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Abstract: I study a reputation model in which each short-run player observes the entire history of
her predecessors’ actions, in addition to a (possibly stochastic) bounded subset of the long-run play-
er’s past actions. Despite short-run players never herd on actions that do not best reply against the
long-run player’s commitment action, reputation effects fail since the speed of observational learning
decreases endogenously with the long-run player’s patience. When each short-run player can also
observe an informative signal about the long-run player’s current period action, whether reputation
effects fail or not depend on a resistant to learning condition. When the long-run player’s action choice
is binary, resistant to learning is equivalent to bounded informativeness. When the long-run player has
three or more actions, environments with unbounded informativeness can also be resistant to learning.
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1 Introduction

Recent empirical findings suggest that reputation mechanisms fail to work in many markets. This

is especially the case in developing countries, where mistrust between firms and consumers, lack of

trustworthy brands, and low governmental credibility are major obstacles for growth and development.

For example, Bai (2018) finds that in Chinese watermelon markets, sellers refrain from sorting out

high-quality melons and consumers are reluctant to pay high prices. Similar results are reported in

markets for food (Bai, et al. 2019), drugs (Nyqvist, et al. 2018), and vaccines (Adhvaryu 2014).

A common theme in these examples is the inability of sellers to convey their future intentions

through their past records. This is at odds with the canonical reputation results of Fudenberg and

Levine (1989,1992), which suggest that whenever buyers are skeptical about a seller’s product quality,

they will be surprised after observing the seller supplying high quality, and their posterior belief

attaches higher probability to a commitment type seller who mechanically supplies high quality. After
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a bounded number of such surprises, Bayesian buyers will attach sufficiently high probability to the

seller being committed and are willing to trust him in all future periods.

I provide an explanation to these episodes of reputation failures based on slow observational learn-

ing. I study an infinitely repeated game between a long-lived player 1 (e.g., seller) and a sequence of

short-lived player 2s (e.g., buyers), arriving one in each period. Player 1 is either an opportunistic

type that maximizes his discounted average payoff, or a commitment type that mechanically plays his

pure Stackelberg action in every period. The latter occurs with small but positive probability.

The key modeling innovation is that every short-lived player observes the entire history of her

predecessors’ actions, but can only observe the long-lived player’s actions in the past K periods. This

monitoring structure is reminiscent of social learning models (Banerjee 1992, Bikhchandani, Hirshleifer

and Welch 1992), in which information about the long-lived player’s past actions is dispersed among

the short-lived players, and is aggregated via the latter’s action choices.

This assumption is motivated by the heterogeneous accessibility of different types of information.

By skimming through summary statistics, a potential buyer can have a fair estimate about the fre-

quency of purchases and its time trend. In contrast, figuring out the seller’s exact behavior requires

prolonged conversations with friends or reading online reviews carefully, and it is typically the case

that buyers have limited capacity to process such detailed information.

Theorem 1 shows that no matter how large K is, there exist equilibria in which the patient long-

lived player’s payoff is no more than his worst pure stage-game equilibrium payoff.1 When stage-game

payoff functions are monotone-supermodular, which include the well-known product choice game, there

exist equilibria in which both players receive their minmax payoffs. These conclusions contrast to the

canonical reputation results of Fudenberg and Levine (1989, 1992), in which a patient long-lived player

can secure his Stackelberg payoff in all equilibria.

Such a distinction is driven by slow observational learning that arises endogenously in equilibrium.

To illustrate, consider an example with a seller choosing between high and low quality, and buyers

choosing between trust and not trust. The constructed equilibrium consists of three phases. Play

starts from a reputation-building phase, in which buyers do not trust and the seller mixes between

high and low quality. When a buyer observes low quality in the previous period, play remains in the

reputation-building phase. When a buyer observes high quality in the previous period, play transits

to a reputation-maintenance phase with positive probability, after which all buyers choose the trusting

action and the seller supplies high quality. If the seller deviates during the reputation-maintenance

phase, then all buyers who observe his deviation chooses the non-trusting action and play transits to

1My result applies to every stage game that has a pure strategy equilibrium and satisfies a generic Assumption 1.
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a punishment phase. Future buyers learn that the seller is not committed after observing a trusting

action followed by a non-trusting action, after which they never trust the seller in the future.

Importantly, the opportunistic seller is indifferent in the reputation-building phase under the tran-

sition probability to the reputation-maintenance phase. That is to say, the more patient the seller is,

the less responsive buyers’ actions need to be to provide the seller incentives. This lowers the speed

of learning, and the amount of discounted average payoff a seller needs to sacrifice to establish his

reputation remains constant no matter how patient he is.

Section 4 studies a variant of my baseline model where each buyer observes all her predecessors’

actions, and observes the seller’s past actions according to a stochastic network. This is motivat-

ed by applications in which buyers randomly sample among her predecessors and learn about their

experiences. Importantly, the seller cannot observe the realization of the stochastic network.

My Theorem 1 extends when (1) the neighborhoods of different buyers are independent, (2) the

number of neighbors for each buyer is uniformly bounded from above, and (3) the probability that

each buyer is neighbor with her immediate predecessor is uniformly bounded from below.

To overcome the challenges brought by private monitoring and private learning, my proof combines

the belief-free approach (buyers’ best replies do not depend on their beliefs about seller’s private

history) with the belief-based approach (buyers are indifferent under each of their posterior beliefs).

The belief-free part is indispensable since the seller’s private history needs to be richer than the buyers’

private history in order to make buyers indifferent at all private histories. The belief-based part is also

indispensable, since a buyer who arrives late in the game has a strict incentive to play her Stackelberg

best reply if she knew that the seller has exerted high effort in all previous periods.

In section 5, I consider an alternative setup in which each short-lived player observes an informative

signal about the long-lived player’s current period action, in addition to what she observes in the

baseline model. This fits into situations in which a seller produces in advance, and a potential buyer

inspects the product, observes a noisy signal about its quality, before making her purchasing decision.

I identify a resistant to learning condition that characterizes whether a patient long-lived player can

guarantee his commitment payoff. When the long-lived player’s action choice is binary, resistant to

learning is equivalent to bounded informativeness in Smith and Sørensen (2000). When the long-lived

player has three or more actions, resistant to learning is more permissive than bounded informativeness,

that is, the patient long-lived player’s return from reputation building can be low even when there

exists a signal realization that occurs with positive probability only under the Stackelberg action.

This is because under some self-fulfilling beliefs about the strategic long-lived player’s action, the

distribution of the short-lived players’ actions can be independent of the long-lived player’s type.
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Related Literature: My paper is related to the literature on social learning and reputation for-

mation. Compared to Banerjee (1992), Bikhchandani, Hirshleifer and Welch (1992), and Smith and

Sørensen (2000) that focus on asymptotic beliefs, I examine players’ discounted average payoff, which

requires analysis on the speed of observational learning. This question has largely been ignored in the

social learning literature.2 The logic behind my reputation failure result differs from their herding

results, since short-lived players cannot herd on any action that does not best reply against the Stack-

elberg action. Instead, the speed with which play converges to the Stackelberg outcome vanishes as

the long-lived player becomes arbitrarily patient, leading to low equilibrium payoffs for both players.

My reputation failure result contrasts to Fudenberg and Levine (1989,1992) and Gossner (2011),

in which the long-lived player can secure his commitment payoff when his opponents can observe a

signal that statistically identifies his commitment action. In the worst equilibrium of my model, the

short-lived players’ actions can statistically identify the long-lived player’s past actions, but the infor-

mativeness of these endogenous signals vanishes as the long-lived player becomes arbitrarily patient.

Similar ideas appear in Sobel (1985), in which truth-telling leads to a smaller improvement on the

sender’s reputation when his gains from reputation is larger.

The mechanism behind my reputation failure result differs from the ones in Ely and Välimäki

(2003), Ely, Fudenberg and Levine (2008), and Deb, Mitchell and Pai (2019). Those papers study

participation games, in which short-lived players can choose a non-participating action under which

the public signal is uninformative about the long-lived player’s actions. In my model, short-lived

players cannot unilaterally shut down learning, and their actions are informative about the long-lived

player’s past action choices. Instead, reputation failure is caused by the vanishing informativeness of

the short-lived players’ actions when the long-lived player becomes arbitrarily patient.

My paper is also related to reputation models with bounded memories, such as the seminal works

of Ekmekci (2011), Liu (2011) and Liu and Skrzypacz (2014). Their models characterize the long-lived

player’s equilibrium behaviors and payoffs when short-lived players cannot observe their predecessors’

actions. This shuts down channels for social learning, which contrasts to my model that studies the

effectiveness of reputation building through social learning. This difference in modeling assumptions

lead to differences in reputation dynamics, for example, the long-lived player cannot unilaterally clean

up past records and slow social learning arises endogenously in equilibrium.

In a contemporary paper, Logina, Lukyanov and Shamruk (2019) study a reputation model in

2An exception to this statement is Rosenberg and Vieille (2019). They study a social learning model with unboundedly
informative signals and examine whether the number of wrong choices is finite or infinite. They show that it is equivalent
to whether the expected number of periods that players make the first correct choice is infinite or finite. Their efficiency
standard does not take into account players’ discount rate, which differs from mine.
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which each buyer observes an informative signal about the seller’s current period action, in addition

to all her predecessors’ actions. Different from my model, they focus on stage games in which the

seller’s pure Stackelberg payoff equals his minmax payoff. They show that the opportunistic seller has

an incentive to exert effort when his reputation is intermediate, and strictly prefers to shirk otherwise.

The intuition is similar to that of social learning results, that the seller has no incentive to exert effort

when buyers’ posterior beliefs are sufficiently precise. This is different from my results, which are

driven by decreasing speed of learning as the seller becomes more patient.

