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Abstract: This paper models an unexplored source of liquidity risk faced by large broker-
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them to withdraw it. This incentive creates strategic complementarities for counterparties

to withdraw their collateral, reducing a dealer’s liquidity position and compromising their

solvency. Collateral runs are markedly different than traditional wholesale funding runs

because they are triggered by a contraction in dealers’ assets. Mitigating these risks involve

different policy recommendations.
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1 Introduction

This paper presents a theoretical model that formally characterizes a relatively unexplored

risk that can affect large broker-dealers: a run from their collateral providers (cash borrow-

ers). In the context of secured wholesale funding markets, much of the existing literature

has focused on liquidity risks that arise from a withdrawal of cash lenders. For example,

Gorton and Metrick, 2012; Krishnamurthy, Nagel, and Orlov, 2014; and Copeland, Martin,

and Walker, 2014 have noted that during the 2007–09 financial crisis, financial firms faced

run risk from their secured cash lenders. However, the very nature of broker-dealers’ business

involves intermediating cash and collateral between cash lenders and cash borrowers. In par-

ticular, dealers extend short-term credit against collateral, which is simultaneously used to

raise funds for said credit, a process known as rehypothecation. In this paper we argue that

this type of intermediation can be an important source of liquidity for a broker-dealer, as

different contracting terms between borrowers and lenders can result in a liquidity windfall,

which can evaporate with the withdrawal of cash borrowers.

The main set-up of the model considers a dealer providing short-term secured financing,

interpreted as repurchase agreements (repos), to a large number of counterparties, called

hedge funds.1 The dealer is able to extend said financing by reusing the collateral they

receive to raise secured debt from cash lenders, called money market funds, in the form of

another repo. Following Infante (2019), Gottardi et al. (2017), and current market practice,

we assume that hedge funds cannot contact money market funds directly, that is, dealers

are hedge funds’ main source of secured financing.2 We say that whenever a firm has the

ability to rehypothecate its posted collateral they effectively create a collateral liability, that

is, an obligation to return collateral that they may not have access to, which is the source

of fragility in this model

1Repos are secured loans backed by financial assets, where the ownership of the collateral is transferred
to the cash lender for the duration of the contract. In the initial leg the cash lender “purchases” the security
and the cash borrower promises to “repurchase” the same security at fixed price in the closing leg. Reverse
repos are repos from the point of view of the cash lender.

2This assumption captures the idea that many hedge funds are small and relatively opaque firms, which
wholesale cash lenders will not –or cannot in the case of unrated hedge funds—interact with directly. In effect,
in the United States, money market funds can only lend to firms with high credit ratings, which excludes
the types of end investors we have in mind. Note that we will use the terms re-use and rehypothecation
interchangeably. Strictly speaking, the difference between the two terms is whether the counterparty posting
the collateral is a client or just a counterparty, a detail we abstract from.
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Figure 1 illustrates a stylized example of this type of dealer intermediation, and how

the creation of a collateral liability can result in fragility from cash borrowers. In the fig-

ure the dealer receives funds from lenders (L1...LN), denoted by X, and extends funds to

borrowers (B1...BM), denoted by X ′. At the same time the dealer receives and rehypothe-

cates collateral, denoted by T , from borrowers to lenders. The dealer may have incentives

to distribute only a fraction of the cash they raise from lenders and use the difference to

finance profitable, higher yielding, risky projects, which may be illiquid. In other words, the

dealer may wan to set X ′ < X and invest the liquidity windfall it reaps
∑

N X −
∑

M X ′ for

their own benefit. This funding difference comes from the over-collateralization of the hedge

funds’ repo relative to the money funds’ reverse repo. In case the dealer defaults, money

funds have immediate access to the collateral and can sell it to make their claims whole,

essentially insulating them from the dealer.34 In contrast, if the dealer defaults, hedge funds

risk losing their collateral altogether which is more valuable than the initial loan they re-

ceived. Specifically, each hedge fund risks losing the amount of over-collateralization on their

repo, which becomes an unsecured claim on the dealer’s illiquid asset holdings. Each hedge

fund’s unsecured claim is pooled with the unsecured claims of others, potentially creating a

first mover advantage for hedge funds to withdraw their collateral. In order to return the

collateral to withdrawing hedge funds, the dealer may have to sell a fraction of its illiquid

position to fully repay the money funds holding said collateral. If the amount of hedge fund

withdrawals is large enough, dealers may not have enough cash to return all of the demanded

collateral, resulting in a collateral run.

The intermediation described above can lead to fragility if three conditions are met.

First, the collateral must be rehypothecated to create a collateral liability. Without rehy-

pothecation bankruptcy regimes that earmark the underlying collateral upon default would

eliminate the pooling of claims and the possibility of creating strategic complementarities

from withdrawing them. Second, the dealer must be able to to set different contracting

terms between borrowers and lenders. This enables the dealer to reap a cash windfall from

3Although an abrupt withdraw of cash lenders is an important consideration for repo market stability, we
purposefully shut down that channel to focus on fragility stemming from an abrupt withdrawal of collateral.
In the model this comes naturally because the underlying collateral completely insures the cash lender from
any loss.

4Money funds have immediate access to the underlying collateral because under U.S. law repos are exempt
from automatic stay.
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Figure 1: Dealer intermediation and Dealer’s balance sheet

the first leg of the intermediation chain, effectively monetizing a fraction of the hedge funds’

collateral for themselves. And finally, the dealer must have discretion to use any excess funds

for their own activities. The investment in risky and illiquid projects financed with pooled

funds creates a first mover advantage amongst collateral providers. These three conditions

leave hedge funds exposed to lose of the overcollateralization of their initial repo, creating

incentives to withdraw their collateral.

More formally, the incentive to withdraw collateral creates strategic complementarities

amongst hedge funds’ actions because each hedge fund’s optimal action and payoff can

depend on what other hedge funds do, leading to a multiplicity of equilibria. For example, if

all other hedge funds roll over their repo positions, the dealer does not need to liquidate any

of their illiquid assets, making it optimal for an individual hedge fund to roll over as well.

On the contrary, if all other hedge funds withdraw their collateral, then the dealer may need

to sell all of their illiquid assets at a loss, making it optimal for an individual hedge fund to

withdraw their collateral. Therefore, an individual hedge fund’s payoff not only depends on

the dealer’s solvency, but also on its beliefs about the actions/beliefs of other hedge funds.

