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1 Introduction

Investors fear stock market turbulence. They want to hedge against states of high

market volatility and are willing to pay a large premium for insurance, known as

the market variance risk premium (VRP). When markets are tumultuous, investors

reduce their exposure and flee risky stocks. This collective behavior causes stocks

to fall in harmony and losses to spiral. In other words, stock correlations go up

and diversification benefits vanish when needed most. In order to eliminate the risk

of high correlations, investors pay the so-called correlation risk premium (CRP). It

turns out that there is a close theoretical link between the two risk premiums: The

market VRP can be expressed as the sum of the CRP and the VRPs of individual

stocks.

Previous research has focussed on assessing the size and predictive power of the

risk premiums. As summarized by Zhou (2018), empirical studies agree on the notion

that the market VRP is economically and statistically significant and predicts future

market returns at few-month horizons. Driessen et al. (2009) are the first to provide

evidence that the CRP for the S&P 100 index is sizable. In addition, Buss et al. (2018)

document that the CRP predicts future market returns at horizons of up to one year.

Individual VRPs are examined by Carr and Wu (2009). They show that VRPs of

individual stocks have a large cross-sectional variation and, in particular, find that

only few stocks generate significant VRPs. Taken together, previous research hence

implies that the market VRP is mainly determined by the CRP.

Despite the importance of the CRP, little is known about its drivers so far.

In general, stocks may be correlated because they continuously move in the same

direction or because they experience co-jumps, i.e. common discontinuous movements
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on rare occasions. Depending on the origin, investors may be willing to pay very

different premiums to hedge against states of high correlations. Conceivably, co-

jumps may pose a greater threat to investors and therefore carry a higher premium.

This paper fills the gap and breaks the CRP down into two components: a premium

related to the correlation of continuous stock price movements and a premium for

bearing the risk of co-jumps. Dissecting the CRP as the key determinant of the

market VRP is natural given that Bollerslev and Todorov (2011) find that a large

fraction of the market VRP is actually attributable to the compensation for market

jump risks rather than diffusive volatility risks.

Our analysis relies on equity options. The basic idea is that options contain

rich information about investors’ ex ante assessments of various risks. In particular,

excess returns of options provide direct evidence on the risk premiums associated

with continuous stock price movements, time-varying volatility, and jumps. In order

to isolate volatility and jump risk premiums, we follow Cremers et al. (2015) and

set up delta-gamma-neutral or delta-vega-neutral option portfolios which are only

exposed to either volatility or jump risks. We construct these option portfolios for

the index as well as for its constituents. In order to extract the CRPs, we implement

dispersion trades similar to Driessen et al. (2009). More precisely, we go long the index

option portfolio and short the basket of option portfolios on the constituents, such

that the strategy is only exposed to diffusive correlation or co-jump risk, respectively.

The resulting excess returns allow us to quantify the premiums associated with both

types of correlation risk. Focussing on option returns has two crucial advantages.

First, it does not involve estimation of the physical and risk-neutral expectations,

but instead identifies the premium, i.e. the difference between the two expectations,

directly. Second and related, it does not draw on high frequency data, which may be
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cumbersome to use for a large cross section of stocks, but requires daily data on four

options for each underlying only.

The contribution of this paper is both theoretical and empirical. In the theo-

retical part, we decompose the index VRP and show that it comprises the individual

VRPs of all constituents and premiums for their continuous and jump covariations.

If the individual VRPs are on average close to zero, as found in empirical studies,

the index VRP mainly arises from the CRP. In that case, investors pay a premium

to hedge against states of high market volatility because they fear high correlations

among stocks and want to eliminate the risk of worsening diversification in the mar-

ket. We show that specifically constructed option portfolios provide a simple way to

separate and identify the various risk premiums and apply this methodology to the

S&P 100 index and its constituents in the empirical part. First, we document that

the volatility risk premium is economically and statistically significant for the index.

Second, we find large cross-sectional differences in the individual volatility risk pre-

miums of the constituents. While the volatility risk premium of the index is negative,

those of the constituents are positive on average. Third, we show that the jump risk

premium is very large for the index, while the constituents have much smaller ones

on average. Most importantly, we find that both types of correlation risk carry signif-

icant premiums. The premium for the correlation of jumps, however, is much larger

than the premium for the correlation of continuous stock price movements. In partic-

ular, selling insurance against states of high jump correlation (volatility correlation)

generates a sizable Sharpe ratio of 0.85 (0.60) per year. In addition, the analysis

shows that the risk premium for diffusive correlation was especially high during the

crash following the burst of the dot-com bubble. In contrast, the premium for co-

jumps was especially pronounced during the global financial crisis. Moreover, the
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co-jump risk premium predicts future market returns up to 3 months but loses its

predictive power for longer horizons, while the diffusive correlation risk premium has

no short-term predictive power, but predicts future market returns for horizons of 12

and 24 months. These findings suggest that both risk premiums capture different eco-

nomic risks. Overall, our results document the importance of correlation as a priced

risk factor and highlight that the risk associated with co-jumps is of much greater

importance for investors than the risk of correlated diffusive stock price movements.

The remainder of this paper is organized as follows. Section 2 reviews related

literature. Section 3 decomposes the index VRP and shows how to construct option

portfolios that allow to trade the different types of correlation risks. Section 4 presents

the empirical methodology, the data and evidence on the pricing of correlation risk

for the S&P 100 index. Section 5 concludes. All proofs are in the Appendix.

2 Related Literature

This paper is related to four strands of literature.

Variance Risk Premium The first strand explores the compensation that in-

vestors demand for bearing variance risk.1 Bakshi and Kapadia (2003a) study the

S&P 500 index and find a negative market VRP. In related work, Bakshi and Kapadia

(2003b) document that the VRPs for 25 individual stocks are substantially smaller

compared to the index. Carr and Wu (2009) confirm the evidence of a negative mar-

ket VRP for several major U.S. indices and furthermore study 35 individual stocks.

1The variance risk of a stock stems from two different sources: diffusive volatility and jumps. For
better readability, we refer to the premium associated with diffusive volatility as volatility risk
premium (VolRP), the premium for jumps as jump risk premium (JRP), and the premium related
to the total variance risk as variance risk premium (VRP) throughout the paper.
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They show that individual VRPs are cross-sectionally dispersed and, in particular,

find that only few stocks generate significantly negative VRPs. Hollstein and Simen

(2018) decompose the index VRP and show that its magnitude is attributable to

the CRP, while its time-variation mainly comes from the individual VRPs. However,

they measure the CRP only indirectly. We contribute to this strand of literature by

examining the volatility risk premiums of the S&P 100 index and its constituents.

In addition, we propose a way to directly quantify the premiums associated with

different types of correlation risk.

Correlation Risk Premium The second strand of literature focuses on the pric-

ing of correlation risk. Driessen et al. (2009) are the first to provide direct evidence

of the CRP, using a dispersion trading strategy that only loads on correlation risk.

In a recent study, Faria et al. (2018) find significant CRPs for several major Euro-

pean and U.S. indices and document their co-movement, supporting the idea of a

global CRP. While these studies investigate the pricing of correlation risk in the cross

section of option returns, several other studies complement the findings for different

test assets. Krishnan et al. (2009) show that correlation risk is a priced factor in the

cross section of stock returns. Pollet and Wilson (2010) find that the average corre-

lation between daily stock returns explains future market excess returns for horizons

of up to 30 months. In a similar vein, Buss et al. (2018) document that the CRP

significantly predicts future market excess returns for horizons of up to 12 months,

even out-of-sample. In addition, Buraschi et al. (2014) report that correlation risk

constitutes a priced factor in the cross section of hedge fund returns. Moreover, they

find that funds which sell insurance against states of high correlations typically have

large maximum drawdowns, indicating that correlation risk is in some way related

to tail risk. Our paper contributes to this discussion by analyzing the drivers of the
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CRP and paying special attention to the role of tail risk. More precisely, we isolate

and separately quantify the premium related to the correlation of continuous stock

price movements and the premium for bearing the risk of co-jumps.

(Co-)Jumps The third strand examines the role of jumps in creating tail risk for

investors. Bollerslev and Todorov (2011) uncover that more than half of the market

VRP is actually attributable to the compensation for market jump risks rather than

diffusive volatility risks. Drechsler and Yaron (2011) argue that including jumps in

a long-run risks model is necessary in order to match the empirical moments of the

market VRP. At the individual stock level, Bollerslev et al. (2008) present evidence

for significant co-jumps that predominantly materialize around macroeconomic news

announcements. In related work, Bollerslev et al. (2013) reveal that the S&P 500 in-

dex and 50 individual stocks exhibit tail dependence which is mostly attributable to

co-jumps. Aı̈t-Sahalia and Xiu (2016) decompose the pairwise covariations between

different asset classes into continuous and jump components. They report that the

global financial crisis did not result in a change of the relative contributions of the

components, although covariations increased during this period. In contrast to exist-

ing studies, our paper analyzes the premium that is associated with co-jumps. That

is, it takes the risk-neutral expectation of co-jumps into account, whereas previous

research examined realized co-jumps only. Moreover, while much of this strand of

literature is based on high frequency data, which may be cumbersome to use for a

large cross section of stocks, our approach relies on daily option returns that can be

easily computed from four options for each underlying.

Option Returns Finally, the fourth strand of literature examines option returns to

learn about the moments of the underlying’s return distribution. Coval and Shumway
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(2001) propose the use of zero-beta, at-the-money straddles to study the pricing of

time-varying volatility and provide evidence that it is indeed priced in the returns of

index options. Cremers et al. (2015) go one step further and pave the way to disen-

tangle market volatility and jump risks. They use portfolios of index straddles that

are constructed to be either delta-gamma-neutral or delta-vega-neutral and show

that investors pay premiums to hedge against both types of risk. Middelhoff (2019)

refines their method by constraining the portfolios to have constant option sensitiv-

ities, making option returns comparable across time and underlyings. While much

of the literature has focussed on index options, little is known about the differential

pricing of index and basket options. One notable exception is Kelly et al. (2016) who

document that out-of-the-money put options on the financial sector were extraor-

dinarily cheap relative to the basket of individual banks during the global financial

crisis and ascribe their finding to an implicit sector-wide government guarantee. Our

paper contributes to this literature by applying the idea of Cremers et al. (2015) to

the constituents of the S&P 100 index. We then study the differential pricing of the

index and basket option portfolios in dispersion trades that isolate the premiums

related to continuous correlations and co-jumps.

