
Highly Disaggregated Land Unavailability∗

Chandler Lutz
U.S. Securities and Exchange Commission

Ben Sand
York University

Land Unavailability Data:
https://github.com/ChandlerLutz/LandUnavailabilityData

October 31, 2019

Abstract

We use new large-scale data techniques and comprehensive high resolution
satellite imagery for the contiguous United States to construct novel datasets
that capture the geographic determinants of house prices and housing supply:
The percentage of undevelopable land – Land Unavailability – and its comple-
ment, buildable land. Our Land Unavailability measure expands on the popular
proxy from Saiz (2010) by (1) using higher resolution satellite imagery from
the USGS; (2) more accurate geographic boundaries; and (3) multiple levels of
disaggregation. Using highly disaggregated data we show that Land Unavailabil-
ity is uncorrelated with housing demand proxies, validating Land Unavailability
as an instrument for house prices; that the geographic components of Land Un-
availability, especially in combination with modern machine learning techniques,
provide substantial incremental predictive power for house prices; and previous
studies that employed limited land unavailability datasets underestimated the
impact of house prices on unemployment during the Great Recession by 30%.
With our buildable land dataset we then test the supply side speculation theory
that aims to explain the previously puzzling large house price growth in tra-
ditionally elastic housing markets. In line with theory, results document that
housing markets with intermediate amounts of buildable land, those that are
elastic in the short run but plausibly inelastic in the long run, experienced ab-
normally large house price growth during the 2000s.
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1 Introduction

Housing is the largest financial asset for the typical US household (Tracy and Schneider,

2001). Economists have thus naturally attempted to understand the variation in house

prices and connect their fluctuations to the causes and consequences of the financial

crisis.1 A key insight emanating from the housing literature posits that given a demand

shock, ceteris paribus, house price growth across housing markets will be linked to the

elasticity of supply.2 More bluntly, in the face of a common positive demand shock,

cities with a more rigid housing supply will experience larger house price increases.

Geographic impediments to construction, along with regulatory constraints, constitute

key factors that contribute to housing supply inelasticity. In the context the nationwide

boom during the 2000s, this theory predicts relatively damped house growth in areas

with elastic housing supply (e.g. Wichita, Kansas) and substantially higher growth in

so-called inelastic markets (Mian and Sufi, 2009).

With this framework in mind, economists sought to explain the financial crisis and

the Great Recession through cross-sectional differences in house price growth. Noting

that several potential sources of endogeneity obfuscate such economic relationships, re-

searchers pursued exogenous variation and subsequently an instrument in their search

for causal inference. A popular instrument in the housing literature is the topological

Land Unavailability proxy of Saiz (2010), a key component in the determination of

housing market elasticity.3 The Saiz Land Unavailability measure is constructed by

computing the percentage of land that is not developable due to either (1) a steep

slope (e.g. mountainous land) or (2) water or wetlands (e.g oceans, lakes, etc.). As

1See Mian and Sufi (2009, 2011, 2014). Economists have also connected fluctuations in house
prices to business cycle dynamics (Leamer, 2007), household consumption decisions (Bostic et al.,
2009; Mian et al., 2013; Mian and Sufi, 2015; Aladangady, 2017), the efficacy of fiscal and monetary
policy (Agarwal et al., 2017; Gabriel and Lutz, 2014; Gabriel et al., 2017), education and life cycle
choices (Charles et al., 2015), industry composition and wages (Beaudry et al., 2012, 2014), firm
formation (Adelino et al., 2015), corporate investment (Chaney et al., 2012), and financial market
behavior (Lutz et al., 2016; Chetty et al., 2017).

2See Saiz (2010); Davidoff (2013, 2016) and the references therein.
3Saiz’s paper more broadly studies cross-geography housing market elasticities using both land

unavailability and a proxy for housing market regulation. Yet the proxy for housing market regulation
is likely endogenous, leaving topographical Land Unavailability as the candidate instrument.
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slope, water, and wetlands are determined by nature, this yields a plausibly exogenous

instrument for house price changes. Using this instrument economists typically pursue

a two-stage least squares (2SLS) approach where they regress house price growth on

Land Unavailability in the first stage and then the outcome of interest on predicted

house price growth in the second stage.4 If Land Unavailability is exogenous, 2SLS

then yields the causal relationship between house prices and the outcome of interest.

This approach, however, and the exogeneity of Land Unavailability more broadly, has

recently been questioned (Davidoff, 2016), clouding our understanding of the financial

crisis and the Great Recession as well as potentially rendering a plethora studies that

measure the impacts of house prices during the 2000s invalid.5 Further, the elasticity-

house price relationship failed to explain the spectacular 2000s house price growth in

many traditionally elastic Sand State markets.

In this paper, we address these issues through new, large-scale datasets based on

precise satellite imagery that capture the geographic determinants of housing supply.

Specifically, we first construct plausibly exogenous Land Unavailability due to water,

wetlands, and steep sloped terrain as well as the amount of buildable land at the start

of the housing boom (this proxy accounts for land unavailable due to water, wetlands,

steep sloped terrain, previous construction, and parks). Our robust approach allows

for these measures to be compiled at various levels of geographic disaggregation down

to the zip code level. Broadly, our work extends the popular Land Unavailability

proxy of (Saiz, 2010) in several directions. For example, we use more accurate satellite

data that is now available from the United States Geographical Survey (USGS) and

also exploit more precise and geo-spatially consistent polygon areas in our calculations.

This easily allows us to extend our computational method to various units of geographic

disaggregation.

We first examine the correlation between Land Unavailability and proxies for hous-

4In a related approach, researchers also interact Saiz Unavailability with national factors corre-
lated with demand growth, such as national interest rates, national house prices, or proxies for labor
demand shocks. See for example Chaney et al. (2012), Chetty et al. (2017), or Aladangady (2017).

