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The Effect of Faculty Research on Student Achievement  

 

Abstract: The effect of faculty research on university student learning has long 

been the subject of intense debate. Previous studies have been limited in 

informing this debate because they use subjective or non-standardized 

measures of university student learning, focus on correlation rather than 

causation, and lack generalizability. Relying on unique, nationally 

representative data on students and faculty from four-year research universities 

in China and Russia as well as an identification strategy that utilizes within-

student variation, we estimate the impact of faculty research on objective, 

standardized measures of student achievement. Results show that faculty 

research has a negative and statistically significant impact on student 

achievement.  

 

 

The effect of faculty research engagement on teaching quality and student learning has 

been the subject of intense debate for centuries (Humboldt 1970; Newman 1853; Feldman 1987; 

Hattie and Marsh 1996; Prince, Felder, and Brent 2007). Conventional wisdom among faculty 

and university administrators is that research complements teaching (Neumann 1992; Smeby 

1998; Robertson and Bond 2001). By engaging in research, faculty can ostensibly provide 

students with up-to-date, advanced knowledge and stimulate positive attitudes towards learning 

(Neumann 1992). Others posit that, given trade-offs in the allocation of time and energy across 

research and teaching activities, faculty research engagement may have a negative or negligible 

effect on teaching quality and student learning (Fox 1992; Linsky and Straus 1975). Critics 

further argue that the higher pecuniary benefits and prestige tied with research as opposed to 

teaching may lead faculty to overinvest in research activities (Tuckman and Hagemann 1976; 

Cech 2003). They contend that universities need to prioritize teaching directly and not assume 

that a system that primarily rewards research engagement will naturally result in high-quality 

teaching (Nature Editorial 2010). 
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Five decades of empirical investigation have not settled the debate (Feldman 1987; Hattie 

and Marsh 1996; Prince, Felder, and Brent 2007; Figlio and Schapiro, 2017). Meta-analytic 

reviews of the quantitative literature find a “zero correlation” between research engagement and 

teaching quality (Hattie and Marsh 1996). Past studies are limited, however, in that they examine 

the relationship using subjective or non-standardized measures of teaching quality and student 

learning (Hattie and Marsh 1996; Galbraith and Merrill 2012). Most measures of student learning 

are self-reported, subject to bias (Galbraith and Merrill 2012; Shevlin et al. 2000; Felton, 

Mitchell, and Stinson 2004), and uncorrelated with student learning in the long run (Carrell and 

West 2010). An equally fundamental problem is that studies do not use causal identification 

strategies to estimate the impact of faculty research engagement on student learning. In 

particular, past studies do not account for a classic selection bias problem in the educational 

research literature: the non-random sorting of students across different instructors (Hanushek and 

Rivkin 2010). A third problem is that prior studies usually focus on one or a small number of 

institutions (Figlio and Schapiro 2017). The results of these studies therefore lack in 

generalizability. 

The purpose of this study is to examine the impact of faculty research engagement on 

student achievement. We estimate impacts using a unique dataset that we collected from 

nationally representative (random) samples of undergraduate students in science, technology, 

engineering, and mathematics (STEM) majors in China and Russia. A strong foundation in 

STEM is believed to be important for national economic productivity and innovation (Augustine 
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2005). Policymakers and researchers from around the world have therefore made teaching and 

research in STEM majors a top priority (Augustine 2005; Lucena et al. 2008).  

 

II. Data 

The dataset was collected from nationally representative samples of Electrical 

Engineering (EE) programs in China and nationally representative samples of EE and Computer 

Science (CS) programs in Russia. In China, we first chose five provinces that represented 

China’s northern (Beijing and Shandong), central (Henan and Shaanxi), and southern (Sichuan) 

regions as well as its economically more developed (Beijing ranked 2nd in GDP per capita out of 

31 provincial-level administrative divisions), mid-developed (Shandong and Shaanxi ranked 10th 

and 14th) and less developed (Sichuan and Henan ranked 22nd and 24th) regions (National Bureau 

of Statistics of China 2015). From each of the five provinces, we took a simple random sample 

of 6 universities from a list of all universities in each province that offered bachelor’s degree 

programs in CS and EE. In Russia, we took a simple random sample of 34 universities from a list 

of all universities nationwide that offered bachelor’s degree programs in CS and EE. For both 

China and Russia, we further limited the sample to universities with CS and EE programs that 

taught math and physics courses to students in their first two years.1 Altogether, we sampled 802 

electrical engineering (EE) students from 28 public four-year universities in China and 580 EE 

and computer science (CS) students from 29 public four-year universities in Russia. In addition, 

we surveyed the faculty that taught students math and physics courses in the first two years of 

university.  