To resolve the multiplicity of equilibria we use a global game refinement, akin to coor-

dination problems studied by Morris and Shin (1998). Establishing a unique equilibrium

is important because is resolves the uncertainty around the occurrence of a run, allowing

agents to determine the equilibrium contracting terms ex-ante. We model an incomplete in-

formation game (global game), similar to Goldstein and Pauzner (2005), where hedge funds

receive noisy signals about the (fundamental) expected value of the dealer’s risky invest-

ment. Yet, we extend their framework by introducing a stochastic liquidation value for the
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risky investment, which is proportional to its fundamental value. This extension allows us

to endogenously determine the region of fundamentals where a coordination failure is pos-

sible and where it is not, in contrast to many applications of the Goldstein-Paunzer global

game where part of that region is set exogenously. To that extent, our framework is close

to Kashyap, Tsomocos and Vardoulakis (2017), who introduce stochastic liquidation values

in incomplete information games with one-sided strategic complementarities à la Goldstein-

Paunzer. Though, in this model, the source of stochastic liquidation values comes from the

expected value of the dealer’s risky investment.5

It is important to note that the underlying collateral pledged and re-used can differ

significantly from the risky project purchased by the dealer. In particular, the underlying

collateral can be completely riskless, yet there can still be a collateral run. The risk that

collateral providers face does not come from their own assets, but rather from the dealer’s use

of the excess funds they raise with them. Duffie (2013) recognizes that an important source of

liquidity for dealers stems from their levered counterparties’ assets pledged as collateral, while

Infante (2019) characterizes the optimal contracting terms that lead to a liquidity windfall

whenever a dealer intermediates repos from one cash lender to one cash borrower. In this

paper we formalize how such liquidity windfalls can introduce dealer illiquidity, coordination

failures, and run risk.

At first sight, it seems that the mechanism underlying collateral runs is very similar to

the one underlying traditional bank runs. In both cases, the agents who may choose to

run have an unsecured claim on a financial intermediary and the liquidation value of the

assets, which can be less valuable than the total amount owed to all agents. We believe that

this similarity is an important feature of our analysis given that the same deep economic

sources can generate fragility due to otherwise seemingly unrelated intermediation activities.

However, there are important differences some more conceptual and others more relevant for

the economic interpretation, policy implications, and monitoring of risks.

First, on a conceptual level, a collateral run implies the withdrawal of an intermediarys

assets, not in its liabilities. Despite being counterintuitive, we derive conditions under which

cash borrowers—who close their positions—can be the source of fragility rather than cash

5Moreover, a stochastic liquidation value enables the endogenous derivation of the regions for fundamen-
tals where individual actions are independent of other funds’ actions. These are known as upper and lower
dominance regions and are essential for the existence of equilibrium. We derive these regions in Section 4.
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lenders. We connect this behavior to the creation of a collateral liability and contrast it

with a deposit liability. We believe that this concept may be useful to study fragility also

in other environments, such as prime brokerage internalization, where the traditional way

of thinking about runs may be less useful. The concept of a collateral liability highlights

the difference between collateral runs and traditional repo runs. The latter are induced by

a desire to withdraw cash because of low collateral valuations. The former are induced by

the desire to withdraw one’s collateral because it is deemed valuable. Indeed, collateral runs

can materialize even under safe collateral whereas repo runs cannot.

Second, with respect to their economic relevance, collateral runs are a side effect of an

underlying desire of cash borrowers to take leverage, while traditional bank runs accrue from

the liquidity provision and risk sharing role of intermediaries. Indeed, in our model, there is

no maturity mismatch between reverse repos and repos. In fact some positive mismatch may

mitigate, rather than exacerbate, collateral-run risk as dealers can ”lock-in” the collateral,

allowing them to roll over their position without fearing a withdrwal from collateral providers.

Third, collateral runs and traditional bank runs differ in terms of their policy implications.

The vast majority of regulatory efforts since the financial crisis have focused on fragility

from the withdrawal of unsecured and/or secured funding. For example, a proposed solution

has been to introduce minimum haircut requirements, also known as haircut floors, which

reduces cash lenders incentive to run because the value of pledged collateral is high enough to

cover their claims even in stressed times. Our analysis cautious that this policy prescription

may in fact increase the probability of a collateral run. The intuition is that collateral

providers’ internalize that they may access as cash providers overcollateralization sooner,

increasing their incentives to withdraw their collateral. We discuss other policy interventions

are targeted to address the instability from a collateral run, such as limits to rehypothecation

which restricts the creation of the collateral liability or limits to reinvesting any liquidity

windfall from rehypothecation (see detailed discussion in Section 6). We also show that from

a practical basis, policy makers would need more information to monitor the potential risks

from traditional bank/repo runs vs. collateral runs.

Finally, it may be hard to disentangle repo runs from collateral runs in the data given

that the both materialize at the same time. However, we argue that the dynamics leading to

a collateral run are starkly different from those leading to a repo run. Namely, for collateral

runs, we would expect to see stable margins for cash lenders and increasing margins for
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cash borrowers even for collateral deemed to be very safe such as U.S. Treasuries, implying

a higher liquidity windfall for the dealer. On the contrary, for repo runs, we would expect

cash lenders to require increased margins accompanied by a deterioration in the quality of

collateral.

Literature Review. The coordination problem in this paper is akin to coordination prob-

lems in currency attacks (Morris and Shin, 1998), risky debt rollover and bank runs (Diamond

and Dybvig, 1983; Morris and Shin, 2004; Rochet and Vives, 2004; Goldstein and Pauzner,

2005; He and Xiong, 2012; Vives, 2014), credit market freezes (Bebchuk and Goldstein,

2011), and investment funds (Chen, Goldstein, and Jiang, 2010; Liu and Mello, 2011). As

is generally the case in coordination games, multiple equilibria may exist. Establishing a

unique equilibrium is important because is resolves the uncertainty around the occurrence

of a run, allowing agents to determine the equilibrium contracting terms ex-ante.

Our paper is also related to the theoretical literature that characterizes optimal contract-

ing terms and instability in collateralized short-term funding markets. Fostel and Geanako-

plos (2015) derive the optimal haircuts on secured debt. Geanakoplos (2003), Fostel and

Geanakoplos (2008)—including a series of subsequent papers—and Simsek (2013) study the

interlinkages between asset prices, haircuts and leverage over the cycle as well as the impli-

cations for investment and financial stability. Martin, Skeie and Von Thadden (2014) detail

the contracting terms that lead to traditional cash-driven repo runs. Ahnert, Anand, Gai

and Chapman (2018) study how the over-collateralization of long-term secured debt can af-

fect the incentives of short-term unsecured debt holders to run.6 Similarly, Donaldson et al.

