + JB(K + Y − Ē) + JK(A− δK) + JR(−A+ δK)

+ JPαP +
1

2
JPPσ

2P 2

(9)

For simplicity, we assume the firm chooses an interior solution for both A(t)∗ and Y (t)∗,

and the no-borrowing constraint is not immediately binding.4 In the case of Y (t)∗, Rubin

(1996) notes that if we wish to consider arbitrary price paths in this market, we would

need to apply a technical condition to ensure that firms do not seek to buy or sell an

unbounded number of allowances, since the firm’s maximization problem is linear in the

number of allowances purchased or sold. By applying the first-order condition directly in

this derivation, we are assuming that the process of price formation is such that no firm

finds it optimal to buy or sell an unbounded number of allowances in equilibrium. In the

case of A(t)∗, our optimality condition dictates firm investment conditional on some interior

solution A(t)∗ > 0; it is possible that the first-order condition does not hold with equality

for any positive value of A(t)∗ in which case the firm will be bound by the irreversibility

constraint A(t) ≥ 0 and set A(t)∗ = 0.

With these assumptions in place, taking the first-order conditions with respect to the

choice variables A(t) and Y (t) yields:

ΠA + JK − JR = 0

3We follow the notation in Pindyck (1980) and use the notation JP to denote ∂J
∂P and 1

dtEt[d(·)] to denote
Ito’s differential operator. As in Karp and Traeger (2013), we are able to eliminate the expectation operator
in this step since we are taking the expectation conditional on information at time t, so all functions are
measurable at time t.

4For additional discussion of cases where the no-borrowing constraint binds, see Rubin (1996).
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ΠY + JB = 0

which can be rewritten as:

ψ′(A(t))e−rt = JK − JR (10)

P (t)e−rt = JB (11)

3.2 Optimal Behavior in the Allowance Market

First, we focus on the optimality conditions governing firm behavior in the allowance

market. We evaluate Equation 9 at the optimal values of Y (t)∗ and A(t)∗ and differentiate

with respect to B:

0 =ΠB + JtB + JBB(K(t) + Y (t)− Ē) + JKB(A(t)− δK(t)) + JRB(−A(t) + δK(t))

+ JPBαP (t) +
1

2
JPPBσ

2P (t)2

Applying Ito’s Lemma allows us to rewrite this expression as:

0 = ΠB +
1

dt
Et[d(JB)]

Since ΠB = 0, this expression simplifies to:

0 =
1

dt
Et[d(JB)]

Substituting in the firm’s first-order condition for Y (t) (Equation 11) and expanding the

differential operator gives:

0 =
1

dt
Et[d(P (t)e−rt)] = −rP (t)e−rt + e−rt

1

dt
Et[d(P (t))]

Rearranging terms gives:

rP (t) =
1

dt
Et[dP (t)] (12)
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This result recovers the standard Hotelling rule for the expected growth in equilibrium

allowance prices – namely, that prices are expected to increase over time at the discount rate.

It is useful to compare this result to the analogous finding in Rubin (1996), which assumes

both perfect certainty about the future allowance market and no accumulation of abatement

investment. When the no-borrowing constraint does not bind in his model, Rubin recovers

the following rule for price dynamics:

rP (t) = ˙P (t) (13)

In our model, Rubin’s result holds in expectation. This finding then allows us to endog-

enize the drift parameter in our Geometric Brownian Motion process for P , as the Hotelling

rule pins down that drift parameter α is equal to discount rate r in equilibrium.

3.3 Optimal Abatement Investment

Next, we examine optimal firm investment in abatement. We follow the same general

steps described above; we first differentiate Equation 9 with respect to K(t) and then apply

Ito’s Lemma, substitute the first-order conditions for A(t) and Y (t) in the resulting expres-

sion, and expand the remaining differential operator. This procedure yields the following

condition:

(δ + r)ψ′(A∗) = P +
1

dt
Et[d(ψ′(A∗))] (14)

Note that A(t)∗ is a function of the firm’s state variables B, K, and R, as well as price

P . Therefore, we can expand the differential operator on the right-hand side of Equation 14

using the following identities:

1

dt
Et[dA

∗] =
1

dt
Et[AKdK + ABdB + ARdR + APdP +

1

2
APPdP

2]

= AKK̇ + ABḂ + ARṘ + APαP +
1

2
APPσ

2P 2

(15)
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1

dt
Et[(dA

∗)2] =
1

dt
Et[(AKdK + ABdB + ARdR + APdP +

1

2
APPdP

2)2]

= APσ
2P 2

(16)

where the second set of equalities follows from eliminating all higher-order expressions of dt

that vanish as dt→ 0.

Our optimality condition then becomes:

ψ′(A∗) =
P

r + δ︸ ︷︷ ︸
Avoided stream of allowance purchases

+
ψ′′(A∗)

r + δ

1

dt
Et[dA

∗] +
ψ′′(A∗)

2(r + δ)

1

dt
Et[(dA

∗)2]︸ ︷︷ ︸
Value of smoothing investment over time

=
P

r + δ
+
ψ′′(A∗)

r + δ
[AKK̇ + ABḂ + ARṘ + APαP +

1

2
APPσ

2P 2] +
ψ′′′(A∗)

2(r + δ)
A2
Pσ

2P 2

(17)

Given an interior solution for the optimal rate of abatement investment, we find that the

firm not only sets its marginal abatement cost equal to the discounted stream of avoided

allowance payments, but also takes into account additional terms that capture the value of

smoothing its rate of investment over time. This value of smoothing depends, in turn, on the

extent of price volatility in the market, captured by the parameter σ. The value of smooth-

ing also depends on both the convexity of the abatement cost function and of the marginal

abatement cost function. The latter relationship may be understood as analogous to “pru-

dence” terms in lifetime consumption-savings models in macroeconomics. In these models,

convexity of marginal utility of consumption induces individuals to engage in precautionary

savings in the presence of uncertainty. In our context, we can understand increased abate-

ment investment as analogous to precautionary savings in the face of uncertain allowance

prices, which occurs whenever the marginal abatement cost function is concave (such that

−ψ′(·) is convex).5

We can lend further interpretation to this optimality condition by considering what hap-

pens when we set price volatility to zero or instead model abatement decisions as variable.

5Provided that optimal abatement is decreasing in allowance price, or AP ≤ 0.
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First, if we set price volatility to zero, we effectively assume that allowance prices will follow

the same Hotelling trajectory indefinitely. In that case, we recover the following variant of

Equation 17:

ψ′(A∗) =
1

r + δ
{P + ψ′′(A∗)Ȧ} (18)

In this modified optimality condition, the firm still wishes to smooth abatement investment

over time, but now the time derivative of A∗ is known with certainty.6 The “prudence” term,

which depends linearly on price volatility, also vanishes.

Likewise, it is also instructive to compare our result in Equation 17 to a model where

abatement is a variable decision, rather than a dynamic investment. We could recover this

scenario as a special case of the model presented above by assuming full depreciation (δ = 1).