3 Theoretical Framework

This section lays the theoretical foundation for empirically assessing the pricing of

different types of correlation risk in Section 4. We first decompose the index VRP into

the individual VRPs of all constituents and premiums for their continuous and jump

covariations. In a general jump-diffusion setting, we then show that these components

can be traded using delta-gamma-neutral and delta-vega-neutral option portfolios.
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In order to extract the CRPs, we implement dispersion trades that go long the index

option portfolios and short a basket of the option portfolios on the constituents.

We demonstrate that the strategies only load on the correlation of continuous stock

price movements or the correlation of jumps, respectively, and show that their excess

returns provide direct evidence on the corresponding risk premiums.

3.1 Index Variance Risk Premium

Suppose that the index of interest comprises constituents i = 1, . . . , N with relative

shares ωi,t. The quadratic variation of the index is given by

QVI,[t,t+τ ] =
N∑
i=1

ω2
i,tQVi,[t,t+τ ] +

N∑
i=1

N∑
j=1
j 6=i

ωi,tωj,tQVij,[t,t+τ ], (1)

where QVij,[t,t+τ ] denotes the quadratic covariation between the stock price processes

of constituents i and j over the time interval [t, t + τ ]. In addition, suppose that

the constituents’ stock prices follow jump-diffusions. In that case, we can decompose

their quadratic (co)variations into continuous and jumps parts, i.e. QVij,[t,t+τ ] =

CVij,[t,t+τ ] + JVij,[t,t+τ ], and rewrite Equation (1) as

QVI,[t,t+τ ] =
N∑
i=1

ω2
i,tCVi,[t,t+τ ] +

N∑
i=1

ω2
i,tJVi,[t,t+τ ]

+
N∑
i=1

N∑
j=1
j 6=i

ωi,tωj,tCVij,[t,t+τ ] +
N∑
i=1

N∑
j=1
j 6=i

ωi,tωj,tJVij,[t,t+τ ]. (2)

That is, the quadratic variation of the index is attributable to the continuous and

jump variation of each constituent, in addition to the continuous and jump covaria-
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tions between each pair of constituents. From this expression, we can derive the index

VRP as the difference between the physical (P) and risk-neutral (Q) expectation of

the index quadratic variation (see e.g. Bollerslev et al. (2015))

V RPI,t = EP
t [QVI,[t,t+τ ]]− EQ

t [QVI,[t,t+τ ]]

=
N∑
i=1

ω2
i,t

(
EP
t [CVi,[t,t+τ ]]− EQ

t [CVi,[t,t+τ ]]
)︸ ︷︷ ︸

V olRPi,t

+
N∑
i=1

ω2
i,t

(
EP
t [JVi,[t,t+τ ]]− EQ

t [JVi,[t,t+τ ]]
)︸ ︷︷ ︸

JRPi,t

+
N∑
i=1

N∑
j=1
j 6=i

ωi,tωj,t
(
EP
t [CVij,[t,t+τ ]]− EQ

t [CVij,[t,t+τ ]]
)

︸ ︷︷ ︸
CovRPV OL,t

+
N∑
i=1

N∑
j=1
j 6=i

ωi,tωj,t
(
EP
t [JVij,[t,t+τ ]]− EQ

t [JVij,[t,t+τ ]]
)

︸ ︷︷ ︸
CovRPJUMP,t

. (3)

The index VRP comprises several risk premiums, namely (i) N premiums for the

continuous variation of each constituent (denoted as V olRP ), (ii) N premiums for

their jump variations (JRP ), (iii) N(N − 1) premiums for the pairwise continuous

covariations of constituents, which aggregate to the continuous covariance risk pre-

mium (CovRPV OL), and (iv) N(N − 1) premiums for pairwise jump covariations,

which constitute the jump covariance risk premium (CovRPJUMP ).2

The decomposition highlights that investors pay a premium to insure them-

selves against states of high index variance for potentially very different reasons.

However, separating the risk premiums from each other presents a great empirical

2Note that quadratic covariations can be normalized and alternatively expressed in terms of correla-
tions as QVij,[t,t+τ]/

(√
QVi,[t,t+τ]

√
QVj,[t,t+τ]

)
, such that there is a one-to-one correspondence between

the covariance risk premiums CovRPV OL and CovRPJUMP presented here and the correlation
risk premiums CRPV OL and CRPJUMP discussed later.
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challenge. In the following sections, we show that option returns contain rich infor-

mation about several risk premiums and argue that specifically constructed option

portfolios provide a simple and legitimate way to solve the identification problem.

3.2 Option Returns

Suppose that the processes for the stock price Si,t and variance Vi,t of each con-

stituent i at time t are given by the jump-diffusions

dSi,t
Si,t−

= µSi
dt+

√
Vi,tdW

Si
t +

∆Si,t
Si,t−

(4)

dVi,t = µVidt+ σVi
√
Vi,tdW

Vi
t + ∆Vi,t, (5)

where dW Si
t and dW Vi

t are Brownian motions, and ∆Si,t and ∆Vi,t represent jumps.

The index is computed as the sum of constituents’ stock prices, weighted by their

shares in the index (wi, t). The level of the index SI,t and its local variance VI,t are

equal to

SI,t =
N∑
i=1

wi,tSi,t (6)

VI,t =
N∑
i=1

w2
i,tVi,t +

N∑
i=1

N∑
j=1
j 6=i

wi,twj,t
√
Vi,t
√
Vj,tρij,t, (7)

where ρij,t denotes the pairwise local correlation between the Brownian motions of the

stock price processes for constituents i and j. We make the simplifying assumption

that all pairwise correlations are driven by a single state variable, which is denoted as

equi-correlation ρt and follows a diffusion process. For ease of exposition, we abstract
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from any discontinuities in variances.3

The price of any option Oi,t = Oi(t, Si,t, Vi,t) on constituent i then follows

dOi,t − r Oi,tdt =
∂Oi

∂Si

(
dSci,t − E

Q
t [dSci,t]

)
+
∂Oi

∂Vi

(
dVi,t − EQ

t [dVi,t]
)

+ ∆Oi,t − EQ
t [∆Oi,t] (8)

with

∆Oi,t = Oi(t, Si,t− + ∆Si,t, Vi,t)−Oi(t, Si,t−, Vi,t),

where dSci,t denotes the continuous variation of the stock price. Approximating the

jump component ∆Oi,t by a second-order Taylor series allows us to express the excess

return of the option as

dOi,t − r Oi,tdt =
∂Oi

∂Si

(
dSi,t − EQ

t [dSi,t]
)

+
∂Oi

∂Vi

(
dVi,t − EQ

t [dVi,t]
)︸ ︷︷ ︸

V olRPi,t

+
1

2

∂2Oi

∂S2
i

(
(∆Si,t)

2 − EQ
t [(∆Si,t)

2]
)︸ ︷︷ ︸

JRPi,t

+ξOi,t − E
Q
t [ξOi,t], (9)

where ξOi,t denotes the remainder term from the Taylor series approximation and is

neglected henceforth. It can be seen that the excess return of the option depends on

the risk premiums associated with continuous stock price movements (multiplied by

delta), volatility (multiplied by vega), and jumps (multiplied by gamma).4 At this

point, we note that option returns prove to be very useful for measuring risk premi-

3A detailed derivation of the following equations is provided in Appendix A, which also discusses
the more general case with discontinuities in the variances and equi-correlation.

4To be more precise, the terms inside the parentheses represent instantaneous payoffs from bearing
stock price, volatility, and jump risks. In order to interpret them as risk premiums, we need to make
the additional assumption that dSi,t, dVi,t, and (∆Si,t)

2 are martingales under the physical mea-
sure. It then holds that EP

t−[dSi,t] = dSi,t−, EP
t−[dVi,t] = dVi,t−, and EP

t−[(∆Si,t)
2] = (∆Si,t−)2.
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ums directly, without having to estimate the physical and risk-neutral expectations

separately. Moreover, they accommodate several risk premiums, which can be taken

apart by designing suitable option trading strategies.

In general, the excess return of any option OI,t on the index has the same form.

However, the excess return of the index option depends on the index level SI,t and

variance VI,t, which in turn are functions of constituents’ stock prices and variances

as well as the equi-correlation as shown in Equations (6) and (7). As a consequence,

index options collect each constituent’s premium associated with continuous stock

price movements, VolRP, and JRP. On top of that and in contrast to options on

the constituents, index options also carry the CRP because they are exposed to

correlation risk.

3.3 Correlation Risk Premium

In order to extract the CRP, we implement dispersion trades similar to Driessen

et al. (2009).5 That is, we go long the index option and short the basket of options

on the constituents. This strategy eliminates individual risks stemming from the

constituents and only loads on the correlation between them. As mentioned earlier,

there are two types of correlation risk: the risk that stocks continuously move in the

same direction and the risk that they experience co-jumps. Our setting allows us to

disentangle the premiums associated with the two different types of correlation risk

in a simple way. The basic idea is to construct portfolios of options that enter the

dispersion trade which are only exposed to either volatility or jump risks. This can

be easily accomplished by forming delta-gamma-neutral or delta-vega-neutral option

5Note that Driessen et al. (2009) rely on a diffusion setting and thus abstract from stock price
jumps.
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portfolios in the fashion of Cremers et al. (2015) for the index and all constituents.