 
1 The math and physics courses were virtually all taught in the first two years of these bachelor’s 

degree programs. 
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Students were surveyed and tested in late November and early December 2015, at the 

beginning of the third year of their undergraduate studies. Trained enumerators administered 

valid and reliable math and physics exams to students in a timed and controlled environment 

(Kardanova et al. 2016). We standardized exam scores using the mean and standard deviation 

(SD) of scores within each subject. After the exams were completed, students provided 

information about their age, gender, major, and socioeconomic background (Appendix Table 1).  

Faculty were surveyed near the same time as students. We asked faculty to report the 

number of publications (defined as the total number of published academic journal articles, 

monographs, and edited volumes) from the last three years. Following the literature (Hattie and 

Marsh 1996), we used the average number of publications per year as a measure of faculty 

research engagement. We further log transformed this variable to account for the long tail in 

publication rates where most professors produce few publications and a few produce many. 

Details and summary statistics for the indicator are located in the Appendix (Appendix Table 2).  

A range of faculty professional background characteristics were collected to serve as 

controls in our analyses. Faculty reported their age, gender, and educational background. They 

also reported their academic title, whether they were full or part time faculty, and years of 

teaching experience at the university level. Based on faculty responses, we created dummy 

variables for whether faculty attended elite universities for their terminal degree program, and 

whether they had a terminal degree major in the subject (math or physics) they were teaching. 

We further broke down the years of teaching variable into categorical dummies to allow for 

potential nonlinearities in the relationship between teaching experience and student achievement 

(Clotfelter, Ladd, and Vigdor 2007; see Appendix Table 2). 
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We matched students to their respective math and physics instructors. Following the 

economics literature, we created a composite faculty vector for each student that averaged all of 

the student’s instructor characteristics weighted by the respective credit hours allocated to each 

instructor’s course (E. Bettinger and Long 2005; E. P. Bettinger and Long 2010). Each student 

was thus observed twice in our dataset: once with a math score and composite math faculty 

vector and once with a physics score and composite physics faculty vector.  

 

II. Statistical Approach 

Our main specification was a cross-subject student fixed effects model that exploits 

variation across math and physics subjects within students. Cross-subject student fixed effects 

models minimize potential bias induced by the non-random assignment of students across classes 

and schools. We are thus able to better identify causal effect estimates by only utilizing the 

variation that exists across different subjects (e.g. math and physics) within the same student 

(Angrist and Pischke 2008).  Cross-subject student fixed effects models are frequently used in 

the econometric literature (e.g. Dee 2005; Dee 2007; Clotfelter, Ladd, and Vigdor 2010; 

Kingdon and Teal 2010; Lavy 2015; Rivkin and Schiman 2015).  

In our model, we compare outcomes within the same student in different subjects, 

controlling for other factors that may differ across these subjects. By utilizing this variation, the 

model controls for all factors which are constant across subjects and which may confound the 

relationship between faculty research engagement and student achievement. This includes 

unobserved student-level factors such as student innate ability and motivation. It also includes all 

administrative class and school level factors that do not vary across subjects, thus accounting for 

potential non-random assignment of students to administrative classes and schools. To further 
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eliminate potential sources of selection bias, we controlled for a number of faculty characteristics 

that differed across math and physics within each student. We also accounted for preexisting 

variation in cross-subject achievement by controlling for the average math and physics 

achievement levels of cohorts of entering freshman in the same department.  