5Most of the studies listed in footnote 1 use Saiz elasticity to pursue causal inference.
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ing demand as the use of Land Unavailability as an instrument depends on its exogene-

ity relative to demand factors. As noted above, recent research instead has suggested

that Land Unavailability is not exogenous, potentially invalidating several studies that

use it as an instrument for causal inference.6 Criticisms of the use of Land Unavailabil-

ity as an instrument contend households’ demand with respect to unobserved demand

factors related to amenities, the economics of agglomeration associated with higher

education, and labor demand shocks have been increasing and thus cannot be ac-

counted for through standard region fixed effects. Thus positive correlation between

Land Unavailability and the foregoing housing demand factors would imply that Land

Unavailability is correlated with these unobserved demand changes and subsequently is

not a valid instrument for house prices. Yet previous attempts to assess the exogene-

ity of Land Unavailability suffer from an intrinsic sample selection issue: The only

previously available Land Unavailability proxy from Saiz (2010) used MSAs, where

MSA instantiation requires a population of 50,000 or more. MSAs thus do not provide

complete coverage of the United States and are based on historical delineations of

development. Using complete coverage of the United States and unique, highly local

geographic data, we find that Land Unavailability is not positively correlated with

amenities; the portion of people who are college educated or foreign born in 2000; or

annual Bartik (1991) labor demand shocks over the 2000s. Together, these results

validate the use of Land Unavailability as an instrument for house prices during the

2000s.

With our new dataset we also examine the predictive power of Land Unavailability.

Not only do we re-consider the 2002 - 2006 boom and the 2006 - 2009 bust, but also

the recent 2011 - 2017 post-Great Recession expansion. Establishing plausibly exoge-

nous predictors for house price dynamics is increasingly important given the sustained

volatility in local housing markets (Leamer, 2007; Ferreira and Gyourko, 2011; Sinai,

2012; Glaeser and Gyourko, 2018). Researchers clearly would like to employ such

predictors in 2SLS designs, while policymakers need to predict housing market re-

6See Davidoff (2016) and the references in footnote 1.
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sponses to economic shocks. We evaluate the predictive power of Land Unavailability,

its components (e.g. slope, water, and wetlands), and various geographies, using both

traditional and modern machine learning techniques. We find that the inclusion of the

components of Land Unavailability increases predictive power and that combination of

the Land Unavailability, its components, and the modern machine learning techniques

produces substantially more accurate predictions than have previously been used in

the literature.

Using our satellite imagery, we also construct an important new dataset that pre-

cisely measures the amount of buildable land in 2001, prior to the 2000s housing boom,

within a geographic polygon. Buildable land is the amount of land available for devel-

opment, after removing existing development, steep sloped terrain, water, wetlands,

and parks. In a sense, buildable land is the complement to our Land Unavailability,

but also accounts for previous development and parks. We then use this dataset to

examine one of the largest puzzles in housing finance: Why did traditionally elas-

tic housing markets, like Las Vegas, experience substantial house price growth even

though these markets had room for housing construction expansion? In particular,

we test the land supply side speculation theory of Nathanson and Zwick (2018). This

theory posits that homebuilders during the 2000s boom viewed traditionally elastic

housing markets with intermediate amounts of land available (e.g. Las Vegas and

Phoenix) as potentially inelastic in the long run. Homebuilders then proceeded to

bid up the prices of land in these intermediate markets and, as land is a key input

for home construction, prices increased along with construction. While Nathanson

and Zwick (2018) do provide anecdotal evidence in support of their theory, they were

unable to perform formal statistical tests as no comprehensive buildable land dataset

was previously available. In this paper, we undertake such tests and find that housing

markets with intermediate amounts of buildable land experienced large house price

booms during the 2000s, congruent with the supply side speculation theory.

Finally, we re-evaluate the impact of housing on unemployment during the Great

Recession through a replication and extension of Mian and Sufi (2014). Mian and
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Sufi find that large adverse housing net worth shocks negatively affected non-tradable

employment, a key consequence of the economic malaise during the 2000s. We first

replicate Mian and Sufi’s key results which use the Saiz elasticity proxy as an instru-

ment for house prices in their main causal regressions. We then extend their work using

our Land Unavailability dataset and also employ a new machine learning approach to

instrument variable (IV) estimation, the rigorous post-Lasso approach of Belloni et al.

(2012), Belloni et al. (2014), and Chernozhukov et al. (2016). Using our expansive

dataset in combination with the rigorous post-Lasso framework, we nearly double the

sample size of Mian and Sufi’s key regressions, likely reducing the 2SLS finite sample

bias (Angrist and Krueger, 2001), and exploit multiple potential instruments gener-

ated by our new data. Moreover, Land Unavailability is more likely to be exogenous

than the Saiz elasticity proxy used by Mian and Sufi (2014) as Saiz elasticity includes

housing market regulatory constraints that are often a consequence of house prices

(Davidoff, 2016; Wallace, 1988). Our results indicate that Mian and Sufi previously

underestimated the impact of housing net worth shocks on unemployment by 30 over

percent.

The rest of this paper is organized as follows: Section 2 describes the data; in

section 3 we provide an overview of the Saiz methodology; section 4 outlines the

construction of our Land Unavailability dataset; section 5 presents correlations between

Land Unavailability and housing demand factors during the 2000s; the predictive power

of Land Unavailability with regard to house prices is in section 6; section 7 develops

our buildable land dataset and tests the supply side speculation theory; our replication

and extension of Mian and Sufi’s analysis of employment during the Great Recession

is in section 8; and section 9 concludes.