In this case, the firm’s first-order conditions become:

ΠY + JB = 0

ΠA + JB = 0

which can be rewritten as:

e−rtψ′(A) + JB = 0

e−rtP + JB = 0

Rearranging terms and combining these expressions immediately yields:

ψ′(A) = P (19)

Here the firm sets the rate of abatement equal to the instantaneous price of allowances. This

result matches the abatement optimality condition in (Rubin, 1996).

6This result has parallels to the modified Hotelling rule for oil drilling in Anderson et al. (2018), which
models firms making investment decisions as if future prices were certain.
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3.4 Discussion

Our optimality conditions show that allowance trading activity, combined with banking

and borrowing, pins down expected price growth in equilibrium. We can then interpret

the volatility parameter as causing the price process to jump continually from one expected

Hotelling path to another. Where does this volatility come from? While much existing lit-

erature discusses the Hotelling rule and allowance price trajectories over time, considerably

fewer papers have endogenized the overall price level. One exception is Stock et al. (Forth-

coming), which determines that the volatility of RIN prices in the Renewable Fuel Standard

credit trading market is largely determined by economic fundamentals such as the global

prices of oil, corn, and soybeans – which are, at least to an extent, exogenous to decisions in

the abatement market. From this perspective, assuming an exogenous volatility parameter

may be a reasonable approximation. Additional sources of price volatility in these markets

may also be, to first order, exogenous to the abatement behavior of market participants,

including changes in economic output, changing expectations about future policy reforms,

or unpredictable impacts of overlapping policies.

In a supplemental analysis (see Appendix), we also solved for the firm’s necessary opti-

mality conditions given an endogenous price process. In this extended version of the model,

we model the market-clearing price as a flexible function of the overall emissions limit set by

the regulator, the baseline level of emissions, total installed abatement capital, total accumu-

lated allowance bank, and, critically, random shocks to both baseline emissions (e.g., due to

changes in economic output or overlapping policies) and the abatement cost function (e.g.,

due to changes in the relative cost of high- versus low-emission fuels). This extended model

therefore allows us to endogenize price volatility as a function of market fundamentals. As-

suming a competitive market, in which firms do not internalize the impact of their decisions

on the market-clearing price or behave strategically, we find that the firm’s optimality condi-

tions bear close resemblance to those derived above. We again recover the Hotelling rule for

the expected path of allowance prices, and the optimal level of abatement investment again
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comes from setting the marginal cost of abatement equal to the expected discounted stream

of avoided allowance payments plus terms that capture the value of smoothing investment

over time. However, now the smoothing terms depend on the volatility of the underlying

random processes, instead of the volatility of the exogenous price process. Likewise, the “pru-

dence” term is expanded to include cross-partial derivatives of the investment cost function

between abatement level and the random shock to the cost function; this source of volatility

– in contrast to shocks to baseline emissions – affects both the market-clearing price and,

conditional on that price, the optimal level of abatement investment. However, our substan-

tive conclusions remain unchanged after we endogenize price volatility in this manner, which

lends additional support to our use of an exogenous price process in our baseline model.

Given the significant price volatility observed in real-world allowance and credit trading

markets, it seems likely that actual prices do indeed continually jump from one Hotelling

path to another, as we have modeled here. As a consequence, firms are likely to experience

significant forecast errors between the expected allowance price, against which firms make

their abatement decisions, and the actual market-clearing price realized ex post. Moreover,

firms may also err in their forecasts of the price process, in addition to specific realized prices.

To the extent that the volatility parameter depends on many random variables, only some

of which are known to an individual firm, each firm may not know the true value of σ when

making its abatement decisions. Furthermore, firms may not be able to learn this parameter

simply by observing the past history of prices, given that the extent of price volatility has

varied significantly across different allowance and credit trading markets and over time.

4 Welfare

To understand the welfare consequences of firm-level forecast errors over allowance prices,

we turn to a modified version of the Weitzman (1974) derivation for the relative advantage

of price-based instruments over quantity-based instruments. We first develop Weitzman’s
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original derivation with multiple production units to account for the fact that aggregate

quantity orders are transmitted through an equilibrium price. To be consistent with Weitz-

man’s set-up, all randomness in the market-clearing price stems from shocks to each firm’s

marginal abatement costs; however, as we have discussed earlier, real-world price volatility

stems from myriad other factors including changes in overall economic output or the impact

of overlapping policies. This welfare assessment abstracts from firms’ incentive to smooth

abatement costs over multiple periods and concentrates on the presence of forecast errors

directly, as discussed further below.

We begin by defining the benefit function associated with reducing some pollutant and

the cost function associated with abatement. Let B(Q, η) be the benefits associated with

producing quantity Q of the pollutant, and let η represent a random shock to the benefit

function. Likewise, let Ci(qi, θi) be the costs to firm i associated with producing quantity

qi of the pollutant, where θi represents a firm-specific random shock to the cost function.

Therefore, the aggregate costs associated with pollution level Q are given by
∑N

i Ci(qi, θi),

where Q =
∑N

i qi. Here we are assuming that the pollutant in question is uniformly mixed,

such that only the total level of pollutant enters into the benefits function, not the identity

of each polluting entity; this assumption reflects the characteristics of most greenhouse gas

emissions but could be relaxed to model local pollutants. By contrast, the costs of abatement

depend on the pollution level achieved by each individual firm.

Following Weitzman (1974), the regulator sets an optimal price order in the presence of

uncertainty by solving the following maximization problem:

max
p

E[B(h(p, θ), η)−
N∑
i=1

Ci(hi(p, θi), θi)] (20)

Likewise, the regulator sets the optimal (aggregate) quantity order by solving the following
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maximization problem:

max
Q

E[B(h(p(Q, θ), θ), η)−
N∑
i=1

Ci(hi(p(Q, θ), θi), θi)] (21)

Here hi(p, θi) represents firm i’s response function given price p and cost shock θi, which we

describe further below.

Following Weitzman, we expand the cost functions by taking a second-order Taylor ex-

pansion about the quantity q̄i. We define each q̄i as the level of the pollutant that sets

expected benefits equal to expected costs for each individual firm. However, as we discuss

further below, however, q̄i does not necessarily represent the regulator’s optimal quantity

target in this setting, since the regulator now chooses the aggregate quantity only.

E[Bi
1(q̄, η)] = E[Ci

1(q̄i, θi)] (22)

The Taylor expansion of each abatement cost function about q̄i is then given by:

Ci(qi, θi) = ai(θi) + (C ′i + αi(θi))(qi − q̄i) +
C ′′i
2

(qi − q̄i)2 (23)

where C ′ represents the expected marginal abatement cost at q̄i and C ′′ represents the slope

of the marginal abatement cost function. As in Weitzman and much of the subsequent

literature, we assume for tractability that the abatement cost function is quadratic or can

be well approximated by a second-order Taylor expansion. ai(θi) represents how the random

cost shock θi affects the level of the cost function, and αi(θi) represents how the cost shock

affects the slope.