(2019) argue that secured debt creates a “collateral rat race”, where creditors optimally

choose to secured their claims to avoid dilution at the cost of curtailing future borrowing.

We differ from these papers because we examine a distinct source of instability in repo in-

termediation. In the aforementioned papers, the instability stems from the liability side of

the balance sheet; cash lenders may be less willing to provide funding and either require

higher margins, leading to borrower deleveraging, or withdraw their funding altogether in a

coordinated run episode. In contrast, the instability we study in this paper is borne from

the asset side of an intermediaries balance sheet; borrowers may collectively withdraw their

6Many other theoretical papers have studied spirals and freezes in short-term funding markets. Some
examples are Brunnermeier and Pedersen (2009), Acharya, Gale and Yorulmazer (2011), Diamond and Rajan
(2011), and Ahnert (2016). As mentioned, we differ from this literature because we mute the rollover risk of
cash lenders positions.
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collateral even if cash-lenders’ claims are safe with stable haircuts and have no incentive to

run. Other papers characterizing instabilities arising from the asset side of a lender’s balance

sheet is Bond and Rai (2009) in the context of micro finance lending and Huang (2017) in

the context of borrowers drawing down credit lines from a distressed institution. We differ

from these papers by studying fragility in dealer intermediated markets.

This type of cash and collateral intermediation studied in this paper is consistent with

Gottardi, Maurin and Monnet (2017) who show that an optimal rehypothecation chain can

arise whenever a dealer is more trustworthy than a hedge fund counterparty. Put differently,

dealers are agents with a better technology to source and distribute collateral, making them

the natural intermediary, similar in spirit to the warehouse view of banking in Donaldson

et al. (2018). We take this intermediation chain as given, and focus on a new type of fragility

that can arise from this activity.

The rest of the paper is structured as follows. The following section discusses the insti-

tutional setting and a motivating example. Section 3 presents the model setup, detailing

the economic environment, the main actors, and their incentives. Section 4 characterizes

the coordination problem hedge funds face, their threshold strategies, and the regions where

fundamental- or panic-based runs can materialize. Section 5 presents the problem the dealer

faces given hedge funds’ threshold strategies, characterizes the optimal contracting terms,

and shows how the equilibria can change with fundamentals. Section 6 gives policy recom-

mendations aimed at mitigating the risks from a collateral run. Finally, section 7 gives some

concluding remarks. All proofs are relegated to the Appendix.

2 Institutional Setting & Motivating Example

The main fragility in our model stems from dealers’ ability to use and reuse collateral pro-

vided by counterparites. There is ample evidence to suggest that primary dealers, the main

counterparties of the Federal Reserve, engage in large amounts of reverse repo and repo with

the same underlying collateral, across different segments of the US repo market. These seg-

ments can be separated into two distinct markets: the tri-party repo market and the bilateral

repo market. The tri-party repo market is where creditworthy dealers, such as the primary

dealers, raise funds from cash rich investors, such as money market funds, to finance their in-

ventory and reverse repos. The tri-party statistical release from the Federal Reserve Bank of

8



New York (FRBNY) shows that during 2015 the total outstanding in tri-party market repo

was in the order of $1.2 Trillion, of which about half used US Treasury collateral.7 Copeland

et al. (2014) provide evidence that the majority of these repos are short-term. The bilateral

repo market is where less creditworthy investors, such as hedge funds, borrow from dealers

to finance their positions. Although the total size of this market is hard gauge, Baklanova

et al. (2019) use survey results from the nine largest dealers and show that in 2015 their

total outstanding in bilateral reserve repo was approximately $ 1.5 trillion, of which about

half used US Treasury collateral. Their measures of total outstanding in bilateral repo was

approximately $ 1 trillion, suggesting these dealers intermediate cash and collateral between

markets. Baklanova et al. also report that the majority of these repos have short maturity.

These numbers highlight the important role primary dealers play in intermediating repo,

that much of the activity is between repo markets, and these contracts are typically short

term.

Indeed, data from FRBNY’s weekly survey of primary dealers (FR 2004) shows that

total amount of repos and reverse repos backed by US Treasuries across all repo markets

is in the order of $1.5 Trillion each. Moreover, Infante et al. (2018) show data on dealers’

rehypothecation activity and estimate that the one US Treasury can be reused up to 7 times,

underscoring the high degree of collateral reuse. Infante (2019) provides a brief discussion

of the relevant institutional details surrounding the reuse of collateral in the United States.

In particular, in the context of repo, there are no limits to rehypothecation.

An important motivating example of our paper is the demise of Bear Stearns in March

2008. Anecdotally, in the days leading up to its collapse, the firm suffered a large outflow

of counterparties that not only pulled their cash but also their collateral from the firm.

Using the FR 2004 we can estimate a lower bound on the total amount of cash that Bear

Stearns accessed through rehypothecation. Specifically, the FR 2004 asks primary dealers

to report the total amount of secured financing extended (Securities In), the total amount

of secured financing received (Securities Out), and their outright positions for different asset

classes. Importantly, the survey asks dealers to report the total amount of funds received

and distributed though secured financing transactions, not the value of the collateral posted.

Therefore, these data can be used to estimate the amount of liquidity obtained through

7These data also show that approximately $400 billion is in non-fedwire-eligable collateral, which includes
risky collateral classes such as equities and private label mortgage securities.
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contracting differences. Figure 2 plots the estimated cash windfall as a fraction of the total

repo book for both Bear Stearns and the average of the remaining primary dealers.8 From

the figure, it can be appreciated that before the sharp drop in activity, the estimated cash

stemming from different contracting terms reached approximately a third of the firm’s entire

repo book. A withdrawal of collateral effectively eliminated this additional liquidity windfall.

These estimates suggest that, relative to its peers, Bear Stearns relied heavily on differences

in contracting terms as a source of liquidity.

3 Model Setup

The model consists of three periods t ∈ {0, 1, 2} and is populated by three types of agents; a

broker-dealer (D), a continuum of hedge funds (H), and a continuum of money market funds

(M). The dealer is (potentially) risk averse, with a payoff function u that satisfies u(0) = 0,

hedge funds are risk-neutral, and money market funds are “very” risk averse.9 All agents

discount the future the same way. The timeline is presented in Figure 3.

Hedge funds would like to borrow to invest in a (safe) asset T , which is in perfect elastic

supply and is worth 1 in every period. Abusing notation, T will also denote the amount of

the asset purchased. Each hedge fund borrows money from the dealer at t = 0 (a reverse

repo from the dealer’s point of view), purchases the asset, and pledges it as collateral.