Volatility CRP In order to extract the risk premium for continuous correlation,

we form delta-gamma-neutral option portfolios, denoted as V OL portfolios, for all

constituents as well as the index. That is, we set

∂V OLi
∂Si

=
∂V OLI
∂SI

= 0 and
∂2V OLi
∂S2

i

=
∂2V OLI
∂S2

I

= 0 ∀ i (10)

in Equation (9). The excess return of the V OL portfolio for constituent i then be-

comes

dV OLi,t − r V OLi,tdt =
∂V OLi
∂Vi

(
dVi,t − EQ

t [dVi,t]
)
. (11)

The V OL portfolio allows to trade volatility risk. Its return reflects the VolRP of the

constituent scaled by the exposure to volatility risk, which is given by the portfolio’s

vega. For the index, the excess return of the V OL portfolio is

dV OLI,t − r V OLI,tdt =
∂V OLI
∂VI

(
dVI,t − EQ

t [dVI,t]
)

=
∂V OLI
∂VI

(
N∑
i=1

∂VI
∂Vi

(
dVi,t − EQ

t [dVi,t]
)

+
∂VI
∂ρ

(
dρt − EQ

t [dρt]
))

, (12)

i.e. it is driven by the sum of all constituents’ individual VolRPs and the risk premium

for continuous correlation, scaled by the index vega. In order to isolate the correlation

risk premium, we implement a dispersion trade that goes long the V OL portfolio of

the index and short the V OL portfolios of all constituents. The size of each short
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position is

yi,t =

∂V OLI

∂VI
∂V OLi

∂Vi

∂VI
∂Vi

. (13)

∂VI
∂Vi

directly follows from the local variance of the index in Equation (7)

∂VI
∂Vi

= w2
i,t +

N∑
j=1
j 6=i

wi,twj,t

√
Vj,t√
Vi,t

ρt, (14)

where we have replaced the pairwise local correlation ρij,t with the equi-correlation

ρt. When practically implementing the strategy, we restrict the vegas of all V OL

portfolios to a constant, i.e. we set ∂V OLI

∂VI
= ∂V OLi

∂Vi
= const. ∀ i following Middelhoff

(2019). On the one hand, this makes V OL returns comparable across time and un-

derlyings. On the other hand, it allows us to simplify the short position to yi,t = ∂VI
∂Vi

.

Finally, the excess return of the resulting portfolio, denoted as CRPV OL, becomes

dCRPV OL,t − r CRPV OL,tdt =
∂V OLI
∂VI

∂VI
∂ρ

(
dρt − EQ

t [dρt]
)

(15)

and depends on the risk premium paid for continuous correlation, multiplied by

the index vega and the exposure of the index variance to the equi-correlation. The

portfolio hence pays the volatility CRP.

Jump CRP Similarly, we form delta-vega-neutral JUMP portfolios in order to

extract the risk premium for co-jumps by setting

∂JUMPi
∂Si

=
∂JUMPI
∂SI

= 0 and
∂JUMPi
∂Vi

=
∂JUMPI
∂VI

= 0 ∀ i (16)
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in Equation (9). The JUMP portfolio for constituent i allows to trade jump risk

and offers the excess return

dJUMPi,t − r JUMPi,tdt =
1

2

∂2JUMPi
∂S2

i

(
(∆Si,t)

2 − EQ
t [(∆Si,t)

2]
)
, (17)

which is proportional to the JRP of the constituent, scaled by the exposure to jump

risk, as measured by the constituent’s gamma. The excess return of the JUMP

portfolio for the index is

dJUMPI,t − r JUMPI,tdt =
1

2

∂2JUMPI
∂S2

I

(
(∆SI,t)

2 − EQ
t [(∆SI,t)

2]
)

=
1

2

∂2JUMPI
∂S2

I

(
N∑
i=1

w2
i,t

(
(∆Si,t)

2 − EQ
t [(∆Si,t)

2]
)

+
N∑
i=1

N∑
j=1
j 6=i

wi,twj,t
(
∆Si,t∆Sj,t − EQ

t [(∆Si,t∆Sj,t)]
))

.

(18)

It is proportional to the sum of all constituents’ individual JRPs and the risk premium

for co-jumps, scaled by the index gamma. In order to isolate the correlation risk

premium, we implement a dispersion trade that goes long the JUMP portfolio of

the index and short the JUMP portfolios of all constituents, where the size of each

short position amounts to

yi,t =

∂2JUMPI

∂S2
I

∂2JUMPi

∂S2
i

w2
i,t. (19)
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We follow Middelhoff (2019) and restrict the gammas of all JUMP portfolios to a

constant, i.e. we set ∂2JUMPI

∂S2
I

= ∂2JUMPi

∂S2
i

= const. ∀ i, such that the short position

simplifies to yi,t = w2
i,t. Finally, the excess return of the resulting portfolio, denoted

as CRPJUMP , becomes

dCRPJUMP,t − r CRPJUMP,tdt =

1

2

∂2JUMPI
∂S2

I

N∑
i=1

N∑
j=1
j 6=i

wi,twj,t
(
∆Si,t∆Sj,t − EQ

t [(∆Si,t∆Sj,t)]
)

(20)

and depends on the weighted sum of all pairwise risk premiums paid for co-jumps,

multiplied by the index gamma. In other words, this portfolio pays the jump CRP.

4 Empirical Evidence

4.1 Methodology

Our goal is to break the correlation risk premium down into two components: a pre-

mium related to the correlation of continuous stock price movements (CRPV OL) and

a premium for bearing the risk of co-jumps (CRPJUMP ). We follow the methodology

outlined in Section 3 to construct portfolios which are only exposed to changes in

the correlation of diffusive stock price movements and to co-jumps, respectively.

We construct the V OL and JUMP portfolios introduced in Section 3 for the

index and all constituents. On each day and for each underlying, we group all avail-

able liquid options according to their remaining times to maturity. Within every

maturity bucket, we select the call and put option that are nearest-the-money and

simultaneously take a position in them, i.e. we set up straddles. Among all straddles,
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we choose the two straddles which are overall closest to being at-the-money. If this se-

lection criterium results in more than two straddles with different times to maturity,

we choose the two straddles with the shortest and longest time to maturity because

this results in the maximum dispersion of options’ sensitivities and makes the nu-

merical optimization easier.6 In order to make the returns on the V OL and JUMP

portfolios comparable across time and underlyings and to simplify the initiation of

the dispersion trade, we follow Middelhoff (2019) and restrict the V OL and JUMP

portfolios to have constant vegas and gammas, respectively. Furthermore, we aim

for a balanced allocation of wealth across the four options in order to minimize the

impact of any outliers and potential data noise, e.g. stemming from bid–ask spreads.

Thus, the optimization problem for the V OL portfolios can be written as

min
w

∣∣∣∣∣∣∣∣ w ◦O

abs(w>)O

∣∣∣∣∣∣∣∣2
2

(21)

s.t. w> [∆,V ,Γ] = [0, 200, 0] (22)

w ◦ [−1,−1, 1, 1]> ≥ 0, (23)

where w = [wcall,T1 , wput,T1 , wcall,T2 , wput,T2 ]
> denotes a 4 × 1 vector stacking the po-

sitions in call and put options (in terms of number of contracts) with different times

to maturity T1 < T2. O is the corresponding 4 × 1 vector of option prices, ∆, V ,

and Γ are the corresponding 4 × 1 vectors of the option sensitivities delta, vega,

and gamma, respectively. Equation (21) minimizes the squared Euclidean norm of

all option positions (in dollars) relative to total wealth invested, which is defined as

the sum of the absolute number of option contracts multiplied by their respective

prices.

6As noted in Section 4.2, we limit our attention to options with 14 to 365 days to expiration.
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The V OL portfolios are constructed to be delta-gamma-neutral and to always

have a vega of 200. They short the straddle with time to maturity T1 and go long

the straddle with time to maturity T2, because vega increases with time to maturity.

Analogously, when setting up the JUMP portfolios, we optimize Equation (21)

s.t. w> [∆,V ,Γ] = [0, 0, 0.01] (24)

w ◦ [1, 1,−1,−1]> ≥ 0, (25)

such that they are delta-vega-neutral and always have a gamma of 0.01. We go long

the straddle with time to maturity T1 and short the straddle with time to maturity T2,

because gamma decreases with time to maturity. We hold the optimal positions for

one trading day and calculate the excess returns from the recorded closing prices of

the following day. If we cannot recover an option, we interpolate its implied volatility

using a kernel smoothing technique similar to OptionMetrics.7

The resulting V OL and JUMP portfolio for constituent i (denoted as V OLi

and JUMPi) are only exposed to changes in the individual variance and to indi-

vidual jumps, respectively. In contrast, the V OLI portfolio of the index is exposed

to the correlation associated with continuous stock price movements (CRPV OL) and

to all individual variances. Analogously, the JUMPI portfolio of the index is ex-

posed to co-jumps (CRPJUMP ) and to individual jumps of all constituents. In order

to isolate CRPV OL and CRPJUMP , we hedge against the individual risk factors by

taking appropriate positions when setting up the dispersion trades as discussed in

Section 3.3.

7More precisely, we interpolate across log time to maturity, moneyness defined as stock price divided
by strike price, and a call-put identifier. We follow OptionMetrics and set the bandwidth parameters
to h1 = 0.05, h2 = 0.005, and h3 = 0.001.

18



4.2 Data

The sample period is from January 1996 to December 2017. Our analysis focuses on

the S&P 100 index and its constituents. Data on the composition of the S&P 100

index is taken from Compustat, the level of the S&P 100 index is provided by Op-

tionMetrics. We obtain daily stock price data on all constituents from the Center

for Research in Security Prices (CRSP) and compute market capitalizations in or-

der to approximate constituents’ weights in the index. Daily option prices are taken

from OptionMetrics IvyDB US. We apply several filters in the fashion of Goyal and

Saretto (2009). First, we exclude options with non-standard settlement, missing im-

plied volatility, and zero open interest. Second, we only keep options whose bid quotes

are positive and strictly smaller than their ask quotes. Third, we compute midprices

as the average of bid and ask quotes and discard options whose midprices violate

standard arbitrage bounds as in Cao and Han (2013). We use the zero-coupon in-

terest rate curve provided by OptionMetrics and linearly interpolate across time to

maturity if necessary. When setting up the V OL and JUMP portfolios as described

in Section 4.1, we limit our attention to options with 14 to 365 days to expiration.