2 Data Sources

The United States Geographical Survey (USGS) provides the two main datasets that

we use to measure slope, water, and wetlands land unavailability.7 The first is the

7https://viewer.nationalmap.gov/launch/
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USGS National Elevation Dataset (NED) 3DEP 1 arc-second Digital Elevation Model

(DEM). The 1 arc-second DEM data provide continuous coverage of the United States

at approximately a resolution of 30 meters.8 The original Saiz dataset uses 3 arc-

second DEM data with a resolution of approximately 90 meters. The DEM data allow

us to calculate slope files and hence the percentage of land unavailable due to a steep

slope. Our second main dataset is the USGS 2011 Land Cover Dataset.9 These data

use Landsat imagery to classify land use in the US. The relevant categories for Land

Unavailability are water (oceans, lakes, rivers, etc.) and wetlands. From the Land

Cover data, we measure the portion of undevelopable due to wetlands and water.

2.1 Other Data

In addition to the above data, our study also includes Shapefiles for various geographies

from the US Census Bureau and satellite imagery from Google Maps.

Our data also include a number of key housing and control variables: House prices

are from Zillow (hedonic house prices available down to the zip code level); from the

2000 US Census at the zip code level we retain the percentage of people with a college

education, percentage of foreign born, housing density; a zip code level amenities index

that aggregates information on access to restaurants and bars, retail shopping, public

transit and other amenities. From the County Business Patterns data we compute the

(Bartik, 1991) shock of labor demand. We also map the county Bartik Shock to the

zip code level using the Missouri Data Bridge.

3 A Review of the Saiz 2010 Methodology

The groundbreaking work of Saiz (2010) provides the foundation for this paper as it was

the first to use detailed satellite imagery and GIS methods to compute proxies of land

unavailability. Saiz (2010) uses the USGS 90 meter DEM to compute the percentage

of land unavailable due to a steep slope. Specifically, he notes that land with a slope

8For a sample file, see https://www.sciencebase.gov/catalog/item/

5903e5b0e4b022cee40c773d. The Coordinate Reference System (CRS) used for these data is
GRS80.

9For a sample, see https://www.sciencebase.gov/catalog/item/

581d5a13e4b0dee4cc8e5120. The CRS used for these data are NAD83.
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above 15 percent faces architectural impediments to construction. The second dataset

that Saiz uses is the 1992 Land Cover dataset. Using this dataset, combined with

digital contour maps, Saiz measures the percentage of land that is unavailable due to

oceans, lakes, rivers, etc. Saiz computes the percentage of unavailable land from a 50

kilometer radius around the centroid of each MSA’s first central city.

As an example of the geographies that Saiz uses within each MSA, we plot Google

satellite imagery for the Los Angeles-Long Beach MSA in figure 1. Here, the blue

outlined area represents the polygon boundary for the Los Angeles-Long Beach MSA.

The orange polygons are the central cities within the Los Angeles-Long Beach MSA

(Los Angeles, Long Beach, Pasadena, and Lancaster). The red dots are the centroids

of each central city polygon, and the red circle represents a 50 km radius around the

first central city centroid for the MSA (in this case, the Los Angeles central city). The

50 km circle around the first central city centroid is the area used by Saiz to assess

Land Unavailability. Clearly, the location of the first central city centroid determines

the land used in the calculation of Saiz unavailability: The Saiz circle with a 50 km

radius captures most of the Los Angeles area, but does not cover the central city

around the Lancaster and Palmdale areas, two cities with a combined 2000 population

of over 230,000, or eastern Los Angeles around Pomona. The Saiz circle also does not

cover the disjointed polygons representing the Catalina islands. More generally, larger

polygons are less likely to be covered by the Saiz circle.

Generally, the Saiz circles are going to under cover MSAs that span large geographic

areas, but cover more land area than comparatively smaller polygons. Obviously if

differences between MSA polygons and the Saiz circles are random, it will not bias

regression estimates that examine the relationship between the house price growth and

land unavailability computed using the foregoing technique. Unfortunately however,

MSAs in California and the Southwest generally are larger in geography and these areas

also experienced large house price growth in the 2000s. In contrast, in the Northeast for

example, MSAs are generally smaller and experienced lower housing volatility during

the 2000s. Figure 2 extends the above figures and plots all MSA polygons for the Saiz
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dataset in blue and the corresponding circles with a 50 km radius centered around

the first central city centroids in red. Clearly, MSAs in the Northeast are smaller and

well covered by the 50 km radius circles, while those in Southwest are much larger

compared to the circles.

4 Construction of Land Unavailability

A key aim of this paper is to calculate the percentage of undevelopable land in a

geographic area, where the levels geographic aggregation span MSAs, counties, com-

muting zones, zip codes, etc. We follow Saiz (2010) and use digital elevation model

and land cover data to compute land unavailability based on either steepness of slope

or presence of water. Yet our approach differs from Saiz as we buffer each geometric

polygon by 5 percent of land area, rather than compute a circle around the polygon’s

centroid. Using a buffer allows the topological area used in the construction of land

unavailability to more closely match the area of the polygon and also allows for a con-

sistent approach across different units of geographical aggregation (e.g. MSAs versus

zip codes). The 5 percent buffer is calculated as 5 percent of the square root of polygon

land area in meters.

For an instructive example, consider the map of the Los Angeles-Long Beach MSA

in figure 1. The yellow outline is a 5 percent buffer around the Los Angeles MSA and

represents the geographic boundary used to calculate land unavailability in this paper.

A number of observations are readily apparent in a comparison of the geographic areas

covered by the circle with a 50 km radius centered at the centroid (red) and buffered

polygon (yellow): (1) The buffered polygon provides complete coverage even though

the polygon is awkwardly shaped; (2) the buffered multi-polygon allows for disjointed

multi-polygons and buffers each individual polygon, allowing for islands that the US

Census agglomerates in geographic units; and (3) the buffered polygon extends to the

ocean and thus accommodates land unavailability when a polygon touches an ocean

or other large body of water not covered by the shapefile. This approach also easily

extends to various levels of geographic aggregation and hence is able to compute Land
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Unavailability at levels of aggregation used by economists and researchers.