Simultaneously, the dealer enters into a repo contract with money market funds, using the

same collateral posted by the hedge fund, that is, the dealer rehypothecates the pledged

collateral. Repo contracts are short term, i.e., they mature after one period, and can be

rolled over at t = 1 as we describe further below.

Apart from intermediating funds and collateral between hedge funds and money funds,

the dealer can also invest at t = 0 in a risky project R̃ which pays off RU with probability θ

and RD otherwise in t = 2 per unit purchased, where RU > 1 > RD ≥ 0. The state of the

8The lower bound depends on an important restriction that securities dealers face: the box constraint.
Broadly speaking, the box constraint is a physical restriction that forces dealers to have access to securities,
either by owning them outright or by borrowing them, in order to deliver to a counterparty. Huh and Infante
(2017) characterize how this constraint is important for bond market intermediation and how to interpret
the data in the FR 2004. Details on the lower-bound calculation and some potential caveats are in subsection
C of the Appendix.

9The assumption that the dealer’s payoff function has u(0) = 0 is merely for simplicity. “Very” risk averse
money funds will be useful to focus on the collateral channel, rather than the traditional repo-run channel.
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Figure 2: Liquidity from Rehypothecation as a Fraction of Total Repo Activity
Figure shows the lower-bound estimate of the liquidity sourced through dealers’ repo
activity (securities out minus securities in and net position) as a fraction of their total
secured financing (securities out) for both Bear Stearns and average fraction for the rest
of the primary dealer community. Source: FR 2004.
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t = 0

D offers rev repo to H
D offers repo to M

H purchases repo collateral
D purchases risky project

t = 1

D offers new repos
H decides to withdraw or roll over
D may sell fraction risky position

t = 2

Asset uncertainty realized
Cash flows distributed

Contracts settled

Figure 3: Model Timeline

world θ is realized at t = 1 and follows a uniform distribution θ ∼ U [0, 1]. The risky project

has price of 1, is in perfect elastic supply, and its expected value, conditional on θ, is denoted

by Eθ(R̃) = Rθ. The risky project can be liquidated in t = 1 at a fraction, λ ∈ (0, 1], of Rθ.
10

We will assume that the unconditional expected liquidation value is higher than the initial

price of the asset, i.e., λ(RU +RD)/2 > 1. Thus, there is liquidity risk because liquidation is

generally inefficient, but unconditionally the project has a positive net present value even if

liquidated. In particular, we impose a stricter version of this condition—λRU > 2—to also

allow RD to go arbitrarily close to 0 without altering the other parameters. Note that only

the unconditional—ex-ante—liquidation value is higher than one; and the liquidation value

conditional on the realization of θ can be as low as λRD < 1, which introduces illiquidity

and creates incentives to withdraw.

At t = 1, the dealer offers new repo contracts to counterparties, and both hedge funds

and money funds decide whether to roll over their positions.11 Given our assumptions,

described in detail later, money funds will always roll over their repos as along as the dealer

rehypothecates the safe asset.12 If the repo is rolled over, we assume that the closing leg of

10All our results go through even if there is no liquidity discount, i.e., λ = 1. The reason is that the
liquidation value, Rθ, varies with the realization of fundamentals and for low enough θ the dealer will not have
enough liquid resources to meet all obligations/withdrawals. However, λ < 1 helps justify our assumption
that the dealer will first use liquid resources and then liquidate illiquid assets to meet withdrawals from
hedge funds that choose not to roll over their positions.

11The dealer can either offer new contracting terms bilaterally to each hedge fund or mutual fund, or
can post the new terms to all participants publicly. The distinction is inconsequential for our case. But,
importantly, funds have perfect foresight about the terms they will get if they decide to roll over their
positions. In other words, the contract terms are not contingent on neither the realization of the state of the
world nor the number of hedge or mutual funds that decide to roll-over. This is a natural characterization
of the way repo markets operate, as most repo markets clear in the early morning.

12We intentionally abstract from the dynamics governing the roll over decision of cash providers (money
funds), which have received ample attention in the literature, in order to focus on the dynamics governing
the roll-over decision of the providers of collateral (hedge funds).
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existing repos (morning) and the opening leg of new repos (evening) happen simultaneously

and, thus, we focus on net flows of funds.

However, an individual hedge fund may decide against rolling over its repo and withdraw

its collateral at t = 1. If enough hedge funds withdraw their collateral, the dealer must sell

a fraction of its risky project at its liquidation value in order to collect the collateral from

money funds, which are the property of the withdrawing hedge funds. If asset sales are not

enough to recuperate withdrawing hedge funds’ collateral, the dealer is liquidated. Upon the

dealer’s liquidation, money funds that were not repaid keep the collateral, and hedge funds

that were not served receive nothing.

At t = 2, conditional that the dealer survives, the final payoff on the risky project is

realized, cash flows are distributed, and contracts are settled. The payoffs accruing to the

three agents will not only depend on the repo contract terms, but also on the realization of

θ and the portion of hedge funds that withdraw their collateral at t = 1, which we denote by

µ ∈ [0, 1]. It should be noted that (as we will show) in equilibrium either all hedge funds roll

over (µ = 0) or all hedge funds withdraw their collateral (µ = 1). However, an individual

hedge fund will need to form beliefs about the portion of hedge funds withdrawing based

on a noisy signal it receives about θ. The signal helps the hedge fund to update its beliefs

about the fundamental θ, but also about the strategies of other hedge funds. These noisy

signals will allow hedge funds to coordinate their decisions and a unique equilibrium emerges

whereby either all or none hedge funds withdraws their collateral.13

In order to derive the unique equilibrium, we need to specify all out-of-equilibrium out-

comes for conjectured level of fundamentals, θ, and conjectured portion of hedge funds

withdrawing, µ. In section 3.1-3.3 we present the payoffs to the dealer, the money funds,

13The noisy signals about θ induce coordination. Under complete information about θ multiple equilibria
emerge. As Atkeson 2000 has pointed out, market prices can aggregate diverse private information and reveal
the true state θ. Hence, if market prices aggregate information perfectly and are observable by agents when
they are deciding whether to withdraw, a unique equilibrium does not obtain. As is typical in the literature,
we assume that the withdrawal decision is taken before the dealer sells the risky project and, hence, before the
true value of θ is observed (see, for example, Rochet and Vives, 2004, for a similar assumption). In our case
this assumption is natural given that repo markets clear very early in the day, before asset prices transmit all
the relevant information to market participants. Moreover, the risky project we have in mind is not traded
in a deep, liquid market and should be thought of more as a subprime mortgage-backed security rather than
the S&P index. Hence, the asset’s true, realized liquidation value may not be readily observable to hedge
funds that need to decide whether to roll over their positions early in the day. Another way to address
the Atkeson critique is to consider that prices only imperfectly aggregate dispersed private information (see
Angeletos and Werning, 2006).
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and the hedge funds as function of the contract terms, as well as the level of fundamentals,

θ, and the portion of hedge funds withdrawing, µ.