Options on the S&P 100 index and its constituents are American-style. Their

recorded prices hence include an early exercise premium that distorts option returns.

Since the accurate measurement of option returns is central to our analysis, we strip

off the early exercise feature as follows. Given the recorded implied volatilities, we

reprice all American options in binomial trees of Cox et al. (1979)-type with 1,000

time steps. We explicitly account for expected dividends using data on the S&P 100

dividend yield from OptionMetrics and data on discrete dividends paid by the con-

stituents from OptionMetrics and CRSP. We eliminate options whose recorded prices

deviate by more than 1% from the prices implied by the binomial trees. For the re-
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maining options, we compute European prices using the same binomial trees and

calculate option sensitivities as Black-Scholes greeks. We exclude options whose Eu-

ropean prices are zero.

4.3 Results

Having described the construction of option portfolios that isolate volatility and

jump risk premiums as well as the identification of the corresponding correlation

risk premiums, we now present empirical results for the S&P 100 index and its

constituents.

4.3.1 Volatility Risk Premium

The V OL portfolios are only exposed to changes in the diffusive volatilities of their

underlyings as shown in Section 3.3. In particular, they experience positive returns

when the realized change in variance exceeds the risk-neutral expectation (under Q).

Index VolRP Table 1 reports summary statistics of the returns on the V OLI

portfolio of the S&P 100 index. It shows that investors pay a premium to insure

against volatility risk in the index. The annualized average return of the V OLI

portfolio is −2.77% with a standard deviation of 23.61% (first column).

Figure 1 plots the time series of V OLI returns in the first panel (dots). The daily

returns generally fluctuate around zero but occasionally are of great magnitude, both

positive and negative. Notably, the time series exhibits an almost zero autocorrelation

of −0.01 (p-value=0.28), which stands in stark contrast to the volatility risk premium

that is often calculated as realized volatility minus implied volatility and thus reflects
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the level of the volatility risk premium. The V OLI returns, however, load on changes

in said premium and may be interpreted as the payoff of a variance swap. The top

three returns were earned on February 27, 2007 (plunge in Chinese stock market,

drop in orders for durable goods in the U.S.), September 17, 2008 (global financial

crisis, rescue of A.I.G.), and October 27, 1997 (economic crisis in Asia, sell-off in

Hong Kong).

Individual VolRP Turning to the S&P 100 constituents, Table 1 reports time-

series averages of the properties of the cross-sectional distribution of V OLi returns.

On average, we are able to construct V OL portfolios for 94 constituents on each

day (third column). Furthermore, we find that investors command a premium to

insure against individual volatility risk. The annualized average return of the V OLi

portfolios amounts to 4.94%, compared to −2.77% for the index. Put differently, an

equal-weighted investment in the V OL portfolios of all constituents yields positive

returns on average, while an investment in the V OL portfolio of the index yields neg-

ative returns over the same sample period. This points towards a negative CRPV OL,

i.e. to a continuous correlation that is larger under the risk-neutral measure than

under the physical measure.

The first panel of Figure 1 plots the 5% and 95% percentiles of the cross-

sectional distribution of V OLi returns over time (shaded area). The deviation be-

tween the two percentiles is surprisingly small on most days. On some days, the two

percentiles are so close to each other that they no longer cover the V OLI return of

the index, which as a result lies above or below the interval. Once in a while, the

deviation between the two percentiles widens considerably. These days, however, do

not necessarily coincide with extreme V OLI returns, suggesting that the CRPV OL
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is subject to substantial variation over time.

4.3.2 Jump Risk Premium

The JUMP portfolios load on jump risk only as shown in Section 3.3. They exhibit

positive returns when the realized jump in the underlying’s price exceeds the risk-

neutral expectation (under Q).

Index JRP Table 1 shows that investors pay a large premium to insure against

jump risk in the S&P 100 index. The premium amounts to economically meaningful

−32.81% per year and fluctuates substantially over time as indicated by the annu-

alized standard deviation of 36.91% (second column). Figure 1 plots the time series

of JUMPI returns in the second panel (dots). The time series shows frequent spikes

which are positive in most cases. These extreme positive returns are most likely the

result of materialized jumps in the index and corroborate the view that the JUMP

portfolios are indeed exposed to jump risk. The top three returns were earned on

February 27, 2007 (see above), August 8, 2011 (U.S. credit rating downgrade), and

October 27, 1997 (see above). While two of these dates happen to coincide with

the dates of the top three V OLI returns, Spearman’s rho over the entire sample

period indicates that the rank correlation is actually significantly negative at −0.16

(p-value=0.00) as reported in Panel B of Table 4.

Individual JRP With regard to the individual jump risk premiums, Table 1 re-

ports time-series averages of the properties of the cross-sectional distribution of

JUMPi returns. In line with intuition, we find that investors pay a premium to

insure against individual jump risk. The annualized average return of the JUMPi
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portfolios is −8.32% (fourth column), compared to −32.81% for the index. Put differ-

ently, an equal-weighted investment in the JUMP portfolios of all constituents yields

much smaller negative returns compared to an investment in the JUMP portfolio

of the index, pointing towards a negative CRPJUMP .

The second panel of Figure 1 shows that the cross-sectional dispersion of

JUMPi returns is large and varies considerably over time. The 5% and 95% per-

centiles (shaded area) are far apart most of the time, such that the JUMPI re-

turns of the index typically lie inside the interval. The deviation between the two

percentiles widens frequently. Most, but not all, of these days are accompanied by

extreme JUMPI returns. Every now and then, individual jump risk premiums ex-

perience strong upward movements, while the index jump risk premium does not

change materially. This result indicates that the CRPJUMP fluctuates greatly over

time.

4.3.3 Correlation Risk Premium

The previous sections showed that the basket of constituents behaves very differently

from the index. Moreover, we found first indirect evidence that investors pay eco-

nomically meaningful correlation risk premiums CRPV OL and CRPJUMP . We now

complement the previous analyses and provide direct evidence through implementing

dispersion trades as proposed in Section 3.3.

Volatility CRP Our optimization procedure is designed to minimize the impact of

any outliers and potential data noise in option returns. To shed light on the success

of the procedure and the robustness of the CRPV OL dispersion trading strategy,

we report summary statistics of the option positions in the first four columns of
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Table 2. Panel A focuses on the four index options that constitute the long leg of

the strategy. As imposed in Equation (23), the strategy buys long-term options with

time to maturity T2 and sells short-term option with time to maturity T1. Across

the four options, the average positions are well-balanced with 0.93 and 0.89 call and

put options sold and 1.46 and 1.51 bought. For each option, the time series exhibits

excess kurtosis. However, at no point in time does the strategy involve trading more

than 8.05 contracts. Panel B shows properties of the cross-sectional distribution of

time-series averages of the positions that constitute the short leg, i.e. positions in

constituent options. Since we short the basket of constituent options, short-term

options are now bought and long-term options are sold. The average number of

options is much smaller for the constituents than for the index. On average, we invest

in 0.0237 and 0.0195 call and put options and short 0.0413 and 0.0419. Thus, the

average position in options of the basket is smaller than for the market. This evokes by

construction, since we weight a firms share in the basket with ∂VI
∂Vi

in Equation (13).

∂VI
∂Vi

is typically smaller than one since the marginal contribution of one stock to

the index decreases with the size of the index. The cross-sectional distribution is

little dispersed. Overall, we can conclude that the positions in index and constituent

options are fairly balanced, such that the CRPV OL returns are expected to be robust

to outliers.

Table 3 reports summary statistics for the returns of the dispersion trade that

is exposed to the correlation of diffusive stock price movements and thus collects

CRPV OL. Investors pay a premium of 13.21% per year to insure against states of high

continuous correlation. This premium is economically meaningful and statistically

significant at the 1% level (bootstrapped p-value=0.00). Note, however, that the

returns of the V OL portfolios are scaled by their vega as shown in Section 3.3. Since
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the vega is arbitrarily set to 200 and can be chosen by the investor, we also report

the Sharpe ratio which is independent of the scaling. Selling insurance against states

of high diffusive correlation yields a Sharpe ratio of 0.60 per year, which is in the

ballpark of the Sharpe ratio of the S&P 100 index itself.

The second panel of Figure 2 shows the time series of CRPV OL returns. Overall,

the returns are often close to zero, negative on 53% of all days within the sample

period, and subject to relatively large positive and negative spikes from time to time.

Interestingly, periods of volatile returns of the S&P 100 index are not necessarily

accompanied by volatile CRPV OL returns. For example, during the burst of the dot-

com bubble in 2000 and the global financial crisis in 2008, index returns are the most

extreme and volatile, whereas CRPV OL returns are surprisingly stable. This suggests

that there are no large sudden changes in the risk premium for diffusive correlation

during crash periods, but possibly smaller changes that accumulate over a longer

time.

Figure 3 plots the time series of the long and short leg of the dispersion trade

separately and hence allows insights into the sources of the profitability of trading

insurance against states of high diffusive correlation. First of all, we observe that

both legs offer returns that are of similar magnitude. Yet, the long leg, i.e. the

position in the V OL portfolio of the S&P 100 index, varies more than the position

in the basket of V OL portfolios of the constituents. This suggests that most of

the variation of V OLI returns can be explained by its exposure to the correlation

of continuous stock price movements, whereas its exposure to individual volatility

risks is less important. This presumption is confirmed by the rank correlation of

0.92 (p-value=0.00) between CRPV OL and V OLI returns as reported in Panel B

of Table 4. Note that this correlation is not driven by a noisy measure of V OLi
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returns for the basket of constituents, because we also find a sizable correlation of

0.35 (p-value=0.00) between the basket returns (V OLShort) and the V OLI returns.

The second panel of Figure 4 shows the cumulative log return of CRPV OL. The

return is rather small and moves around zero in the first half of our sample until

2008, but then starts to steadily drop over time. The premium for the correlation

between diffusive stock price changes is thus mainly earned (or paid) after 2008.