2 Baseline Model

Primitives: Time is discrete, indexed by t = 0, 1, 2.... A long-lived player 1 (he) with discount

factor δ ∈ (0, 1) interacts with an infinite sequence of short-lived player 2s (she), arriving one in each

period and each plays the game only once. In period t, players simultaneously choose their actions

(at, bt) ∈ A×B, with A and B being finite sets. Players have access to a public randomization device,

with the realization in period t denoted by ξt ∈ [0, 1].

Players’ stage-game payoffs are u1(at, bt) and u2(at, bt). Let BR1 : ∆(B) ⇒ 2A\{∅} and BR2 :

∆(A) ⇒ 2B\{∅} be player 1’s and player 2’s best reply correspondences in the stage-game. I make

the following assumption, which is satisfied for generic payoff functions:

Assumption 1. For every (a, b) 6= (a′, b′), we have u1(a, b) 6= u1(a
′, b′) and BR2(a) is a singleton.

According to Assumption 1, player 2 has a strict best reply against each of player 1’s pure actions,

and player 1 has a unique (pure) Stackelberg action, denoted by a∗ ∈ A and is the unique element of

the set:

arg max
a∈A

{
min

b∈BR2(a)
u1(a, b)

}
. (2.1)

Let b∗ be the unique element in BR2(a
∗), namely, player 2’s best reply against the Stackelberg action.

The next assumption ensures that player 1 can benefit from committing to play pure actions, which

rules out games such as matching pennies and rock-paper-scissors.

Assumption 2. There exists a pure strategy Nash equilibrium in the stage-game.

Information & Monitoring Structure: Player 1 is one of the two possible types ω ∈ {ωs, ωc},

which is player 1’s private information and is perfectly persistent. Either he is a commitment type ωc,

who mechanically plays a∗1 in every period; or he is a strategic type ωs, who can flexibly choose his

actions in order to maximize his discounted average payoff
∑∞

t=0(1− δ)δtu1(at, bt).
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Player 2’s prior belief attaches probability π0 ∈ (0, 1) to type ωc. Player 2’s private history consists

of calendar time, all the actions of her predecessors, player 1’s actions in the past K periods, and the

realization of public randomization in the current period.3 Formally, let ht be a typical history of

player 2 who arrives in period t, with

ht ≡

 {b0, b1, ..., bt−1, at−K , at−K+1, ..., at−1, ξt} if t ≥ K

{b0, b1, ..., bt−1, a0, a1, ..., at−1, ξt} if t < K.
(2.2)

For every t ∈ N, let Ht be the set of ht and let H ≡ ∪∞t=0Ht. Player 2’s strategy is σ2 : H →

∆(B), with σ2 ∈ Σ2. In the agent normal form of this repeated game, strategic player 1’s private

history is a superset of player 2’s private history, which contains all the actions taken in the past

in addition to everything player 2 observes. Let ht1 be a typical private history in period t, with

ht1 ≡ {a0, ..., at−1, b0, ..., bt−1, ξ0, ..., ξt}. Let Ht1 be the set of ht1 and let H1 ≡ ∪∞t=0Ht1. Strategic player

1’s strategy is σ1 : H1 → ∆(A), with σ1 ∈ Σ1.

Let µt : Ht → ∆
(
{ωc, ωs}×Ht1

)
be player 2’s belief about the game’s history at ht. Let µ ≡ {µt}t∈N

be player 2’s assessment. Let π(ht) be the probability player 2’s belief at ht attaches to ω = ωc.

Sometimes, I replace π(ht) with πt for notation simplicity.

Equilibrium: I use Bayesian Nash equilibrium (in short, NE) for my positive results (i.e., player 1

can guarantee himself a particular payoff in all equilibria), and sequential equilibrium (in short, SE)

for my negative results (i.e., there exists equilibrium in which player 1’s payoff is low).4

An NE consists of a strategy for the strategic type player 1 and a strategy for player 2s. Let

NE(δ, π0,K) be the set of NEs under parameter configuration (δ, π0,K). An SE consists of a strategy

for the strategic type player 1, a strategy for player 2s, and an assessment µ. Let SE(δ, π0,K) be the

set of SEs under parameter configuration (δ, π0,K).

For every strategy profile (σ1, σ2) and prior belief π0 ∈ (0, 1), let E(σ1,σ2,π0)[·] be the expectation

operator when player 2s play according to σ2, player 1 plays according to σ1 with probability 1− π0,

and plays a∗1 in every period with probability π0. Let E(σ1,σ2)
1 [·] be the expectation operator when

player 2s play according to σ2 and player 1 plays according to σ1. The strategic player 1’s expected

payoff under (σ1, σ2) is:

E(σ1,σ2)
1

[ ∞∑
t=0

(1− δ)δtu1(at, bt)
]
. (2.3)

3My results do not rely on the presence of public randomization device. It also applies when player 2 can observe all
past realizations of the public randomization device.

4I adopt the definition of sequential equilibrium in Pȩski (2014) for this infinite horizon game, which uses notion of
pointwise convergence. See footnote 7, page 658 of his paper for details.
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I evaluate player 2s’ welfare using discount rate δ, namely, their expected welfare under strategy profile

(σ1, σ2) is:

E(σ1,σ2,π0)
[ ∞∑
t=0

(1− δ)δtu2(at, bt)
]
. (2.4)

My result also applies to other social discount rates that are no more than δ.

3 Reputation Failure under Observational Learning

Let (a′, b′) ∈ A × B be the worst pure strategy Nash equilibrium for player 1 in the stage-game,

which exists under Assumption 2. Let v1 ≡ u1(a
′, b′), which by definition, is no more than player

1’s Stackelberg payoff u1(a
∗, b∗). In games where player 1 faces a strict lack-of-commitment problem,

that is a∗ /∈ BR1(b
∗), which includes the product choice game and the entry deterrence game, v1 <

u1(a
∗, b∗). Let

δ1 ≡

 max
{

maxa∈A u1(a,b
∗)−u1(a∗,b∗)

maxa∈A u1(a,b∗)−v1
,

v1−u1(a∗,b′)
u1(a∗,b∗)−u1(a∗,b′)

}
if v1 < u1(a

∗, b∗)

0 if v1 = u1(a
∗, b∗).

The main result is stated as Theorem 1:

Theorem 1. If the stage-game payoffs satisfy Assumptions 1 and 2, then for every K ∈ N, there

exists π0 ∈ (0, 1), such that for every π0 ∈ (0, π0) and δ ≥ δ1, there exists (σδ1, σ
δ
2, µ

δ) ∈ SE(δ, π0,K),

such that:

E(σδ1 ,σ
δ
2)

1

[ ∞∑
t=0

(1− δ)δtu1(at, bt)
]

= v1. (3.1)

According to Theorem 1, if information about player 1’s past behavior is dispersed among player

2s and is aggregated via player 2s’ actions, then no matter how patient he is, player 1’s return from

reputation building can be low. This contrasts to the canonical reputation results in Fudenberg and

Levine (1989, 1992) and Gossner (2011), which show that if player 2s have unbounded observations

of player 1’s actions, or noisy signals that can statistically identify player 1’s actions, then a patient

player 1 can guarantee his Stackelberg payoff in all equilibria of the reputation game.

The mechanism behind Theorem 1 differs from that in the social learning models of Banerjee (1992)

Bikhchandani, Hirshleifer, and Welch (1992), and Smith and Sørensen (2000), in which information

aggregation fails because the short-run players ignore their private signals and herd on a wrong ac-

tion. The following lemma shows that as long as player 2’s belief attaches positive probability to the

commitment type, they cannot herd on actions other than b∗.



3 REPUTATION FAILURE UNDER OBSERVATIONAL LEARNING 8

Lemma 3.1. For every Bayesian Nash equilibrium (σ1, σ2), and for every ht that occurs with

positive probability with π(ht) > 0, then player 2s cannot herd on any action that is not b∗ at ht.

Proof of Lemma 3.1: First, when future player 2s herd on any action, strategic player 1 has no in-

tertemporal incentives, and in equilibrium, he plays his myopic best reply against that herding action

in every period. I consider two cases separately, depending on whether a∗ best replies against the

herding action b or not. First, suppose BR1(b) = {a∗}, then both types of player 1 play a∗ in equi-

librium with probability 1. As a result, player 2 has a strict incentive to play b∗ instead of b. This

leads to a contradiction. Next, suppose BR1(b) 6= {a∗}, then after observing player 1 playing a∗ at a

herding history where player 2 has not yet ruled out the commitment type, player 2’s posterior belief

attaches probability 1 to the commitment type, after which they play b∗ in all subsequent periods.

This contradicts the presumption that player 2s herd on action b.

I provide a constructive proof of Theorem 1 to highlight the novel economic mechanism at work.

In the equilibria I construct, the informativeness of the uninformed player’s actions vanishes as the

informed player becomes more patient. As a result, despite information about the long-run player’s

type is aggregated asymptotically, the speed of learning vanishes to 0 as δ → 1. This eliminates player

1’s returns from reputation building, making the short-run players’ adverse beliefs self-fulfilling.

Proof of Theorem 1: Recall the definitions of (a′, b′) and (a∗, b∗). If b′ = b∗, then according to As-

sumption 1, a′ = a∗ and v1 can be attained by playing (a∗, b∗) in every period.

In what follows, I focus on the nontrivial case in which b′ 6= b∗. Assumption 1 and the definitions

of a′, b′, a∗, b∗ imply that:

u1(a
∗, b∗) > u1(a

′, b′) > u1(a
∗, b′). (3.2)

Let q∗ ∈ (0, 1) be small enough such that b′ is player 2’s best reply against player 1’s mixed action

q∗ ◦ a∗ + (1− q∗) ◦ a′. The upper bound on player 2’s prior π0 is given by:

π0
1− π0

=
( q∗

2− q∗
)K+1

.

For every π0 ≤ π0, I construct the following three-phase equilibrium in which player 1’s payoff is v1

regardless of δ. I start from describing players’ strategies, and later verify players’ incentive constraints

taken into account player 2s’ posterior beliefs.