3.1 Dealer

The dealer offers take-it-or-leave-it repo contracts to hedge funds and money funds.14 The

repo contracts issued at time t, to/from counterparty j ∈ {H,M},15 have two terms: haircut

mj
t and repurchase price F j

t .16 It will be useful to introduce some additional notation. Let

∆mt = (T −mM
t )− (T −mH

t ) = mH
t −mM

t be the incremental cash flow the dealer receives

from intermediating the initial leg of the repo at t. Moreover, denote by ∆Ft = FH
t − FM

t

the incremental cash flow that the dealer receives from the closing leg of the repo at t, paid

at t+ 1.17

In the initial leg of the rehypothecation process at t = 0, the dealer receives T −mM
0 , a

portion of which is then distributed to the hedge fund T −mH
0 . Simultaneously, the hedge

fund delivers the collateral T to the dealer, which then passes it on to the money fund.

Hence, the net cash flow to the dealer in t = 0 is ∆m0, which is used to purchase the risky

project.

At t = 1, the dealer needs to unwind the repos for the µ hedge funds withdrawing, which

is achieved by repurchasing the collateral from each money fund at a price FM
0 and returning

it to each hedge fund at a price FH
0 . For an individual hedge fund withdrawal, the dealer

will have to find −∆F0 funds in order to return the collateral. Hence, the total net cash flow

from these operations is µ∆F0 < 0.

The available resources to meet this negative cash flow can come either from collecting

additional cash from hedge funds that roll over their repos or from liquidating (part of) the

risky project. The first option to meet the liquidity shortfall yields in total (1 − µ)((FH
0 −

14For simplicity we assume that dealers have all the market power. The results are qualitatively similar
if hedge funds’ have some bargaining power when setting contracting terms. Yet, the dealer needs to have
some market power in order to extract some surplus from rehypothecation. Otherwise, collateral runs cannot
occur.

15Note that repo counterparties are with respect to the dealer.
16Hence, FHt /(T −mH

t )− 1 and FMt /(T −mM
t )− 1 are the implied interest rates promised to D from H

and to M from D, when the reverse repo and repo contracts mature, respectively. In addition, the market
practice to quote haircuts is 1 minus the loan amount over the collateral value, which in the model translates
to mj

t/T .
17Throughout the paper we will assume that in equilibrium ∆Ft ≤ 0 and ∆mt ≥ 0. We prove that this is

indeed the case in section 5.
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FM
0 )+(T−mM

1 )−(T−mH
1 )) = (1−µ)(∆F0 +∆m1), i.e., the sum of cash owed from repos in

t = 0 and cash received from repos in t = 1, which can be positive or negative. The second

option yields ξ(µ, θ)λRθ∆m0, where ξ(µ, θ) ∈ [0, 1] is the fraction of the risky project the

dealer liquidates as a function of the portion µ of hedge fund withdrawing their collateral.

For the subsequent analysis, we shall consider the case in which the dealer will have a

positive net cash flow in the interim period from hedge funds rolling over their position.

That is, the positive cash flow from the rehypothecation of collateral at t = 1 is higher than

the outflow from closing the existing repo contracts. Given that the dealer does not have

an initial endowment, this assumption eliminates their incentive to save funds for a liquidity

shortfall when all hedge funds rolls over.

C0: ∆m1 + ∆F0 ≥ 0. (1)

Depending on the number of hedge funds withdrawing for a given θ, three outcomes

are possible at t = 1 which are defined by two cutoff points of hedge fund withdrawals:

µS, µR. First, for µ ∈ [0, µS], the dealer can raise additional funds at t = 1 to meet the

withdrawals and refrain from selling a fraction of the risky project. Second, for µ ∈ (µS, µR]

the dealer needs to liquidate part of the risky project to meet the withdrawals of collateral,

i.e. ξ ∈ (0, 1). Third, for µ ∈ (µR, 1] the dealer cannot meet all the withdrawals even if they

liquidate all of the risky project, i.e. ξ = 1. We have implicitly considered that the dealer

will first use all the excess cash she raises from hedge funds that roll over before liquidating

the risky project. Figure 4 illustrates the dealer’s balance sheet at the end of the refinancing

period for these three cases.

The threshold µS is the maximum number of withdrawals that can be fulfilled by the

additional cash collected from 1− µ hedge funds, that is,

µ∆F0 + (1− µ)(∆F0 + ∆m1) > 0

⇒µ < µS ≡ 1 +
∆F0

∆m1

. (2)

Given that ∆m1 > 0 and ∆F0 < 0, µS is less than one but is strictly positive only if hedge

funds that roll over contribute additional cash, i.e., ∆F0 + ∆m1 > 0.

The threshold µR is the maximum number of withdrawals that can be fulfilled by the
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Asset Liability

R̃∆m0

(1− µ)FH
1

(1− µ)FM
1

(a) µ < µS

Asset Liability

R̃∆m0×
(1− ξ)

(1− µ)FH
1

(1− µ)FM
1

(b) µ ∈ (µS , µR)

Asset Liability

(1− µ)FH
1

(1− µ)FM
1

(c) µ > µR

Figure 4: Dealer Balance Sheet at End of t = 1
In the left panel, only a small fraction of hedge fund withdraw, swapping t = 0’s out-
standing repos and reverse repos to t = 1 repos and reverse repos. In the middle panel,
an intermediate amount of hedge funds withdraw, implying a reduction in the dealer’s
balance sheet and partial liquidation of the risky project. In the right panel, a large
amount of hedge funds withdraw, implying a severe reduction in the dealer’s balance
sheet and liquidation of the entire risky project. The newly created repos and reverse
repos depend on the fraction of hedge funds that rolled over.

additional cash collected plus the liquidation of the entire risky project, that is,

µ∆F0 + (1− µ)(∆F0 + ∆m1) + λRθ∆m0 > 0

⇒µ < µR ≡ 1 +
∆F0 + λRθ∆m0

∆m1

. (3)

Intuitively, ∆F0 + λRθ∆m0 < 0 implying that µR < 1, because the liquidation value of the

risky position cannot satisfy all hedge fund withdrawals. As we will show further on, this is

source of the coordination problem in the model.