In our specific context, the cross-subject student fixed effects model takes the first 

difference between math and physics subjects (scores and corresponding determinants) within 

each student. By doing so, the specification eliminates the confounding influence of unobserved 

subject-invariant factors. The specification is written as follows: 

(𝑦𝑝𝑖 − 𝑦𝑚𝑖) = 𝛽(𝐹𝑅𝑝 −𝐹𝑅𝑚) + 𝜆(𝑍𝑝 −𝑍𝑚) + 𝜂(𝑋𝑖 − 𝑋𝑖) + 𝛾(𝐴𝑝𝑖 −𝐴𝑚𝑖) + 𝜅(𝑆 − 0) + (𝜇𝑖 − 𝜇𝑖) + (𝜖𝑝𝑖 − 𝜖𝑚𝑖) (1) 

where 𝑦𝑚𝑖 and 𝑦𝑝𝑖 are a student’s standardized scores in math and physics. Similarly, 𝐹𝑅𝑚 and 

𝐹𝑅𝑝 are the indicators for faculty research engagement for math and physics instructors. 𝑍𝑚 and 

𝑍𝑝 consists of observed faculty-level determinants of student scores for math and physics. 𝑋𝑖 is a 

vector of student characteristics that vary across students but not across subjects. 𝐴𝑚𝑖 and 𝐴𝑝𝑖 

represent baseline achievement levels in math and physics. 𝑆 is a dummy variable indicating 

whether the subject in question is physics (as opposed to math). 𝑢𝑖 is an unobserved student 

effect that does not vary between subjects. Finally, 𝜖𝑚𝑖  and 𝜖𝑝𝑖 are student-level error terms. 

Non-subject specific student, administrative class, and school level characteristics (both observed 

and unobserved) are canceled out and do not induce bias in the estimation of 𝛽.  

Conditional on a few assumptions, the student fixed effects model produces unbiased 

estimates of the effect of faculty research engagement (𝛽). The first assumption is that the way in 

which faculty research engagement affects student performance is similar across both math and 

physics subjects. We included the subject (physics or math) dummy variable (𝑆), to control for 

the situation in which faculty research engagement influences student achievement more in one 
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subject than in the other. The second assumption is that the remaining error term 𝜖𝑝𝑖 − 𝜖𝑚𝑖  in 

equation 1 is uncorrelated with the faculty research engagement 𝛽(𝐹𝑅𝑝 − 𝐹𝑅𝑚). This 

assumption implies that unobserved student or faculty characteristics that vary across the two 

subjects should not be jointly correlated with faculty research engagement and student 

achievement (Schwerdt and Wuppermann 2011). To account for possible correlations, we 

control for preexisting variation in achievement levels across subjects. We also control for a 

number of faculty-level cross-subject factors. These factors are documented in the faculty level 

summary statistics in Appendix Table 2. We also adjust standard errors for clustering at the class 

level (Dee 2007). 

As a robustness check, and for the sake of comparability with the existing literature, we 

also estimate the following ordinary least squares (OLS) model: 

𝑦𝑠𝑖 = 𝛽𝐹𝑅𝑠 + 𝜆𝑍𝑠 + 𝜂𝑋𝑠 + 𝛾𝐴𝑠𝑖 + 𝜅𝑆 + 𝜇𝑖 + 𝜖𝑠𝑖 (2) 

Equation 2 yields causal estimates of the effect of faculty research engagement on student 

achievement under the assumption of strong ignorability (Imbens and Rubin 2015). Namely, if 

𝑦𝑠𝑖 and 𝐹𝑅𝑠, conditional on a rich set of student, class and faculty background characteristics 

including baseline test scores, are uncorrelated with the combined error term 𝜇𝑖 + 𝜖𝑠𝑖, estimates 

of 𝛽 capture the causal effect of faculty research engagement on student achievement. However, 

unobserved factors such as a student’s motivation may still confound the relationship between 

faculty research engagement and student achievement. Like with the cross-subject student fixed 

effects analyses, we adjust standard errors for clustering at the class level.   
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Finally, we perform robustness checks to account for missing faculty data.2 Specifically, 

we exclude administrative classes from our analytical sample if they were missing more than 

20%, 15% and 10% of faculty. For each robustness check, we find effect sizes that are similar in 

magnitude and direction, albeit with reduced statistical significance due to the reduction in 

sample size.3 Taken together, the robustness checks suggest that missing data only have a 

marginal influence on our main results. 