Play starts from a reputation building phase, in which player 2 plays b′, and strategic player 1

mixes between a∗ and a′ with probabilities q∗

2−q∗ and 2−2q∗
2−q∗ , respectively. In period t ≥ 1, play remains
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in the reputation building phase if at−1 6= a∗. Play transits to a reputation maintenance phase with

strictly positive probability if at−1 = a∗, after which player 1 plays a∗ and player 2 plays b∗ on the

equilibrium path. Whether play transits to the reputation maintenance phase or not depends on the

realization of public randomization in the beginning of period t, before players choosing their actions.

The transition probability r is pinned down by:

u1(a
′, b′) = (1− δ)u1(a∗, b′) + δ

{
ru1(a

∗, b∗) + (1− r)u1(a′, b′)
}
, (3.3)

which is between 0 and 1 when δ is close enough to 1. Future player 2s know the calendar time at

which play transits to the reputation maintenance phase: it coincides with the first period in which

player 2 plays b∗. If player 1 plays actions other than a∗ after reaching the reputation maintenance

phase, play transits to a punishment phase, in which (a′, b′) is played in all subsequent periods.

I verify players’ incentives and the feasibility of player 1’s behavioral strategy in the reputation

building phase. First, when δ is large enough such that:

u1(a
∗, b∗) ≥ (1− δ) max

a∈A
u1(a, b

∗) + δu1(a
′, b′),

player 1 has an incentive to play a∗ in the reputation maintenance phase. Second, player 1 is indifferent

between a∗ and a′ in the reputation building phase according to (3.3). Moreover, he strictly prefers a′

to actions other than a′ and a∗. Third, I verify that player 2’s incentive to play b′ at the reputation

building phase, by showing that at every history of this phase, player 2 believes that player 1 will play

a∗ with probability less than q∗. In particular, after observing a∗ being played in the past K periods,

player 2’s posterior belief at ht, denoted by πt satisfies:

πt
1− πt

/ π0
1− π0

=
Pr(σ

δ
1 ,σ

δ
2)(a∗, ..., a∗|ωc)

Pr(σ
δ
1 ,σ

δ
2)(a∗, ..., a∗|ωs)

· Pr(σ
δ
1 ,σ

δ
2)(b′, ..., b′, ξ0, ..., ξt|a∗, ..., a∗, ωc)

Pr(σ
δ
1 ,σ

δ
2)(b′, ..., b′, ξ0, ..., ξt|a∗, ..., a∗, ωs)

. (3.4)

in which Pr(σ
δ
1 ,σ

δ
2)(·) is the probability measure over Ht1 generated by strategy profile (σδ1, σ

δ
2). By

construction,

Pr(σ
δ
1 ,σ

δ
2)(a∗, ..., a∗|ωc)

Pr(σ
δ
1 ,σ

δ
2)(a∗, ..., a∗|ωs)

=
( q∗

2− q∗
)−K

,

and
Pr(σ

δ
1 ,σ

δ
2)(b′, ..., b′, ξ0, ..., ξt|a∗, ..., a∗, ωc)

Pr(σ
δ
1 ,σ

δ
2)(b′, ..., b′, ξ0, ..., ξt|a∗, ..., a∗, ωs)

≤ 1.

Since π0
1−π0 ≤

π0
1−π0

=
(

q∗

2−q∗
)−K−1

, we know that πt ≤ q∗

2 for every history ht of the reputation
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building phase. Given strategic player 1’s strategy, the probability with which player 2 believes that

player 1 will play a∗ at the reputation building phase is below q∗. This verifies player 2’s incentive to

play b′.

Theorem 1 shows the consequences of reputation failure from the long-run player’s perspective.

The next result examines the short-run players’ welfare. Let (a′′, b′′) ∈ A × B be the worst pure

strategy Nash equilibrium for player 2 in the stage game. If there are multiple such equilibria, pick

the one that is worst for player 1. Let

δ2 ≡

 max
{

maxa∈A u1(a,b
∗)−u1(a∗,b∗)

maxa∈A u1(a,b∗)−u1(a′′,b′′) ,
u1(a′′,b′′)−u1(a∗,b′′)
u1(a∗,b∗)−u1(a∗,b′′)

}
if u1(a

′′, b′′) < u1(a
∗, b∗)

0 if u1(a
′′, b′′) = u1(a

∗, b∗)

be the cutoff discount factor. I show the following proposition:

Proposition 1. Under Assumptions 1 and 2, for every K ∈ N and ε > 0, there exists π0 ∈ (0, 1)

such that for every π0 ∈ (0, π0) and δ ≥ δ2, there exists (σδ1, σ
δ
2, µ

δ) ∈ SE(δ, π0,K), such that:

E(σδ1 ,σ
δ
2 ,π0)

[ ∞∑
t=0

(1− δ)δtu2(at, bt)
]
≤ u2(a′′, b′′) + ε. (3.5)

Proof of Proposition 1: Consider the class of equilibria constructed in the proof of Theorem 1. Let V2

be the short-run players’ discounted average payoff in the reputation building phase, we have:

V2 = (1− δ)
{
q∗u2(a

∗, b′′) + (1− q∗)u2(a′′, b′′)
}

+ δ
{

(1− q∗)V2 + q∗(1− r)V2 + q∗ru2(a
∗, b∗)

}
, (3.6)

in which q∗ ∈ (0, 1) is small enough such that b′′ is player 2’s best reply against the mixed action of

a∗ with probability q∗ and a′′ with complementary probability, and r is the probability of transiting

to the reputation maintenance phase after observing the long-run player played a∗ in the previous

period. Equation (3.3) implies that r is proportional to 1− δ. Let γ ≡ r/(1− δ), which is independent

of δ. Plugging r = (1− δ)γ into (3.6) and rearranging terms, we have:

V2 =
(1− q∗)u2(a′′, b′′) + q∗u2(a

∗, b′′) + δq∗γu2(a
∗, b∗)

1 + δq∗γ
(3.7)

For every ε > 0, there exists q∗ small enough such that the RHS of (3.7) is strictly less than u2(a
′′, b′′)+

ε. Let π0 ≡ (q∗)K+1, the resulting strategy profile is an equilibrium in which the short-run players’

(discounted average) welfare is no more than u2(a
′′, b′′) + ε.
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I discuss the implications of Theorem 1 and Proposition 1 in the product choice game of Mailath

and Samuelson (2001). Suppose the long-run player is a seller (row player) and the short-run players

are a sequence of buyers. Their stage-game payoffs are given by:

– T N

H 1, 1 −1, 0

L 2,−1 0, 0

Suppose with probability π0, the seller commits to play H in every period. My results imply that for

every ε > 0, there exists π0 > 0, such that when π0 is below π0, there exist equilibria in which the

seller’s discounted average payoff is 0 and the buyers’ discounted average welfare is less than ε. These

adverse equilibria exist regardless of how large δ is.

The equilibria constructed in these proofs shed light on some of the difficulties faced by reputation-

building sellers in practice, which can account for some of the reputation failures documented in the

empirical literature, such as the ones in Bai (2018) and Nyqvist, Svensson and Yanagizawa-Drott

(2018). In particular, when the seller is patient, he is willing to sacrifice his current period payoff even

though the probability of receiving a high continuation payoff is very low. When buyers understand

the seller’s strategic motives and when they believe that the seller cares more about his continuation

payoffs, they attribute less to the seller having an intrinsic preference for supplying high quality after

observing high quality. In equilibrium, their future actions become less responsive to the seller’s

current period action. This slows down the speed of learning. As shown in Theorem 1 and Proposition

1, the aforementioned channel can completely eliminate the returns from reputation building as well

as players’ surplus from their long-term relationship.

3.1 Minmax Payoff

I provide sufficient conditions under which the patient long-run player’s guaranteed equilibrium payoff

coincides with his minmax payoff. To account for the uninformed players’ myopia, I adopt the notion of

minmax payoff introduced by Fudenberg, Kreps and Maskin (1990). First, in monotone-supermodular

games, player 1’s lowest pure stage-game Nash equilibrium payoff coincides with his minmax payoff.

Assumption 3. A and B are complete lattices, such that:5

1. u1 is strictly increasing in b and is strictly decreasing in a.

5This monotone-supermodularity condition is similar to, albeit different from that in Pei (2018). In Pei (2018), the
long-run player has persistent private information about a payoff relevant state, and monotone-supermodularity requires
complementarity between the state and the action profile in players’ payoff functions.
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2. u2 has strictly increasing differences in (a, b).

Assumption 3 is satisfied in the aforementioned product choice game: it is costly for a firm to

supply high quality, but it can strictly benefit from consumers’ trusting behaviors, and consumers

have stronger incentives to play the trusting action when the firm supplies high quality. It is also

satisfied in the entry deterrence game of Schmidt (1993), with stage-game payoffs given by:

– O E

F 1, 0 −1,−1

A 2, 0 0, 1

In this game, it is costly for the incumbent to lower prices (or fight), but it can strictly benefit from

the entrants staying out. Furthermore, entrants have stronger incentives to stay out when incumbents

are more likely to set low prices.

Let a be player 1’s lowest action and let b ≡ BR2(a). According to the folk theorem result in

Fudenberg, Kreps and Maskin (1990), player 1’s minmax payoff taken into account player 2’s myopia

is u1(a, b). This coincides with his lowest equilibrium payoff in the stage-game. The following result

is an immediate corollary of Theorem 1 and Proposition 1.

Corollary 1. When the stage-game payoffs satisfy Assumptions 1, 2, and 3. Then for every K ∈ N

and ε > 0, there exists π0 ∈ (0, 1) such that for every π0 ∈ (0, π0) and δ large enough, there exists a

sequential equilibrium in which player 1’s payoff equals his minmax payoff, and player 2’s payoff is ε

close to her minmax payoff.