For µ ∈ [µR, 1], only a fraction of the hedge funds withdrawing will collect their collateral.

That is, a fraction f(µ, θ)µ of money funds get their repayment back and deliver the collateral

to the dealer, which is routed back to the hedge funds that decided to withdraw, following
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a sequential service constraint.18 The fraction that gets repaid, whenever the entire risky

position is sold, is given by

f(µ, θ)µ∆F0 + (1− µ)(∆F0 + ∆m1) + λRθ∆m0 = 0

⇒f(µ, θ) = −λRθ∆m0 + (1− µ)(∆F0 + ∆m1)

µ∆F0

. (4)

Comparing (2) and (3) it is clear that µS < µR, setting the range for partial liquidation

of the dealer’s risky project. The fraction that is liquidated is given by

ξ(µ, θ) = −∆F0 + (1− µ)∆m1

λRθ∆m0

. (5)

Having pinned down the relevant cash follows in t = 1 for all levels of hedge fund

withdrawals, we can calculate the dealer’s payoffs in t = 2. First, consider the case that

the dealer has enough money to serve early withdrawals without liquidating any assets, i.e.,

µ ∈ [0, µS). The cash flow to the dealer in the final period is equal to R̃∆m0 + ∆F0 + (1−
µ)(∆m1 + ∆F1). When there is no selling at t = 1, dealer optimization should result in

positive cash flow if RU realizes. However, if RD realizes, the cash flow may be negative,

resulting in a dealer default. In that case, the available resources are distributed pro rata to

the 1− µ hedge funds that rolled over at t = 1, and each individual hedge fund receives:

GD
S (µ, θ) =

RD∆m0 + ∆F0 + (1− µ)∆m1

1− µ
. (6)

To keep the model interesting, we ensure that after a bad outcome the amount raised in the

interim period is not enough to make all money funds whole in the final one; that is,

C1: RD∆m0 + ∆F0 + ∆m1 + ∆F1 ≤ 0. (7)

Condition (7) implies that even if all hedge funds roll over in the interim period (i.e., µ = 0),

there is not enough wealth to payoff cash lenders’ entire claim if RD realizes. This restriction

is important to guarantee the existence of a region for fundamentals where an individual

18Sequential servicing is a natural assumption given that repo markets are Over-the-Counter, and the
dealer needs to negotiate and settle trades with every hedge fund bilaterally.
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hedge fund withdraws its collateral independent of their beliefs about the actions of other

hedge funds, i.e., the lower dominance region (see section 4 for details). It is also economically

meaningful because it generates a fundamental motive for hedge funds to run.

Similarly, condition (8) below implies that the dealer is solvent at t = 2 if RU realizes and

all funds decide to roll over at t = 1. This condition will always hold in equilibrium, because

the dealer would optimally choose contract terms yielding positive profit in the good state,

i.e., RU∆m0 + ∆F0 + ∆m1 + ∆F1 > 0, even if condition (1) binds.

C2: RU∆m0 + ∆F1 > 0. (8)

Second, consider the case that the dealer has to liquidate some, but not all of the risky

project to serve early withdrawals, i.e., µ ∈ [µS, µR). The cash flow to the dealer in the

final period is equal to R̃∆m0(1 − ξ(µ, θ)) + (1 − µ)∆F1, where ξ(µ, θ) is given by (5).

For realization R̃ = RD it is obvious, given condition (7), that the dealer defaults for all

µ ∈ [µS, µR). Hence, what is left in the dealer’s portfolio is distributed pro rata to hedge

funds that rolled over at t = 1, and each individual hedge fund receives

GD
I (µ, θ) =

RD∆m0 + RD

λR̄θ
(∆F0 + (1− µ)∆m1)

1− µ
, (9)

or, in other words, they collect the payoff on the fraction of the risky project that is not

liquidated at t = 1, since ∆F0 + (1− µ)∆m1 ≤ 0 for µ ∈ [µS, µR).

If the amount of liquidation is severe enough the dealer may also default when R̃ = RU .

That is, the portfolio payoff may not cover the costs of returning the collateral to hedge

funds that rolled over. Denote by µI the maximum number of withdrawals after which the

dealer default. Then, for µ ∈ [0, µI) the dealer is solvent if RU realizes, while insolvent for

µ ∈ [µI , µR). In the latter case, what is left in the dealer’s portfolio is distributed pro-rate

to hedge funds that rolled over at t = 1, and each individual hedge fund receives

GU
I (µ, θ) =

RU∆m0 + RU

λR̄θ
(∆F0 + (1− µ)∆m1)

1− µ
. (10)

Therefore, the threshold µI is determined at the largest µ ∈ [µS, µR), such that the dealer
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is just solvent at t = 2 if RU realizes, i.e.,

RU∆m0

(
1 +

∆F0 + (1− µ)∆m1

λRθ∆m0

)
+ (1− µ)∆F1 ≥ 0

⇒µ ≤ µI ≡ 1 +
RU
(
∆F0 + λRθ∆m0

)
λRθ∆F1 +RU∆m1

. (11)

Lemma 1. The maximum level of withdrawals that the dealer is solvent in the good state at

t = 2 is above the level that she starts liquidating assets and below the level that she is fully

liquidated at t = 1, i.e., µS < µI ≤ µR.

Lemma 1 will be useful to show the existence and uniqueness of a run equilibrium in

section 4. Figure 5 summarizes the different outcomes for given fundamental θ depending

on the number of hedge funds withdrawing at t = 1.

µ = 0

No run

No asset liquidation

No default for R̃ = RU

Default for R̃ = RD

µ = µS

No run

Asset liquidation

No default for R̃ = RU

Default for R̃ = RD

µ = µI

No run

Asset liquidation

Default for R̃ = RU

Default for R̃ = RD

µ = µR

Run

Full liquidation

µ = 1

Figure 5: Outcomes as µ Varies for Zero to One for Given Fundamental θ.

3.2 Money Funds

Money funds are the providers of cash and lend funds to dealers at t = 0 and t = 1 via repo

contracts. There is a continuum of identical money funds, each providing the dealer with

T −mM
t at t, where mM

t is the margin that the dealer has to contribute and T is the value

of collateral pledged to money funds. Denote by FM
t the repurchase price agreed at t.