 

III. Results 

Results show that faculty research engagement has a negative and statistically significant 

effect on student achievement (Table 1). According to the student fixed effects analysis, a 

standard deviation (2.98 publications a year) increase in faculty publications reduces student 

achievement by 0.073 SDs (Column 1).4  

Results are substantively the same under different specifications. Results using the 

untransformed publications per year variable are substantively similar to the results we get using 

the log-transformed variable (Table 2). Slight reductions in statistical significance are likely 

associated with the heavy tail of the distribution of the untransformed publications per year 

variable. The results from the OLS model are also largely consistent with the results from the 

student fixed effect model (Table 3). The coefficients on faculty research engagement are similar 

in effect size to those of the student fixed effects model for China, Russia, and both countries 

 
2 The faculty response rate was 87.9% for China and 85.5% for Russia. Most non-responders 

were on leave, had recently retired, or were visiting a foreign institution. 
3 Results omitted for the sake of brevity but available upon request. 
4 The reported R2 statistic only reflects the proportion of within-student variance explained. It 

does not report the variance reduction induced by adding the student fixed effects. 
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combined. The coefficients for both countries combined and for Russia are statistically 

significant at the 10% and 5% levels. 

We also examined whether research engagement had nonlinear impacts on student 

achievement. We assessed potential nonlinearities with a component-plus-residual plot (White 

1996). Figure 1 shows the plots with the log of publications per year on the horizontal axis. 

Given that the LOESS smoothed line is highly linear, we find no indication of a nonlinear 

impact. 

Although smaller than the significant effect sizes typically reported in studies of pre-

tertiary education, the estimated effect sizes reported in this study are non-trivial in the context of 

higher education. Multiple studies show that a one standard deviation increase in faculty value-

added increases student achievement by 0.05 to 0.06 SDs (Carrell and West 2010; Hoffmann and 

Oreopoulos 2009). Furthermore, our results may be underestimates as student fixed effects 

estimates tend to control for too much variation in the dependent variable and are susceptible to 

attenuation bias arising from measurement error in the independent variable (Angrist and 

Pischke, 2008). 

Our results provide the first systematic evidence that, in STEM disciplines at a wide 

range of universities in two key countries, there is a significant and non-trivial tradeoff between 

research and teaching. Policymakers and university administrators that are concerned about the 

tradeoff may wish to more closely monitor how to balance research and teaching activities within 

their institutions. On the one hand, they may wish to readdress the distribution of faculty 

incentives between teaching and research in an effort to find an optimal tradeoff. On the other 

hand, they may wish to continue the trend of hiring faculty that specialize in teaching or 
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research, with the caveat that the presence of faculty that engage in both areas may serve other 

purposes such as attracting prospective students and faculty (Wood 1973).   
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Figures and Tables 

 

Figure 1: The component effect of publications per year (log) on standardized scores plus 

residuals. The dotted red line represents the component effect, and the solid green line is a 

LOESS line. 
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Table 1: The effect of faculty research engagement (publications per year, log transformed) 

on student achievement (student fixed effect model) 

 (1) (2) (3) 

 

Student Fixed 

Effects Model 
(China + Russia) 

Student Fixed 

Effects Model 
(China) 

Student Fixed 

Effects Model 
(Russia) 

Number of publications per year (log) 
-0.115 -0.136 -0.138 

(0.046) (0.067) (0.065) 

Physics subject dummy (opposed to math) 
0.021 -0.019 -0.062 

(0.034) (0.044) (0.062) 

Achievement levels of entering freshman (math and 

physics) 

0.411 0.267 0.504 

(0.120) (0.126) (0.191) 

Faculty level variables    

   
Female 

-0.175 -0.142 -0.089 

(0.063) (0.093) (0.079) 

Fulltime faculty 
-0.037 -0.056 -0.042 

(0.084) (0.144) (0.101) 

Faculty has PhD degree 
0.102 0.061 0.402 

(0.093) (0.104) (0.383) 

Full Professor (compared to Lecturer or RA) 
-0.010 -0.078 -0.157 

(0.094) (0.107) (0.362) 

    Associate Professor (compared to Lecturer or RA) 
-0.062 -0.035 -0.460 

(0.080) (0.093) (0.373) 

Went to elite university for highest degree obtained 
-0.119 -0.048 -0.124 

(0.070) (0.120) (0.099) 

Majored in math or physics for highest degree 
-0.029 -0.066 0.094 

(0.069) (0.096) (0.147) 

Number of years teaching (middle tercile in country) 
-0.124 0.086 -0.378 

(0.118) (0.122) (0.164) 

