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Abstract

To facilitate a sustainable energy transition, governments and innovators have encour-
aged the adoption of smart technologies in the home that allow for increased flexibility
in centralized energy grids. The ambitious Smart Meter Implementation Programme in
the United Kingdom has indisputably failed to achieve its objective of equipping all UK
dwellings with smart meters by 2020, perhaps due to some or all of several identified
barriers to adoption of allegedly welfare-enhancing energy technology in the home. By
partnering with the UK’s energy regulator, this research uses an incentive-compatible on-
line experiment to elicit the willingness-to-accept of a representative panel of over 2,400
UK households for smart meter installation. Randomized information treatments allow
for assessment of the impact on adoption and willingness-to-accept of several purported
market failures in relation to smart meter adoption, namely information asymmetries re-
garding the personal and social benefits of smart meter adoption as well as information
regarding accumulated positive ‘learning-by-using’ externalities. We explore treatment ef-
fects for a range of potential subsidy values, and discuss implications for policymakers in
encouraging residential smart meter adoption.
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1 Introduction

Economists researching the intersection between consumer behavior and energy systems
are increasingly recognizing the importance of one-off technology adoption behaviors in
achieving energy system-level and environmental policy goals. While some policies may
target householders’ recurring energy-wasting habits—leaving the lights on in unoccupied
rooms, for example, or failing to turn the heat off when leaving the home—other perhaps
more persistent energy conservation policies might target infrequent one-off behaviors or
decisions.1 For instance, economists have studied the importance of energy and fuel ef-
ficiency on consumers’ purchasing decisions and have found mixed evidence: while some
studies find that consumers are largely inattentive to future fuel costs (or savings) of the
energy-consuming durables they adopt (Allcott and Taubinsky, 2015; Fowlie et al., 2015),
others cannot reject the hypothesis of consumer attentiveness (Houde and Myers, 2019).
Newer technologies may suffer from low take-up rates due to lack of experience and little
understanding of the technology’s benefits, highlighting disincentives for early adoption
and costs of asymmetric information (Jaffe and Stavins, 1994a; Gillingham and Palmer,
2014). Whether and how a government should intervene depends on the drivers of (perhaps
inefficiently) low adoption (Jaffe and Stavins, 1994b).

We study the case of such a technology—the smart electricity meter—in the context of
an unprecedented UK-wide Government-led public participation campaign. The smart me-
ter, an internet-connected two-way communication device, boasts purported producer and
consumer benefits stemming from its ability to measure site-specific energy consumption
in real-time. On the producer side, the benefits of widespread adoption of the technology
are clear: real-time information allows for efficient matching of energy supply with energy
demand, improves predictions regarding requisite energy capacity at various times of the
day and year, eliminates the need for manual meter readings, and provides the opportunity
to incentivize shifts in demand to minimize system-level costs (Joskow, 2012).

On the consumer side, the benefits are less clear-cut. First, while smart meters equip
consumers with information necessary to match energy-consuming behaviors to actual
energy usage, evidence is mixed regarding the propensity of households to engage with
the meters’ information to successfully reduce costs (Faruqui et al., 2010, National Audit
Office, 2018). Second, while a smart meter allows for monthly bill payments commensurate
with actual usage, consumers may still prefer to pay a fixed monthly fee for budgeting and
consumption smoothing purposes. Third, as historically passive users of energy often
beholden to rigid daily routines, householders may struggle to shift demand considerably,
rendering any increase in energy plan options welfare-neutral, at least in the short run.
Finally, system-level benefits could save householders money via supplier savings pass-
through, though there is no guarantee that such savings will reach the consumer.

Not only may some households be unaware of the potential private and social benefits
of smart meter installation, they may be reluctant to adopt for a number of reasons such
as privacy (McKenna et al., 2012), financial costs (Balta-Ozkan et al., 2013), hidden costs
(Gillingham and Palmer, 2014), or general disengagement with or distrust in their energy
utility (Central Market Authority, 2016). In addition, energy utilities may have difficulty

1To illustrate the significance of such one-off decisions, in its 2014 assessment of proposed EU-wide per-
formance standards, the UK Government estimated the potential energy savings from fully transitioning the
stock of UK home appliances—in this case, dishwashers, washing machines, and televisions—to those with the
minimum-viable EU standards, claiming a dramatic savings of 2930 GWh (about 3% of total residential energy
consumption) per year by 2030.
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in accessing certain customers, or there may be physical and structural constraints asso-
ciated with dwellings that make installation of smart meters impossible. In other cases,
misaligned incentives and communication channels between landlords and tenants may
constrain adoption in the private rented sector. Finally, the non-monetary costs of energy
efficiency upgrades have been shown to deter households from installing free measures,
even once households have become aware of the potential private benefits and made an
application for a home upgrade (Fowlie et al., 2015).2

Yet, widespread smart meter adoption holds promise to considerably improve environ-
mental outcomes through increased energy production efficiency—which reduces overall
energy production and greenhouse gas emissions—and flexibility—which lowers the risk of
blackouts and facilitates the integration of higher proportions of renewable energy into a
given system’s energy portfolio. For instance, in its extensive cost-benefit analysis most
recently updated in 2019, the UK government finds that the environmental and financial
savings far outweigh the costs of rapid transition to a smart energy system.3 In this case,
how can a social planner understand and quantify the extent of resistance to the technol-
ogy in question, and subsequently encourage adoption amongst reluctant or ambivalent
consumers?

This research develops an incentive-compatible online experiment to elicit a representa-
tive panel of UK households’ willingness-to-accept compensation (WTA) for smart meter
installation following exposure to various treatments aimed at overcoming two of five rel-
evant market failures (as outlined in Gillingham and Palmer, 2014). We measure two
main outcome variables, namely whether the consumer adopts the smart meter for free
as well as the subsidy level necessary for varying proportions of the population to adopt
(conditional on treatment received). From these responses, we quantify the significance
of private and social information as well as learning-by-using in the decision to adopt the
technology, and infer adoption rates at various subsidy levels in this context.4

The paper is structured as follows. The next section provides contextual background
regarding the UK’s Smart Meter Implementation Programme. The third section provides
details of the experimental and valuation methodologies deployed. The fourth section

2More generally, a broad literature exists that examines the so-called “energy efficiency gap”, a well-evidenced
phenomenon suggesting that consumers do not invest in energy-saving technologies (such as insulation or re-
placement boilers) that may be privately beneficial. This gap is often attributed to imperfect information or
inattention on the part of consumer (Allcott and Greenstone, 2012). Gillingham and Palmer (2014) provide
an extensive overview of reasons why the gap may be smaller than perceived, and of both market failures and
behavioural anomalies that may be contributing to the gap that exists.