Despite the differences in computational methods, our proxy for Land Unavailabil-

ity is highly correlated with that from Saiz (2010). Figure 3 shows a scatter plot of

our land unavailability measure compared with Saiz. The slope of 0.80 and and R2 of

0.70 highlight the similar nature of our two measures.

5 The Validity of Land Unavailability as an Instrument dur-

ing the 2000s

The use of Land Unavailability as an instrument relies on its exogeneity relative to

other proxies for housing demand. Specifically, if higher Land Unavailability is ex-

ogenous and predicts higher house price growth, then Land Unavailability should not

be positively correlated with factors of housing demand. In the literature, there has

been debate on this issue. Mian and Sufi (2011, 2014) claim that Land Unavailabil-

ity is exogenous while Davidoff (2016) contends that Land Unavailability is positively

correlated with housing demand. Our study differs from previous attempts to assess

the exogeneity of Land Unavailability as instrument as we use a more highly disaggre-

gated dataset with nearly complete coverage of the contiguous United States. Previous

studies that aim to assess the exogeneity of Land Unavailability employ data at the

MSA level. Yet housing markets, demand factors, and Land Unavailability can vary

tremendously within MSAs, making MSAs an inappropriate level of aggregation with

which to judge Land Unavailability exogeneity. MSAs also only cover a fraction of

US land area and thus bias any correlations between Land Unavailability and hous-

ing demand factors towards areas with higher levels of historical development (e.g.

the Northeastern US). Indeed, for a city to be classified as an MSA, it must have at

least 50,000 people. As Land Unavailability increases the cost of home building and

construction, MSAs are unlikely to be located in areas with high Land Unavailabil-

ity. To see this, consider figure 4 that plots Google satellite imagery for the US and

coverage for Saiz Unavailability. Again, red circles represent a 50 km radius around

each MSA first central city centroid in the Saiz dataset. The figure clearly shows a
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strong negative correlation between the instances of MSAs and Land Unavailability

due to rugged terrain. This pattern is clearly visible in the Rocky Mountain region,

where for example in Colorado, five MSAs sit at the base of the Rockies. Yet even in

the populated pacific states, California, Washington, and Oregon, there is a negative

relationship MSA instantiation and terrain slope. Indeed, the northern ascent of Cal-

ifornia MSAs is limited by the Mendicino and Shasta National Forests, while Seattle

lies between Olympic National Park and Wenatchee National Forest. Thus, judging

the exogeneity of Land Unavailability using only MSAs will lead to biased results.

We hence examine the correlations between Land Unavailability and proxies of

demand with near complete national coverage. The proxies of demand that we consider

include a zip code amenities index compiled from a large internet aggregator of such

information, the college share in 2000, the foreign share in 2000, and housing density in

2000. We consider these variables at the zip code and three digit zip code levels. The

output of regressions of these variables on Land Unavailability is in table 1 where panel

A shows the results using zip code data and zip code Land Unavailability, while panel B

measures all variables at the three digit zip code level. Regressions are weighted by the

number of households in 2000 and robust standard errors are clustered at the county

level (panel A) or commuting zone level (panel B). As suggested by Davidoff (2016), in

order for Land Unavailability to fail the exclusion restriction, Land Unavailability must

be positively correlated with other housing demand factors as households’ demand for

amenities, the economics of agglomoration, etc. has been increasing over time and

cannot be accounted using standard region fixed effects. Instead, our results show

the opposite. At the zip code level, Land Unavailability is negatively correlated the

amenities index, foreign share, and housing density, while being uncorrelated with

college share. These results are not surprising as increased Land Unavailability makes

the construction of housing and amenities more expensive. At the three digit zip

code level, Land Unavailability is slightly negatively correlated with amenities but

uncorrelated with the other housing demand factors.

Another key determinant of housing demand are changes to labor demand within
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a city. We follow the labor literature and Davidoff (2016) and employ Bartik (1991)

Labor demand shocks at the county level. We assess the correlation between Land

Unavailability and the Labor demand shocks through the following specification:

Bartikit = α + δt +
2010∑

y=2002

θyLandUnavailabilityi1{y = t}+ εit (1)

1{y = t} is an indicator function that takes a value of 1 for year y and the

coefficients of interest, θy, y = 2002, . . . , 2010, measure the annual correlations be-

tween Land Unavailability and the Bartik Labor Demand shocks. The regressions are

weighted by the number of households in 2000 and robust standard errors are clustered

the county level. The regression output for θy is in figure 5 where the shaded bands

are ±2 standard errors. Clearly, the Bartik Labor Demand shocks are uncorrelated

with Land Unavailability during the 2000s boom and bust.

Overall, the results in this section show that Land Unavailability is uncorrelated

with key housing demand factors during the 2000s and thus suggest that Land Un-

availability does not violate the exclusion restriction as an instrument for 2000s house

price growth.

6 The Predictive Power of Disaggregated Land Unavailability

We assess the predictive power of our Land Unavailability data for house price growth

during the 2000s boom and bust, as well as during the recent, post-Great Recession

expansion. The ability to predict house price growth using Land Unavailability is

important for both researchers and policymakers. Researchers often use Land Un-

availability as an instrument for house price growth and instrument relevance is a

necessary condition, while volatile housing markets contribute to economic booms and

busts (Leamer, 2007; Sinai, 2012; Glaeser and Gyourko, 2018) and predicting cross-

sectional house price growth is a key issue for policymakers.

We compare the predictive power of our Land Unavailability measures relative to

the Saiz’s proxy out-of-sample using 10 repeats of 10-fold cross-validation via OLS,
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Lasso, and Random Forest learners. We use the rigorous Lasso of Belloni et al. (2012)

where we conduct variable selection via Lasso and then model estimation using OLS

(Belloni et al., 2014). The Random Forest uses optimal tuning parameters as suggested

by Breiman (2001). Our Land Unavailability predictors exploit different levels of

geographic disaggregation as well as the components of Land Unavailability (e.g. slope

unavailability, water unavailability, and wetlands unavailability). The holdout sample

within each fold is constructed using only regions available in the Saiz dataset. All

available data is used for model training and the mean-squared error (MSE) is used

to evaluate model performance.