Number of years teaching (upper tercile in country) 
0.025 0.131 -0.092 

(0.081) (0.114) (0.109) 

Constant 
0.415 0.551 0.360 

(0.151) (0.249) (0.286) 

Observations 2668 1570 1098 

R2 0.051 0.031 0.130 

Notes:  

1. Standard errors in parentheses.  
2. Standard errors corrected for clustering at the class level. 

3. The R2 reported denotes the proportion of within-student variance explained. The total proportion of 

(within- and across-student) variance explained is above 0.75 for all 3 models. 
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Table 2: The effect of faculty research engagement (publications per year, not log-

transformed) on student achievement (student fixed effect model) 

 (1) (2) (3) 

 

Student Fixed 

Effects Model 

(China + Russia) 

Student Fixed 

Effects Model 

(China) 

Student Fixed 

Effects Model 

(Russia) 

Number of publications per year 
-0.042 -0.045 -0.052 

(0.018) (0.025) (0.023) 

Physics subject dummy (opposed to math) 
0.018 -0.025 -0.062 

(0.033) (0.045) (0.059) 

Achievement levels of entering freshman (math and physics) 
0.434 0.290 0.533 

(0.118) (0.124) (0.194) 

Faculty level variables    

   
Female 

-0.185 -0.151 -0.101 

(0.063) (0.091) (0.076) 

Fulltime faculty 
-0.045 -0.037 -0.038 

(0.085) (0.154) (0.098) 

Faculty has PhD degree 
0.112 0.072 0.429 

(0.095) (0.105) (0.399) 

Full Professor (compared to Lecturer or RA) 
-0.005 -0.082 -0.151 

(0.099) (0.114) (0.384) 

    Associate Professor (compared to Lecturer or RA) 
-0.075 -0.034 -0.510 

(0.082) (0.092) (0.390) 

Went to elite university for highest degree obtained 
-0.129 -0.059 -0.125 

(0.071) (0.121) (0.101) 

Majored in math or physics for highest degree 
-0.039 -0.068 0.070 

(0.069) (0.100) (0.132) 

Number of years teaching (middle tercile in country) 
-0.125 0.078 -0.381 

(0.117) (0.122) (0.156) 

Number of years teaching (upper tercile in country) 
0.016 0.112 -0.102 

(0.083) (0.117) (0.110) 

Constant 
0.433 

(0.153) 

0.517 

(0.253) 

0.407 

(0.286) 

Observations 2668 1570 1098 

R2 0.054 0.030 0.140 

Notes:  

1. Standard errors in parentheses.  

2. Standard errors corrects for clustering at the class-level. 
3. The R2 reported denotes the proportion of within-student variance explained. The total proportion of (within- and 

across-student) variance explained is above 0.75 for all 3 models. 
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Table 3. The effect of faculty research engagement (publications per year) on student achievement 

(OLS regression controlling for the full set of covariates) 

 (1) (2) (3) 

 

Student Fixed 

Effects Model 

(China + Russia) 

Student Fixed 

Effects Model 

(China) 

Student Fixed 

Effects Model 

(Russia) 

Number of publications per year 
-0.095 -0.096 -0.138 

(0.050) (0.078) (0.067) 

Physics subject dummy (opposed to math) 
0.028 -0.019 -0.062 

(0.034) (0.050) (0.065) 

Achievement levels of entering freshman (math and physics) 
0.420 0.251 0.504 

(0.126) (0.151) (0.198) 

Student level variables 
   

   

    Age 
-0.036 -0.053 -0.019 

(0.016) (0.024) (0.015) 

    Female 
-0.033 0.023 -0.124 

(0.040) (0.052) (0.057) 

    Father had gone to college 
0.039 -0.010 0.064 

(0.044) (0.088) (0.049) 

    Mother had gone to college 
0.038 0.060 0.041 

(0.053) (0.092) (0.068) 

    Household assets index 
-0.021 -0.018 -0.026 

(0.018) (0.022) (0.023) 

Faculty level variables    

   
Female 

-0.148 -0.099 -0.089 

(0.059) (0.082) (0.082) 

Fulltime faculty 
-0.005 0.160 -0.042 

(0.091) (0.318) (0.105) 

Faculty has PhD degree 
0.048 0.026 0.402 

(0.100) (0.112) (0.397) 