3https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment data/file/831716
/smart-meter-roll-out-cost-benefit-analysis-2019.pdf

4As noted in Langer and Lemoine (2018), an efficient subsidy schedule would allow for the social planner
to intertemporally price discriminate, providing low subsidies to first movers with relatively low willingness-
to-pay in early periods and increasing the subsidy over time until the efficient level of adoption is attained.
However, consumer anticipation of future subsidies may lead some consumers to wait for the higher subsidy to
be instated, expanding the pool of inframarginal consumers beyond those who receive a higher subsidy than is
necessary to induce adoption in a given period to include those who postpone adoption to receive a higher subsidy.
Evidence of the former ‘type’ of inframarginal consumer is strong; for instance, using a regression discontinuity
design, Boomhower and Davis (2014) find that 65% of subsidy recipients for refrigerator replacements in Mexico
would have accepted the lower subsidy level, indicating dramatic cost-ineffectiveness. Evidence of the latter is
demonstrated in Langer and Lemoine (2018), who show that consumer foresight increases the requisite subsidy
for early adopters who could wait for a higher subsidy, and that this effect has a positive interaction with
anticipated technical change.
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details the data collection process and provides summary statistics for the data collected.
The fifth section outlines our empirical strategy and results. We conclude the paper with
a final section providing implications for policymakers and future research.

2 Policy Context

A long-standing inefficiency in energy markets is the disconnect between retail prices paid
by consumers and the marginal costs of supplying electricity. Smart meters allow real-
time two-way communication, removing the technological barriers to setting prices that
reflect costs of production (Joskow, 2012; Harding and Sexton, 2017). Smart metering may
allow consumers to save energy and money (Faruqui et al., 2010), but of greater social
benefit is their potential to pave a path toward a more flexible energy system, allowing
optimization of generation and storage. Enhanced demand flexibility would enable more
efficient management of the energy system, allow for a greater proportion of intermittent
renewables in the UK’s energy mix, potentially reduce network operating costs, and enable
consumers and suppliers to more efficiently engage with electric vehicle charging and other
load shifting (Joskow, 2012). The potential for these private and social gains creates
opportunities for technological innovation to realize them.

Extensive cost-benefit analysis of smart metering led to the Smart Meter Implemen-
tation Programme (SMIP)—the single-most important domestic energy policy initiative
ongoing in the UK—in 2013. The policy provides the legal framework to install smart elec-
tricity and gas meters in about 50 million UK household by 2020. It has been described
as the most expensive and complex smart meter rollout in the world and the largest UK
Government-run IT project in history (Lewis and Kerr, 2014). Successful implementation
of the SMIP hinges on consumers’ voluntary agreement to install meters in their homes.
However, a number of parties—including the UK’s National Audit Office, the media, and
interest groups—have expressed several concerns relating to the technical performance of
the meters, data security and privacy, consumer vulnerability, and consumer resistance
and ambivalence, amongst others (Sovacool et al., 2017). In addition, concerns have been
raised over the SMIP’s lack of clarity of purpose and transparent communication of benefits
to consumers (House of Commons Science and Technology Committee, 2016).

Consumer resistance due to a range of factors has clearly inhibited rollout, as there were
only 16.3 million meters installed and 13.4 million meters operating by the end of Q2 2019.
The driving forces behind households’ decisions to adopt remain unclear. In making this
decision, a household must weigh up a range of costs and benefits. Both costs and benefits
have private, social, and intertemporal dimensions; costs are generally borne upfront (e.g.,
time off work to accommodate installation, learning about the technology’s functionality),
while a greater proportion of the benefits will accrue in the future (e.g., in increasing one’s
own energy-saving awareness and altering habits, facilitating the emergence of alternative
and potentially cheaper rate plan options or money-saving technological innovations, or
reducing system costs that may pass through to consumers). In brief, the present value of
the net benefits to a given household is idiosyncratic and may be positive or negative.
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3 Methodology

We aim to quantify the importance of several identified market failures that serve as
rational barriers to adoption of purportedly welfare-enhancing energy technology in the
home (Gillingham and Palmer, 2014). Of the five proposed barriers, three may hold
relevance in the case of smart meter adoption, namely imperfect information, learning by
using, and regulatory failures that fail to match energy prices to their true marginal (social)
cost.5 Given constraints on varying the latter, we designed three interventions that target
potential information asymmetries regarding expected personal and social benefits of smart
meter adoption as well as information regarding accumulated positive ‘learning-by-using’
externalities. We do so using a survey experiment that captures adoption behavior and
willingness-to-accept compensation for non-adopters, as described below.

3.1 Experimental Design

We design a survey experiment using the Qualtrics survey software platform in which
household energy decision-makers may sign up to adopt a smart meter following treatment
exposure; those who decline to adopt the smart meter subsequently perform a willingness-
to-accept compensation elicitation exercise (see section 3.2). All eligible participants re-
ceive basic information regarding smart meters prior to treatment exposure for two reasons:
(i) to verify that they do not already have and have not yet been offered a smart meter (as
part of the eligibility criteria), and (ii) to ensure they have some level of understanding
regarding the good in question. Once we confirm eligibility, the participant views one of
four randomly selected information conditions for a minimum of fifteen seconds: (i) ex-
traneous information on the structure of the energy system (Control); (ii) information on
the private benefits of smart meter adoption (Treatment 1); (iii) information on the social
benefits of smart meter adoption (Treatment 2); and (iv) information on bygone learning
from the first six years of the UK’s smart meter rollout, to which the technology and the
energy system have adapted substantially. We complement the latter treatment with a
dynamic norm to demonstrate that the technology is well past the ‘early adoption’ stage.
The four conditions are presented in Figure 1.

Due to lack of pre-experimental data on participants, we do not stratify the random-
ization but instead use the Qualtrics Randomizer tool to randomly assign individuals
who take the survey to receive one of the above four conditions. When we reached 2000
responses we then adjusted the (treatment) quotas to achieve balance across observable
characteristics in our treatment assignments as well as national representativeness in our
sample to the best of our ability (see Table 9).

3.2 WTA Elicitation

3.2.1 Valuation methods

Environmental economics aims to incorporate the social costs of any project or policy into
the decision making of social planners using cost-benefit analysis. If one aggregates the
costs and benefits of a given project or policy and the outcome suggests a positive net

5Note that a fourth market failure—(misconceived) principal-agent issues—may also play a role here if
tenants do not realize that they do not need their landlords’ permission to adopt a smart meter in their rental
property.
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Control Treatment 1: Private Benefits

Treatment 2: Social Benefits Treatment 3: Learning-by-Using

Figure 1: Experimental Treatments
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present value (NPV) that outweighs the NPVs of all other alternatives, then economists
would recommend implementation on the grounds of maximizing social efficiency. How-
ever, valuing environmental goods and bads is not straightforward given the lack of markets
governing their exchange.

Environmental economists have therefore designed a range of tools to recover the non-
market values of these goods. Due to issues surrounding hypothetical bias and consequen-
tiality, we direct our focus toward two incentive-compatible value elicitation methods. One
simple method—‘take-it-or-leave-it’ (TIOLI)—simply asks respondents whether they will
buy or sell a good or service at a given price, where the researchers generally vary the price
to back out an implicit demand curve. TIOLI boasts an obvious benefit of comprehensi-
bility. Its resemblance to familiar and routine market exchanges that consumers make in
their daily lives all but ensures that researchers will elicit a true and unbiased response
from their subjects. Yet, unless followed up with several (theoretically infinite) subsequent
questions, the method suffers from imprecision: we do not obtain an exact data point for
a given respondent to reflect his/her true WTA using the TIOLI method.