To better understand during which periods the CRPV OL premium is partic-

ularly high or low, Figure 5 plots detrended cumulative log returns.8 In the first

panel, we can see that the S&P 100 index roughly earned its average return between

2002 and 2007, as indicated by the flat line during this period of time. In contrast,

CRPV OL returns show more variation. Returns were above average from the begin-

ning of the sample period up to mid-2003, but below average until 2006. Afterwards,

the strategy earned returns that were larger than usual until 2008, which, however,

turned smaller henceforth until the end of the sample period. The dotted vertical

lines in Figure 5 mark seven events that had significant effects on stock markets

around the globe. While the 1997 mini-crash (1), the burst of the 2007 Chinese stock

market bubble (3), and the credit rating downgrade of European countries by Stan-

dard and Poor’s in 2010 (5) resulted in large positive CRPV OL returns, the default

of Lehman Brothers in 2008 (4), fears of contagion of the European sovereign debt

crisis to Spain and Italy in 2011 (6), and the 2015 Chinese stock market crash (7)

lead to large negative CRPV OL returns. This suggests that the CRPV OL strategy,

which insures against diffusive correlation risk, offered large positive payoffs during

the first set of events because diffusive correlations rose. In contrast, during the sec-

8In contrast to Figure 4, we here subtract the average log CRPV OL return from the cumulative
log returns. The resulting time series therefore starts and ends at zero. A horizonal line of the
detrended cumulative log returns thus implies that the strategy earned the average premium
during that period.
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ond set of events, diffusive correlation did not go up, but uncertainty about future

diffusive correlation was resolved. The beginning of the burst of the dot-com bubble

in 2000 (2) came along with a slight increase of CRPV OL returns on that day only.

However, over the whole course of the dot-com crash until October 2002, there is a

prolonged gradual increase in the detrended cumulative log return of CRPV OL. This

highlights that the price of diffusive correlation risk did not adjust on one specific

day only, but rather reflected worsening investment opportunities over a long period

of time.

Jump CRP Turning to the co-jump risk premium, Table 2 shows that the disper-

sion trade involves taking well-balanced positions in all options. While the long leg

(Panel A) on average buys 0.62 to 0.64 short-term call and put options and shorts

0.38 and 0.40 long-term ones, the short leg (Panel B) on average sells 0.0021 and

0.0023 call and put options and invests in 0.0011 and 0.0012. Thus, the CRPJUMP

strategy is expected to be fairly robust to outliers.

Table 3 reports that the premium associated with the risk of co-jumps amounts

to −30.67% per year. In other words, investors are willing to pay an economically

large premium to eliminate their exposure to correlated jumps among S&P 100 con-

stituents. The premium has an annualized standard deviation of 36.17% and is statis-

tically significant at the 1% level (p-value=0.00 with bootstrapped standard errors).

Selling insurance against co-jumps generates an annualized Sharpe ratio of 0.85.

Compared to the premium for the correlation of continuous stock price movements,

the premium for co-jumps is therefore larger in terms of both average return and

Sharpe ratio.

The third panel of Figure 2 plots the time series of CRPJUMP returns. An
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investor who is long the correlation risk from sudden stock price changes occasion-

ally earns very high positive returns (and an investor offering this insurance suffers

from large losses). These extreme CRPJUMP returns regularly coincide with extreme

index returns. During calm periods when index returns are low and experience lit-

tle volatility, e.g. between 2004 and 2007, we also find relatively stable CRPJUMP

returns. In contrast, during the global financial crisis when index returns were the

most extreme, CRPJUMP returns spiked more frequently. This suggests that the risk

premium stemming from the correlation of jumps is indeed related to stocks’ sudden

co-movements and investors’ increasing fear of co-jumps during crash periods.

In contrast, there is no obvious relation to CRPV OL returns. In fact, the rank

correlation between the two correlation risk premiums over the entire sample period

is negative at −0.24 (p-value=0.00) as reported in Panel B of Table 4. Despite the

rare extremely positive returns, CRPJUMP returns are negative on 61% of all days

within the sample period.

Looking at the long and short leg of the dispersion trade separately, Figure 3

shows that the CRPJUMP returns are overall very similar to the returns of the long

leg. In contrast, returns of the short leg are much smaller in magnitude and exhibit

fewer spikes. This is not the result of negligible individual JRPs, because they were

found to be substantial in Section 4.3.2, but rather of individual JRPs that cancel

each other out due to diversification and the weighting of each constituent in the

short leg when initiating the dispersion trade. Our results are therefore economically

plausible and document that market jumps are almost exclusively driven by co-

jumps among S&P 100 constituents. Panel B of Table 4 supports this reasoning.

The rank correlation between CRPJUMP and JUMPI returns is very high at 0.9962

(p-value=0.00). In contrast, the rank correlation between the basket (CRPShort) and
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JUMPI returns is much smaller at 0.4468 (p-value=0.00), but still suggests that the

basket returns do not reflect mere noise.

The lower panel of Figure 4 shows the cumulative log return of the CRPJUMP

portfolio. It steadily falls over the whole sample. The premium for co-jumps thus has

been constantly paid by investors since 1996.

The third panel of Figure 5 shows detrended cumulative log returns of the

CRPJUMP portfolio. The series looks very different compared to the one for the

CRPV OL portfolio. The CRPJUMP strategy experienced large positive spikes from

time to time. Most of these spikes line up with one of the seven major events that

are indicated by the dotted vertical lines. The largest increase in CRPJUMP occurred

when Lehman Brothers defaulted in 2008 (4). The CRPJUMP returns were positive

during all of these events, suggesting that the insurance against co-jumps paid off

positively because co-jumps materialized. In contrast, the only event that did not

cause a spike in CRPJUMP is the burst of the dot-com bubble in 2000 (2). Over the

whole course of the dot-com crash, CRPJUMP showed few to no spikes. Our results

therefore imply that the dot-com crash unfolded gradually over a long period of time

and is thus reflected in the steady increase of the diffusive correlation risk premium

only, but not in the premium for co-jumps.

4.3.4 Correlation Risk Premium and Expected Returns

The previous analyses showed that investors are willing to pay significant premiums

to hedge jump and diffusive correlation risks. Large spikes in CRPV OL and CRPJUMP

are associated with crises such as the dot-com crash or the global financial crises in

2008. While the previous analyses of the relation between index returns and correla-

tion risks focussed on a set of major events, we now analyze the relation in a broader
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setting and make use of the whole time series. In particular, if investors price the

risks of co-jumps and changes in diffusive correlation, it is likely that CRPV OL and

CRPJUMP are able to explain index returns.

We start our analysis by looking at the contemporaneous relation between in-

dex returns and returns of the CRPV OL and CRPJUMP strategies. Panel A of Table 5

reports results of contemporaneous regressions. We regress the monthly holding pe-

riod return of the S&P 100 index over the formation months (1-24) on the holding

period returns of the CRPV OL and CRPJUMP portfolios over the same formation

months. To account for overlapping information, we report bootstrapped standard

errors, using 50,000 draws, in parentheses and Newey-West adjusted standard errors

in square brackets, where the number of lags corresponds to the number of overlap-

ping months. For all formation periods, the index returns significantly load on the

returns of CRPJUMP . This suggests that CRPJUMP captures an important facet of

market returns. In contrast, the index returns only load significantly on CRPV OL for

longer formation periods. This supports the argument from the previous section that

CRPV OL captures long-term risks, e.g. during the dot-com crash.

Panel B of Table 5 reports the results from predictive regressions. We regress

the monthly holding period return of the index over the subsequent months (1-24)

on the monthly holding period returns of the CRPV OL and CRPJUMP portfolios

during the formation months (1-24). The formation period and the prediction period

thus have always the same length. The table clearly indicates that both, CRPV OL

and CRPJUMP , are able to predict future returns. The adjusted R2s lie between

1.6% (6 months) to 14.8% (12 months). However, CRPV OL and CRPJUMP are very

distinct in their predictive power. While CRPJUMP can predict future returns in the

short-run (over 1 and 3 months), CRPV OL is able to predict future returns in the
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long-run only (12 to 24 months). Again, this finding supports the idea that co-jump

risk is more important for investors in the short-run, while diffusive correlation risk is

important for the long-run. If statistically significant, CRPV OL and CRPJUMP have

negative coefficients for all formation periods. Recall that the two correlation risk

premiums are defined such that they are higher when investors are less willing to

pay for insurance. Consequently, the negative coefficients imply that when investors

are less afraid of correlation risks, today’s market valuation is high and future market

returns will be low on average.

Finally, Panel C of Table 5 presents results from predictive regressions where

we include the level of the variance risk premium (V RP ) and the price-dividend-ratio

(P/D) as control variables. Overall, the results are robust. CRPJUMP is a statisti-

cally significant predictor for 1 month, while CRPV OL explains index returns over

the coming 12 and 24 months. Thus, CRPV OL and CRPJUMP represent additional

important risk premiums, which are neither subsumed by the variance risk premium

nor by the price-dividend ratio.

5 Conclusion

This paper analyzes the drivers of the correlation risk premium. More precisely, it

breaks the correlation risk premium down into two components: a premium related

to the correlation of continuous stock price movements and a premium for bearing

the risk of co-jumps.

In order to empirically identify the risk premiums, we construct option port-

folios for the index as well as for its constituents. These portfolios directly load on

changes in the volatility risk premium and in the jump risk premium, respectively.
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We find an economically and statistically significant volatility risk premium and

jump risk premium for the S&P 100 index. Investors on average pay 2.77% per year

in order to hedge market volatility risk and 32.81% to hedge against market jump

risk. In contrast, these premiums are much closer to zero for the constituents. In-

vestors on average pay 8.32% per year to hedge against jumps in the constituents.

In addition, investors even demand 4.94% per year to hedge out volatility risk of the

constituents. The large differences in index and constituents risk premiums are driven

by significant correlation risk premiums for both diffusive movements and co-jumps.