Full Professor (compared to Lecturer or RA) 
0.032 -0.056 -0.157 

(0.110) (0.128) (0.375) 

    Associate Professor (compared to Lecturer or RA) 
-0.001 0.030 -0.460 

(0.089) (0.108) (0.386) 

Went to elite university for highest degree obtained 
-0.101 -0.016 -0.124 

(0.070) (0.121) (0.102) 

Majored in math or physics for highest degree 
-0.031 -0.046 0.094 

(0.069) (0.099) (0.153) 

Number of years teaching (middle tercile in country) 
-0.098 0.124 -0.378 

(0.122) (0.128) (0.170) 

Number of years teaching (upper tercile in country) 
0.061 0.201 -0.092 

(0.086) (0.124) (0.113) 

Constant 
1.093 1.358 0.743 

(0.374) (0.644) (0.449) 

Observations 2642 1544 1098 

R2 0.516 0.382 0.395 

Notes:  

1. Standard errors in parentheses.  

2. Standard errors corrected for clustering at class level.    
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Appendix A: Sampling and Implementation Details 

 

The national samples of universities represented the range of elite and non-

elite institutions in each country. In China, “elite” universities were defined on the 

basis of their designation as Project 985 or 211 universities. Project 985 

universities are the top 39 universities in China whereas Project 211 universities 

are the top 112 universities in China, and both have received preferential national 

government funding. In Russia, “elite” universities were defined as National 

Research Universities, “5-100” universities, and Federal universities. Altogether, 

we sampled 6 elite and 22 non-elite universities in China as well as 6 elite and 23 

non-elite universities in Russia. 

We next randomly sampled students within CS and EE departments within 

the sample universities. We first identified EE departments in China.1 After 

identifying the EE departments, we randomly sampled 2 EE departments from 

each sample university.2 We then randomly sampled 1 administrative group or 

“class” of year 3 (junior year) students within each department. All students 

within the sampled classes were selected for participation in the study.  

Similarly, we identified CS departments and EE departments in Russia.3 

After identifying the departments, we randomly sampled 3 CS departments and 3 

 
1 The EE departments in China included Electrical Engineering, Electrical 

Engineering and Automation, Measurement and Control Technology and 

Instrumentation, Electronic Science and Technology, Electronic and Information 

Engineering, Electronic and Information Science and Technology, 

Communication Engineering, Optoelectronic Information Science and 

Engineering, Microelectronics Science and Engineering), and Automation 
2 If there was only one EE department in the university, we sampled only that 

department. 
3 The CS departments in Russia include IT and Computer Facilities, 

Informational Systems and Technologies, Applied IT, Program Engineering, 

Mathematics and Computer Science, Fundamental IT and Information 

Technologies, Software and Administration of Information Systems, Information 
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EE departments from each university.4 We then randomly sampled 1 

administrative group or class of year 3 (junior year) students within each 

department.5 All students within the sampled classes were selected for 

participation in the study. 

The survey was conducted in late November and early December of 2015. 

Within each administrative class, one half of the sampled students were randomly 

chosen to take two closely proctored exams: math and physics. The math and 

physics exams each contained 35 items and lasted for 40 minutes. The different 

subject exams were given to examinees in random order to avoid fatigue-induced 

bias in exam results. Details about the construction and suitability of the math and 

physics exams can be found in Kardanova et al. (Kardanova et al. 2016). 

After the exams were completed, students responded to a short questionnaire. 

Students were asked about their age, gender, major, parental education attainment, 

and several items of value in the home. We used the information on household 

and polychoric principal components analysis to create a proxy for wealth or 

socioeconomic status (Kolenikov and Angeles 2009). Student participation rates 

for both the questionnaire and the exams were extremely high (95% for China and 

87% for Russia). Summary statistics for the student level variables are presented 

in Appendix Table 1.  