We examine the predictive power of Land Unavailability at the county level, a

level of disaggregation often used for house prices. Note that the Saiz dataset only has

information available for 269 MSAs (with population of 50,000 or more) and the map

of the Saiz MSA data to the county level is from Mian and Sufi (2014). In contrast,

our Land Unavailability data comprises all counties in the contiguous United States.

Thus in model training, our holdout sample will consist of a biased sample of counties

that are associated with large MSAs and the inclusion of all counties may adversely

affect predictive performance for linear models, like OLS and Lasso. The Random

Forest model, however, which is apt at discovering non-linearities in the data, may

be able to exploit this information to improve predictive performance. In the end, we

retain all available data to avoid data snooping.

The results are in table 2. The table reports the average MSE for each specification

across the different holdout samples with bootstrapped 95 percent confidence intervals

in parentheses. The results for the 2002 - 2006, 2006 - 2009, and 2011 - 2017 time

periods are in panels A, B, and C, respectively. Column (1) shows the results using

Saiz Land Unavailability only, where the first row within each panel displays the results

from OLS; this is the model previously used in literature to predict house price growth.

The average MSE using Saiz Land Unavailability during the 2002 - 2006 period is

373.46. Note that the t-statistic (using robust standard errors clustered at the state

level) from a full-sample OLS regression of house price growth on Saiz Unavailability
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during the 2002 - 2006 period is 7.62, indicating that Saiz Unavailability has strong

predictive power for house price growth and more accurate predictions from other

models accuracy are notable.

When using Saiz Unavailability, the MSE falls for the 2006 - 2009 and 2011 - 2017

time periods, meaning that OLS predictions were substantially more accurate during

the two latter time periods. The Lasso predictions in column (1) match the OLS find-

ings, meaning the Lasso considers Saiz Unavailability as relevant predictor for house

price growth in all periods (Lasso sets the coefficients of non-relevant predictors to

zero; in this case if the coefficient on Saiz Unavailability is set to zero, the prediction

would have been based on the sample mean). Finally, the Random Forest model in

the last row each panel in column (1) produces substantially more accurate predic-

tions than the OLS estimates, indicating that unspecified non-linearities in the Saiz

Unavailability are important for house price growth predictions. Overall, this latter

result is not surprising as Random Forests generally provide more accurate predictions

compared to traditional techniques (Mullainathan and Spiess, 2017; Athey, 2018).

Column (2) shows the predictions using our county Land Unavailability measure

only, while column (3) presents the predictive results from Land Unavailability at

different geographic aggregates and for adjacent, touching counties (county, commuting

zone, adjacent mean, adjacent min, and adjacent max Land Unavailability). These

predictions are slightly less accurate than those in column (1), possibly due to the bias

in the Saiz holdout samples.

Columns (4) and (5) document that including more geographic information im-

proves predictive performance. Column (4) includes all components of Land Unavail-

ability (total, water, slope, and wetlands) available at all of the geographies employed

in column (3) for a total of 15 predictors. Column (5) explicitly forces non-linearities

in each model by including all the predictors from column (4) and their squares. Over-

all, the predictive power of these models, especially the Random Forest, is noteworthy.

Specifically, column (5) suggests that the MSE from using all Land Unavailability com-

ponents and their squares during 2002 - 2006 is 199.74, corresponding a decrease of 46
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percent relative to the Saiz Unavailability OLS estimates in the top row of column (1)

in Panel A. The Random Forest models in column (5) also produce similar increases

in predictive accuracy during the 2006 - 2009 and 2009 - 2012 periods.

7 Buildable Land and Supply Side Speculation

Nathanson and Zwick (2018) develop a theoretical model that documents how dis-

agreement and supply side speculation in housing markets can produce house price

booms in traditionally supply elastic areas. Specifically, the model posits that home-

builders may view housing markets with intermediate amounts of land available for

development (buildable land) as supply elastic in the short run, but inelastic in the

long run. When these homebuilders are optimistic about future prices (e.g. in the

midst of a national housing boom during the 2000s), they acquire and subsequently

bid up the prices of available land. As land is a key factor in housing production, this

raises house prices in markets with intermediate amounts of buildable land even in

the face of large scale construction and generates house price booms in traditionally

supply elastic housing markets. This theory aims to explain the previously puzzling

house price booms in areas like Phoenix, Las Vegas, Florida, and inland California.

Nathanson and Zwick (2018) provide several pieces of empirical evidence in support

of their theory. For example, they cite a Polte homes investor presentation that stated

that the traditionally elastic markets of West Palm Beach, Orlando, Tampa, Ft. Myers,

Sarasota, Las Vegas, and Chicago were surprisingly constrained. A more formal test

of the supply side speculation theory would require precise data on the amount of

buildable land within housing markets. To our knowledge, no such dataset exists.

In this section, we exploit detailed satellite Land Cover and Slope image files to

construct a new, unique dataset that precisely measures amount of buildable land

across the contiguous United States.

The basis of our computation of buildable land is the 2001 USGS LandSat Land

Cover Dataset. The LandSat Land Cover data classifies land use in the United States

at a spacial resolution of 30 meters. Figure 6 plots the LandSat Land Cover data for
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Florida. In the satellite image, red pixels correspond to developed land, where darker

red pixels represent more dense development. Similarly, blue areas represent water and

wetlands. The most developed area is downtown Miami (dark red in southeast Florida)

and the map clearly shows how water and wetlands restrict housing expansion in that

housing market. Oppositely, other areas along coastal and in central Florida are com-

paratively at intermediate stages of development with lower density and surrounding

areas that appear to be available for development.