For the benefits function, we take the Taylor expansion around Q̄ =
∑N

i q̄i:

B(Q) = b(η) + (B′ + β(η))(
N∑
i=1

qi − q̄i) +
B′′

2
(
N∑
i=1

qi − q̄i)2 (24)
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Here B′ captures the expected marginal benefit at Q̄, and B′′ captures the slope of the

marginal benefit function. b(η) is the impact of the random shock η on the level of benefits,

and β(η) is the impact on the slope.

As in Weitzman, we assume without loss of generality that E[ai(θi)] = 0, E[αi(θi)] = 0,

E[b(η)] = 0, and E[β(η)] = 0. Note that this assumption does not preclude correlations

across cost shocks to individual firms, so it is still possible that E[ai(θi)|aj(θj)] 6= 0 or

E[αi(θi)|αj(θj)] 6= 0 for some i and j. We also assume that E[β(η) · αi(θi)] = 0 for all i.

For the optimal price order, the derivation here closely follows Weitzman’s derivation with

multiple production units, except we constrain the regulated price to be the same across all

units. We again find that the optimal price order p̃ is equal to B′ = C ′i for all i. (The full

derivation is provided in the appendix.) Assuming cost minimization, each firm will set its

realized marginal cost function equal to this price, yielding the following firm-level response

function:

hi(p̃, θi) = q̃i = q̄i −
αi(θi)

C ′′i
(25)

The aggregate quantity produced will then be:

N∑
i=1

hi(p̃, θi) =
N∑
i=1

q̄i −
αi(θi)

C ′′i
= Q̄−

N∑
i=1

αi(θi)

C ′′i
(26)

By contrast, for the optimal quantity order, we must solve for the market-clearing price

such that the aggregate quantity order is achieved after the realization of all shocks in the

market. Based on the set-up above and again assuming cost minimization, the equilibrium

price associated with the optimal quantity order Q̂ is given by:

p̂(Q̂, θ) =

∑N
i=1

C′
i+αi(θi)

C′′
i∑N

i=1
1
C′′
i

(27)

Consequently, firm i will produce q̂i = q̄i +

∑N
j=1

αj(θj)

C′′
j

C′′
i

∑N
j=1

1
C′′
j

− αi(θi)
C′′
i

. The aggregate quantity
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produced will be Q̂ = Q̄. (The full derivation is again given in the appendix.)

Finally, following Weitzman, we define the relative advantage of prices over quantities as

the expected difference between net benefits from the optimal price order and net benefits

from the optimal quantity order. That is:

∆ = E[B(
N∑
i=1

q̃i, η)−
N∑
i=1

Ci(q̃i, θi)]− E[B(
N∑
i=1

q̂i, η)−
N∑
i=1

Ci(q̂i, θi)] (28)

Substituting each firm’s response to the price and quantity orders, respectively, we obtain

the following variant on Weitzman’s original result with multiple production units:

∆ = E[
B′′

2
(
N∑
i=1

αi(θi)

C ′′i
)2 +

1

2
∑N

j=1
1
C′′
j

(
N∑
i=1

αi(θi)

C ′′i
)2] (29)

Note that in this modified version of Weitzman’s derivation, we cannot evaluate the costs

associated with the quantity order for each firm separately, since the quantity produced

by each firm depends on the shocks to all other firms’ marginal abatement cost functions.

Consequently, we must compare the slope of marginal benefits to an expression that combines

the slopes of all marginal costs.

4.1 Expectation Errors

Because the market-clearing price associated with the regulator’s quantity order depends

on shocks to the marginal abatement cost functions of all firms, a given firm i may not know

this price with certainty. As a result, we assume that firm i will set its marginal abatement

cost function equal to the efficient price p̂ associated with aggregate quantity order Q̂, plus

some expectation error εi. That is, Ei[p̂(Q̂, θ)] = p̂(Q̂, θ) + εi. The corresponding quantity

response is given by:

hi(p̂, θi) =
p̂(Q̂, θ) + εi − C ′i − αi(θi)

C ′′i
+ q̄i (30)

By contrast, under a price order, the price is set by regulation and known with certainty
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to all firms. Therefore, firms’ response to a price order does not change from the version

derived above.

Substituting the modified firm response to a quantity order into the expression for the

relative advantage of prices over quantities, we obtain:

∆ = E[
B′′

2
(
N∑
i=1

αi(θi)

C ′′i
)2 +

1

2
∑N

j=1
1
C′′
j

(
∑
i=1

αi(θi)

C ′′i
)2 +

N∑
i=1

ε2i
2C ′′i

] (31)

Here we place constraints on the expectation errors to ensure that the aggregate quantity

order is still met. We therefore require
∑N

i=1
εi
C′′
i

, which ensures that firms’ expectation errors

will collectively cancel with each other in determining the overall quantity.

Equation 31 indicates that these firm-level forecast errors represent an advantage of price

instruments relative to quantity instruments, with the relative advantage increasing in the

variance of the error terms. One way to interpret this finding, in light of Weitzman’s original

result, stems from the fact that the regulator is no longer imposing quantity orders directly

on individual firms. Instead, the regulator imposes an aggregate quantity order, which

a market mechanism then translates into individual quantity orders through the market-

clearing price and the magnitude of marginal cost shocks realized for each firm. Given

firm-level expectation errors, the same relative advantages of price and quantity instruments

still exist, but we must also consider the possibility that the aggregate quantity order is not

distributed in the least cost manner across firms.

As Newell and Pizer (2003) notes, the original Weitzman derivation with multiple pro-

duction units could also be understood as a representative firm subject to regulation over

multiple periods. Likewise, we can also understand the welfare result derived above in a sim-

plified multi-period framework that abstracts from firms’ incentives to smooth abatement

costs over time. In this case, the aggregate quantity order might represent some cap on a

stock pollutant emitted over multiple periods, where regulated firms are free to bank and

borrow allowances across periods. The price p now represents the discounted present value
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of future tax levels or allowance prices, and the forecast errors reflect incorrect estimates

of that discounted sum because future shocks have not yet been realized. Future work will

further develop this Weitzman-style analysis in a fully dynamic multi-period framework.

5 Simulations

To illustrate the potential magnitude of these forecast errors arising from price volatility

in cap-and-trade markets, we have calibrated a simulation model based on the recent Stanford

Energy Modeling Forum (EMF-32) study focused on U.S. carbon tax policies (Barron et al.,

2018; McFarland et al., 2018). In developing this model, we have also incorporated the

volatility of EU ETS prices as a real-world illustration of how uncertainties play out in

tradable allowance markets.

We first simulate 10,000 different stochastic price trajectories using drift and volatility

parameters estimated from the EU ETS. We then model the optimal abatement investment

decisions of a representative firm faced with this stochastic price trajectory over ten peri-

ods, with prices leveling off indefinitely after the final period. Each period is calibrated to

represent one year. We assume that the firm only knows the previous period’s realized price

when making its investment decisions, thereby allowing us to examine the impact of forecast

errors around the realized price. We do not consider the impact of forecast errors related to

the overall price process in these simulations.