Next, I consider games in which player 2 needs to play a mixed action in order to minmax player

1. Let β∗ ∈ ∆(B) be player 2’s action that minmaxes player 1, and let α∗ ∈ ∆(A) be one of player 1’s

best replies to β∗ such that every action in the support of β∗ is player 2’s pure best reply to α∗. One

can extend the proof of Theorem 1 by showing that player 1’s guaranteed equilibrium payoff coincides

with his minmax payoff in the following three cases:

1. a∗ /∈ supp(α∗) and b∗ /∈ supp(β∗);

2. a∗ ∈ supp(α∗) and b∗ /∈ supp(β∗);

3. a∗ ∈ supp(α∗) and b∗ ∈ supp(β∗).

The only case that is not covered is one in which a∗ /∈ supp(α∗) but b∗ ∈ supp(β∗), namely, the

Stackelberg action is not player 1’s stage-game best reply to player 2’s minmax action, and in order

to minmax player 1 while guaranteeing player 2’s stage-game incentive constraint, player 2 needs to

play the Stackelberg best reply b∗ with positive probability.
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3.2 Comparison to Canonical Reputation Models

I compare my Theorem 1 with the reputation results in Fudenberg and Levine (1989, 1992) and

Gossner (2011). The key is to distinguish between the short-run players’ actions in my model and

the noisy signal in theirs. In the current model, there are two obstacles to learn about player 1’s

type. First, player 1’s action can be uninformative about his type. Second, player 2’s action can be

irresponsive to player 1’s actions in the past.

The first obstacle has negligible payoff consequences when player 1 is patient. This is because when

player 2 expects a∗ with high probability, she has a strict incentive to play b∗ and player 1 obtains his

Stackelberg payoff by playing a∗. The second obstacle is novel and has significant payoff consequences.

Focusing on the product choice game with K = 1, I argue that in the worst equilibrium for player 1,

bt+1 is informative about at, but its informativeness vanishes as δ → 1.

To start with, consider a candidate equilibrium in which bt+1 is uninformative about at. According

to Assumption 2, player 1 has a strict incentive to play L. As a result, after observing H in period t,

player 2 who arrives in period t+1 will be convinced that player 1 is the commitment type. Hence, she

has a strict incentive to play T in period t+ 1. If this cycle persists, then a patient player 1’s average

payoff across the two periods is approximately 1
2(v1 + u1(a

∗, b∗)) by playing H in every period.6

Therefore, at is perfectly informative about player 1’s type unless bt+1 varies sufficiently with at

such that it provides the strategic player 1 an incentive to play a∗. If the strategic type has a strict

incentive to play a∗, then player 2 has a strict incentive to play b∗. As a result, the strategic player 1

is indifferent between a∗ and a′ in his worst equilibrium, which means that the variation of bt+1 with

respect to at vanishes to zero as player 1 becomes more patient.

To better understand the connections, I apply the result of Gossner (2011) and explain why his

analysis leads to an uninformative payoff lower bound in my model. First, the sum of KL-divergence

(between the probability measure over histories generated by the commitment type, and the equilib-

rium probability measure) is bounded from above by − log π0. When a∗ is played with probability q∗,

the divergence between the probability measure generated by the commitment type and that generated

by the equilibrium probability measure is approximately

log
(

1 + (1− q∗)(1− δ)
)
. (3.8)

Using the Taylor’s expansion, the above expression is of the magnitude (1− δ). As a result, when the

6For any K ∈ N, if bt+1 is uninformative about at, then player 1 can guarantee an average payoff close to
K
K+1

u1(a∗, b∗) + 1
1+K

v1 from period t to t + K by playing a∗ in every period. As K converges to infinity, the above
guaranteed average payoff converges to his Stackelberg payoff.
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strategic player 1 imitates the commitment type, the expected number of periods with which player 2’s

belief about player 1’s action being far away from a∗ explodes as δ → 1. This contrasts to the canonical

reputation models in which the KL-divergence generated by the strategic type and the commitment

type is uniformly bounded from below in periods where player 2 does not have a strict incentive to

play her Stackelberg best reply. As a result, the expected number of bad periods is uniformly bounded

from above as δ → 1.

4 Stochastic Monitoring

In many applications of interest, consumers stochastically sample among their predecessors to learn

about their experiences with the seller (Banerjee and Fudenberg 2004), or each consumer communicates

with a subset of his predecessors, namely her friends, before making her purchasing decision (Acemoglu,

Dahleh, Lobel and Ozdaglar 2011). Importantly, the seller does not know who do each buyer samples

nor does he observe the realization of the stochastic network.

Motivated by these applications, I focus on the product choice game and generalize the insights of

Theorem 1 to environments with stochastic monitoring. For every t ≥ 1, let

Nt ∈ ∆
(

2{0,1,...,t−1}
)

be the distribution over the tth short-run player’s neighborhood, and let Nt be the realization of Nt.

The public history consists of

ht ≡
{
b0, b1, ..., bt−1, ξ0, ..., ξt

}
.

Player 2’s private history in period t is given by:

ht2 ≡
{
Nt, b0, b1, ..., bt−1,

(
as

)
s∈Nt

, ξ0, ..., ξt

}
. (4.1)

Let Ht2 be the set of ht2, and let H2 ≡ ∪t∈NHt2 be the set of player 2’s private histories. Importantly,

player 1 cannot observe the current and past realizations of Nt, and therefore, he may not know player

2’s posterior beliefs about his type and about his private history. I make the following assumption on

the stochastic network N ≡ {Nt}t∈N:

Assumption 4. For every t 6= s, Nt and Ns are independent random variables. Moreover, there
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exist K ∈ N and γ ∈ (0, 1) such that for every t ≥ 1,

Pr
(
|Nt| ≤ K

)
= 1 and Pr

(
t− 1 ∈ Nt

)
≥ γ.7

The first part of Assumption 4 requires that players’ neighborhoods to be independently distribut-

ed. This is a standard assumption in the observational learning literature, which is trivially satisfied

when the network is deterministic, and is also assumed in the seminal paper of Acemoglu, Dahleh,

Lobel and Ozdaglar (2011). The second part implies that it is common knowledge that each buyer only

samples a bounded subset of his predecessors’ experiences. This bound is interpreted as a constraint

on the buyers’ ability to acquire or process detailed information. The third part requires that each

buyer samples her immediate predecessor with probability bounded from below. This assumption

rules out uniform sampling (i.e., the agent samples K out of t predecessors, and each predecessor is

sampled with equal probability) since the probability with which the immediate predecessor’s action

being observed vanishes as the sample size becomes large. Without this part of Assumption 4, the

buyers’ actions are not adequate to motivate the seller to play H as time goes to infinity.

Let SE(δ, π0,N ) be the set of sequential equilibria in a repeated game with network structure N ,

discount rate δ, and prior belief π0. I show the following result in the product choice game, which

generalizes to other monotone-supermodular games in which player 2’s action choice is binary.

Proposition 2. In the product choice game, if N satisfies Assumption 4, then there exists π0 ∈

(0, 1), such that for every π0 ∈ (0, π0) and δ large enough, there exists (σδ1, σ
δ
2, µ

δ) ∈ SE(δ, π0,N ), such

that:

E(σδ1 ,σ
δ
2)

1

[ ∞∑
t=0

(1− δ)δtu1(at, bt)
]

= v1. (4.2)

The proof is in Appendix A. Since the seller does not know the realization of the stochastic network,

the buyers are privately monitoring the seller’s actions and are privately learning about the seller’s

type. In particular, the seller does not know each buyer’s belief about his type, nor does he know

whether his past deviations have been observed or not.

To overcome the challenges brought by private monitoring and private learning, my proof uses a

combination of belief-free equilibria and the belief-based approach. For some intuition, let q∗ be the

cutoff probability above which player 2 has an incentive to play T . When the calendar time t is low

enough such that the probability of commitment type is below q∗ conditional on any complete history

(i.e., one that consists of action profiles in all previous periods), the strategic long-run player mixes

7Abusing notation, I use t− 1 ∈ Nt to denote the event that t− 1 ∈ Nt given that Nt is distributed according to Nt.
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between H and L with probabilities such that conditional on each complete history, player 2 believes

that H is played with probability q∗. As a result, the set of best replies for player 2 does not depend

on her belief about player 1’s private history.

When the calendar time t is larger than some cutoff M ∈ N, the probability of commitment type is

above q∗ conditional on player 1 playing H in all previous periods, then player 2 has a strict incentive

to play T if she knew that the complete history is {(H,N), (H,N), ..., (H,N)}. This explains why

the equilibrium cannot be belief-free with respect to player 1’s private history when calendar time

is large. To address this issue, I use a belief-based approach that relies on two observations. First,

in period t, the number of player 2’s private histories with length no more than K is no more than

2K
∑K

j=0

(
t
j

)
. Second, strategic player 1 can condition the probability with which he plays H on his

private history, which has 2t possible realizations. For all M relatively large compared to K (which

is the case when π0 is small enough), we have 2K
∑K

j=0

(
t
j

)
< 2t for all t ≥M . As a result, under any

stochastic network that satisfies Assumption 4, there exists a mapping from player 1’s private history

to his mixed actions such that conditional on each ht2 with t ≥ M , player 2 believes that H will be

played with probability q∗.8

5 Informative Signal about Current Period Action

I investigate situations in which each uninformed player can observe an informative signal about the

informed player’s current period action before making her own action choice. I call this reputation

game with informative signals, as compared to the baseline model.

Consider the following sequential-move stage-game. In period t, player 1 chooses at ∈ A after

observing his private history ht1. In addition to observing ht defined in (2.2), player 2 in period t

also observes a noisy signal st ∈ S, drawn according to distribution f(·|at), before choosing bt ∈ B.

Let f be the stochastic matrix {f(·|a)}a∈A, which summarizes the signal structure. I introduce the

definitions of bounded informativeness and unbounded informativeness, which is introduced by Smith

and Sørensen (2000) in social learning models.

Definition 1. For any given a∗ ∈ A,

1. f is unboundedly informative about a∗ ∈ A if there exists s ∈ S such that f(s|a) > 0 iff a = a∗.