We compute land area available for development within each housing market by

first removing developed land (e.g. red pixels on the Florida map) and water and

wetlands (blue pixels). We also remove steep sloped terrain measured using USGS 1

arc-second DEM slope files (using no buffer for polygons in the shapefiles) and exclude

regions designated as parks using a shapefile from data.gov. We then calculate the

land area of the remaining, buildable land.

In a sense, buildable land is the complement to our Land Unavailability proxy

constructed above, but additionally classifies start of period developed land (2001)

and parks as unavailable as well.

We compute buildable land within three digit US zip codes. As US zip codes were

developed in the 1960s they better reflect pre-2000s housing boom US populations and

geographies, especially in the Western US, compared to counties or MSAs counties

which are based on geographic definitions dating back to the 1800s.10

To test the relationship between buildable land and 2002 - 2006 house price growth,

we group three-digit US zip codes into 2001 buildable land deciles. Summary statistics

for buildable land deciles are in table 3. Column (1) shows the buildable land decile and

column (2) displays the average amount of buildable land for three digit US zip codes in

that buildable land decile (thousands of square kilometers). As expected in column (2),

buildable land is monotonically increasing in the over buildable land deciles. Notice

also, however, that there is very little available buildable land in deciles 1 and 2. Three

10For example, the land area of the Riverside-San Bernardino MSA is 260 percent larger than the
land area of the entire state of Massachusetts.
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digit zip codes in these deciles are likely the “inelastic” housing markets characterized

by Nathanson and Zwick that likely have both high Land Unavailability and regulatory

supply restrictions.11 Similarly, column (3) shows the mean percentage of land that is

buildable (relative to all available land) within each buildable land decile. Again, the

percentage of buildable land is monotonically increasing over buildable land deciles.

A potential concern when using buildable land defined within three digit zip codes,

which can vary in size, is that buildable may simply be a function of available land.

We partially address this in column (4) which shows the correlation between available

and buildable land by buildable land decile. The correlations are wide ranging and

only in buildable land decile 10 is the correlation with available land over 0.5. We

return to this issue below.

Figure 7 maps three-digit US zip codes where red areas correspond to buildable

land decile 1 (least amount of buildable land), blue areas represent buildable land decile

5 (intermediate amount of buildable land), and yellow areas are buildable land decile

10 (largest amount of buildable land). Buildable land decile 1 indeed corresponds

to housing markets that would traditionally be considered “inelastic” due to density,

Land Unavailability, and regulatory constraints. These housing markets in include

New York City, Boston, Miami, Downtown Tampa, New Orleans, Downtown Chicago,

Downtown Milwaukee, Coastal Los Angeles, and areas adjacent the San Francisco Bay.

Three digit zip codes in buildable land decile 5 (intermediate amounts of buildable

land) consist of suburban areas in inland southern California, central California, and

northern California. Buildable land decile 5 also includes Las Vegas, Phoenix, Colorado

Springs, several suburban regions in central and coastal Florida, suburban Chicago,

and several suburban housing markets in the northeast. Finally, yellow areas showing

buildable land decile 10 are largely rural areas in the Midwest and Texas.

Nathanson and Zwick’s supply side speculation theory aims to explain housing

markets with intermediate land supply. Note also that they concede that supply

inelastic markets should also experience a large house price growth during a boom

11See also the references in Nathanson and Zwick (2018).
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(e.g. Saiz (2010)) and that the house price growth in inelastic markets is not the focus

of their theory. Thus, the null hypothesis of interest is that house price growth in

traditionally supply elastic areas with intermediate amounts of buildable land is equal

to house price growth in areas with relatively smaller or relatively larger amounts of

buildable land. A rejection of this null supports the supply side speculation theory

and would yield a hump-shaped, non-monotonic relationship between buildable land

decile and house price growth.

We evaluate the supply side speculation theory in table 4 by regressing three digit

zip code 2002 - 2006 house price growth on 2001 buildable land decile indicators.

Robust standard errors clustered at the state level are in parentheses. Column (1)

shows the mean house price growth within each buildable land decile. Not surprisingly,

house price growth is largest in areas with the least amount of buildable land (buildable

land decile 1, likely inelastic markets), at 58.6 percent. Yet the second highest mean

house price growth is in buildable land decile 5 at 44.1 percent followed closely by

buildable land decile 4 at 42.9 percent. House price growth in buildable deciles 2 and

3 is substantially smaller at 35 and 27 percent, respectively (buildable land decile 2

also likely contains inelastic housing markets, accounting for its slightly higher house

price growth relative to decile 3). Similarly, house price growth is markedly lower

for buildable land deciles 6 through 10. Note also that the R-squared is 25 percent

and thus suggests that the buildable land deciles explain a large portion of the cross-

sectional variation in house price growth during the 2000s. Together, this evidence

suggests that inelastic and housing markets with intermediate amounts of buildable

land experienced the largest house price growth during the 2000s.

Columns (2) and (3) statistically test the supply side speculation theory. Here

we exclude the indicator for buildable land decile 5, but retain the intercept. Thus

the intercept is the house price growth for buildable land decile 5 and the regression

coefficients are the difference in mean house price growth relative to decile 5. The

coefficients on the indicators for buildable deciles 2 and 3 as well as deciles 6 through 10

are all negative and statistically significant at the 1 percent in column (2). Hence three
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digit zip codes in buildable land deciles 2, 3, and 6 - 10 experienced noticeably lower

house price growth than three digit zip codes with intermediate amounts of buildable

land. Similarly, column (3) shows that controlling for plausibly exogenous Bartik

Labor Demand Shocks does not affect our results (the Bartik is demeaned relative to

the entire sample so the intercept can be interpreted as the mean house price growth

in decile 5 in a three digit zip code with an average Bartik shock). Together, these

regressions document that three digit zip codes with intermediate amounts of buildable

land experienced statistically larger house price growth from 2002 - 2006, congruent

with the supply side speculation theory.