Based on the total emissions reductions achieved from a given stochastic price trajectory,

summed over all periods, we then calculate the “Hotelling” price trajectory that would

achieve the same level of overall emissions reductions – that is, a single price that rises each

period at the discount rate, before leveling off indefinitely after the final period. This step

allows us to compare the total resource costs required to achieve a given level of emissions

reduction with and without firm-level uncertainty. We can also illustrate how price collars

such as price floors and ceilings can reduce the cost inefficiencies resulting from this residual
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uncertainty.

5.1 Model Calibration

We first assume that allowance prices follow Geometric Brownian Motion and estimate the

drift and volatility parameters associated with historical prices in the EU ETS. We focus on

the periods since the end of the Phase I pilot program (2008-2018), as rules for intertemporal

banking and borrowing changed between Phases I and II. We estimate these parameters using

maximum likelihood; full details of the estimation procedure are provided in the appendix.

We estimate an annual drift parameter of 0.065 and an annual volatility parameter of 0.3923;

our drift parameter corresponds to 6.72% expected annual price growth.

We then use results from the Stanford Energy Modeling Forum to calibrate the abatement

cost function. This dataset includes projected U.S. emissions reductions, relative to a baseline

scenario, resulting from an emissions price set at either $25 or $50 in 2020 and increasing

at an annual rate of either 1% or 5% to 2050. The dataset includes results from 10 models

analyzing each of these four price scenarios.

We adopt the simplifying assumption that all abatement is long-lived and thus abatement

in the current period persists into the next period, adjusting for depreciation; this assumption

matches our theoretical modeling of abatement as durable capital stock. Likewise, we also

assume that abatement investment in a given year becomes available for compliance in the

following year. Based on these assumptions, we calculate the discounted value of the tax

payment avoided through abatement investment in each period. By assuming that the

investment cost function takes the form ψ(A) = φA2, we use the firm’s first-order conditions

to set the marginal investment cost equal to the discounted stream of avoided tax payments,

assuming depreciation rate of 10% and discount factor of 0.937.7 We calculate the depreciated

sum of abatement and compare that to average emissions reductions observed in the modeling

7This functional form assumption is consistent with standard assumptions in the literature about abate-
ment cost functions, including Weitzman (1974). However, it does not fully capture the range of potential
dynamics derived in the previous section as, for example, ψ′′′(A) = 0.
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Figure 4: Annual Emissions from Calibrated Model versus EMF 32 Results

The points refer to the projected U.S. CO2 emissions levels from each of the ten models in
EMF 32, assuming an initial carbon price of $25/ton in 2020, rising at 5% annually until
2050 and then leveling off. The line reflects implied emissions reduction from our calibrated
abatement investment cost function, when applying the same carbon price trajectory.

scenarios (relative to the baseline scenario). Setting these two values equal then allows use

to estimate the abatement cost parameter φ.

We obtain an estimated parameter φ̂ = 7.42 · 10−7 for abatement measured in metric

tons of CO2 reduced annually. Figure 4 shows the annual emissions reduction predicted by

our calibrated model versus each of the ten modeling scenarios from the Stanford EMF-32

exercise.
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5.2 Simulation Results

Given this calibration, Figure 5 illustrates the results of our simulations. The horizontal

axis shows the different levels of total emissions reduction (in million metric tons of CO2)

resulting from different price simulations and ten years of firm investment in abatement.

The vertical axis shows the total investment cost required to achieve those reductions. As is

evident from the figures, the Hotelling price trajectories serve as a lower bound on the total

resource costs required to achieve a range of abatement levels. Additionally, the expected

increase in costs from stochastic prices increases in the magnitude of realized abatement.

We find that the median percentage difference in abatement costs between a stochastic

price scenario and the corresponding Hotelling price scenario is approximately 20 percent.8

Because a given “stochastic” and “Hotelling” price trajectory are constructed to achieve the

same total emissions reduction, both scenarios reflect the total investment costs of achieving

a range of quantity orders. Under each “Hotelling” price trajectory, various shocks to the

price process are smoothed over time and firms know the full price trajectory with certainty,

as in the Weitzman-style derivation in the previous section that incorporated all firm-specific

shocks into a single efficient price. Under the stochastic price trajectories, firms instead face

persistent forecast errors in making their investment decisions.

These results therefore illustrate why it is critical to account for the magnitude of fore-

cast errors in considering the relative welfare gains from price or quantity instruments. The

presence of firm-level uncertainty over the market-clearing allowance price effectively shifts

upwards the expected abatement cost function – that is, the expected total resource cost as-

sociated with achieving a given quantity of emissions reduction. Therefore, it is not sufficient

to compare the abatement costs of a quantity order imposed directly on firms, on the one

hand, with the abatement costs from setting marginal abatement cost equal to the regulated

price, on the other hand (as in Pizer (2002), for example). Instead, the effective abatement

8Note that we set an effective price ceiling at $1000 per ton when discretizing the state space to per-
form backwards induction; however, given our drift and volatility parameters and the number of periods
considered, this upper bound affects less than 0.1% of simulated price trajectories.
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cost function is itself a function of the type of policy instrument. Persistent forecast errors

create an additional welfare cost in the implementation of quantity orders relative to price

orders.

6 Conclusion

This paper examines the impact of firm-level uncertainty over allowance prices in cap-

and-trade markets – a form of residual uncertainty which is inherent to this type of policy

instrument. Our theory model elucidates forecast errors that are not emphasized in the

standard literature, both the difference between expected price and realized price and im-

perfect information about the overall price process. Our welfare analysis then focuses on

the first type of forecast error and shows how the additional cost associated with imperfect

information about future market-clearing prices can be analyzed in a standard prices-versus-

quantities framework. Finally, our simulations suggest that the magnitude of these forecast

errors may be substantial in the context of climate policy, creating a wedge between the ef-

fective abatement cost function under price certainty versus in the presence of these forecast

errors.

In future research, we seek to decompose the extent of price volatility into that resulting

from own abatement cost shocks – and therefore correlated with the firm’s optimal abatement

decisions, conditional on price – and that resulting from other shocks to these markets.

These other shocks may include shocks to the abatement costs of other firms, the impacts

of overlapping policies, or changes to economic output. This exercise will also enable us to

extend our Weitzman-style welfare analysis into a fully dynamic version in which optimal

quantity responses are linked over time. We also have ongoing work to incorporate an

assessment of overlapping policies in our simulation model.
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Figure 5: Total Emissions Reduction from 10 Years of Abatement Investment

The “stochastic” price scenario reflects total emissions reductions and abatement invest-
ment costs associated with 10,000 simulated price trajectories, where drift and volatility
parameters are calibrated to historic EU ETS prices; the baseline price is $25/ton. The
“Hotelling” price scenarios achieve the same total emissions reduction given a baseline price
that smoothly increases at the calibrated EU ETS drift. In both cases, the abatement cost
function is calibrated to the results of Barron et al. (2018). The lower panel is a close-up of
the upper panel.
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A Derivation of Theory Model

A.1 Necessary Condition for Optimal Investment

To obtain the dynamics of optimal abatement investment, differentiate the fundamental

equation of optimality with respect to K:

ΠK + JtK + JBK(K + Y + Ḡ− Ē) + JB + JKK(A− δK)

− δJK + JRK(−A+ δK) + δJR + JPKαP +
1

2
JPPKσ

2P 2 = 0

After applying Ito’s Lemma and eliminating ΠK = 0, this expression becomes:

1

dt
Et[d(JK)] + JB − δJK + δJR = 0

Substituting the first-order conditions derived in the main text (JB = e−rtP and JK −

JR = ψ′(A)e−rt), we obtain:

1

dt
Et[d(JR + ψ′(A)e−rt)] + e−rtP − δψ′(A)e−rt = 0

Note that this expression is evaluated at the optimal values of A and Y . Next, noting
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that 1
dt

Et[d(JR)] = 09 and expanding differential operator to eliminate e−rt terms, we obtain:

(δ + r)ψ′(A) = P +
1

dt
Et[d(ψ′(A))]

The main text provides the expansion and interpretation of this result.