By setting up dispersion trades, we separately identify the correlation risk pre-

mium of diffusive movements and co-jumps. While investors are on average willing to

pay a premium to hedge both risks, the annualized premium paid to hedge co-jumps

is much higher in magnitude (30.67% as opposed to 13.21%). Volatile and extreme

market returns primarily go along with changes in the jump correlation risk premium

and do not align with the diffusive correlation risk premium. The market volatility

and jump risk premiums are almost exclusively explained by the corresponding cor-

relation risk premiums, with rank correlations of 0.9213 for volatility and 0.9962 for

jumps. In addition, we find that CRPJUMP is able to predict future index returns up

to 3 months, while CRPV OL predicts index returns only for longer horizons (12 to

24 months). Overall, our results document the importance of correlation as a priced

risk factor and highlight that the risk associated with co-jumps is of much greater

importance for investors than the risk of correlated diffusive stock price movements.
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Figure 1: V OL and JUMP : Index and Cross-Sectional Distribution

This figure shows the time series of daily returns on the V OL and JUMP portfolios of the S&P 100
index (from top to bottom). Data is taken from OptionMetrics within the sample period from
January 1996 to December 2017. Shaded areas represent the distance between the 5% and 95%
percentiles of the cross-sectional distribution of V OL and JUMP returns across all constituents of
the S&P 100 index.
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Figure 2: Index Returns and Correlation Risk Premiums

This figure shows the time series of daily excess returns on the S&P 100 index, the correlation risk
premium for continuous stock price movements (CRPV OL), and the correlation risk premium for
co-jumps (CRPJUMP ) (from top to bottom). CRPV OL and CRPJUMP are based on dispersion
trades that go long the V OL and JUMP portfolios of the S&P 100 index, respectively, and short a
basket of the corresponding portfolios of the constituents. The sample period is from January 1996
to December 2017.
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Figure 3: Dispersion Trade Components

This figure shows the time series of the long and short components of the dispersion trades for
CRPV OL and CRPJUMP . The long leg represents a position in the V OL and JUMP portfolios
of the S&P 100 index, respectively, whereas the short leg represents a basket of positions in the
corresponding portfolios of the constituents. The sample period is from January 1996 to December
2017.
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Figure 4: Cumulative Excess Returns

This figure shows the cumulative log excess returns on the S&P 100 index, the correlation risk
premium for continuous stock price movements (CRPV OL), and the correlation risk premium for
co-jumps (CRPJUMP ) (from top to bottom). CRPV OL and CRPJUMP are based on dispersion
trades that go long the V OL and JUMP portfolios of the S&P 100 index, respectively, and short a
basket of the corresponding portfolios of the constituents. The sample period is from January 1996
to December 2017.
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Figure 5: Detrended Cumulative Excess Returns

This figure shows detrended cumulative log excess returns on the S&P 100 index, the correlation
risk premium for continuous stock price movements (CRPV OL), and the correlation risk premium
for co-jumps (CRPJUMP ) (from top to bottom). The detrending procedure adjusts for the average
premium of each time series, such that the series start and end at zero. The sample period is
from January 1996 to December 2017. Vertical lines indicate the following events: 1) mini-crash
(10/27/1997); 2) burst dot-com bubble (3/11/2000); 3) burst Chinese stock bubble (2/27/2007); 4)
default of Lehman Brothers (9/15/2008); 5) downgrade of European countries by S&P (4/27/2010);
6) fears of contagion of the European sovereign debt crisis to Spain and Italy (8/4/2011); Chinese
stock market crash (8/12/2015)
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Index Constituents

V OLI JUMPI V OLi JUMPi

Observations 5531 5531 94 94
Mean =0.0277 =0.3281 0.0494 =0.0832
Standard Deviation 0.2361 0.3691 0.2407 0.4754
Median =0.0007 =0.0044 =0.0002 =0.0038
Skewness =0.4646 2.8363 0.3550 1.3647
Kurtosis 41.7778 28.8750 10.0268 12.1012

Table 1: V OL and JUMP : Summary Statistics

This table reports summary statistics of daily returns on the V OL and JUMP portfolios of the
S&P 100 index and its constituents (from left to right). Data is taken from OptionMetrics. Statistics
for the index refer to the properties of the time-series distribution of returns over the sample period
from January 1996 to December 2017, while statistics for the constituents refer to time-series
averages of the properties of the cross-sectional distribution. Mean and standard deviation are
reported at an annual level.
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CRPV OL CRPJUMP

Mean =0.1321 =0.3067
Standard Deviation 0.2185 0.3617
Sharpe Ratio =0.6046 =0.8480
Median =0.0009 =0.0042
Skewness =1.3525 2.7530
Kurtosis 50.7880 27.5230

Table 3: CRPV OL and CRPJUMP : Summary Statistics

This table reports summary statistics of the correlation risk premium for continuous stock price
movements (CRPV OL) and the correlation risk premium for co-jumps (CRPJUMP ) (from left to
right). CRPV OL and CRPJUMP are based on dispersion trades that go long the V OL and JUMP
portfolios of the S&P 100 index, respectively, and short a basket of the corresponding portfolios
of the constituents. The sample period is from January 1996 to December 2017. Mean, standard
deviation, and the Sharpe ratio are reported at an annual level.
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1 month 3 months 6 months 12 months 24 months

Panel A: Contemporaneous Regression

Intercept =0.0019
(0.0030)
[0.0030]

=0.0200
(0.0058)
[0.0124]

***
=0.0500
(0.0103)
[0.0314]

***
=0.1325
(0.0227)
[0.0919]

***
=0.3440
(0.0492)
[0.1920]

***

CRPV OL =0.0182
(0.0420)
[0.0420]

=0.0567
(0.0395)
[0.0524]

=0.0766
(0.0394)
[0.0769]

*
=0.1553
(0.0427)
[0.1235]

***
=0.3129
(0.0467)
[0.1566]

***

CRPJUMP =0.1430
(0.0299)
[0.0300]

***
=0.2361
(0.0273)
[0.0639]

***
=0.2814
(0.0288)
[0.0908]

***
=0.3429
(0.0399)
[0.1416]

***
=0.3597
(0.0477)
[0.1726]

***

adj R2 7.3616 22.6531 27.9328 23.7090 26.5096

Panel B: Predictive Regression

Intercept =0.0004
(0.0030)
[0.0031]

0.0010
(0.0068)
[0.0137]

0.0232
(0.0123)
[0.0225]

*
=0.0072
(0.0235)
[0.0671]

=0.0756
(0.0500)
[0.1498]

CRPV OL 0.0058
(0.0426)
[0.0429]

=0.0475
(0.0459)
[0.0525]

=0.0030
(0.0470)
[0.0889]

=0.2471
(0.0442)
[0.1286]

***
=0.2484
(0.0471)
[0.1194]

***

CRPJUMP =0.1067
(0.0305)
[0.0308]

***
=0.0619
(0.0318)
[0.0699]

* 0.0254
(0.0346)
[0.0443]

0.0205
(0.0415)
[0.0655]

=0.0253
(0.0486)
[0.0984]

adj R2 3.9147 1.5999 0.2433 14.7716 12.0683

Panel C: Predictive Regression with Controls

Intercept 0.0055
(0.0065)
[0.0065]

0.0276
(0.0123)
[0.0156]

** 0.0524
(0.0207)
[0.0336]

*** 0.0588
(0.0332)
[0.0770]

* 0.0131
(0.0620)
[0.1835]

CRPV OL 0.0037
(0.0423)
[0.0427]

=0.0392
(0.0437)
[0.0453]

=0.0183
(0.0465)
[0.0821]

=0.2282
(0.0433)
[0.1203]

***
=0.2124
(0.0482)
[0.1119]

***

CRPJUMP =0.0910
(0.0305)
[0.0306]

***
=0.0215
(0.0300)
[0.0524]

0.0423
(0.0324)
[0.0355]

0.0205
(0.0387)
[0.0593]

=0.0405
(0.0461)
[0.0981]

V RP =0.0004
(0.0001)
[0.0001]

***
=0.0012
(0.0002)
[0.0003]

***
=0.0016
(0.0004)
[0.0004]

***
=0.0020
(0.0005)
[0.0008]

***
=0.0023
(0.0007)
[0.0013]

***

P/D =0.0002
(0.0001)
[0.0001]

**
=0.0007
(0.0002)
[0.0002]

***
=0.0009
(0.0002)
[0.0003]

***
=0.0015
(0.0003)
[0.0006]

***
=0.0020
(0.0005)
[0.0012]

***

adj R2 7.7512 16.7932 12.3407 26.7099 21.2814

Table 5: Index Returns and Correlation Risk Premiums: Regressions

This table reports coefficients from contemporaneous and predictive time-series regressions. The
return of the S&P 100 index over the previous (Panel A) or subsequent (Panels B and C) 1 to 24
months (from left to right) is regressed on the returns of the CRPV OL and CRPJUMP strategies
over the previous 1 to 24 months. Panel C includes the variance risk premium (V RP ) and the price-
dividend ratio (P/D) as control variables. Bootstrapped standard errors are reported in parentheses,
Newey-West adjusted standard errors in square brackets, where the number of lags corresponds to
the number of overlapping months.
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Appendix A Proofs

The dynamics of stock i and its diffusive variance Vi are given by

dSi,t
Si,t−

= µidt+
√
Vi,tdW

Si
t +

∆Si,t
Si,t−

dVi,t = µV idt+ σV i
√
Vi,tdW

V i
t + ∆Vi,t,

where ∆Si and ∆Vi denote the jump components of the stock and variance dynamics. We

assume that the jumps are driven by Poisson processes. The jump intensities are either

constant or depend on the local diffusive variance.

The index SI and its local diffusive variance VI are equal to

SI,t =
N∑
i=1

wiSi,t (26)

VI,t =
N∑
i=1

w2
i Vi,t +

N∑
i=1

N∑
j=1,j 6=i

wiwj
√
Vi,tVj,tρij,t, (27)

where ρij is correlation of stock i and j, and wi denotes the number of stocks i in the index.

In the following, we will not use the pairwise correlations ρij between the stocks, but the

equi-correlation ρ which results in the same variance of the index as do the invididual

correlations:

VI,t =

N∑
i=1

w2
i Vi,t +

N∑
i=1

N∑
j=1,j 6=i

wiwj
√
Vi,tVj,tρt.