Given that our focus is on the incentives of collateral providers to withdraw we make

assume such that cash lenders do not face a coordination problem which prompts them to

run. This will allow us to isolate our mechanism and focus on the run dynamics stemming,

instead, from a coordination problem among the providers of collateral. Specifically, we

assume that money funds are “very risk averse” (i.e., infinitely risk averse) such that they will
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not tolerate a loss. In other words, the repo contracts between the dealer and money funds

are over-collateralized or, equivalently, FM
t ≤ T . All contracts that satisfy this condition are

acceptable because they completely eliminate the money fund’s exposure to the dealer. In

case of a run or insolvency of the dealer, the money fund would have immediate access to

the collateral (because repo are exempt from automatic stay), selling it onto the market for

a value of T—and possibly returning any surplus above and beyond it was owed. It is in the

dealer’s interest to maximize the funds they obtains from money funds at t = 0 and t = 1

rather than receiving some residual cash at t = 2. In other words, using the safe asset as

collateral, the dealer can borrow (from a competitive money fund market) at zero haircuts,

i.e., mM
t = 0, and at repurchase prices FM

t = T , which implies that the recovery value from

the sale of Treasuries is zero.

3.3 Hedge Funds

There are a continuum of hedge funds, each of which approaches the dealer to finance the

purchase of the riskless asset T . Hedge funds are ex ante identical and value holding T

above and beyond its fair value. That is, the hedge fund receives non-pecuniary benefits

for holding the asset, which potentially accrue from hedging motives, demand for safe assets

or other reasons, which magnify its value by η > 1. This extra benefit could accrue from

insurance motives, since Treasuries are said to be negative-beta assets and may help hedge

funds hedge other (not modeled) exposures in the portfolio. Or it could reflect the specialness

of specific Treasuries, which hedge funds want to purchase (see Duffie 1996 for a discussion

of specialness).

The role of η in the model is to provide incentives for hedge funds to take leverage in

order to invest in T . For a given repurchase price, F , a levered position yields ηT − F ,

i.e., the hedge fund enjoys the full benefit ηT for a price F . On the contrary, the unlevered

position yields, η(T −F ), i.e., the hedge funds can only invests its own funds, T −F , in the

riskless asset. The levered position yields a higher payoff as long as η > 1. Without loss of

generality, we assume that hedge funds get the extra valuation for assets held at the final

period.19

19Alternatively, hedge funds could also receive these non-pecuniary benefits for holding the asset between
t = 0 and 1. This assumption unnecessarily complicates the model without providing any meaningful
insights.
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Hedge funds start out with an initial endowment of W0 which, along with the repo raised

from the dealer, allows them to purchase T . Hedge funds do not initially own T but the

extra benefit η provides incentives to enter into a repo contract with the dealer to purchase

as much T as possible.20

The payoff to an individual hedge fund depends on the realization of θ, the number of

hedge funds that withdraw, µ, and the action that it takes in the roll-over stage. Denote by

α = {0, 1} the strategy set of a hedge fund, where α = 0 stands for withdrawing and α = 1

for rolling over. The utility that a hedge fund receives can be expressed by UH(µ, θ;α).

First, consider the case that a hedge fund rolls over at t = 1, i.e., α = 1. The available

cash at the end of t = 1 after rolling over, which can be invested in additional Treasuries, is

equal to W0 + (T −mH
0 )− FH

0 + (T −mH
1 )− T , i.e., what is left of the initial wealth after

receiving cash from the starting leg of both repos (T −mH
0 ) + (T −mH

1 ), paying the closing

leg of the initial repo FH
0 , and purchasing the collateral at the onset of the game T .21 Note

that the new repo terms are not contingent on the realization of fundamentals, θ, nor of the

portion of hedge funds withdrawing, µ. However, the final payoff at t = 2 will depend on θ

and µ as they determine whether a run occurs and the probability that the dealer defaults

at t = 2.

For a given realization of fundamentals θ and µ < µS, a hedge fund that rolls over

can repurchase its collateral at price FH
1 and enjoy a utility payoff ηT if the dealer does not

default at t = 2. This occurs with probability θ. On the other hand, if RD realizes, the dealer

defaults and the hedge fund is repaid its share of the dealer’s remaining portfolio: GD
S (µ, θ)

in cash which does not yield the utility benefit η. The expected utility of an individual hedge

fund that rolls over is, then,

UH(µ < µS, θ; 1) = θ(ηT − FH
1 ) + (1− θ)GD

S (µ, θ) + η
(
W0 −mH

0 + T − FH
0 −mH

1

)
. (12)

If µ ∈ [µS, µI), a hedge fund that rolls over can still repurchase its collateral if RU realizes

at t = 2, but it receives a cash payment GD
I (µ, θ) which incorporates the liquidation cost

20Alternatively, one could motivate trade by assuming heterogeneous beliefs over risky collateral, which
would complicate the analysis without providing additional insights, since we have neutralized potential
instability from cash lenders.

21Recall that Treasury holdings at t = 2 yield a utility payoff η > 1, thus a hedge fund will invest all
available cash at t = 1 in Treasuries.
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from selling part of the risky project. The expected utility is, then,

UH(µS ≤ µ < µI , θ; 1) = θ(ηT − FH
1 ) + (1− θ)GD

I (µ, θ) + η
(
W0 −mH

0 + T − FH
0 −mH

1

)
.

(13)

If more hedge funds withdraw, the dealer will default in the good state as well, for

µ ∈ [µI , µR), receiving its share of the dealer’s remaining portfolio in either state,

UH(µI ≤ µ < µR, θ; 1) = θGU
I (µ, θ)+(1−θ)GD

I (µ, θ)+η
(
W0 −mH

0 + T − FH
0 −mH

1

)
. (14)

Comparing (12) or (13) to (14), the role of η in the model becomes more clear. A hedge

fund will only enjoy the benefit η if the dealer is solvent and, thus, returns the physical

collateral T to the hedge fund. If the dealer defaults, the hedge fund receives cash payment

pro-rata, which does not yield the benefit η. Around the default threshold µI , the payoff in

the good state to a hedge fund that rolls over is ηT − FH
1 if the dealer does not default and

T − FH
1 if the dealer defaults.

If withdrawals continue, the dealer will eventually run out of money and will be fully

liquidated at t = 1 for µ ∈ [µR, 1]. In this case, a hedge fund that rolled over at t = 1 will

receive utility

UH(µR ≤ µ ≤ 1, θ; 1) = η
(
W0 −mH

0 + T − FH
0 −mH

1

)
. (15)

In these last two cases, the hedge fund cannot repurchase back its collateral and the

utility benefit η applies only to the additional Treasuries purchased with the remaining cash

at t = 1.