A.2 Endogenous Prices

Now assume that the market-clearing price is some function of disturbances to baseline

emissions η, disturbances to the marginal cost function θ, the installed stock of abatement

equipment K, and the regulatory target Q̄. (However, we assume that the market is com-

petitive, so firms do not internalize the impact of their choice of K on the market-clearing

price.)

Now the firm’s optimization problem can be written as:

max
A,Y

E0[

∫ ∞
0

e−rt{−ψ(A(t); θ(t))− P (t)Y (t)}dt]

subject to:

dK = {A(t)− δK(t)}dt

A(t) ≥ 0, K0 given

dB = {K(t) + Y (t)− Ē}dt+ dη(t)

B(t) ≥ 0, B0 = 0

dR = {−A(t) + δK(t)}dt

R(t) = Ē −K(t) ≥ 0, R0 given

9This result comes from differentiating the fundamental equation of optimality with respect to R, which
yields: ΠR + JtR + JBR(K + Y + Ḡ − Ē) + JKR(A − δK) + JRR(−A + δK) + JPRαP + 1

2JPPRσ
2P 2 = 0.

Applying Ito’s Lemma allows us to rewrite this expression as ΠR + 1
dtEt[d(Jr)] = 0. Noting that ΠR = 0,

we therefore have 1
dtEt[d(JR)] = 0.
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P (t) = f(η(t), θ(t), K(t), B(t), R(t), Q̄)

dη(t) = σηdzη, where dzη is an increment of a Wiener process

dθ(t) = σθdzθ, where dzθ is an increment of a Wiener process

Et[dzηdzθ] = ρ

Now the fundamental equation of optimality can be written as:

0 = max
A,Y

Π(t) +
1

dt
Et[d(J)]

Which simplifies to:

0 = max
A,Y

Πd(t) + Jt + JB(K + Y − Ē) + JK(A− δK) + JR(−A+ δK)

+
1

2
Jηησ

2
η +

1

2
Jθθσ

2
θ + Jθησθσηρ]

The firm’s first-order conditions are again given by:

ΠA + JK − JR = 0

ΠY + JB = 0

To obtain price dynamics, we again differentiate the fundamental equation of optimality

with respect to B:

0 =ΠB + JtB + JBB(K + Y + Ḡ− Ē) + JKB(A− δK) + JRB(−A+ δK)

+
1

2
JηηBσ

2
η +

1

2
JθθBσ

2
θ + JηθBσησθρ
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which can be again written as:

0 = ΠB +
1

dt
Et[d(JB)]

In the competitive case where firms do not internalize the impact of their decisions on P (t)

through the state variables B(t), K(t), and R(t), we have again have ∂Πd
∂B

= 0.10 Substituting

the first-order condition JB = e−rtP and expanding using Ito’s differential operator again

gives:

0 =
1

dt
Et[d(e−rtP (t))] = −re−rtP + e−rt

1

dt
Et[d(P (t))]

We again recover the Hotelling rule for price dynamics:

1

dt
Et[d(P (t))] = rP (t)

Next we differentiate the fundamental equation of optimality with respect to K, which

yields:

ΠK + JtK + JBK(K + Y − Ē) + JB + JKK(A− δK)

− δJK + JRK(−A+ δK) +
1

2
JηηKσ

2
η +

1

2
JθθKσ

2
θ + JηθKσησθρ = 0

As before, this expression can be rewritten as:

ΠK +
1

dt
Et[d(JK)] + JB − δJK + δJR = 0

Under a competitive equilibrium, we have ΠK = 0. Substituting first-order conditions again

yields:

(δ + r)
∂ψ

∂A
= P +

1

dt
Et[d(

∂ψ

∂A
)] (32)

In this case, we now have ∂ψ
∂A

is a function both of A and θ. Note that we again evaluate the

10For an analogous derivation, see equation 13 in (Pindyck, 1980).
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entire expression at the optimal values of A∗ and Y ∗. Therefore, expanding the differential

operator on the right-hand side now yields:

1

dt
Et[d(

∂ψ

∂A
)] =

∂2ψ

∂A2

1

dt
Et[dA] +

∂2ψ

∂A∂θ

1

dt
Et[dθ]

+
1

2

∂3ψ

∂A3

1

dt
Et[(dA)2] +

∂3ψ

∂A2∂θ

1

dt
Et[(dθ)(dA)] +

1

2

∂3ψ

∂A∂θ2

1

dt
Et[(dθ)

2]

First note that Et[dθ] = 0. Then, expanding with Ito’s Lemma, note that A∗ =

A(K,R,B, P, θ), so we have dA = AKdK + ARdR + ABdB + APdP + Aθdθ + 1
2
Aθθ(dθ)

2.

Therefore we can expand the above terms as follows:

1

dt
Et[(dA)2] = A2

Pf
2
θ σ

2
θ + A2

Pf
2
ησ

2
η + 2A2

Pfθfησθσηρ (33)

1

dt
Et[(dA)(dθ)] = APfθσ

2
θ + APfησθσηρ (34)

1

dt
Et[(dθ)

2] = σ2
θ (35)

Substituting into the above expression yields:

∂ψ

∂A
=

1

r + δ
{P +

∂ψ2

∂A2

1

dt
Et[dA

∗]

+
1

2

∂3ψ

∂A3
[A2

Pf
2
θ σ

2
θ + A2

Pf
2
ησ

2
η + 2A2

Pfθfησθσηρ]

+
∂3ψ

∂A2∂θ
[APfθσ

2
θ + APfησησθρ]

+
1

2

∂3ψ

∂A∂θ2
σ2
θ}

(36)

B Derivation of Welfare Result

B.1 Single Price Order

First, we derive a variant of Weitzman’s 1974 result with multiple production units when

the regulator sets a single price order. The problem set-up is given in the main text. The
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regulator’s optimization problem is given by:

max
p

E[B(h(p, θ), η)−
∑
i

Ci(hi(p, θi), θi)]

which yields the following first-order condition:

E[B1(h(p, θ), η) ·
N∑
i=1

∂Q

∂hi
· hi1(p̃, θi)] = E[

N∑
i=1

Ci
1(hi(p̃, θi), θi) · hi1(p̃, θi)]