2. f is boundedly informative about a∗ ∈ A if it is not unboundedly informative about a∗.

8This belief-based construction only works for large enough calendar time. This is because when t is not large enough
compared to K, 2K

∑K
j=0

(
t
j

)
> 2t, which means that under generic stochastic networks, there exists no strategy of

player 1 under which player 2 is indifferent between T and N at all of her private histories. As a result, the belief-free
construction when calendar time is below M is indispensable.
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Let NE(δ, π0,K, f) be the set of Bayesian Nash equilibria in the reputation game with public signal

f . Let SE(δ, π0,K, f) be the set of sequential equilibria in the reputation game with public signal f .

Recall that

E(σ1,σ2)
1

[ ∞∑
t=0

(1− δ)δtu1(at, bt)
]

is the strategic long-run player’s equilibrium payoff under strategy profile (σ1, σ2). Let

V 1(π0,K, f) ≡ lim inf
δ→1

inf
(σ1,σ2)∈NE(δ,π0,K,f)

E(σ1,σ2)
1

[ ∞∑
t=0

(1− δ)δtu1(at, bt)
]
.

be a patient long-run player’s guaranteed equilibrium payoff in Bayesian Nash equilibrium.

5.1 Signals with Bounded Informativeness

I show that if f(·|a) has full support for every a ∈ A, then the reputation failure result in Theorem 1

extends regardless of the statistical precision of f . More generally, if f is boundedly informative about

a∗, then player 1’s guaranteed equilibrium payoff is strictly bounded below his Stackelberg payoff.

Corollary 2. If the stage-game payoffs satisfy Assumptions 1 and 2, and f has full support, then

in the reputation game with signals, there exists π0 ∈ (0, 1) such that for every π0 ∈ (0, π0) and δ large

enough, there exists (σδ1, σ
δ
2, µ

δ) ∈ SE(δ, π0,K, f), such that:

E(σδ1 ,σ
δ
2)

1

[ ∞∑
t=0

(1− δ)δtu1(at, bt)
]

= v1.

Proof of Corollary 2: Let a′ be player 1’s action in his worst stage-game Nash equilibrium. Let

l∗(f) ≡ max
s∈S

f(s|a∗)
f(s|a′)

. (5.1)

Consider the construction in the proof of Theorem 1 with one modification: the overall probability

with which player 1 plays a∗ is:

q̂ ≡ q∗

q∗ + (1− q∗)l∗(f)
, (5.2)

and the probability with which he plays a′ is 1− q̂. Let π0 = q̂K , player 2 has an incentive to play b

in the reputation building phase, as opposed to b∗, regardless of her observation of player 1’s action

in the past K periods, and regardless of the signal she receives about player 1’s action in the current

period. The rest of the proof follows from that of Theorem 1.
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5.2 Signals with Unbounded Informativeness: Binary Action Games

Next, I consider the case in which f is unboundedly informative about player 1’s Stackelberg action

a∗. I establish a positive reputation result when player 1’s action choice is binary:

Theorem 2. If the stage-game payoffs satisfy Assumption 1, |A| = 2 and f is unboundedly infor-

mative about the Stackelberg action a∗, then for every K ∈ N and π0 > 0:

V 1(π0,K, f) ≥ u1(a∗, b∗).

The proof is in Appendix B. The binary action game studied in Theorem 2 includes the two

leading examples that demonstrate reputation effects, namely, the product choice game and the entry

deterrence game. It provides a sufficient condition for player 1 to guarantee his commitment payoff

when uninformed players have limited memories about the informed player’s actions, and they are

learning about the informed player’s type via their predecessors’ actions.

The requirement of unboundedly informative signals is reminiscent of the well-known conclusion in

Smith and Sørensen (2000), that players’ actions are asymptotically correct if and only if their signals

are unboundedly informative about the payoff-relevant state. However, establishing a reputation for

playing the Stackelberg action is more challenging than aggregating information about an exogenous

state. This is because in reputation models, this signal is related to the informed player’s type through

the informed player’s actions, and the latter is endogenously determined in equilibrium. As will be

clear in the next subsection, under some adverse belief about the strategic type’s behavior (which

is very different from the commitment behavior), bt can be uninformative about at although f is

unboundedly informative about a∗.

Theorem 2 implies that in binary-action games, player 1 can overcome the aforementioned challenge

and secure his Stackelberg payoff in all equilibria. Compared to games with boundedly informative

signals, player 2 has a strict incentive to play b∗ after observing the signal realization that only occurs

under the Stackelberg action, regardless of her belief about strategic player 1’s strategy. In addition,

when player 1’s action choice is binary, as long as the unconditional probability with which bt = b∗

occurs is bounded away from 1, then the following likelihood ratio:

Pr(bt = b∗|at = a∗)

Pr(bt = b∗|at 6= a∗)
,

is bounded from below by a number that is strictly above 1. This inequality bounds the informativeness

of bt about at from below, which uniformly applies (1) across all discount factors, and (2) across all
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histories at which player 2 believes (before observing the current period realization of s) that the

probability with which she plays b∗ is bounded away from 1.

Another challenge arises from the differences in the short-run players’ beliefs across different peri-

ods, which also occurs in other repeated game models with private monitoring. In particular, short-run

players who arrive in different periods have access to different information about player 1’s past play.

Therefore, it could be the case that bt is very informative about ω according to the belief of player 2

in period t, but is uninformative from the perspective of player 2 in period s(> t).

I use the following argument to bound the payoff consequences of such differences in beliefs.

If player 2 in period t observes that a∗ has been played in the past K periods, and believes (be-

fore observing st) that bt = b∗ with probability at most 1 − ε, then the probability with which

(at−K , ..., at−1) = (a∗, ..., a∗) under the equilibrium strategy profile must be bounded from below.

This is because otherwise, player 2 in period t believes that the commitment type occurs with proba-

bility close to 1, and the probability with which she plays b∗ in period t cannot be bounded away from

1. Given that (at−K , ..., at−1) = (a∗, ..., a∗) occurs with probability bounded from below, the probabil-

ity with which player 2 in period s believes that it occurs with very low probability is bounded from

above. Therefore, for any given lower bound on bt’s informativeness about ω from the perspective of

player 2 in period t, one can derive another lower bound on bt’s informativeness about ω from the

perspective of player 2 in period s. The latter lower bound applies with probability close to 1.

5.3 Signals with Unbounded Informativeness: Beyond Binary Actions

Before generalizing Theorem 2 to games in which player 1 has three or more actions, I present two

counterexamples highlighting the issues that arise. In particular, st can be uninformative about ω

despite the probability with which bt = b∗ is bounded away from 1.

Example 1: Consider the following stage game in which player 1 has three actions and player 2 has

two actions.

- b∗ b′

a∗∗ 8, 2 2, 0

a∗ 10, 1 6, 0

a′ 12,−1 8, 0

Let S ≡ {s∗, s∗∗, s′}. The signal distribution f is given by f(s∗∗|a∗∗) = 1, f(s′|a′) = 1, f(s∗∗|a∗) =

f(s∗|a∗) = 1/4 and f(s′|a∗) = 1/2. One can check that player 1’s Stackelberg action is a∗, the game

satisfies Assumptions 1 and 2, and moreover, f is unboundedly informative about a∗.
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Consider the following strategy profile: strategic player 1 mixes between a∗∗, a∗, and a′ with equal

probabilities in every period. Player 2 plays b∗ if st ∈ {s∗, s∗∗} and plays b′ if st = s′. This strategy

profile is an equilibrium when π0 < 3−K−1. Player 1’s equilibrium payoff is 8, which is strictly bounded

below his Stackelberg payoff 10.

In this example, bt is uninformative about player 1’s type because there are multiple actions of

player 1 that can induce player 2 to play b∗. In the example, the two actions are a∗ and a∗∗, in which

a∗∗ leads to an inferior payoff for the long-run player. When the commitment type plays a∗∗ with

positive probability, the conditional probability of b∗ is the same regardless of player 1’s type.

Example 2: Consider the following stage game:

- b∗ b′

a∗ 1, 1 −1, 0

a′ 0,−0.1 1, 0

a′′ 2,−10 0, 0

Let S ≡ {s∗, s′, s′′}. The signal distribution f is given by f(s∗|a∗) = 0.1, f(s′|a∗) = 0.4, f(s′′|a∗) = 0.5,

f(s′|a′) = 1 and f(s′′|a′′) = 1. Player 1’s Stackelberg action is a∗, the game satisfies Assumptions 1

and 2, and f is unboundedly informative about a∗.

Consider the following strategy profile. Strategic player 1’s mixed action only depends on player

2’s posterior belief about his type. If player 2’s posterior assigns probability πt to the commitment

type, then strategic player 1 plays α(π) ∈ ∆(A) such that:

(1− π) ◦ α+ π ◦ a∗ = 0.5 ◦ a∗ + 0.25 ◦ a′ + 0.25 ◦ a′′.

Player 2 plays b∗ if st ∈ {s∗, s′} and plays b′ if st = s′′. Notice that conditional on each type, the

probability with which bt = b∗ is 1/2. This strategy profile is an equilibrium when π0 is small enough,

such that player 2’s posterior belief at any history is bounded from above by 1/2. Player 1’s equilibrium

payoff is 0, which is strictly bounded below his Stackelberg payoff 1.

In this example, bt is uninformative about player 1’s type because there is heterogeneity in player

2’s incentive to play b′ against different actions of player 1’s. In particular, player 2 has stronger

incentive to play b′ under a′′ compared to that under a′. As a result, there exists f such that player

2 has an incentive to play b∗ following a signal realization that leads to a low posterior probability

about a∗, and has an incentive to play b′ following a signal realization that leads to a high posterior

probability about a∗. This situation is implicitly ruled out when |A| = 2 since there is one action in
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A that is not the Stackelberg action, but will occur generically when |A| ≥ 3.