To overcome the issue of relatively limited information provided by each respondent
(which demands a very large sample size to flesh out a demand curve), the Becker-DeGroot-
Marschak (BDM) method circumvents the requisite iterative process of the TIOLI method
by directly eliciting an exact WTA—i.e. a single selling price—using a second-price auction
against an unknown bidder. In accordance with the theory set out in Becker et al. (1964),
surveyors can elicit a true and exact WTA (or selling price) from respondents by offering
to pay them an unknown (and, in our case, double blind) amount b—the researcher’s
buying price—in the event that the latter exceeds the former. Since sellers (i.e. survey
respondents) do not know the value of b in advance, they essentially cognitively engage in
an iterative TIOLI process, asking themselves whether they would be willing to accept b
in exchange for the service for every possible value that b could take, thereby ultimately
identifying and stating their true selling prices.

In addition to the precision of the method—and the resulting implications for requisite
sample size and budget to infer a demand curve—Berry et al. (2015) point out that the
BDM mechanism offers additional practical advantages over TIOLI. If there is a wide
range of prices over which the researcher is eager to understand WTA, then TIOLI can
be quite impractical. In our case, consumers’ WTA compensation for installing a smart
meter is highly uncertain and the private costs associated with installation vary immensely
across individuals, so the variance of true WTAs is potentially substantial. Moreover, it is
possible that there is an interaction effect between one’s true WTA and potential treatment
effects. In other words, if a researcher is interested in the impact of various treatments
on one’s WTA and only one or two prices are offered as part of a TIOLI survey, then the
researcher can only identify the treatment effect at that/those price level(s). Therefore,
without the assumption of a constant treatment effect, TIOLI could preclude identification
of a treatment effect when one indeed exists for some individuals.

The contextual features of the service we aim to value more closely reflect those that
favor BDM rather than TIOLI. As mentioned, the range of individuals’ true WTA is
likely wide, and lack of a well-established market for provision of this service means that
individuals will have little prior experience of prices to anchor their valuations. Moreover,
we are indeed interested in heterogeneous treatment effects, so BDM provides us with the
nuance necessary to tease out these effects with a fairly limited sample size.
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3.2.2 Design considerations

Aside from its lower comprehensibility relative to TIOLI, some methodological difficulties
are worth mentioning. Foremost, and particularly when the market for such a service is
missing or unfamiliar, the appropriate buying price range is both difficult to identify and
could even influence survey responses if mentioned explicitly. Simultaneously, without
such a range to anchor respondents selling price, the surveyor risks extracting valuations
that are perhaps unreasonable or, at the very least, infeasible to pay out.6

In the absence of a market price on which to anchor our subjects—or on which sub-
jects’ prior experience may anchor their valuations in the absence of a researcher-induced
anchor—we ran a pilot to determine whether an anchoring effect exists in our BDM con-
text.7 Specifically, in delimiting the potential buying price, we test three designs—a £50
maximum, a £100 maximum, and an unstated maximum—while restricting the treatment
randomization to only display the control condition. We found that making the range
explicit significantly suppresses valuations and concentrates them near the maximum of
the range.

We therefore decided to leave the maximum of the range open-ended while using subtle
cheap talk and anchoring techniques to channel WTA toward values well within the offer
range of (£0, £100].8 With regard to the former, we explained in our instructions that
energy companies have provided incentives of £5, £10, and £50 as an example.9 To anchor,
we ensured that all examples in the ‘test of understanding’ for both bids and offers fell in
the range of (£0, £100].

Additionally, as with all stated valuation research, misleading responses can signifi-
cantly influence mean valuations. As noted in Boyle (2017), there are three types of mis-
leading responses, all of which are difficult to detect and pose issues for stated valuation

6To understand the implications of various solutions to this issue for the valuation of a familiar commodity—
here, subjects are endowed with a voucher for gasoline—Bohm et al. (1997) conduct an experiment in which
they compare mean selling prices elicited using the BDM to those in a real market setting. In addition to
sensitivity of responses to varying levels of the upper bound of the buying price, they find that an upper bound
on the buying price equal to either the actual market price of the good or an unspecified value described as
‘the maximum price we believe any real buyer would be willing to pay’ leads to valuations no different from the
experimental market price; when this text is omitted, or when the upper bound is set above the market price,
the selling price significantly exceeds the market price. Similarly, Vassilopoulos et al. (2018) find an anchoring
effect of the buying price range when selling mugs, and Sugden et al. (2013) find an anchoring effect of both the
buying and selling price range for several goods whose market value is £5.

7The technology for which they must state a WTA—the smart meter—has been widely promoted by the UK
Government and therefore respondents may perceive compensation as a type of subsidy for providing a public
good. While various supplier incentives have been trialed with small customer samples in the UK, most energy
decision-makers will be unaware of these offers, and offers may have varied both within and across suppliers.
Moreover, most of these trials are commercially sensitive, so the incentives offered remain unknown; a published
trial performed in partnership with British Gas reveals that £5 and £10 incentives have been trialed at the low
end (List et al., 2018), though we are anecdotally aware of some suppliers having offered £30 incentives.

8Note that due to budget constraints we had to lower the offer range to £0-£50.
9Given your answer to the [free meter] question, we’d like to see what it might take to change your mind

about getting a smart meter. Think of it this way — if someone said they would pay you to have a smart
meter installed in your home, how much money would you ask for? This research project is about answering
this question. In the past, various energy companies in the UK have offered a range of incentives for customers
to adopt smart meters (for example, £5 or £10 in club card points, or £50 off your next bill, and so on). It
appears that some customers will sign up to get a smart meter only if given the right incentive. Were interested
in learning what that ‘right incentive’ might be for you, if any.
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research. First, protest responses—generally $0 responses for willingness-to-pay studies
and very high responses for willingness-to-accept studies—represent a reaction against the
contingent valuation mechanism itself. Such responses tend to bias the mean valuation
downward for the former and upward for the latter. Comprehension represents a second
issue; if respondents do not fully grasp the valuation mechanism, responses may not be
accurate. While this issue introduces a type of measurement error, it does not necessarily
introduce bias in a particular direction.

Third, strategic responses aim to influence the underlying policy that is being valued
in a particular direction, and can introduce bias in either direction if strategic respondents
overwhelmingly tend to (dis-)favor the policy. Given that Boyle (2017) does not discuss
the willingness-to-accept framework explicitly, we add a second type of strategic behavior
that could arise. Specifically, participants may try to ‘game the system’ by taking the
survey multiple times and trying to guess at a value that would give them money in return
for installing a smart meter. We identified all survey duplicates by name, IP address,
and email address—of which there were 109 survey responses—and have removed these
responses from the data.

We aim to attenuate these concerns and measure biases via two channels: in-depth
comprehension tests as well as both closed- and open-ended questions regarding the re-
spondents’ rationales for their selections. First, the test of understanding—which follows
extensive BDM instructions (see Appendix 7.1.1)—involves a set of three questions with
randomly determined ‘bid prices’ (i.e. WTA values) and ‘offers’ for which the respondent
must determine the outcome (i.e., whether and how much money would be transferred to
the respondent in return for his/her signing up to receive a smart meter). The partici-
pant was tasked to correctly identify the answers to all three questions on the screen (see
Appendix 7.1.2), and if they missed one or more they could make a second and a third at-
tempt. If there were any errors on the third attempt, they were provided a TIOLI offer and
did not participate in the BDM exercise (see Figure 2). We also capture a weak measure
of comprehensibility directly following the instructions in which we ask the respondent to
indicate whether they felt they understood the instructions.