For the dynamics of the derivative price Ci = Ci(t, Si,t, Vi,t), it holds that

dCi,t =
∂Ci
∂t

dt+
∂Ci
∂Si

dSci,t +
∂Ci
∂Vi

dV c
i,t +

1

2

∂2Ci
∂S2

i

(dSci,t)
2 +

1

2

∂2Ci
∂V 2

i

(dV c
i,t)

2

+
∂2Ci
∂Si∂Vi

dSci,tdV
c
i,t + Ci(t, Si,t− + ∆Si,t, Vi,t− + ∆Vi,t)− C(t, Si,t−, Vi,t−),
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where the superscript c denotes the continuous parts of the changes dSi and dVi. The

fundamental partial differential equation for C is given by

r Ci,tdt =
∂Ci
∂t

dt+
∂Ci
∂Si

EQ
t [dSci,t] +

∂Ci
∂Vi

EQ
t [dV c

i,t] +
1

2

∂2Ci
∂S2

i

EQ
t [(dSci,t)

2]

+
1

2

∂2Ci
∂V 2

i

EQ
t [(dV c

i,t)
2] +

∂2Ci
∂Si∂Vi

EQ
t [dSci,tdV

c
i,t]

+ EQ
t [Ci(t, Si,t− + ∆Si,t, Vi,t− + ∆Vi,t)− C(t, Si,t−, Vi,t−)].

Subtracting the two equations from each other gives

dCi,t − r Ci,t =
∂Ci
∂Si

(
dSci,t − E

Q
t [dSci,t]

)
+
∂Ci
∂Vi

(
dV c

i,t − E
Q
t [dV c

i,t]
)

+ Ci(t, Si,t− + ∆Si,t, Vi,t− + ∆Vi,t)− C(t, Si,t−, Vi,t−)

− EQ
t [Ci(t, Si,t− + ∆Si,t, Vi,t− + ∆Vi,t)− C(t, Si,t−, Vi,t−)],

where we have used that (dSci,t)
2 = S2

i,tVi,tdt, so that (dSci,t)
2 = EQ

t [(dSci,t)
2], and that

similar relations hold true for (dV c
i,t)

2 and dSci,tdV
c
i,t. The expected excess return of C thus

depends on the risk premia for diffusive stock price risk (scaled by delta), for diffusive

variance risk (scaled by vega), and on the premium for jump risk in the stock and in its

variance.

For the following calculations, we approximate the jump in the price of the derivative

by a second order Taylor-series. The return of C becomes

dCi,t = r Ci,tdt+
∂Ci
∂Si

(dSi,t − r Si,t−dt) +
∂Ci
∂Vi

(
dVi,t − EQ

t [dVi,t]
)

+
1

2

∂2Ci
∂S2

i

(
(∆Si,t)

2 − EQ[(∆Si,t)
2]
)

+
1

2

∂2Ci
∂V 2

i

(
(∆Vi,t)

2 − EQ
t [(∆Vi,t)

2]
)

+
∂2Ci
∂Si∂Vi

(
∆Si,t∆Vi,t − EQ

t [∆Si,t∆Vi,t]
)

+ ξCi,t − E
Q
t [ξCi,t], (28)

where ξCi is the remainder term of the second-order Taylor approximation. The expected
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excess return of C depends on the risk premia for total stock price risk (scaled by delta),

for total variance risk (scaled by vega), and risk premia on the higher order terms of

the jump component. The latter comprise premia on the variance of stock price jumps

(EP[(∆Si,t)
2]−EQ[(∆Si,t)

2]), the variance of variance jumps (EP
t [(∆Vi,t)

2]−EQ
t [(∆Vi,t)

2]),

and the covariance of stock and variance jumps (EP
t [∆Si,t∆Vi,t]−EQ

t [∆Si,t∆Vi,t]), as well

as the premium on the remainder term ξC .

The price of a derivative on the index depends on all stock price levels and on all

local variances. In the following, we make the simplifying assumption that it depends on

the level SI and the variance VI of the index only. The SDE for the derivative CI then has

the same form as the SDE for the derivatives Ci, and the same holds true for its excess

return.

Variance portfolio We now consider special portfolios (or derivatives). The first port-

folio V OL has no exposure to stock price risk and jumps in the stock price (up to order

two), but is only exposed to variance risk. We do not focus on the construction of such a

portfolio, but are interested in its dynamics.

The variance-portfolio V OL is delta-gamma-neutral:

∂V OLI
∂SI

=
∂V OLi
∂Si

= 0 and
∂2V OLI
∂S2

I

=
∂V OL2

i

∂S2
i

= 0.

We furthermore assume that their exposures to variance risk differ from zero.

The dynamics of the variance portfolio for stock i follow from Equation (28) and are

given by
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dV OLi,t = r V OLi,tdt+
∂V OLi
∂Vi

(
dVi,t − EQ

t [dVi,t]
)

+
1

2

∂2V OLi
∂V 2

i

(
(∆Vi,t)

2 − EQ
t [(∆Vi,t)

2]
)

+
∂2V OLi
∂Si∂Vi

(
∆Si,t∆Vi,t − EQ

t [∆Si,t∆Vi,t]
)

+ ξV OLi,t − E
Q
t [ξV OLi,t].

This portfolio allows to trade changes in the variance Vi of the stock. Its exposure to

changes in the diffusive variance of the stock is given by its vega. Without jumps in variance,

the additional terms vanish.

Its expected excess return is the premium paid on its exposure to variance risk.

In case there are variance jumps, it also pays a premium on the variance of variance

(EP
t [(∆Vi,t)

2]−EQ
t [(∆Vi,t)

2]) and on the covariance of jumps in the stock and its variance

(EP
t [∆Si,t∆Vi,t]− EQ

t [∆Si,t∆Vi,t]).

The dynamics of the V OL-portfolio for the index are

dV OLI,t = r V OLI,tdt+
∂V OLI
∂VI

(
dVI,t − EQ

t [dVI,t]
)

+
1

2

∂2V OLI
∂V 2

I

(
(∆VI,t)

2 − EQ
t [(∆VI,t)

2]
)

+
∂2V OLI
∂SI∂VI

(
∆SI,t∆VI,t − EQ

t [∆SI,t∆VI,t]
)

+ ξV OLI ,t − E
Q
t [ξV OLI ,t].

The diffusive variance of the index depends on the diffusive variances of the stocks and

their correlations. Instead of the pairwise correlations ρij between the stocks, we consider

their equi-correlation ρ which results in the same variance of the index as do the invididual

correlations. With VI = VI(V1, . . . , VN , ρ), the dynamics of the index variance are
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dVI =
∑
i=1

∂VI
∂Vi

dV c
i +

∂VI
∂ρ

dρc +
1

2

∑
i=1

∑
j=1

∂2VI
∂Vi∂Vj

dV c
i dV

c
j

+
1

2

∂2VI
∂ρ2

(dρc)2 +
∑
i=1

∂2VI
∂Vi∂ρ

dV c
i dρ

c

+ VI(V1,t− + ∆V1,t, . . . , VN,t− + ∆VN,t, ρt− + ∆ρt)− VI(V1,t−, . . . , VN,t−, ρt−).

Again, a Taylor-series expansion of the last term gives

dVI =

N∑
i=1

∂VI
∂Vi

dVi +
∂VI
∂ρ

dρ+
1

2

N∑
i=1

N∑
j=1

∂2VI
∂Vi∂Vj

dVidVj

+
1

2

∂2VI
∂ρ2

(dρ)2 +
N∑
i=1

∂2VI
∂Vi∂ρ

dVidρ+ ξVI ,t.

Given the VOL-portfolios for the single stocks and the index, the next step is to

construct a portfolio with zero exposure to the individual variances. To hedge the exposure

of V OLI against changes in the variances Vi of the stocks, we add a short position in the

individual VOL-portfolios V OLi, where the size of the position in V OLi is

∂V OLI
∂VI

∂V OLi
∂Vi

∂VI
∂Vi

.
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The dynamics of the resulting portfolio CRPV OL are

dCRPV OL,t

= r

(
V OLI,t −

N∑
i=1

∂V OLI
∂VI

∂V OLi
∂Vi

∂VI
∂Vi

V OLi,t

)
dt

+
∂V OLI
∂VI

∂VI
∂ρ

(
dρt − EQ

t [dρt]
)

+
1

2

∂V OLI

∂VI

∂2VI
∂ρ2

(
(∆ρt)

2 − EQ
t [(∆ρt)

2]
)

+
1

2

∂V OLI
∂VI

N∑
i=1

N∑
j=1

∂2VI
∂Vi∂Vj

(
∆Vi,t∆Vj,t − EQ

t [∆Vi,t∆Vj,t]
)

+
∂V OLI
∂VI

N∑
i=1

∂2VI
∂Vi∂ρ

(
∆Vi,t∆ρt − EQ

t [∆Vi,t∆ρt]
)

+
1

2

∂2CI
∂V 2

I

[
(∆VI,t)

2 − EQ
t [(∆VI,t)

2]

−
N∑
i=1

∂V OLI
∂VI

∂V OLi
∂Vi

∂2V OLi

∂V 2
i

∂2V OLI

∂V 2
I

∂VI
∂Vi

(
(∆Vi,t)

2 − EQ
t [(∆Vi,t)

2]
)]

+
∂2V OLI
∂SI∂VI

(
∆SI,t∆VI,t − EQ

t [∆SI,t∆VI,t]

−
N∑
i=1

∂V OLI
∂VI

∂V OLi
∂Vi

∂2V OLi
∂Si∂Vi
∂2V OLI
∂SI∂VI

∂VI
∂Vi

(
∆Si,t∆Vi,t − EQ

t [∆Si,t∆Vi,t]
))

+ ξCRPV OL,t − E
Q
t [ξCRPV OL,t].