Resistant to Learning: Motivated by these examples, I introduce the definition of resistance to

learning, which is a joint condition on (f , u2), that characterizes situations in which observing infor-

mative signals about the long-run player’s current period action (in addition to observing the previous

short-run players’ actions) is sufficient or insufficient for the patient long-run player to guarantee his

commitment payoff.

Formally, for every α ∈ ∆(A), signal distribution f , and β : S → ∆(B), let α · f · β ∈ ∆(B) be

the distribution of b when (1) player 1 plays α, (2) the signals are generated according to f , and (3)

player 2 behaves according to β after observing s. Abusing notation, I use a ∈ A and b ∈ B to denote

the Dirac measures on a and b, respectively.

Definition 2. For any given a∗ ∈ A,

1. (f , u2) is resistant to learning against a∗ if there exist α ∈ ∆(A) with a∗ ∈ supp(α), and

β : S → ∆(B) which is a best reply against α under u2, such that:

α · f · β = a∗ · f · β 6= BR2(a
∗). (5.3)

2. (f , u2) is not resistant to learning against a∗ if for every α ∈ ∆(A) with a∗ ∈ supp(α), and

β : S → ∆(B) which is a best reply against α under u2,

α · f · β = a∗ · f · β implies α · f · β = a∗ · f · β = BR2(a
∗). (5.4)

By definition, for every u2, f and a∗, either (f , u2) is resistant to learning against a∗, or (f , u2) is not

resistant to learning against a∗. Intuitively, resistant to learning implies that player 2 is not playing

the complete information best reply against a∗, and moreover, her action choices are uninformative

about the long-run player’s type under some belief about the long-run player’s actions α, and some

of her reply β against α. On the other hand, not resistant to learning implies that as long as player

2’s action distribution cannot distinguish between a∗ and some other action distribution of player 1’s,

player 1 can induce player 2 to play b∗ with probability 1 by playing a∗.

Applying the resistant to learning definition to some of my previous results, if f is boundedly

informative about a∗, and player 2’s best reply depends on player 1’s action, then (f , u2) is resistant

to learning against a∗. If f is unboundedly informative about a∗ and player 1’s action choice is binary,

then (f , u2) is not resistant to learning against a∗. In the two counterexamples of this subsection,
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although f is unboundedly informative about a∗, (f , u2) is resistant to learning against a∗, which leads

to failures to build reputations. My next theorem generalizes these insights by connecting resistant to

learning with the success or failure of reputation building:

Theorem 3. If (f , u2) is not resistant to learning against a∗, then for every u1 that satisfies

Assumption 1, K ∈ N and π0 > 0:

V 1(π0,K, f) ≥ u1(a∗,BR2(a
∗)).

If (f , u2) is resistant to learning against a∗, then there exist π0 > 0 as well as an open set of u1, such

that for every u1 within this open set, a∗ is player 1’s Stackelberg action, but for every π0 < π0 and δ

large enough, there exists (σδ1, σ
δ
2, µ

δ) ∈ SE(δ, π0,K, f) such that:

E(σδ1 ,σ
δ
2)

1

[ ∞∑
t=0

(1− δ)δtu1(at, bt)
]

= v1.

The proof of Theorem 3 is in Appendix C. The requirement that K ≥ 1 is needed for the second

statement to hold under an open set of u1. Intuitively, this is because when K = 0, player 1’s action

in the current period cannot directly affect player 2’s actions in the future. In order to motivate the

strategic type to play α that makes bt uninformative about ω, player 1 needs to be indifferent in the

stage game, which can happen only under knife-edge payoff functions.

To better understand how to apply Theorem 3, I provide sufficient conditions on the primitives for

resistant to learning and not resistant to learning. I start from introducing a regularity condition on

u2 that captures the heterogeneity in player 2’s propensity to play b∗.

Definition 3 (Admissibility). u2 is admissible if

1. u2(a, b) 6= u2(a, b
′) for every a ∈ A and b 6= b′.

2. there exists a, a′ ∈ A such that BR2(a) 6= BR2(a
′).

3. for every a′ 6= a′′ and b′ 6= b′′, u2(a
′, b′)− u2(a′, b′′) 6= u2(a

′′, b′)− u2(a′′, b′′).

The first two requirements are already implied by Assumptions 1 and 2. The third requirement is

novel, which says that player 2’s gain from playing b′ instead of b′′ depends on player 1’s action choice.

This third condition is generic, and is satisfied, for example, when A and B are ordered sets and u2

has strictly increasing differences in a and b. This leads to the following result:
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Lemma 5.1. When |A| ≥ 3, for every a∗ ∈ A and every admissible u2, there exists f that is (1)

unboundedly informative about a∗, but (2) (f , u2) is resistant to learning against a∗.

Theorem 3 and Lemma 5.1 together imply the following corollary:

Corollary 3. When |A| ≥ 3, for every admissible u2, there exist u1 that satisfies Assumptions 1

and 2, f that is unboundedly informative about a∗, and π0 ∈ (0, 1), such that for every π0 < π0 and δ

large enough, there exists (σδ1, σ
δ
2, µ

δ) ∈ SE(δ, π0,K), such that:

E(σδ1 ,σ
δ
2)
[ ∞∑
t=0

(1− δ)δtu1(at, bt)
]

= v1.

Proofs of Lemma 5.1 and Corollary 3: For every a∗ ∈ A and admissible u2, let b∗ be the unique

element in BR2(a
∗). Set u1(a

∗, b∗) = 1, and u1(a
∗, b) = 0 for all b 6= b∗. Since u2 is admissible,

there exist α ∈ ∆(A) and b′ 6= b∗ such that:

1. α has full support on A,

2. BR2(α) = {b∗, b′}.

From the second and third requirement on admissibility and the assumption that |A| ≥ 3, there exist

a′, a′′ ∈ A\{a∗} such that:

u2(a
′, b′)− u2(a′, b∗) < u2(a

′′, b′)− u2(a′′, b∗), (5.5)

and u2(a
′′, b′) − u2(a′′, b∗) > 0.9 For every g ∈ (0, 1), consider the following signal structure f with

three signal realizations S ≡ {s∗, s′, s′′}:

1. f(s∗|a∗) = ε1, f(s′|a∗) = g − ε1 and f(s′′|a∗) = 1− g.

2. f(s′|a′) = g + ε2α(a′′) and f(s′′|a′) = 1− g − ε2α(a′′).

3. f(s′|a′′) = g − ε2α(a′) and f(s′′|a′′) = 1− g + ε2α(a′).

4. f(s′|a) = g and f(s′′|a) = 1− g for all a /∈ {a∗, a′, a′′}.

When both ε1 and ε2 are small enough, player 2’s best reply following any signal realization is either

b∗ or b′. When ε2 is relatively large compared to ε1, player 2 has an incentive to play b∗ after observing

s∗ or s′, and has an incentive to play b′ after observing s′′. Under this information structure, if player

9This is because u2(a∗, b′)−u2(a∗, b∗) < 0, and player 2’s ordinal preference between b′ and b∗ depends on a according
to the second requirement.
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1 plays the mixed action α, player 2 plays b∗ with probability g and b′ with probability 1− g; if player

1 plays a∗, player 2 plays b∗ with probability g and b′ with probability 1− g. Find such ε1 and ε2, one

can then complete the construction of u1.

1. u1(a
′, b∗) and u1(a

′, b′) are such that

(g + ε2α(a′′))u1(a
′, b∗) + (1− g − ε2α(a′′))u1(a

′, b′) = g.

2. u1(a
′′, b∗) and u1(a

′′, b′) are such that first, u1(a
′′, b∗) > 1; and second,

(g − ε2α(a′))u1(a
′′, b∗) + (1− g + ε2α(a′))u1(a

′′, b′) = g.

3. For every a /∈ {a∗, a′, a′′}, u1(a, b∗) and u1(a, b
′) are such that

gu1(a, b
∗) + (1− g)u1(a, b

′) = g.

4. When b /∈ {b∗, b′}, set u1(a, b) to be negative for every a ∈ A.

As a result, when π0 is small enough, the following strategy profile is an equilibrium for every δ: player

1 plays α in every period, and player 2 chooses bt = b∗ after observing st ∈ {s∗, s′}, and chooses bt = b′

after observing st = s′′. Player 1’s equilibrium payoff is g, which is strictly below his Stackelberg

payoff 1.

Next, I focus on stage-games that have monotone-supermodular payoffs (Assumption 3). Recall

that in monotone-supermodular games, players’ actions can be ranked according to (A,�a) and (B,�b
). I show that player 1 can guarantee his commitment payoff from playing his highest action whenever f

that is unbounded informative about his highest action and possesses the standard monotone likelihood

ratio property (or MLRP for short).

Definition 4. f has MLRP if there exists a ranking on S, denoted by �s, such that for every

a � a′ and s � s′,
f(s|a)

f(s′|a)
≥ f(s|a′)
f(s′|a′)

. (5.6)

Intuitively, under ranking �s of the signal realizations, higher signals are more likely to occur

under higher actions of the informed player. Let a ≡ maxA.
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Lemma 5.2. If the stage-game payoffs satisfy Assumptions 1 and 3, and f is unboundedly infor-

mative about a and satisfies MLRP, then for every K ∈ N and π0 > 0:

V 1(π0,K, f) ≥ u1
(
a,BR2(a)

)
.

Proof. Since f is unboundedly informative about a, there exists s∗ ∈ S such that f(s∗|a) > 0 if and

only if a = a. Since a is player 1’s highest action, the MLRP implies that s∗ is the highest signal

realization. For every distribution over player 1’s actions α ∈ ∆(A), there exists s′ ∈ S such that

player 2 has an incentive to play b∗ ≡ BR2(a) if and only if s � s′, and has a strict incentive not

to play b∗ otherwise. The probability with which s � s′ is higher under a∗ than any other action

α ∈ ∆(A). As a result, the probability of b∗ is strictly higher under a∗ than under α, as long as this

probability is not 1. The lower bound on a patient player 1’s equilibrium payoff follows from Theorem

3.