Second, we ask two specific questions regarding individuals’ rationale for having denied
a free meter and selected a particular WTA value (see Appendix 7.1.3). The first question
is a multiple-response multiple choice question in which respondents check any box that
applies as to their reasoning for denying the free smart meter. Responses include (i)
‘privacy/security concerns’, (ii) ‘too much hassle’, (iii) ‘health concerns’, (iv) ‘I do not
think I will save energy/money’, (v) ‘I do not trust my energy supplier’; and (iv) ‘Other
(please specify)’. The open-ended question simply asks the respondent just following
their input of WTA (i.e. on the same screen) to ‘Please let us know why you’ve chosen
this amount.’ The question is optional, though 38% of individuals provided a response.
Finally, an open-ended question at the end of the survey allows respondents to provide
any additional comments or feedback on the survey, and some provided information akin
to the above from which we can glean further information.

3.3 Incentive compatibility

To avoid hypothetical bias and maximize the likelihood that elicited WTA values are
incentive-compatible, we partnered with the UK electricity and natural gas regulator,
Ofgem, so that we could actually sign respondents up to get a smart meter if they were
promised one in the survey. We made clear in the survey that all decisions were incentive
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compatible in this way. Individuals who express that they would like a smart meter (with
or without compensation from the BDM or TIOLI exercises) are subsequently asked to
provide their electricity account details so that we may pass them along to their respective
suppliers.10 For those who agree to get the smart meter via the BDM or TIOLI mechanism
who go on to provide complete account information receive Tango Gift Card e-vouchers
that may be used at a large number of global and UK-specific retailers, restaurants, and
the like.

Of those who signed up to receive a smart meter, 62/397 (15.6%) of affirmative free
meter respondents, 29/246 (11.8%) of BDM ‘winners’, and 2/46 (4.3%) of affirmative
TIOLI respondents provided sufficiently complete information for us to sign them up. All
had the opportunity to provide their complete account details within the main survey.
Otherwise, they could indicate that they did not have their details to hand, in which case
they were sent a follow-up survey link to provide their information.

10In order to receive the meter, individuals must supply their first and last names, postcode, email address,
electricity account number, and the Meter Point Administration Number (or MPAN), which features on most
electricity bills and can be found on one’s meter. Individuals could provide this information directly in the
survey or could opt to receive a follow-up email with the same short form, which we asked them to fill within
two weeks. Unfortunately we do not observe whether the individuals who did not provide information neglected
to do so due to the amount of information required or due to indifference toward receiving the meter, and we
do not observe whether they instead asked their supplier for a smart meter directly.
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Figure 2: Survey Flow Chart for Eliciting Smart Meter Valuation

3.4 Empirical Strategy

We consider two primary outcome variables of interest. The first is a binary measure
that captures whether the participant adopts a smart meter for free after having viewed
the randomized information provided. We estimate a linear probability model using OLS
regression, which we specify as follows:

FreeMeteri = βTi + γXi + ε (1)

where Ti is the treatment group assignment of individual i, Xi is a vector of observable
individual characteristics, and ε is a random error term. As outlined previously, the BDM
works by allowing individuals who do not wish to accept a free meter to select a value
that they would be willing to accept as compensation for having a smart meter installed
in their homes, and their WTA can take on any positive value.

We perform a distributional analysis in line with the recommendation of Angrist and
Pischke (2008) that considers the treatment effects at various subsidy values defined at
relevant mass points in our data (see Figure 3). This analysis considers both the WTA
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of respondents who decline the free meter and provide a WTA valuation in the BDM
exercise (i.e. the ‘conditional-on-positive’ sub-sample), as well as a composite measure
that additionally includes those who accepted a free meter or the TIOLI offer. Thus, in
light of the selection bias that arises in the COP effect of a two-part model (as noted
in Angrist and Pischke, 2008), we define our dependent variable not as a continuous left-
censored dependent variable WTAi but rather as a binary participation variable at various
possible subsidy levels c:

[WTAi ≤ c] = βTi + γXi + ε (2)

where again Ti is the treatment group assignment of individual i, Xi is a vector of observ-
able covariates, and ε is a random error term. Supplementary to the above analysis, we
discuss the demand curve for smart meters and consider the welfare implications in terms
of inframarginal participation and excess government spending for each of the subsidy
values considered.

3.5 Sample size calculations

Given the original plan to perform a Tobit regression analysis11, we ran sample size cal-
culations for the binary outcome variable of whether individuals adopt a meter for free
as well as the continuous outcome of WTA. With regard to the former, the 15% baseline
(control group) adoption assumption was derived from our pilot experiment, where just
under 300 individuals took the first part of the control survey as it exists in the study. Ex-
pected payout is based on what would have been paid out (i.e. the payout for individuals
whose bid price was less than our offer) to individuals had we paid 100% of individuals
in the pilot (in which we paid a randomly determined 10% of participants). Additionally,
the expected percentage of individuals to undertake the BDM and TIOLI exercises was
also taken directly from the pilot study.

With an anticipated 2500 individuals taking the survey12 and four groups (one control,
three treatment) in total, we were powered to detect around a 6 percentage point difference
in (free) smart meter uptake from a baseline of 15% uptake. For the continuous outcome,
we were powered to detect a 4.8-6.7% change in willingness-to-accept. This calculation is
based on a constrained maximum WTA of £100.

11In our pre-registry we anticipated using a Tobit regression analysis to provide insight into the continuous
WTA variable. We instead perform the analysis as outlined here due to the intuitive interpretation of the results,
the lack of clarity surrounding the appropriate upper limit upon which to censor the data (if at all), and the
objections raised in Angrist and Pischke (2008) and Boyle (2017) against using Tobit in this circumstance (i.e.
the need to make distributional assumptions on the latent WTA variable, and the potential ‘missing information’
for individuals at the tails of the distribution who may be the most vulnerable to ensuing policy prescriptions).
Using a binary dependent variable additionally reduces noise from any given participant, particularly those who
may have misunderstood the exercise or submitted protest responses.

12Though we terminated the survey upon receipt of 2500 seemingly valid responses, we identified a number
of repeat survey takers who have since been removed from the data, leaving 2,432 valid responses in total.
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4 Data

4.1 Composition of sample

The study is based on a sample of adult (18+) UK residents whose characteristics reflect
those of the national population and who neither have smart meters installed in their homes
nor have been offered smart meters by their energy provider. The panel was recruited via
Qualtrics. Sample quotas for gender, age, education, and region are set to match those of
the UK population at large.

The sample size consists of 2,432 household decision-makers. The sample differs from
the population only to the extent that they have agreed to take part in survey research
as part of a panel. They do not have smart meters installed in their homes, though this
deviation from the UK population at large is necessary in order to glean insights into the
motivations of the sub-population relevant to the research question.