As in Weitzman, we assume that firms set marginal cost equal to price, which yields the

following response function for firm i facing price p:

Ci
1(hi(p, θi), θi) = p = C ′i + αi(θi) + C ′′i (qi − q̄i)

Rearranging gives:

hi(p, θi) = qi =
p− C ′i − αi(θi)

C ′′i
+ q̄i

Differentiating with respect to p gives:

hi1(p, θi) =
1

C ′′i

Substituting this result into the regulator’s first-order condition for the optimal price

order and recognizing that all firms set Ci
1 = p̃, we have:

E[B1(h(p, θ), η)] ·
N∑
i=1

1

C ′′i
= p̃ ·

N∑
i=1

1

C ′′i

Therefore, the optimal price order is given by p̃ = E[B1(h(p̃, θ), η)]. Using the same steps

as Weitzman (1974), we can then show that p̃ = C ′. Therefore, plugging this optimal price

order into our price response function, we arrive at the same quantity response as the original
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Weitzman derivation:

hi(p̃, θi) = q̃i =
−αi(θi)
C ′′i

+ q̄i

B.2 Single Quantity Order

To obtain a single quantity order, we retain the set-up given in the main text. Now the

optimal aggregate quantity order is given by:

max
Q

E[B(q(p(Q, θ)), η)−
∑
i

Ci(qi(p(Q, θ)), θi)]

which yields the first-order condition:

E[
∑
i

Bi
1(h(p̂(Q̂, θ), θ), η)·hi1(p̂(Q̂, θ), θi)·

∂p̂

∂Q̂
] = E[

∑
i

Ci
1(hi(p̂(Q̂, θ), θi), θi)·hi1(p̂(Q̂, θ), θi)·

∂p̂

∂Q̂
]

First, note that we still have hi1(p̂(Q̂, θ), θi) = 1
C′′
i

, a constant. We can also use the price

response equation from above to derive ∂p̂

∂Q̂
:

∑
i

hi(p, θi) =
∑
i

p− C ′i − αi(θi)
C ′′i

+ q̄i

Q =
∑
i

p− C ′i − αi(θi)
C ′′i

+ Q̄

Differentiating with respect to Q gives:

1 =
∑
i

1

C ′′i

dp

dQ
⇒ dp

dQ
= 1/(

∑
i

1

C ′′i
)

Note that this expression is also a constant that can be pulled outside the expectation

error. Therefore, we can set Q = Q̂) and invoke the linearity of expectation to obtain:

∑
i

E[Bi
1(h(p̂(Q̂, θ), θ), η)] · 1

C ′′i
· 1∑

j
1
C′′
j

=
∑
i

E[Ci
1(hi(p̂(Q̂, θ), θi), θi)] ·

1

C ′′i
· 1∑

j
1
C′′
j
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Recognizing that each Ci
1(·) is set equal to p̂(Q̂, θ) by cost minimization and that Bi

1(·) =

B1(·) for all i, we can rewrite this expression as:

E[B1(h(p̂(Q̂, θ), θ), η)]
∑
i

1

C ′′i
· 1∑

j
1
C′′
j

= E[p̂(Q̂, θ)]
∑
i

1

C ′′i
· 1∑

j
1
C′′
j

Which ultimately yields (for the regulator’s optimal aggregate quantity order Q̂):

E[B1(h(p̂(Q̂, θ), θ), η)] = E[p̂(Q̂, θ)]

Note that we have defined q̄i such that E[Bi
1(q̄, η)] = E[Ci

1(q̄i, θi)]. Therefore, the regulator’s

first-order condition for Q is satisfied when qi = q̄i for all i, which then achieves Q = Q̄ = Q̂.

Note that the realized efficient price resulting from the optimal quantity instrument is

not necessarily equal to B′ or C ′, but instead depends of the realizations of cost shocks θ:

Q̂ = Q̂+ p̂(Q̂, θ)
∑
i

1

C ′′i
+
∑
i

−C ′i − αi(θi)
C ′′i

p̂(Q̂, θ) =

∑
i
C′
i+αi(θi)

C′′
i∑

i
1
C′′
i

Plugging this expression for p̂(Q̂, θ) into each price response function, we see that the

individual realized quantities q will generally not be equal to q̂i:

hi(p̂, θi) =
p̂− C ′i − αi(θi)

C ′′i
+ q̄i =

∑
j

C′
j+αj(θj)

C′′
j∑

j
1
C′′
j

− C ′i − αi(θi)

C ′′i
+ q̄i =

∑
j

αj(θj)

C′′
j∑

j
1
C′′
j

− αi(θi)

C ′′i
+ q̄i

By our definition of q̄i, we have imposed that C ′i = C ′j for all i and j. Since we generally

do not have αi(θi) = αj(θj), this expression does not reduce to q̄i except under very special

conditions.
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This discrepancy from the optimal quantity order in Weitzman 1974 with multiple pro-

duction units arises from the fact that we are requiring (for now) marginal costs to be

equalized across production units after uncertainty is resolved, which better reflects the

implementation of modern quantity-based trading programs. By contrast, Weitzman’s for-

mulation allows the regulator to use quantity orders to equalize marginal costs in expectation

only.

B.3 Relative Advantage of Single Price Order Over Single Quan-

tity Order

Substituting our expressions for hi(p̂, θi) and hi(p̃, θi) into the Taylor expansions for

(expected) benefits and costs, we obtain:

E[B(h(p̂, θ), η)] = E[b(η) + (B′ + β(η))(
N∑
i=1

hi(p̂, θi)− q̄i) +
B′′

2
(
∑
i=1N

hi(p̂, θi)− q̄i)2]

= E[(B′ + β(η))(
N∑
i=1

∑
j

αj(θj)

C′′
j∑

j
1
C′′
j

− αi(θi)

C ′′i
) +

B′′

2
(
N∑
i=1

∑
j

αj(θj)

C′′
j∑

j
1
C′′
j

− αi(θi)

C ′′i
)2]

= 0
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Intuitively, this expression evaluates to 0 because the aggregate quantity order is met exactly,

so
∑

i qi =
∑

i q̄i and all terms in the Taylor expression drop out (or are 0 in expectation).