In the following, we furthermore assume that the vegas of the index and stock variance

portfolios coincide:
∂V OLI
∂VI

=
∂V OLi
∂Vi

= constant
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The return of the portfolio CRPV OL then simplifies to

dCRPV OL,t

= r

(
V OLI,t −

N∑
i=1

∂VI
∂Vi

V OLi,t

)
dt

+
∂V OLI
∂VI

∂VI
∂ρ

(
dρt − EQ

t [dρt]
)

+
1

2

∂V OLI
∂VI

∂2VI
∂ρ2

(
(∆ρt)

2 − EQ
t [(∆ρt)

2]
)

+
1

2

∂V OLI
∂VI

N∑
i=1

N∑
j=1,j 6=i

∂2VI
∂Vi∂Vj

(
∆Vi,t∆Vj,t − EQ

t [∆Vi,t∆Vj,t]
)

+
∂V OLI
∂VI

N∑
i=1

∂2VI
∂Vi∂ρ

(
∆Vi,t∆ρt − EQ

t [∆Vi,t∆ρt]
)

+
1

2

∂2V OLI
∂V 2

I

[
(∆VI,t)

2 − EQ[(∆VI,t)
2]

−
N∑
i=1

∂2V OLi

∂V 2
i

∂2V OLI

∂V 2
I

∂VI
∂Vi

(
(∆Vi,t)

2 − EQ
t [(∆Vi,t)

2]
)]

+
∂2V OLI
∂SI∂VI

(
∆SI,t∆VI,t − EQ

t [∆SI,t∆VI,t]

−
N∑
i=1

∂2Ci
∂Si∂Vi
∂2V OLI
∂SI∂VI

∂VI
∂Vi

(
∆Si,t∆Vi,t − EQ

t [∆Si,t∆Vi,t]
))

+ ξCRPV OL,t − E
Q
t [ξCRPV OL,t].

If there are no jumps in variances and in the correlation, the excess return of this portfolio

is driven by the changes in the equi-correlation:

dCRPV OL,t − r CRPV OL,tdt =

∂V OLI
∂VI

∂VI
∂ρ

(
dρt − EQ

t [dρt]
)

+ ξCRPV OL,t − E
Q
t [ξCRPV OL,t]

The expected excess return depends on the premium paid for the exposure to this equi-
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correlation, scaled by the vega, and the exposure of the index’ variance to the equi-

correlation.

Jump portfolio The second type of portfolio we look at are portfolios with no ex-

posure to linear stock price risk and variance risk, but an exposure to jumps only. For

the jump-portfolio JUMP , we consider individual derivatives (portfolios) which are delta-

vega-neutral:

∂JUMPI
∂SI

=
∂JUMPi
∂Si

= 0 and
∂JUMPI
∂VI

=
∂JUMPi
∂Vi

= 0.

The dynamics of the resulting jump portfolio for stock i are

dJUMPi,t = r JUMPi,tdt+
1

2

∂2JUMPi
∂S2

i

(
(∆Si,t)

2 − EQ
t [(∆Si,t)

2]
)

+
1

2

∂2JUMPi
∂V 2

i

(
(∆Vi,t)

2 − EQ
t [(∆Vi,t)

2]
)

+
∂2JUMPi
∂Si∂Vi

(
∆Si,t∆Vi,t − EQ

t [∆Si,t∆Vi,t]
)

+ ξJUMPi,t − E
Q
t [ξJUMPi,t].

The dynamics of the index jump portfolio are

dJUMPI,t = r JUMPI,tdt+
1

2

∂2JUMPI
∂S2

I

(
(∆SI,t)

2 − EQ
t [(∆SI,t)

2]
)

+
1

2

∂2JUMPI
∂V 2

I

(
(∆VI,t)

2 − EQ
t [(∆VI,t)

2]
)

+
∂2JUMPI
∂SI∂VI

(
∆SI,t∆VI,t − EQ

t [∆SI,t∆VI,t]
)

+ ξJUMPI ,t − E
Q
t [ξJUMPI ,t].
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With Equation (26), the squared jump in the index is

(∆SI,t)
2 =

N∑
i=1

w2
i (∆Si,t)

2 +

N∑
i=1

N∑
j=1,j 6=i

wiwj∆Si,t∆Sj,t.

The next step is to set up a portfolio which is no longer exposed to individual squared

jumps, but only to joint jumps. To partly hedge against the JUMP-portfolio of the index

against individual jumps, we add a short position in the individual JUMP-portfolios, where

the size of the position in JUMPi is

∂2JUMPI

∂S2
I

∂2JUMPi

∂S2
i

w2
i .

The dynamics of the resulting jump portfolio CRPJUMP are

dCRPJUMP,t

= r

JUMPI,t −
N∑
i=1

∂2JUMPI

∂S2
I

∂2JUMPi

∂S2
i

w2
i JUMPi,t

 dt

+
1

2

∂2JUMPI
∂S2

I

N∑
i=1

N∑
j=1,j 6=i

wiwj

(
∆Si,t∆Sj,t − EQ

t [∆Si,t∆Sj,t]
)

+
1

2

∂2JUMPI
∂V 2

I

(
(∆VI,t)

2 − EQ [(∆VI,t)2]
−

N∑
i=1

∂2JUMPI

∂S2
I

∂2JUMPi

∂S2
i

∂2JUMPi

∂V 2
i

∂2JUMPI

∂V 2
I

w2
i

(
(∆Vi,t)

2 − EQ
t [(∆Vi,t)

2]
))

+
∂2JUMPI
∂SI∂VI

(
∆SI,t∆VI,t − EQ

t [∆SI,t∆VI,t]

−
N∑
i=1

∂2JUMPI

∂S2
I

∂2JUMPi

∂S2
i

∂2JUMPi
∂Si∂Vi

∂2JUMPI
∂SI∂VI

w2
i

(
∆Si,t∆Vi,t − EQ

t [∆Si,t∆Vi,t]
))

+ ξCRPJUMP ,t − E
Q[ξCRPJUMP ,t].
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In the following, we furthermore assume that

∂2JUMPI
∂S2

I

=
∂2JUMPi

∂S2
i

= constant.

The return of the portfolio CRPJUMP then simplifies to

dCRPJUMP,t

= r CRPJUMP,tdt

+
1

2

∂2JUMPI
∂S2

I

N∑
i=1

N∑
j=1,j 6=i

wiwj

(
∆Si,t∆Sj,t − EQ [∆Si,t∆Sj,t]

)

+
1

2

∂2JUMPI
∂V 2

I

(
(∆VI,t)

2 − EQ
t

[
(∆VI,t)

2
]

−
N∑
i=1

∂2Ci

∂V 2
i

∂2CI

∂V 2
I

w2
i

[
(∆Vi,t)

2 − EQ[(∆Vi,t)
2]
])

+
∂2JUMPI
∂SI∂VI

(
∆SI,t∆VI,t − EQ [∆SI,t∆VI,t]

−
N∑
i=1

∂2JUMPi
∂Si∂Vi

∂2JUMPI
∂SI∂VI

w2
i

(
∆Si,t∆Vi,t − EQ

t [∆Si,t∆Vi,t]
))

+ ξCRPJUMP ,t − E
Q
t [ξCRPJUMP ,t].

It earns the premium on joint stock price jumps (or, equivalently, on the covariance of

stock price jumps), on the variance of variance jumps in the stock and in the index, and

on the covariance of stock price jumps and variance jumps in the stocks and in the index.

If there are no jumps in variances and in the correlation, the excess return of this

portfolio is driven by the joint jumps in stock prices:
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dCRPJUMP,t − r CRPJUMP,t dt =

1

2

∂2JUMPI
∂S2

I

N∑
i=1

N∑
j=1,j 6=i

wiwj

(
∆Si,t∆Sj,t − EQ

t [∆Si,t∆Sj,t]
)

+ ξCRPJUMP ,t − E
Q
t [ξCRPJUMP ,t].

The expected excess return depends on the premium paid for the exposure to joint jumps,

scaled by the gamma of the JUMP-portfolio of the index. This is equal to the premium on

the covariance of stock price jumps.

Appendix B Dividend Forecasts

We explicitly account for expected dividends when repricing the American options in bi-

nomial trees of Cox et al. (1979)-type as discussed in Section 4.2 and Appendix C. When

repricing index options, we use the S&P 100 dividend yield provided by OptionMetrics. For

options on the constituents, we collect discrete dividends from OptionMetrics and comple-

ment them with any non-redundant dividend data from CRSP. In contrast to the index

dividend yield, the discrete dividends of the constituents require extensive data cleansing.

We exclude any distributions that are neither regularly-scheduled nor special dividends

(such as rights offerings, spin-offs, etc.) and eliminate cancelled and liquidating distribu-

tions. We keep only cash dividends denominated in U.S. dollars. We collect each dividend’s

declaration date, ex-dividend date, amount, and frequency and check the consistency of

the entries. In particular, we discard a dividend if the reported declaration date lies after

its ex-dividend date and if its ex-dividend date does not occur within the declared dividend

frequency. We aggregate multiple dividends that are announced on the same declaration

date. The dividend forecast is formed as follows. Once a dividend has been declared, we use
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the announced amount and ex-dividend date as forecast. After the ex-dividend date, we

forecast the next dividend based on the last known dividend frequency and amount. This

forecast is revised as soon as the next dividend is declared. Throughout the data cleansing

and forecasting process, we distinguish between regular and special dividends and treat

them differently when repricing the American options as discussed in Appendix C.

Appendix C European Option Prices

To calculate synthetic European option prices, we rely on the implied volatilities provided

by OptionMetrics. OptionMetrics uses binomial trees following Cox et al. (1979) to estimate

implied volatilities. We employ the same method to calculate European and American

option prices.

At every day in the sample and for all traded options on that day, we construct a

binomial tree following Cox et al. (1979) using the quoted implied volatility and 1000 time

steps. As the starting stock price in the tree, we use the close price of the stock on that

day and subtract the present value of future dividend payments, which are paid up to the

option’s time to maturity. In a second step, we add the present value of the cumulated

future dividend payments at each knot in the tree until the dividend is paid. Given a tree,

we recalculate the America option price and exclude any tree if the recalculated American

option price divides more than 1% from the observed midprice of the option. Afterwards,

we use the remaining trees to calculate synthetic European option prices.
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