As noted above, a potential concern with the construction of buildable land within

three digit zip codes is that buildable land may be a function of available land and

that the amount of available land within a three digit zip code may be driving our

results. We address this concern with a falsification test. Specifically, we retain all

three digit zip codes outside of buildable land deciles 1 (plausibly inelastic areas) and

5 (intermediate buildable land areas). Of these remaining regions, we then collect the

three digit zip codes whose available land is within the range of available land for

the original buildable land decile 5. This yields 294 (out of 607) three digit zip code

regions whose available land is within the range of buildable 5. The mean house price

growth for these regions is 25.1 percent. All other three digit zip codes outside of our

original deciles 1 and 5 have a mean house price growth 31.9 percent. The difference of

−6.8 percentage points is statistically significant at the 1 percent level (robust t-stat

= −2.6). Hence, other three digit zip codes whose available land is within the range

of the available land for regions in buildable land decile 5 actually have lower house

price growth. The results from this falsification test thus suggest that buildable land,

and not available land, drive the above relationship between buildable land and house

price growth.
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8 Land Unavailability, Housing Markets, and Unemployment

During the Great Recession

In this section, we replicate and extend Mian and Sufi (2014) who examine the impact

of housing net worth shocks on employment during the Great Recession. Mian and

Sufi find that adverse housing net worth shocks adversely impacted non-tradable em-

ployment during the 2000s bust. Specifically, they construct non-tradable employment

based on retail and restaurant employment (Rest. and Retail) or geographic concen-

tration (Geog. Concen.) where more non-tradable employment sectors are assumed

to be more geographically disperse. See Mian and Sufi (2014) for a more detailed

description of this data. The key regression of interest is

∆ lnENT
i = α + η ·∆HNWi + γXi + εi (2)

where ∆ lnENT
i is the log change in non-tradable employment for county i from

2007 to 2009, ∆HNWi is the change in housing net worth from 2006 to 2009, and Xi

is a vector of industry controls. The coefficient of interest, η, measures the elasticity

between housing net worth and non-tradable employment.

The results are in table 5. Columns (1) - (4) replicate the key results from Mian and

Sufi (2014). Columns (1) and (2) show the OLS estimates while (3) and (4) present

the 2SLS estimates using Saiz elasticity (both Land Unavailability and regulatory

constraints) as an instrument. There are several things to notice in columns (1) -

(4). First, the change in housing net worth is positive and statistically significant,

indicating that a decline in housing net worth is associated with a drop in non-tradable

employment. The IV estimates in columns (3) and (4) are larger and thus imply that

the OLS estimates are biased towards zero. Yet as we move from the OLS estimates

in columns (1) and (2) to the IV estimates that employ Saiz elasticity in columns (3)

and (4), the numbers of observations falls by nearly half. This loss of observations

is not ideal given the finite sample bias of 2SLS (Angrist and Krueger, 2001). In
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columns (5) through (8), we employ our Land Unavailability proxy that is more likely

to be exogenous than Saiz elasticity and was not correlated with housing demand

factors during the 2000s. In columns (4) and (5), we retain the Saiz sample and the

2SLS coefficients increase slightly, but are less precise. When we use all available data

in columns (7) and (8) (936 total observations), the coefficients increase further. In

fact, the coefficient estimate in column (7) is 37 percent larger than Mian and Sufi’s

corresponding estimate in column (3), while our estimate of the elasticity when non-

tradable employment based geographic concentration is the dependent variable is twice

as that from Mian and Sufi.

Finally, in columns (9) and (10) we employ the rigorous post-Lasso approach of Bel-

loni et al. (2012), Belloni et al. (2014), and Chernozhukov et al. (2016) for instrument

selection. The advantage of this approach is that we can consider Land Unavailabil-

ity and its components along with their interactions at multiple levels of geographic

disaggregation. This yields 230 candidate instruments. The rigorous lasso selects the

mean Land Unavailability in adjacent (touching) counties as the only instrument in

the first stage, implying that this is the most relevant predictor for housing net worth

from 2006 - 2009. From there, we perform 2SLS relying Chernozhukov et al. (2016)

and the references therein for theoretical justification for the standard errors. The

results again are larger than those from Mian and Sufi, but also smaller and slightly

more precise than our previous estimates in columns (7) and (8).

Altogether, the results in this section document the robustness of the relationship

between housing net worth and non-tradable employment during the Great Recession

to the use of different instruments and techniques, but also note that previous studies

slightly underestimated the magnitude of the effects.

9 Conclusion

In this paper, we construct a new proxy for Land Unavailability that builds on the

work of Saiz (2010). Specifically, our measure uses updated satellite imagery now

available from the USGS, more accurate geographic polygons, and is constructed for
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multiple levels of geographic disaggregation.

Using our new data, we re-examine the predictive power of Land Unavailability,

its correlation housing demand proxies during the 2000s, exploit satellite imagery to

construct a novel dataset of buildable land, and extend our understanding of the

relationship between housing net worth and employment during the Great Recession.

Specifically, results indicate that Land Unavailability is a key predictor of housing

markets during the 2000s boom, the 2000s bust, and during the recent post-Great

Recession expansion. The geographic components of Land Unavailability and modern

machine learning techniques also improve predictive performance.

Further, recent work posited that Land Unavailability is not an exogenous predictor

of house prices, clouding several studies that connect the fall of housing markets to the

downturn of economic activity during the Great Recession (Davidoff, 2016). We first

note that that previous attempts to examine the correlations between Saiz MSA-level

Land Unavailability and housing demand proxies suffer from sample selection bias

related to MSA instantiation. Then we use our disaggregated Land Unavailability

dataset with near complete coverage of the United States to assess the correlation

between Land Unavailability and housing demand proxies. Findings indicate that

there little evidence of correlation between Land Unavailability and proxies of hosing

demand.