Columns 1-5 of Table 9 provide a comparison of our sample to the national popula-
tion. The sample is broadly representative along most dimensions including gender, age,
education, income, and region, with some caveats. Younger (18-24) and older (55 and
above) age categories are slightly under-represented in our sample, while degree holders
and individuals with A-levels and GCSEs are over-represented. One education category,
“Other Vocational Qualification/Foreign qualification”, is significantly under-represented
(although balanced across treatments). The disparity is possibly due to a lower number
of non-UK nationals participating in the survey, but also potentially attributable to some
confusion amongst participants in answering this question, which would also partly explain
the over-representation on other education categories.

Region is broadly representative across ten categories of Government Office region,
including Scotland and Wales. While not forming part of the quota, we also present a
comparison of income. Higher income households (above £45k per year) are slightly over-
represented, while some lower income categories (£16-19k per year) are under-represented.

Columns 6-8 of Table 9 reports p-values for tests of the difference in the mean of
each variable between control and each treatment group. Given random assignment of
treatment we observe that all groups are largely balanced. We observe a slight imbalance
for some of our regional variables, notably London. An F-test for joint orthogonality of all
variables, also reported in Table 9, results in an insignificant p-value. Taken together, the
results suggest that the pattern of observed differences is likely due to sampling variation in
the random assignment of treatment. However, as a robustness check we will also include
baseline control variables in our main specifications.

4.2 Dependent variables

4.2.1 Adoption without compensation

Table 1 presents the descriptive statistics for our first outcome variable. This variable
represents the proportion of participants who agree to adopt a smart meter for no payment
following exposure to either the control or treatment information. The mean level of
adoption is broadly similar across all groups with participants in Treatment 2 having the
highest adoption rate of 16%.
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Table 1: Summary of uncompensated adoption

Treatment N Mean SD Min Max

Control 607 0.150 0.357 0 1
Treatment 1 607 0.147 0.354 0 1
Treatment 2 606 0.160 0.367 0 1
Treatment 3 605 0.152 0.359 0 1

Note: Of the 2431 respondents to the free meter question, 15.2%
(n=369) indicated that they wanted to adopt a smart meter for
free.

4.2.2 Subsidized adoption

The range of WTA values elicited is highly skewed. Within certain ranges it approximates
a normal distribution (see the Appendix) however applying a conditional mean estima-
tion framework is problematic. To further illustrate this point Table 2 displays summary
statistics for each treatment group for values of WTA less than or equal to £1000 (95th
percentile) and £200 (80th percentile). In Panel A the mean WTA for the control group
is greater than for all treatment groups. However, in Panel B this difference is no longer
present. This feature of the WTA distribution underlines the importance of correctly
specifying the range of the dependent variable in any analysis.

Table 2: Summary of subsidized adoption for selected values of WTA

Treatment Min Max Mean Median N

Panel A: WTA ≤ £1000
Control 0 1000 159 85 315
Treatment 1 0 1000 138 90 317
Treatment 2 0 1000 143 75 309
Treatment 3 0 1000 148 80 330

Panel B: WTA ≤ £200
Control 0 200 78 75 265
Treatment 1 0 200 75 75 265
Treatment 2 0 200 78 75 267
Treatment 3 0 200 80 73 280

In order to overcome this issue, we focus on specific subsidy values, or mass-points
of the WTA distribution. The subsidy values examined here (i.e. the selected c values)
have been selected based on the high frequency of their selection by respondents of the
WTA exercise and the seemingly relevant percentage of respondents who fall under each
respective category (approximately 28%, 33%, 48%, 75%, 85%, and 93% for c=10, 25, 50,
100, 200, and 500, respectively). In other words, about half of individuals reported a WTA
of less than or equal to £50, and therefore presumably would adopt a smart meter under
the provision of a £50 subsidy. Figure 3 presents the chosen values graphically.
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Figure 3: Subsidy values chosen for analysis

4.3 BDM Comprehension and WTA Data Quality

Of the 2,432 respondents, 2,063 indicated that they did not want a free smart meter when
asked. After providing extensive instructions, we asked whether respondents felt confident
they understood the BDM valuation exercise, and 93.15% of the 2,058 responses answered
in the affirmative (five individuals did not respond). Even so, 41.0% (n=846) of the
2,063 respondents who did not want a free smart meter passed the test of understanding
without failing, while 20.5% (n=423) and 3.7% (n=76) passed after failing on the first
and second attempts, respectively. The final 34.8% (n=718) did not pass any of the three
attempts and were then asked the TIOLI question, to which 42 individuals (5.96% of
TIOLI respondents) responded in the affirmative, and 13 did not provide a response.13

Finally, three individuals who passed the BDM comprehension test neglected to provide a
WTA.

Given that 35% of individuals who declined a free smart meter failed the comprehension
test, it is important to understand for whom we are measuring WTA. Using χ2-tests
to determine the impacts of several socio-demographic characteristics—namely gender,

13Individuals who reported being confident that they understood the exercise prior to the test of understanding
were significantly more likely to pass the test. A χ2-test of two binary indicators of self-reported understanding
and passing the test is significant (p=0.000, χ2=90.9), and a basic regression of the number of failed test-
of-understanding rounds on the self-reported understanding indicator shows that self-reported comprehension
lowers the number of failed rounds by 1.1 (p=0.000). Still, 32.0% of those who self-report understanding the
exercise ultimately fail, compared to 71.6% of those who self-report a lack of comprehension.
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Table 3: Self-reported and Revealed
Comprehension of BDM Exercise

Self Reported

Failed Rounds No Yes Total

0 18 822 840
1 16 406 422
2 6 70 76
3 101 612 713

Total 144 1,962 2,106

welfare status, region, supplier, employment status, tenure, income, and education—as well
as treatment on self-reported BDM understanding and comprehension test failure, we find
that employment (p=0.052), income (p=0.010), and education (p=0.001) all predict the
former while welfare (p=0.056), employment (p=0.059), income (p=0.000), and education
(p=0.000) predict the latter. We therefore likely over-represent more educated and higher
income individuals in our BDM measure relative to the population as a whole.

5 Results

5.1 Adoption without compensation

We first investigate the likelihood that an individual adopts a smart meter without com-
pensation following exposure to the information treatment. The output of the linear
probability model following equation (1) (see Table 4, column 2) shows that none of the
treatments had a meaningful effect on smart meter adoption relative to the control group.
These results suggest that individuals who currently adopt smart meters are either al-
ready well informed about the benefits we convey in the treatments (and their salience is
unimportant in decision making), or that they are interested in adopting the technology
regardless of these benefits.

5.2 Subsidized adoption

We now turn to the impacts of the treatments on smart meter adoption rates under a
number of possible subsidy schemes. For this portion of the analysis, we exclude individuals
who did not pass the BDM comprehension test and also did not accept the TIOLI offer,
since we do not have sufficient information on these individuals to understand whether
they would have accepted the subsidies we consider here. We include all individuals who
indicated interest in obtaining a smart meter without compensation as well as individuals
who accepted the TIOLI offer, since all of these individuals indicated a WTA valuation of
less than or equal to £10, the minimum subsidy considered here.