N∑
i=1

E[Ci(hi(p̂, θi), θi)] =
N∑
i=1

E[ai(θi) + (C ′i + αi(θi))(hi(p̂, θi)− q̄i) +
C ′′i
2

((hi(p̂, θi)− q̄i)2]

=
N∑
i=1

E[αi(θi)(

∑
j

αj(θj)

C′′
j∑

j
1
C′′
j

− αi(θi)

C ′′i
) +

C ′′i
2

(

∑
j

αj(θj)

C′′
j∑

j
1
C′′
j

− αi(θi)

C ′′i
)2]

= E[
N∑
i=1

αi(θi)

C ′′i

N∑
j=1

αj(θj)

C ′′j
(

1∑N
j=1

1
C′′
j

)−
N∑
i=1

αi(θi)
2

C ′′i

+
1

2
(
∑
j=1

αj(θj)

C ′′j
)2(

1∑
j=1

1
C′′
j

) +
N∑
i=1

αi(θi)
2

2C ′′i
−

N∑
i=1

αi(θi)

C ′′i

N∑
j=1

αj(θj)

C ′′j
(

1∑N
j=1

1
C′′
j

)]

= E[−
N∑
i=1

αi(θi)
2

2C ′′i
+

1

2
(
∑
j=1

αj(θj)

C ′′j
)2(

1∑
j=1

1
C′′
j

)]

E[B(h(p̃, θ), η)] = E[b(η) + (B′ + β(η))(
N∑
i=1

hi(p̃, θi)− q̄i) +
B′′

2
(
∑
i=1N

hi(p̃, θi)− q̄i)2]

=
B′′

2
(
N∑
i=1

−αi(θi)
C ′′i

)2

N∑
i=1

E[Ci(hi(p̃, θi), θi)] = E[ai(θi) + (C ′i + αi(θi))(hi(p̃, θi)− q̄i) +
C ′′i
2

(hi(p̃, θi)− q̄i)2]

=
N∑
i=1

E[αi(θi)(
−αi(θi)
C ′′i

) +
C ′′i
2

(
−αi(θi)
C ′′i

)2]

= E[
N∑
i=1

−αi(θi)
2

2C ′′i
]

Combining all terms to form the relative advantage of prices over quantities yields:

∆ = E[
B′′

2
(
N∑
i=1

−αi(θi)
C ′′i

)2 −
N∑
i=1

−αi(θi)
2

2C ′′i
− 0−

N∑
i=1

αi(θi)
2

2C ′′i
+

1

2
(
∑
j=1

αj(θj)

C ′′j
)2(

1∑
j=1

1
C′′
j

)]

= E[
B′′

2
(
N∑
i=1

αi(θi)

C ′′i
)2 +

1

2
(
∑
j=1

αj(θj)

C ′′j
)2(

1∑
j=1

1
C′′
j

)]
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B.4 Relative Advantage of Prices Over Quantities with Forecast

Errors

Even further, each production unit may not know the realized p̂(Q̂, θ) when making its

compliance decision, because this quantity depends on θ−i whereas the production unit i

may only observe θi. We note here that it is possible to achieve the regulator’s overall quan-

tity target while mis-allocating quantity across production units, which produces additional

welfare loss relative to a price instrument.11

Suppose that firm i optimizes with respect to its signal of the market-clearing price,

p̂Ai = p̂(Q̂, θ) + εi, where εi reflects the firm’s idiosyncratic forecast error. The corresponding

quantity response is given by:

hi(p, θi) =
p̂(Q̂, θ) + εi − C ′i − αi(θi)

C ′′i
+ q̄i

where p̂(Q̂, θ) is the efficient price defined above.

In this case, the realized aggregate quantity will equal the regulated aggregate quantity

whenever the following condition is met:

Q̂ =
∑
i

∑
j

C′
j+αj(θj)

C′′
j∑

j
1
C′′
j

+ εi − C ′i − αi(θi)

C ′′i
+ Q̂

Q̂ = (

∑
j

C′
j+αj(θj)

C′′
j∑

j
1
C′′
j

)
∑
i

1

C ′′i
+
∑
i

εi
C ′′i
−
∑
i

C ′i
C ′′i
−
∑
i

αi(θi)

C ′′i
+ Q̂

Q̂ =
∑
j

C ′j + αj(θj)

C ′′j
+
∑
i

εi
C ′′i
−

∑
i

C ′i
C ′′i
−
∑
i

αi(θi)

C ′′i
+ Q̂

11Here we can think of these production units as production in different periods for a multi-period quantity
order, or as production in different firms for a quantity order covering heterogeneous firms.
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0 =
∑
i

εi
C ′′i

We also note that each firm’s quantity response is given by:

hi(p̂, θi) =

∑N
j=1

αj(θj)

C′′
j∑N

j=1
1
C′′
j

+ εi − αi(θi)

C ′′i
+ q̄i (37)

To determine the modified welfare expression in the presence of these expectation errors,

note first that the benefits under a quantity order are a function of the total quantity, which

we constrain by assumption to equal the regulated quantity order; consequently, the Taylor

expansion for B(q̂, η) does not change from the version derived above. To determine how

costs change under a quantity order, we evaluate the following expression:

N∑
i=1

E[Ci(hi(p̂, θi), θi)] =
N∑
i=1

E[ai(θi) + (C ′i + αi(θi))(hi(p̂, θi)− q̄i) +
C ′′i
2

((hi(p̂, θi)− q̄i)2]

=
N∑
i=1

E[αi(θi)(

∑N
j=1

αj(θj)

C′′
j∑N

j=1
1
C′′
j

+ εi − αi(θi)

C ′′i
) +

C ′′i
2

(

∑N
j=1

αj(θj)

C′′
j∑N

j=1
1
C′′
j

+ εi − αi(θi)

C ′′i
)2]

= original terms from above + new terms

=E[−
N∑
i=1

αi(θi)
2

2C ′′i
+

1

2
(
∑
j=1

αj(θj)

C ′′j
)2(

1∑
j=1

1
C′′
j

)

+
N∑
i=1

αi(θi)εi
C ′′i

+
N∑
i=1

ε2i
2C ′′i

+
N∑
i=1

εi
C ′′i

N∑
j=1

αj(θj)

C ′′j
(

1∑
j=1

1
C′′
j

)−
N∑
i=1

εiαi(θi)

C ′′i
]

= E[−
N∑
i=1

αi(θi)
2

2C ′′i
+

1

2
(
∑
j=1

αj(θj)

C ′′j
)2(

1∑
j=1

1
C′′
j

) +
N∑
i=1

ε2i
2C ′′i

]

The last equality follows from applying the constraint that
∑N

i=1
εi
C′′
i

= 0 in order for the

aggregate quantity target to be met.

By plugging in this expectation of the cost function under a quantity order with expecta-

tion errors, we obtain the following modified expression for the relative advantage of prices
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over quantities:

∆ = E[
B′′

2
(
N∑
i=1

αi(θi)

C ′′i
)2 +

1

2
(
∑
j=1

αj(θj)

C ′′j
)2(

1∑
j=1

1
C′′
j

) +
N∑
i=1

ε2i
2C ′′i

]

C Details about Model Calibration

C.1 Details about Price Calibration

We assume prices follow Geometric Brownian Motion and estimate the corresponding

drift and volatility parameters by maximum likelihood estimation with data on historical

EU ETS prices.

Prices following GBM will evolve according to the following (stochastic) law of motion:

St = S0 exp ((µ− σ2

2
)t+ σ

√
tWt)

. where Wt ∼ N(0, 1).

Note that this set-up can also be written as:

ln (
St
S0

) ∼ N((µ− σ2

2
), σ2t)

We estimate the drift and volatility coefficients using maximum likelihood estimation.

Recall that the maximum likelihood estimator for the mean of a normal random variable is

m̂ = 1
n

∑n
j=1 xj and the maximum likelihood estimator for the variance of a normal random

variable is ŝ2 = 1
n

∑n
j=1(xj − x̄)2.