 

Security. The EE departments in Russia include Information and Communication 

Technology and Communication Systems, Design and Technology of Electronic 

Instrumentation, Radio Engineering, Electronics and Nanoelectronics, Electrical 

Power and Electric Engineering, Laser Equipment and Laser Technologies, 

Optics Engineering, Instrument Construction, Photonics and Optoinformatics. 
4 If there were less than three EE departments in the university, we sampled all 

departments. 
5 In both China and Russia, we also sampled one class of year 1 (freshman) 

students from each department. The test scores for these freshman students served 

as control variables in our analyses. 
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Appendix B: Faculty Data 

 

We collected faculty data in a follow up online survey after the main survey 

of students. All EE students in China and Russia and a subset of CS students in 

Russia are expected to take mandatory courses in math and physics in their first 

two years of university. By cross-referencing administrative records and a section 

of our student questionnaire where students wrote down the names of their math 

and physics instructors, we compiled a list of all faculty that had taught math and 

physics courses to the sample students in the previous years of college. We 

subsequently asked faculty members to answer a questionnaire. Faculty reported 

their gender, academic title, education background, whether they worked full time 

or part time, whether they had a PhD degree, and how much they published in the 

past 3 years. Summary statistics for these faculty level variables are in Appendix 

Table 2.  

We then matched students to their respective math and physics instructors. In 

almost all cases, students took multiple courses in math and physics and were 

therefore matched to multiple math and physics instructors. Following the 

economics literature, we created one synthetic faculty member for each student 

for each subject(E. Bettinger and Long 2005; E. P. Bettinger and Long 2010). The 

synthetic faculty member for math averaged all of the student’s math instructor 

characteristics weighted by the respective credit hours allocated to each 

instructor’s course. Similarly, the synthetic faculty member for physics averaged 

all of the student’s physics instructor characteristics weighted by the respective 

credit hours allocated to each instructor’s course. These operations resulted in a 

dataset where each student was observed twice: once for math (with variables for 

math achievement and math faculty characteristics) and once for physics (with 

variables for physics achievement and physics faculty characteristics).  
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Appendix Table 1: Student level summary statistics 

 Both countries  China  Russia 

 N Mean St. Dev.  N Mean St. Dev.  N Mean St. Dev. 

Math subject test score 1382 0.000 1.000  802 0.441 0.933  580 -0.610 0.736 

Physics subject test score 1382 0.000 1.000  802 0.368 0.976  580 -0.508 0.788 

Grade 1 student achievement in 
math 

1334 -0.193 0.843  785 0.429 0.450  549 -1.082 0.304 

Grade 1 student achievement in 
physics 

1334 -0.287 0.747  785 0.207 0.503  549 -0.993 0.384 

Age 1369 22.012 1.236  789 22.336 1.099  580 21.572 1.276 

Female 1382 0.269 0.444  802 0.296 0.457  580 0.233 0.423 

Father has college education 1382 0.391 0.488  802 0.182 0.386  580 0.681 0.466 

Mother has college education 1382 0.413 0.493  802 0.138 0.346  580 0.793 0.405 

Household asset index 1379 -0.007 1.300  800 -0.608 1.251  579 0.823 0.821 
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Appendix Table 2: Faculty level summary statistics 

 Both countries  China  Russia 

 N Mean Std. Dev.  N Mean Std. Dev.  N Mean Std. Dev. 

Number of publications per year 

(log) 
619 0.810 0.674  277 0.760 0.626  342 0.851 0.709 

Number of publications per year 619 1.953 2.984  277 1.721 2.675  342 2.141 3.205 

Female 634 0.442 0.497  283 0.466 0.500  351 0.422 0.495 

Full-time faculty 628 0.909 0.288  283 0.965 0.185  345 0.864 0.344 

Faculty has PhD degree 633 0.638 0.481  283 0.371 0.484  350 0.854 0.353 

Full Professor 632 0.171 0.377  283 0.141 0.349  349 0.195 0.397 

Associate Professor 632 0.538 0.499  283 0.399 0.491  349 0.650 0.478 

Assistant Professor, Lecturer, or RA 632 0.291 0.455  283 0.459 0.499  349 0.155 0.362 

Went to elite university for highest 

degree obtained 
593 0.609 0.488  282 0.702 0.458  311 0.524 0.500 

Majored in math or physics for 

highest degree 
591 0.663 0.473  282 0.635 0.482  309 0.689 0.464 

Number of years teaching (bottom 

tercile in country) 
631 0.288 0.453  282 0.262 0.441  349 0.309 0.463 

Number of years teaching (middle 

tercile in country) 
631 0.372 0.484  282 0.422 0.495  349 0.332 0.472 

Number of years teaching (upper 

tercile in country) 
631 0.339 0.474  282 0.316 0.466  349 0.358 0.480 
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