Table 5 exhibits the results from the linear probability model following equation (2).
The results indicate that neither information on private benefits nor on learning have con-
sistent positive or negative causal effects on uptake under various subsidy levels. However,
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Table 4: Treatment Effects on Adoption of
Smart Meters Without Compensation

(1) (2)

Treatment 1: Private -0.003 -0.002
(0.019) (0.020)

Treatment 2: Social 0.009 0.008
(0.014) (0.014)

Treatment 3: Learning 0.002 0.001
(0.018) (0.016)

Constant 0.150*** 0.109***
(0.008) (0.028)

Observations 2,432 2,432
R-squared 0.000 0.019
Controls NO YES

Note: The dependent variable in the regression is a binary
variable capturing whether the respondent agreed to adopt
a smart meter without compensation. Controls include gen-
der, age, income, and region. Standard errors are included
in parentheses below the estimates and are clustered at the
supplier level. ∗∗∗p < 0.01 ∗∗p < 0.05 ∗p < 0.10
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information on the social benefits of smart grid infrastructure appear to influence deci-
sions in a positive direction for various subsidy levels.14 While failure to comprehend the
BDM mechanism dramatically reduced our sample size for this exercise by about a third,
it appears that the social benefits intervention played a role in boosting adoption rates,
and with (marginal) statistical significance for subsidy values of £10 (β=4.2 percentage
points, p=0.013), £50 (β=4.9 percentage points, p=0.015) and £75 (β=6.6 percentage
points. The coefficients remain positive (though not significant) for the other subsidy
values considered. Though we are under-powered to reject the null hypothesis of equal
adoption across Control and Treatment 1, there is some indication that private benefits also
may sway some (just under 2 percentage points) of individuals who would be persuaded
under a £25 or £50 subsidy.

Table 5: Treatment Effects on Adoption of Smart Meters for Relevant Subsidy Values: TIOLI
Included

(1) (2) (3) (4) (5) (6) (7)
c = 10 c = 25 c = 50 c = 75 c = 100 c = 150 c = 200

Treatment 1: Private 0.006 0.018 0.018 -0.005 -0.019 0.003 -0.008
Standard error (0.031) (0.023) (0.026) (0.023) (0.024) (0.024) (0.021)
Wild bootstrap p-value 0.872 0.460 0.527 0.859 0.431 0.960 0.689

Treatment 2: Social 0.042** 0.021 0.049** 0.066** 0.011 0.025 0.026
Standard error (0.017) (0.021) (0.018) (0.019) (0.025) (0.018) (0.014)
Wild bootstrap p-value 0.013 0.340 0.015 0.026 0.658 0.337 0.163

Treatment 3: Learning -0.001 -0.011 0.033 0.027 -0.014 -0.007 0.008
Standard error (0.020) (0.024) (0.025) (0.023) (0.024) (0.020) (0.020)
Wild bootstrap p-value 0.952 0.686 0.288 0.302 0.597 0.753 0.709

Constant 0.302*** 0.445*** 0.588*** 0.686*** 0.881*** 0.852*** 0.908***
(0.059) (0.067) (0.068) (0.049) (0.038) (0.036) (0.022)

Observations 1,751 1,751 1,751 1,751 1,751 1,751 1,751
R-squared 0.031 0.038 0.042 0.041 0.044 0.042 0.047
Controls YES YES YES YES YES YES YES

Note: The dependent variable in the regression is a binary variable capturing whether the respondent agreed to adopt a smart meter for
a price in the range of [0, c]. Controls include gender, age, income, and region. Standard errors are included in parentheses below the
estimates and are clustered at the supplier level. Wild cluster bootstrap p-values are reported underneath to address concerns relating to
the small number of clusters. ∗∗∗p < 0.01 ∗∗p < 0.05 ∗p < 0.10

Given that those participants who undertook the TIOLI exercise failed the BDM com-
prehension test and are observably different across certain characteristics, we also include

14We caution the reader to bear in mind that these results will undergo a number of quality checks in the
coming weeks; we are currently taking a much closer look at the motivations for respondents’ valuations—10-20
cases of which we can already identify as the result of miscomprehension—and we will continue undertaking this
exercise to report more robust results.
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two additional sets of analysis for completeness. Table 6 presents results of the main esti-
mation following removal of those participants who accepted the TIOLI offer of £10. The
social benefits intervention still has an effect with statistical significance for subsidy values
of £50 (β=3.6 percentage points, p=0.068) and £75 (β=5.4 percentage points, p=0.072).
However, both the magnitude and significance of the coefficients are reduced suggesting
that inclusion of the TIOLI strengthens the results from Table 5.

Table 6: Treatment Effects on Adoption of Smart Meters for Relevant Subsidy Values: TIOLI
Excluded

(1) (2) (3) (4) (5) (6) (7)
c = 10 c = 25 c = 50 c = 75 c = 100 c = 150 c = 200

Treatment 1: Private 0.006 0.018 0.017 -0.008 -0.024 -0.003 -0.014
Standard error (0.031) (0.022) (0.025) (0.022) (0.024) (0.024) (0.023)
Wild bootstrap p-value 0.857 0.439 0.500 0.751 0.335 0.919 0.543

Treatment 2: Social 0.026 0.005 0.036* 0.054* 0.000 0.014 0.015
Standard error (0.020) (0.023) (0.019) (0.019) (0.027) (0.021) (0.018)
Wild bootstrap p-value 0.206 0.835 0.068 0.072 0.996 0.553 0.462

Treatment 3: Learning -0.007 -0.017 0.028 0.022 -0.019 -0.012 0.003
Standard error (0.019) (0.023) (0.024) (0.023) (0.025) (0.021) (0.021)
Wild bootstrap p-value 0.724 0.483 0.306 0.378 0.493 0.583 0.896

Constant 0.269*** 0.421*** 0.573*** 0.677*** 0.887*** 0.858*** 0.918***
(0.047) (0.059) (0.065) (0.048) (0.039) (0.040) (0.028)

Observations 1,726 1,726 1,726 1,726 1,726 1,726 1,726
R-squared 0.032 0.038 0.042 0.040 0.044 0.042 0.046
Controls YES YES YES YES YES YES YES

Note: The dependent variable in the regression is a binary variable capturing whether the respondent agreed to adopt a smart meter for
a price in the range of [0, c]. Controls include gender, age, income, and region. Standard errors are included in parentheses below the
estimates and are clustered at the supplier level. Wild cluster bootstrap p-values are reported underneath to address concerns relating to
the small number of clusters ∗∗∗p < 0.01 ∗∗p < 0.05 ∗p < 0.10

Table ?? presents the results from analysis of just the TIOLI participants with all others
removed. Again the social benefit treatment has an impact resulting in a 4.0 percentage
point increase in uptake. Taken altogether, the social benefit intervention has an impact
at multiple subsidy values and, at the £10 subsidy value in particular, our results would
appear to be partially driven by the inclusion of those who accepted the TIOLI offer in
our analysis.
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Table 7: Treatment Effects on
Adoption of Smart Meters for

Relevant Subsidy Values: TIOLI

(1)
TIOLI

Treatment 1: Private -0.011
Standard error (0.009)
Wild bootstrap p-value 0.2545

Treatment 2: Social 0.040**
Standard error (0.016)
Wild bootstrap p-value 0.0435

Treatment 3: Learning 0.021
Standard error (0.021)
Wild bootstrap p-value 0.377

Constant 1.068***
(0.062)

Observations 705
R-squared 0.038
Controls YES

Note: The dependent variable in the regres-
sion is a binary variable capturing whether the
respondent agreed to adopt a smart meter for
a price in the range of £10. Controls include
gender, age, income, and region. Standard er-
rors are included in parentheses below the es-
timates and are clustered at the supplier level.
Wild cluster bootstrap p-values are reported
underneath to address concerns relating to the
small number of clusters ∗∗∗p < 0.01 ∗∗p <
0.05 ∗p < 0.10

5.3 Robustness tests

When selecting our sample we chose to select only customers of the 11 largest UK suppli-
ers.15 This group was chosen as they represent 88% of total market share, and the retail
electricity market in the UK has over 50 suppliers in total making it practically impossible
to co-ordinate an offer of a smart meter installation for all companies.