6 Conclusion

This paper highlights the challenges to build reputations when uninformed players learn primarily

through signals whose informativeness is endogenously determined in equilibrium. An example of such

signals is their predecessors’ actions whose informativeness varies with the informed player’s discount

factor. In terms of economic applications, my analysis captures buyers’ suspicion after observing

sellers’ consumer-friendly behaviors. It provides an explanation for the persistence of such suspicion

and outlines its payoff consequences for patient reputation-building sellers. I also provide sufficient

conditions for effective reputation building through endogenous signals. My resistant to learning

condition relates to, albeit different from, the unbounded informativeness condition in models of

observational learning. In particular, it takes into account players’ responses when the object to be

learnt is endogenous to the equilibrium.



A PROOF OF PROPOSITION 2 26

A Proof of Proposition 2

Recall that the product choice game has the following stage-game payoff:

– T N

H 1, 1 −1, 0

L 2,−1 0, 0

In this game, the cutoff belief above which player 2 plays T is q∗ ≡ 1/2. I construct an equilibrium in

which patient strategic long-run player’s payoff is 0 for all large enough δ. The equilibrium consists of

three phases, a reputation building phase, a reputation maintenance phase and a punishment phase. I

describe players’ behaviors in the three phases one by one.

Punishment Phase: If (b0, ..., bt−1) is such that there exists N that occurs after T , then given that

(b0, ..., bt−1) is common knowledge among the two players, they coordinate on the stage-game Nash

equilibrium (L,N) in all subsequent periods. Later, I explain that at those histories, the commitment

type occurs with zero probability.

Reputation Maintenance Phase: If player 2 in period t observes that (b0, ..., bt−1) is such that

T has occurred before, and N has not occurred after T , then let t∗ be the first period with which T

occurs. Strategic player 1 plays H with probability 1 if (b0, ..., bt−1) satisfies the above conditions and

L has not been played from period t∗ + 1 to t − 1; and plays H with probability q∗ if L has been

played from period t∗ + 1 to t− 1. Player 2 plays T with probability 1 if at least one of the following

three conditions is satisfied: first, t − 1 = t∗; second, t − 1 /∈ Nt; third, t − 1 ∈ Nt and at−1 = H. If

t − 1 > t∗, t − 1 ∈ Nt, and at−1 = L, then she mixes between T and N . The probability with which

she plays N , denoted by pt, satisfies:

1− δ
δ

= pt Pr(t− 1 ∈ Nt). (A.1)

Since Pr(t− 1 ∈ Nt) is bounded away from 0, pt is strictly between 0 and 1 when δ is large enough.

Reputation Building Phase: Let M ∈ N be a large enough integer such that for every n ≥ M ,

we have:

2K
K∑
j=0

(
n

j

)
< 2n − 1. (A.2)
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Such an M exists due to two observations, namely, for any integer n ∈ N,
(
n
j

)
is increasing in j when

j < n/2 and is decreasing in j when j > n/2; and moreover,
∑n

j=0

(
n
j

)
= 2n. Pick π0 ∈ (0, 1) small

enough such that:
π0

1− π0

( 1

q∗/2

)M
<

q∗/2

1− q∗/2
. (A.3)

I consider two subphases separately, depending on the comparison between calendar time t and M .

When t ≤ M , strategic player 1 plays H with probability q∗ at private histories such that L has

been played before. At histories such that L has not been played before, the probability with which

he plays H, denoted by βt, is defined recursively via:

Pr(ωc|H,H, ...,H) + βt

(
1− Pr(ωc|H,H, ...,H)

)
= q∗. (A.4)

Such βt ∈ (0, 1) exists and is greater than q∗/2 according to the upper bound on π0 in (A.3). Player 2

plays T with probability 1−δ
δ(2−δ)pt in period t if t ≥ 1, t− 1 ∈ Nt, and at−1 = H, where pt ≡ Pr(t− 1 ∈

Nt). Player 2 plays N with probability 1 in period t otherwise.

When t > M , let β(ht1) be the probability with which strategic type player 1 plays H at private

history ht1. I fix β(H,H, ...,H) to be 0. For every private history of player 2’s ht2, let κ(ht
2) ∈ ∆(Ht1)

be her belief about player 1’s private history, and let π(ht2) ∈ [0, 1] be the probability she attaches to

the commitment type. Let π(ht1) ∈ [0, 1] be the probability that an outside observer attaches to the

commitment type if he shares the same prior belief as the short-run players and observes player 1’s

private history ht1. Let βt be an |Ht1|-dimensional vector defined as:

βt ≡

 β(ht1) if ht1 6= (H,H, ...,H)

π(ht1) if ht1 = (H,H, ...,H).
(A.5)

In what follows, I compute and define βt, κ(ht
2), π(ht2), π(ht1), and players’ behaviors in the reputation

building phase after period M recursively. For every t ≥M + 1, given players’ behaviors from period

0 to t− 1, as well as the distribution over player 2’s neighborhood Nt, one can compute κ(ht
2), π(ht2),

and π(ht1) according to Bayes Rule.

Given (A.3) and (A.4), and the assumption that Pr(|Nt| ≤ K) = 1, we know that π(ht2) is bounded

from above by q∗/2 for every ht2 that occurs with positive probability. Moreover, the probability with

which κ(ht
2) attaches to (H,H, ...,H) is bounded from above by q∗/2. This is because conditional on

as = H for all s ∈ Nt, ht1 = (H,H, ...,H) if and only if ω = ωc. As a result, the probability player

2 attaches to player 1’s private history being (H,H, ...,H) is bounded from above by the probability
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she attaches to commitment type at private history ht2. I choose the other entries of β, aside from the

one for private history (H,H, ...,H) that is fixed to be π(ht1), such that each of these aforementioned

entries is between q∗/2 and 1, and moreover:

κ(ht
2) · βt = q∗ for every ht2 ∈ Ht2. (A.6)

The above linear system admits at least one solution for the following reasons:

1. The probability with which κ(ht
2) attaches to (H,H, ...,H) is bounded from above by q∗/2.

2. Since each player 2 can observe at most K of her predecessors’ interactions with player 1, the

cardinality of Ht2 is at most 2K
∑K

j=0

(
t
j

)
, which corresponds to the number of linear constraints;

The cardinality of Ht1 is 2t, namely, one can choose 2t − 1 free variables.

According to the construction of M in (A.2), the number of free variables is strictly larger than

the number of linear constraints when t ≥M .

For every t > M and given that play remains in the reputation-building phase, player 2 plays T with

probability 1−δ
δ(2−δ)pt in period t if t− 1 ∈ Nt, and at−1 = H, where pt ≡ Pr(t− 1 ∈ Nt). Player 2 plays

N with probability 1 in period t otherwise.

One can verify that the strategic player 1 is indifferent between H and L at every history in the

reputation building phase since his continuation payoff is 1−δ
δ at every private history such that t ≥ 1,

t−1 ∈ Nt, and at−1 = H. His continuation payoff is 0 at other private histories. Player 2 is indifferent

between T and N at every history of the reputation building phase given (A.6).

B Appendix: Proof of Theorem 2

For every public history ht, let g(ht) be the probability with which player 2 plays b∗ at ht. Let g(ht, ωc)

be the probability with which player 2 plays b∗ at ht conditional on player 1 is the commitment type.

For any public history ht such that

{amax{0,t−K}, ..., at−1} = {a∗, ...., a∗},

namely, player 2’s belief at ht (before observing st) attaches positive probability to the commitment

type, I derive a lower bound on:
g(ht, ωc)

g(ht)
,
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as a function of g(ht), or equivalently, an upper bound on

1− g(ht, ωc)

1− g(ht)
. (B.1)

Let A ≡ {a∗, a′} and S ≡ {s∗, s1, s2, ..., sm}. Let r(ht) be the probability that a∗ is played at ht, let

τ(si)(h
t) be the probability that signal si occurs at ht, and let p(si)(h

t) be the posterior probability of

a∗ conditional on observing si at ht.10 I suppress the dependence on ht in order to simplify notation.

Since {b∗} = BR2(a
∗) and |A| = 2, we have the following two implications:

1. there exists a cutoff belief p∗ ∈ (0, 1) such that player 2 has a strict incentive to play b∗ after

observing si if and only if p(si) > p∗.

2. there exists a constant C ∈ R+ such that 1− r ≥ C(1− g).11

According to the first implication, it is without loss of generality to label the signal realizations such

that p(s1) ≥ p(s2) ≥ ... ≥ p(sm), and moreover, there exists k ∈ {1, 2, ...,m} such that player 2 plays

b∗ for sure after observing s1, ..., sk−1, and does not play b∗ otherwise.12 Therefore,

r(1− f(s∗|a∗)) =
m∑
i=1

τ(si)p(si), 1− r =
m∑
i=1

τ(si)(1− p(si)), and
m∑
i=k

τ(si) = 1− g.