Therefore, we have:

m̂ = (µ̂− σ̂2

2
)t =

1

n

T−1∑
i=1

ln(
Si+1

Si
)

ŝ2 = σ̂2t =
1

n

n∑
j=1

(ln(
Si+1

Si
)− m̂)2
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In this case, we have weekly price data, but it is more reasonable to assume that the

relevant decision period is quarterly or annually. Therefore, we set t = 1
52

(to reflect 52

weeks/year) when estimating µ̂ and σ̂. Using this procedure with EU ETS prices from 2008

through 2018 yields µ̂ = 0.065 and σ̂ = 0.3923.

From the set-up above, we have:

E[St+1] = E[S0 exp ((µ− σ2

2
) · 1 + σ

√
1Wt)]

= St exp (µ− σ2

2
)E[exp (σWt)] = St exp (µ− σ2

2
) exp (

σ2

2
)

= St exp (µ)

For estimated drift parameters around 0.065, this yields expected price increases of exp (0.065) =

1.0672, or 6.72%.

C.2 Details about Abatement Function Calibration

From reviewing the data, it seems reasonable to assume that the estimated emissions re-

ductions in each period relative to the baseline scenario depends on a) expectations of future

allowance prices; b) the existing stock of abatement, insofar as the “low hanging fruit” is

addressed first; and c) technology improvements over time. With the exception of expected

allowance prices, we do not observe these components of the underlying model. Furthermore,

the observed emissions reductions likely include both variable abatement (e.g., behavioral

responses to reduce energy consumption, carbon capture, etc.) and fixed abatement in-

vestment (e.g., retrofitting plant to reduce energy consumption, installing carbon capture

equipment, etc.), yet we do not observe the relative contribution of these two types of emis-

sions reductions. As a consequence, we make certain assumptions about the abatement cost

function, which we describe below.

As a first step, note that the Stanford EMF data includes estimated emissions at different

years over the period 2010 to 2020 for the 10 different models. We extract emissions data for
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2015, 2020, 2025, and 2030 specifically, since these years are included for (almost) all models;

then we average over all 10 models for each price scenario, to obtain the values underlying

the red lines from Figure 1 in Barron et al. (2018). We calculate net emissions reductions

over these periods for each price scenario, averaged across all models and adjusted for any

changes in baseline emissions.

We adopt the simplifying assumption that all abatement is long-lived and thus abatement

in the current period persists into the next period, adjusting for depreciation; this assumption

matches our theoretical modeling of abatement as durable capital stock. Likewise, we also

assume that abatement investment in a given year becomes available for compliance in the

following year. Based on these assumptions, we calculate the discounted value of the tax

payment avoided through abatement investment in each period. Following the Stanford EMF

price scenarios, we assume that the emissions price increases at either 1% or 5% annually

from 2020 to 2050, after which the price levels off (indefinitely); we also assume that firms

correctly anticipate this price trajectory beginning in 2015. We set depreciation δ = 0.10

and the firm’s discount factor β = 0.937.12

As illustration, a firm reducing emissions by A2020 in the year 2020 avoids the following

tax payment:

Avoided Tax = β · A2020 · P2021 ·
1− [(1 + g)(1− δ)β]2050−2021+1

1− (1 + g)(1− δ)β

+ β2051−2020 · (1− δ)2051−2021−1 · A2020 · P2050 ·
1

1− (1− δ)β

where the first term refers to the avoided tax payment up to 2050, while the price is growing

at rate g, and the second term refers to the avoided tax payment for all periods thereafter.

After computing the avoided tax payment from abatement investments in each year 2015

12This discount factor corresponds to 1/ exp(α).
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to 2030, we then rewrite each of these expressions to solve for At explicitly:

Avoided Tax2020/{β · P2021 ·
1− [(1 + g)(1− δ)β]2050−2021+1

1− (1 + g)(1− δ)β

+ β2051−2020 · (1− δ)2051−2021−1 · P2050 ·
1

1− (1− δ)β
} = A2020

By assuming that the investment cost function takes the form ψ(A) = φA2, we use

the firm’s first-order conditions to set the marginal investment cost equal to the discounted

stream of avoided tax payments. We calculate the depreciated sum of abatement and com-

pare that to average emissions reductions observed in the modeling scenarios (relative to the

baseline scenario). Setting these two values equal then allows use to estimate the abatement

cost parameter φ.

To illustrate, the total accumulated abatement stock in 2030 is given by:

K2030 = A2015 · (1− δ)14 + A2016 · (1− δ)13 + ...+ A2028 · (1− δ) + A2029

Emissions reductions relative to baseline are then given by:

∆E2030 = Ē2030 −K2030

Substituting my expressions for each At into this equation then allows me to solve for φ. For

A denoted in metric tons of CO2, estimated φ̂ values are provided in the table below:

Modeling Scenario

Years $25, 5% $25, 1% $50, 5% $50, 1%

2015-2030 7.42 · 10−07 6.15 · 10−07 1.07 · 10−06 7.44 · 10−07

Table 1: Estimated Abatement Cost Function Parameter from Stanford EMF-32 Modeling
Scenarios
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D Details about Model Simulations

To model the representative firm’s response to simulated price trajectories, we first per-

formed backward induction to determine the firm’s optimal abatement policy as a function

of the accumulated abatement cost stock, the realized allowance price in the previous compli-

ance period, and the number of elapsed compliance periods. Given computational limitations

and the need to discretize the state space, the representative firm is able to accumulate abate-

ment capital stock in multiples of 1 million metric tons of avoided annual CO2 emissions; the

upper bound on permitted abatement capital stock is total annual U.S. emissions in 2020,

as modeled in EMF 32 baseline scenarios. We construct the price transition matrix by sim-

ulating 10 million evolutions of a stochastic process with our calibrated drift and volatility

parameters and then calculating the probability that the next period allowance price will

fall into each “price bin,” conditional on the current period price. Each price bin is defined

as a particular integer dollar value. If the simulated price falls outside a specified price floor

or price ceiling, we set the realized price to the price floor or price ceiling, respectively.

After constructing the representative firm’s optimal policy matrix, we perform forward

simulation to model abatement investment paths for 100,000 simulated stochastic price tra-

jectories. We then sum the total avoided emissions from each year of abatement investment

and the total cost of that investment, expressed in period T dollars. To compare the rep-

resentative firm’s response under each of these stochastic trajectories to responses under

“Hotelling trajectories,” we calculate the initial price P0 that would yield the same total

emissions reduction if that initial price were to increase smoothly each period at the rate of

interest. In this Hotelling scenario, we assume that firms have perfect information about the

price path. We then calculate the difference in total abatement investment costs between the

two scenarios, having constrained total emissions reductions to be the same in both cases.13

13Because of the discretization of the state space, we cannot always achieve a given level of emissions
reduction exactly following this approach. In practice, therefore, we calculate the total emissions reduction
and total abatement investment cost from a sequence of smoothly increasing initial prices and then plot a
curve from these Hotelling emissions-cost pairs.
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