As we then select our sample from a subset of the population, our standard errors
must be clustered to reflect this sampling design issue and we cluster at the level of the
supplier (Abadie et al., 2017). Given we have only 11 suppliers we chose a method of

15At the time of sampling these were British Gas, EDF, EON, npower, Scottish Power, SSE, Co-op, Shell
Energy (formerly First Utility), Ovo, Utilita and Utility Warehouse
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clustering robust to this feature of our data. Canay et al. (2018) provide evidence that the
wild-bootstrap method developed by (Cameron et al., 2008) is robust in settings with as
few as five clusters. (Roodman et al., 2019) provide an implementable routine to perform
this analysis in Stata and suggest the use of “Webb” weights when the number of clusters
approximates 10.

The three figures in Appendix 7.4 present confidence intervals and p-values following
a wild bootstrap estimation with 2000 replications for the results presented in Table 5.
The results provide further evidence that information on the social benefits of smart grid
infrastructure (Treatment 2) appear to influence decisions in a positive direction for var-
ious subsidy levels. Again, some evidence exists that communication of private benefits
(Treatment 1) may also influence individuals who would be persuaded under a £25 or £50
subsidy.

5.4 Estimating demand for smart meters

Figure 4 presents cumulative demand curves for smart meters based on the elicited WTA
(or price) of our sample participants. We include all households who would have adopted
a smart meter for free as having a price of £0 and all of those who accepted our TIOLI
offer as having a price of -£10. We present both an unrestricted demand curve and a
demand curve for those participants whose WTA was £200 or less. For our sample a
subsidy of £200 would result in 1490 additional households adopting or about 85% of the
total for whom we have WTA information. The curve is reasonably linear up to a price of
approximately £200. At this point an inflection point in the demand curve suggests that
subsidies of larger amounts may not result in substantially more demand.
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Figure 4: Estimated demand curve for smart meters

5.5 Cost-effectiveness and welfare implications

In line with Boomhower and Davis (2014), we conduct a cost efficiency and welfare analysis
for the subsidy values under consideration. Whereas the aforementioned observe marginal
adoption behavior at two discontinuities, we observe this behavior at every point along
the demand curve.16 To provide comparable analysis, however, we focus on the selected
mass points within the plausible subsidy range of (0, 200], as considered in our regression
analysis.

Using similar back-of-the-envelope calculations to those undertaken in Boomhower and
Davis (2014), we demonstrate that inframarginal participation costs dominate the total
costs of any subsidy program, ranging from 53-83% of total costs. Of course, the larger is
the subsidy value, the higher the government transfer, so the inframarginal participation
cost increases as the subsidy value increases. For instance in the case of £10, £50, and
£100 subsidy offers, the inframarginal costs come out to £3690, £23,590, and £67,515,
respectively, when we account for the participation of individuals at any of the lower
subsidy values considered.17 Normalizing these costs indicates that these subsidy offers

16We do not observe marginal adoption behavior for the TIOLI sample, since we only observe their binary
adoption decision provided £0 and £10 subsidy values; we therefore focus this part of our analysis on the sample
for whom we have elicited WTA valuation, including those who accepted a free meter (i.e. WTA=£0). This
sample includes 1711 participants).

17Note that the subsidy values selected for this analysis will affect these numbers, since the ‘inframarginal
cost’ is only considered to be the difference between the subsidy offer at which one adopts and the higher subsidy
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Table 8: Inframarginal Participation and Welfare Costs

Subsidy
Value

Total
Adoption

Total
Adoption

Incremental
Adoption

Total Infra-
marginal
Adoption

Total
Subsidy
Transfer

Inframarginal
Subsidy
Transfer

Total
Cost

Inframarginal
Cost

Inframarginal
/ Total Cost

Total
Cost Per
Capita

Inframarginal
Cost Per
Capita

£0 22% 369 369 0 - - - - 0% £0 £0
£10 26% 445 76 369 £4,450 £3,690 £5,785 £4,797 83% £3.38 £2.80
£25 31% 529 84 445 £13,225 £10,365 £17,193 £13,475 78% £10.05 £7.88
£50 46% 792 263 529 £39,600 £23,590 £51,480 £30,667 60% £30.09 £17.92
£75 56% 965 173 792 £72,375 £43,390 £94,088 £56,407 60% £54.99 £32.97
£100 75% 1277 312 965 £127,700 £67,515 £166,010 £87,770 53% £97.03 £51.30
£150 80% 1373 96 1277 £205,950 £131,365 £267,735 £170,775 64% £156.48 £99.81
£200 85% 1451 78 1373 £290,200 £200,015 £377,260 £260,020 69% £220.49 £151.97

Total 1711

would lead to ‘excess spending’ of approximately £2, £14, and £39 per capita. When we
consider the efficiency costs of making these transfers, and using the presumed efficiency
cost in Goulder and Williams III (1997), the costs increase further. Finally, considering
additionality for these three subsidy levels over a baseline of £0, the percentage of non-
additional adopters (which declines with subsidy value by design if we assume elasticity
of demand≥1) is 83%, 47%, and 29%.

6 Discussion and Next Steps

To explore the implications of our results for policy, we must carefully consider the net
benefits of adopting smart meters to both households and society at large. Based on the
UK Government‘s Department of Business Energy and Industrial Strategy’s (BEIS) own
cost-benefit analysis (BEIS, 2019) the net benefit to society is about £5.7 billion in total,
or about £212 per household. This estimation is based on a total benefit calculation of
£16.7 billion to the UK economy or about £615 per person.18 BEIS estimate the total
costs to be around £10.7 billion or £404 per person. This estimate includes the costs of
the meters, installation, and the communication hub system.

In addition to BEIS’ estimated costs, and in line with conjectures and evidence from
the literature (Jaffe and Stavins, 1994a; Gillingham and Palmer, 2014; Fowlie et al., 2015),
our survey feedback suggests that householders have a range of concerns—for instance,
regarding data security, the potential health impacts from smart meter radiation, the
hassle costs of having to take time off work during installation, and the expectation that
smart meters will not actually save them money. Whether real or perceived, each of these
factors constitute an additional cost from the perspective of the householder, and they
should not be neglected when considering the causes of low take-up rates.