Using the fact that p(s1) ≥ p(s2) ≥ ... ≥ p(sm), we know that:

∑k−1
i=1 τ(si)p(si)∑k−1

i=1 τ(si)(1− p(si))
≥ r(1− f(s∗|a∗))

1− r
≥

∑m
i=k τ(si)p(si)∑m

i=k τ(si)(1− p(si))
. (B.2)

As a result,
m∑
i=k

τ(si)p(si) ≤
r(1− f(s∗|a∗))
1− rf(s∗|a∗)

(1− g), (B.3)

and
m∑
i=k

τ(si)(1− p(si)) ≥
1− r

1− rf(s∗|a∗)
(1− g). (B.4)

Therefore,
1− g(ωc)

1− g
≤ 1− f(s∗|a∗)

1− rf(s∗|a∗)
, (B.5)

10Notice that r, τ, p depend on player 1’s action choice at ht, which is endogenously determined in equilibrium.
11This is implied by the results on Bayesian persuasion once player 1’s action at ht is viewed as the state. The

probability with which b∗ not being played leads to an upper bound on the probability with which state a∗ occurs.
12Ignoring the possibility that player 2 plays a mixed action following certain signal realizations is without loss of

generality in proving the current theorem. This is because when player 2 mixes between n actions after one signal
realization, we can split this signal realization into n signal realizations with the same posterior belief, such that player
2 plays a pure action following each of these signal realizations.
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Using the second implication, namely, r ≤ 1− C(1− g), we have:

1− g(ωc)

1− g
≤ 1− f(s∗|a∗)

1− f(s∗|a∗) + Cf(s∗|a∗)(1− g)
. (B.6)

Similarly, the lower bound on the likelihood ratio with which b∗ occurs is given by:

g(ωc)

g
≥ 1 +

f(s∗|a∗)(1− g(ht))

g − rf(s∗|a∗)
≥ 1 +

f(s∗|a∗)(1− g)

g − f(s∗|a∗)(1− C(1− g))
(B.7)

Let β(ht) ∈ ∆(B) be the distribution over player 2’s action at ht, and let β(ht, ωc) ∈ ∆(B) be the

distribution over player 2’s action at ht conditional on player 1 being the commitment type. Inequalities

(B.6) and (B.7) imply the following lower bound on the KL divergence between β(ht) and β(ht, ωc):

d
(
β(ht)

∣∣∣β(ht, ωc)
)
≤ L

(
1− g(ht)

)
, (B.8)

with L(·) vanishing to 0 as 1− g(ht)→ 0.

This lower bound on the KL divergence bounds the speed of learning at ht from below, as a function

of the probability with which player 2 at ht does not play b∗. This implies a lower bound on the speed

of learning when player 2 in the future observes b∗ in period t, given that he knew that the probability

with which player 2 plays b∗ at ht is no more than g(ht). However, unlike models with unbounded

memory, future player 2’s information does not nest that of player 2’s in period t. This is because

future player 2s may not observe {at−K , ..., at−1}, and hence, cannot interpret the meaning of bt in

the same way as player 2 in period t does.

For every s, t ∈ N with s > t, I provide a lower bound on the informativeness of bt about player

1’s type from the perspective of player 2 who arrives in period s, as a function of the informativeness

of bt (about player 1’s type) from the perspective of player 2 who arrives in period t. This together

with (B.8) establishes a lower bound on the informativeness of bt from the perspective of future player

2s as a function of the probability with which b∗ is not being played. Applying the result in Gossner

(2011), one obtains the commitment payoff theorem.

Let π(ht) be player 2’s belief about ω at ht before observing the period t signal st. By definition,

π(h0) = π0. For every strategy profile σ, let Pσ be the probability measure over H induced by σ, let

Pσ,ωc be the probability measure induced by σ conditional on player 1 being the commitment type,

and let Pσ,ωs be the probability measure induced by σ conditional on player 1 being the strategic type.

One can the write the posterior likelihood ratio as the product of the likelihood ratio of the signals
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observed in each period:
π(ht)

1− π(ht)

/ π0
1− π0

=
Pσ,ωc(b0)
Pσ,ωs(b0)

· P
σ,ωc(b1|b0)
Pσ,ωs(b1|b0)

· ... · P
σ,ωc(bt−1|bt−2, ..., b0)
Pσ,ωs(bt−1|bt−2, ..., b0)

· P
σ,ωc(at−K , ..., at−1|bt, bt−1, ..., b0)
Pσ,ωs(at−K , ..., at−1|bt, bt−1, ..., b0)

(B.9)

Furthermore, for every ε > 0 and every t, we know that:

Pσ,ωc
(
πσ(b0, b1, ...bt−1) < επ0

)
≤ ε 1− π0

1− π0ε
, (B.10)

in which πσ(b0, b1, ...bt−1) ∈ ∆(Ω) is player 2’s belief about player 1’s type after observing (b0, ..., bt−1)

but before observing player 1’s actions and st. For every ε > 0, let ρ∗(ε) be defined as:

ρ∗(ε) ≡ επ0
1− Cε

. (B.11)

Next, I show that if:

1. πσ(b0, b1, ...bt−1) ≥ επ0,

2. player 2 in period t believes that bt = b∗ occurs with probability less than 1− ε after observing

(at−K , ..., at−1) = (a∗, ..., a∗),

then under probability measure Pσ, the probability of {at−K , ..., at−1} = {a∗, ..., a∗} conditional on

(b0, ..., bt−1) is at least ρ∗(ε).

To see this, suppose towards a contradiction that the probability with which (at−K , ..., at−1) =

(a∗, ..., a∗) is strictly less than ρ∗(ε) conditional on (b0, ..., bt−1). According to (B.11), after observing

(at−K , ..., at−1) = (a∗, ..., a∗) in period t and given that πσ(b0, b1, ...bt−1) ≥ επ0, π(ht) attaches prob-

ability strictly more than 1 − Cε to the commitment type. As a result, player 2 in period t believes

that a∗ is played with probability at least 1− Cε at ht. This contradicts presumption that she plays

b∗ with probability less than 1− ε.

Next, I study the believed distribution of bt from the perspective of player 2 in period s in the

event that πσ(b0, b1, ...bt−1) ≥ επ0. Let P(σ, t, s) ∈ ∆(∆(AK)) be player 2’s signal structure in period

s(≥ t) about {at−K , ..., at−1} under equilibrium σ. For every small enough η > 0, given that P(σ, t)

attaches probability at least ρ∗(ε) to {at−K , ..., at−1} = {a∗, ..., a∗}, the probability with which P(σ, t, s)

attaches to the event that {at−K , ..., at−1} = {a∗, a∗, ..., a∗} occurs with probability less than ηρ∗(ε)
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conditional on {at−K , ..., at−1} = {a∗, a∗, ..., a∗} is bounded from above by:

ηρ∗(ε)(1− ρ∗(ε))
(1− ηρ∗(ε))ρ∗(ε)

= η
1− ρ∗(ε)
1− ρ∗(ε)η

. (B.12)

Let g(t|hs) be player 2’s belief about the probability with which b∗ is played in period t when she

observes hs. Let g(t, ωc|hs) be her belief about the probability with which b∗ is played in period t

conditional on player 1 being committed. The conclusions in (B.6) and (B.7) also apply in this setting,

namely,
1− g(t, ωc|hs)

1− g(t|hs)
≤ 1− f(s∗|a∗)

1− f(s∗|a∗) + Cf(s∗|a∗)(1− g(t|hs))
(B.13)

and
g(t, ωc|hs)
g(t|hs)

≥ 1 +
f(s∗|a∗)(1− g(t|hs))

g(t|hs)− f(s∗|a∗)(1− C(1− g(t|hs)))
(B.14)

Whenever player 2 in period s believes that {at−K , ..., at−1} = {a∗, a∗, ..., a∗} occurs with probability

more than η · ρ∗(ε), we have:

g(t|hs) ≤ 1− εηρ∗. (B.15)

Applying (B.15) to (B.13) and (B.14), we obtain a lower bound on the KL divergence between

g(t, ωc|hs) and g(t|hs). This is the lower bound on the speed with which player 2 at hs will learn

through bt = b∗ about player 1’s type, which applies to all events except for one that occurs with

probability less than η 1−ρ∗
1−ρ∗η . Therefore, for every ε and π0, there exists δ such that when δ > δ, the

strategic player 1’s payoff by playing a∗ in every period is at least:

(
1− ε− ε 1− π0

1− π0ε

)
u1(a

∗, b∗) +
(
ε+ ε

1− π0
1− π0ε

)
min
a,b

u1(a, b)− ε. (B.16)

Taking ε→ 0 and δ → 1, (B.16) implies the commitment payoff theorem.
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[10] Ely, Jeffrey and Juuso Välimäki (2003) “Bad Reputation,” Quarterly Journal of Economics,
118(3), 785-814.

[11] Ely, Jeffrey, Drew Fudenberg and David Levine (2008) “When is Reputation Bad?” Games and
Economic Behavior, 63(2), 498-526.

[12] Ekmekci, Mehmet (2011) “Sustainable Reputations with Rating Systems,” Journal of Economic
Theory, 146(2), 479-503.

[13] Fudenberg, Drew, David Kreps and Eric Maskin (1990) “Repeated Games with Long-Run and
Short-Run Players,” Review of Economic Studies, 57(4), 555-573.

[14] Fudenberg, Drew and David Levine (1989) “Reputation and Equilibrium Selection in Games with
a Patient Player,” Econometrica, 57(4), 759-778.

[15] Fudenberg, Drew and David Levine (1992) “Maintaining a Reputation when Strategies are Im-
perfectly Observed,” Review of Economic Studies, 59(3), 561-579.

[16] Gossner, Olivier (2011) “Simple Bounds on the Value of a Reputation,” Econometrica, 79(5),
1627-1641.

[17] Liu, Qingmin (2011) “Information Acquisition and Reputation Dynamics,” Review of Economic
Studies, 78(4), 1400-1425.



REFERENCES 34

[18] Liu, Qingmin and Andrzej Skrzypacz (2014) “Limited Records and Reputation Bubbles,” Journal
of Economic Theory 151, 2-29.

[19] Logina, Ekaterina, Georgy Lukyanov and Konstantin Shamruk (2019) “Reputation and Social
Learning,” Working Paper.

[20] Mailath, George and Larry Samuelson (2001) “Who Wants a Good Reputation?” Review of
Economic Studies, 68(2), 415-441.

[21] Nyqvist, Martina Björkman, Jakob Svensson and David Yanagizawa-Drott (2018) “Can Com-
petition Reduce Lemons? A Randomized Intervention in the Antimalarial Medicine Market in
Uganda,” Working Paper.

[22] Pei, Harry (2019a) “Reputation Effects under Interdependent Values,” Working Paper.

[23] Pei, Harry (2019b) “Trust and Betrayals: Reputational Payoffs and Behaviors without Commit-
ment,” Working Paper.
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