Using the complement of Land Unavailability, we construct a new, comprehen-

sive dataset for buildable land to test the recent supply side speculation theory that

contends that homebuilders perceive housing markets with intermediate amounts of

buildable land as elastic in the short run, but inelastic in the long run. The empirical

tests are consistent with theory and help explain the previously puzzling 2000s boom

in traditionally elastic Sand State housing markets.

Future research may employ our Land Unavailability or buildable land datasets in

the prediction of housing markets for policy purposes, to test housing market theories,

or to compute causal estimates through instrumental variable techniques. Our robust

method for the compilation of the unavailable or buildable land also allows researchers
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to conduct tests using comprehensive data that span the United States at all levels of

geographic disaggregation commonly employed in the literature.
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Figure 1: Saiz and Buffered Land Unavailabilty Coverage for the Los An-
geles MSA

●

●

●

●

Notes: The blue lines represent the MSA polygons for the Los Angeles-Long Beach MSA. The orange
lines signify the central cities within the Los Angeles MSA and the red dots are the centroids for the
central cities. The red circle is has a radius of 50 kilometers and is centered around polygon centroid
for the first Los Angeles central city (Los Angeles). The yellow line is a 5 percent buffer around the
Los Angeles-Long Beach MSA and represents the boundary used to calculate land unavailability in
this paper.
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Figure 3: Comparison of Land Unavailability Measures
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Notes: The Saiz (2010) proxy for the percentage of unavailable land is on the horizontal axis; the
vertical axis shows the measure of land unavailability constructed in this paper. Points correspond
to MSAs.
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Figure 6: Florida 2001 LandCover Dataset
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Table 1: Zip and Zip3 Land Unavailability Correlations with Housing De-
mand

Dependent variable:

Amenities College Share Foreign Share Housing Density
Index in 2000 in 2000 in 2000

(1) (2) (3) (4)

Panel A: Zip Code

Land Unavailability −0.018∗∗∗ 0.006 −0.120∗∗∗ −0.434∗∗∗

(0.002) (0.019) (0.020) (0.133)

Constant 0.692∗∗∗ 24.272∗∗∗ 12.711∗∗∗ 27.309∗∗∗

(0.082) (0.625) (1.218) (6.912)

Observations 13,044 30,606 30,614 30,645
R2 0.081 0.0001 0.039 0.018

Panel B: Zip3

Land Unavailability −0.005∗∗ −0.009 0.053 −0.008
(0.002) (0.025) (0.038) (0.071)

Constant 0.422∗∗∗ 24.391∗∗∗ 8.012∗∗∗ 18.694∗∗∗

(0.119) (0.918) (1.399) (5.250)

Observations 727 832 840 867
R2 0.014 0.0004 0.012 0.00001

Notes: Zip code and three-digit zip code (Zip3) regressions of housing demand proxies on Land
Uanvailability. Robust standard errors are clustered at the county level (panel A) or the commuting
zone level (panel B). Regressions are weighted by the number of households in 2000.
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Table 3: Buildable Land (BL) Summary Statistics by Decile

BL BL Mean BL Corr with
Decile (km2, Percent Available

000s) Land
(1) (2) (3) (4)

1 12.18 0.07 0.46
2 113.06 0.20 0.34
3 355.81 0.33 0.34
4 1013.92 0.41 0.34
5 2058.12 0.48 0.27
6 3516.77 0.58 0.46
7 5084.49 0.61 0.15
8 6883.83 0.67 0.26
9 9535.30 0.71 0.48
10 20188.21 0.75 0.83

Notes: Summary Statistics for Buildable Land (BL) Deciles based on three-digit zip codes. The
computation of Buildable Land (BL) for each three digit zip code is described in the text
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Table 4: 2002 - 2006 House Price Growth by Buildable Land Decile

Dependent variable:

∆(ln HP)2002-06

(1) (2) (3)

Buildable Land 58.597∗∗∗ 14.518∗∗∗ 13.283∗∗

Decile 1 (4.887) (4.611) (5.322)

Buildable Land 35.124∗∗∗ −8.955∗∗∗ −9.166∗∗∗

Decile 2 (4.717) (3.276) (3.484)

Buildable Land 27.319∗∗∗ −16.760∗∗∗ −18.068∗∗∗

Decile 3 (3.164) (4.628) (4.419)

Buildable Land 42.914∗∗∗ −1.165 −1.819
Decile 4 (3.664) (2.918) (3.166)

Buildable Land 44.079∗∗∗

Decile 5 (4.833)

Buildable Land 29.078∗∗∗ −15.001∗∗∗ −13.624∗∗∗

Decile 6 (3.060) (3.781) (3.755)

Buildable Land 21.289∗∗∗ −22.790∗∗∗ −20.849∗∗∗

Decile 7 (2.356) (3.971) (3.906)

Buildable Land 23.240∗∗∗ −20.839∗∗∗ −20.751∗∗∗

Decile 8 (3.066) (3.798) (3.742)

Buildable Land 24.520∗∗∗ −19.559∗∗∗ −19.910∗∗∗

Decile 9 (3.819) (4.662) (4.667)

Buildable Land 25.174∗∗∗ −18.905∗∗∗ −22.593∗∗∗

Decile 10 (4.171) (5.802) (5.862)

Bartik Labor 2.074∗∗∗

Demand Shock2002-06 (0.637)

Constant 44.079∗∗∗ 44.481∗∗∗

(4.833) (4.631)

Observations 757 757 757
R2 0.250 0.250 0.280

Notes: 2002 - 2006 house price growth means by Buildable Land Decile. In column (1) the intercept
is exluded and each coefficient represents the mean house price growth for the given Buildable Land
decile. The excluded dummy in column (2) is Buildable Land decile 5 and thus coefficients represent
the difference in means relative to decile 5. Robust standard errors are clustered at the state level.
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