Compounding these barriers are the positive network externalities of adoption and
the dynamic nature of technological progress. That is, the longer a household postpones
adoption, the more likely it is that the technology has progressed along desired dimensions
(e.g., security, privacy, supplier inter-operability) and that suppliers—themselves facing
decisions regarding when it is worthwhile to provide more advanced energy plan options
that require a smart meter—will be offering plans that increase the attractiveness of adop-
tion. The social planner may therefore have duelling incentives: (i) to provide subsidies

under consideration.
18Of this total, 32% comes from energy cost savings that households will accrue directly, 49% from supplier

cost savings (which may or may not be passed on to households), and the remainder comprises carbon savings
from increased renewable generation and system-level operational efficiency gains.
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for adoption early on to both capture low-WTA users at no or low cost (i.e. price discrim-
inate) and address learning-by-using and network externalities, and (ii) to delay subsidy
provision or increases to avoid subsidizing inframarginal consumers, where the very pos-
sibility of the latter in itself may induce households to postpone adoption even further
(Langer and Lemoine, 2018).19

From a static perspective, and taking BEIS’s calculations at face value, it would be
cost-effective for the UK government to subsidize each smart meter installation up to
£212.20 However, it is extremely unlikely that such high subsidy levels would be considered
given that current subsidies offered by energy suppliers are in the £5-£50 range. Our data
suggest that a subsidy of £10 would increase demand for a smart meter about 5 percentage
points from a baseline of 15%.21 Excluding the sample of respondents who did not pass the
test of understanding for the BDM exercise (since we do not have WTA information for
those who rejected the TIOLI offer), we infer that offering £10, £25, and £50 would induce
additional adoption of 4, 9, and 25 percentage points from a baseline of 21% adoption, and
that pairing these subsidies with a social information campaign can boost these numbers
by an additional 2-5 percentage points.

In addition to financial incentives, policy makers will need to engage more with house-
holds in order to encourage adoption. Our results suggest that a broader information
campaign, not solely focused on private benefits, could encourage increased uptake of
smart meters.

We must stress that the results we present in this draft are preliminary. In addition to a
range of robustness tests related to comprehension and protest responses, further analysis
will explore heterogeneity in results across a range of dimensions including income, educa-
tion, environmental interest (as proxied by attitude toward renewable energy), engagement
in energy-saving behaviors, trust in institutions (as proxied by trust in government and
energy suppliers), risk preferences and interest in technology (as proxied by ownership and
optimism toward technology).

19Our qualitative survey feedback provides evidence of the latter phenomenon in that a significant number
of individuals alluded to future technological progress to justify current non-adoption, even despite not having
been offered this multiple-choice option explicitly.

20This assertion assumes not only that the Government’s CBA is optimal but also that there are no distortions
induced by subsidization; a back-of-the-envelope calculation using

21The subsidy increases uptake by 4.9 percentage points from a baseline of 15.2% adoption in the full sample
(a 32% increase in adoption), though it increases adoption by 6 percentage points in the sample of respondents
who answered the TIOLI question.
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7 Appendices

7.1 Survey Materials

7.1.1 Becker-DeGroot-Marschak Exercise Instructions
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7.1.2 BDM Comprehension

7.1.3 BDM Response
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7.2 Descriptive statistics

Table 9: Descriptive statistics and balance table

Proportion Test of Equality (P-value)
Demographic variables Population C: Control T1: Private

benefit
T2: Social
benefit

T3: Learning-
by-using

C = T1 C = T2 C = T3

(1) (2) (3) (4) (5) (6) (7) (8)

Gender
Female 0.51 0.51 0.52 0.52 0.52 0.909 0.795 0.817

Age
18-24 0.12 0.14 0.16 0.15 0.14 0.173 0.613 0.982
25-34 0.19 0.24 0.21 0.22 0.23 0.244 0.423 0.760
35-44 0.18 0.23 0.23 0.22 0.20 0.891 0.742 0.169
45-54 0.20 0.18 0.16 0.20 0.20 0.320 0.454 0.294
55-64 0.17 0.11 0.13 0.11 0.12 0.293 0.791 0.840
65 or older 0.14 0.10 0.10 0.11 0.12 0.925 0.772 0.507

Education
No formal qualifications 0.06 0.06 0.05 0.05 0.06 0.518 0.527 0.795
GCSE, O Level, CSE 0.28 0.34 0.36 0.37 0.35 0.433 0.261 0.518
A and AS Level or equiv. 0.12 0.17 0.16 0.16 0.17 0.643 0.551 0.838
Other Voc. Qual/Foreign qual. 0.27 0.09 0.11 0.08 0.09 0.253 0.359 0.854
Degree or higher 0.27 0.35 0.32 0.35 0.33 0.395 0.871 0.614

Income
Below £10,000 per year 0.15 0.14 0.13 0.13 0.14 0.506 0.410 0.760
£10,000 - £16,000 per year 0.19 0.17 0.18 0.17 0.17 0.764 0.950 0.781
£16,000 - £19,999 per year 0.14 0.08 0.08 0.10 0.10 0.674 0.186 0.154
£20,000 - £24,999 per year 0.14 0.13 0.14 0.13 0.13 0.866 0.740 0.882
£25,000 - £34,999 per year 0.16 0.16 0.16 0.16 0.16 0.937 0.947 0.957
£35,000 - £44,999 per year 0.10 0.10 0.11 0.10 0.09 0.570 0.767 0.708
£45,000 - £59,999 per year 0.06 0.12 0.12 0.12 0.12 0.930 0.938 0.844
£60,000 - £79,999 per year 0.03 0.05 0.05 0.06 0.05 0.794 0.701 0.908
Over £80,000 per year 0.03 0.04 0.03 0.04 0.04 0.358 0.660 0.777

Region
East Midlands 0.07 0.08 0.08 0.08 0.07 0.751 0.757 0.395
East of England 0.10 0.08 0.08 0.06 0.09 0.674 0.215 0.588
London 0.14 0.11 0.11 0.15 0.13 0.783 0.046 0.153
North East 0.05 0.05 0.05 0.04 0.03 0.894 0.684 0.196
North West 0.11 0.13 0.10 0.10 0.11 0.105 0.107 0.390
South East 0.14 0.14 0.17 0.16 0.15 0.150 0.325 0.402
South West 0.09 0.10 0.08 0.09 0.11 0.367 0.701 0.340
West Midlands 0.09 0.09 0.11 0.10 0.08 0.503 0.915 0.427
Yorkshire and the Humber 0.08 0.09 0.09 0.08 0.08 0.761 0.762 0.850
Scotland 0.08 0.10 0.08 0.11 0.09 0.424 0.503 0.498
Wales 0.05 0.05 0.05 0.04 0.05 0.788 0.786 0.882

F test for joint orthogonality
Number of obs 2,424
F(30, 2393) 0.61
Prob > F 0.9525
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7.3 Kernal density plots of WTA
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Figure 5: Kernel density plots of willingness-to-accept at mass-points of WTA distribution
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7.4 Additional results
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Figure 6: Estimated demand curve for smart meters by Treatment
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Figure 7: Treatment 1: 95% Confidence Interval of treatment effect following Wild Bootstrap
estimation of standard errors with 2000 replications
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Figure 8: Treatment 2: 95% Confidence Interval of treatment effect following Wild Bootstrap
estimation of standard errors with 2000 replications
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Figure 9: Treatment 3: 95% Confidence Interval of treatment effect following Wild Bootstrap
estimation of standard errors with 2000 replications
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