Next, consider the case that a hedge fund that does not roll over at t = 1, i.e., α = 0. This

hedge fund is able to invest W0 −mH
0 in Treasuries, plus any incremental cash from closing

the initial repo position. The latter will depend on whether the dealer is fully liquidated at

t = 1. If the dealer has enough resources to serve all early withdrawals, a hedge fund that

does not roll over can repurchase its collateral at t = 1 at price FH
0 , receiving a net cash flow

T − FH
0 and final utility equal to

UH(µ < µR, θ; 0) = η
(
W0 −mH

0 + T − FH
0

)
. (16)
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If the dealer cannot serve all of the early withdrawals, then a hedge fund that does not

roll over will only be able to repurchase its collateral with probability f(µ, θ) given by (4),

and the expected utility is equal to

UH(µR ≤ µ ≤ 1, θ; 0) = η
(
W0 −mH

0 + f(µ, θ) · (T − FH
0 )
)
. (17)

As derived later in section 4, hedge funds will follow a strategy such that all roll over at

t = 1 if the realization of fundamentals, θ, is above a threshold θ∗, and all withdraw their

collateral if θ is below θ∗. Moreover, every individual hedge fund should be willing to enter

into a repo contract both at t = 0 and t = 1 independently given that all other hedge funds

follow the equilibrium strategy. That is, regardless of whether an hedge fund participates in

both periods, their willingness to participate should hold in each period.

Specifically, a hedge fund would not choose to enter the repo contract at t = 0 if the

following participation constraint is satisfied:

PC0 :

∫ 1

θ∗
·(T − FH

0 )dθ +

∫ θ∗

0

·f(1, θ) · (T − FH
0 )dθ − ·mH

0 ≥ 0, (18)

where f(1) is given by (4) for µ = 1. In other words, an individual hedge fund will participate

in t = 0 if the expected cash flow at t = 1, including the possibility of a run, is higher than

the original margin contribution.

In addition, a hedge fund will not deviate from the equilibrium strategy at t = 1 if for

every θ ≥ θ∗ the following participation constraint is satisfied:

PC1 : θ(η · T − FH
1 ) + (1− θ)GD

S (0, θ)− η ·mH
1 ≥ 0, (19)

where GD
S (0, θ) is given by (6) for µ = 0. In other words, an individual hedge fund will

only roll over at t = 1 for θ ≥ θ∗ if the expected benefit is higher than the outside option

of investing the margin in Treasuries, which is equal to η ·mH
1 . The former is equal to the

utility benefit of repurchasing the collateral, η ·T , minus the repurchase price, FH
1 occurring

with probability θ plus the cash flow received when the dealer defaults, GD
S (0, θ), occurring

with probability 1−θ. Given that the left-hand side in (19) is increasing in θ, it suffices that

the participation constraint is satisfied for θ∗. We establish this in Corollary 1 in section 4.

Note that the decision to enter a repo at t = 0 is independent of the decision to enter a
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repo at t = 1. If PC0 is not satisfied, but PC1 is, then an individual hedge fund will deviate

from the equilibrium strategy at t = 0, and vice versa. Hence, both (18) and (19) need to

hold in equilibrium, which restricts the ability of the dealer to extract all surplus from hedge

fund. Moreover, the participation constraint in t = 1 does not depend on whether the hedge

fund participated in t = 0. That is, a hedge fund can decide not to participate in t = 0, yet

decide to participate in t = 1. In this sense, these per period constraints are independent.

As we discuss later, equation (19) will not be binding in equilibrium because hedge funds

need to have the proper incentives to roll over in the incomplete information game, while

equation (18) will be binding as it restricts the ability of the dealer to set a very high margin,

mH
0 , or repurchase price, FH

0 .

Finally, note that integrating (19) over [θ∗, 1], and adding (18) as well as η · W0 on

both sides yields
∫ 1

θ∗
UH(0, θ; 1)dθ +

∫ θ∗
0
UH(1, θ; 0)dθ ≥ η ·W0. Hence, under the optimal

contracting terms the overall utility of a hedge fund playing the equilibrium strategy is higher

than the utility in autarky. UH(µ = 0, θ; 1) and UH(µ = 1, θ; 0) which are given by (12)

through to (17).

Using the period 0 participation constraint and condition (1), we can prove the following

Lemma, which will be useful in later analysis.

Lemma 2. The contract terms are such that:

1. The dealer’s liabilities at t = 0 are higher than the cash inflow from the rehypothecation

of collateral, i.e., −∆F0 > ∆m0.

2. The cash inflow from the rehypothecation of collateral at t = 1 is higher than at t = 0,

i.e., ∆m1 > ∆m0.

As discussed in section 5, the dealer will choose contract terms that push hedge funds

to their period 0 participation constraint in equilibrium. Hence, we can rewrite (18) as

−∆F0 ≥ g(θ∗)∆m0, where g(θ∗) > 1 from Lemma 2 and given by

g(θ∗) =
1− λ

[(
RU −RD

)
θ∗2

2
+ θ∗RD

]
1− θ∗

. (20)

We should note that equation (20) implies that the dealer needs to offer hedge funds a

repurchase price, FH
0 , that is lower than the amount they borrow, T −mH

0 , i.e., the interest
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rate on first period reverse repos is negative.22 As we will show in Proposition 2, the dealer

will be willing to offer a negative rate in order to provide incentives for hedge funds to

participate and, thus, use the liquidity windfall ∆m0 to invest in the risky project. In turn,

hedge funds require a negative interest rate to participate at t = 0 because of the probability

of a run on the dealer in which case they could losing everything. We could have dispensed

with negative rates if we had assumed that hedge funds also enjoy a non-pecuniary benefit,

η̃ > 1, from holding T from t = 0 to t = 1 or alternatively, if agents in the model discounted

future cash flows. Given that these assumptions would unnecessarily complicated the model,

we have opted to proceed without them.

4 Collateral Runs and Coordination Failure

This section examines the decision of an individual hedge fund to withdraw its collateral or

roll over its repo contract in the intermediate period with pre-determined contract terms.

Knowing the equilibrium outcome of the global game, in Section 5, we can derive the equi-

librium contracting terms and show under what conditions they are consistent with the

existence of a coordination problem.

At the beginning of t = 1, each hedge fund i receives a private noisy signal xi = θ + εi

where the error terms εi are independently and uniformly distributed over [−ε, ε]. The

signal provides information about dealer’s solvency at t = 2, i.e., the probability that RU

realizes, but also about the liquidation value of the dealer’s risky investment, λRθ∆m0.23 The

signal also provides information about other hedge funds’ signals, which allows an inference

regarding their actions. An individual hedge fund may decide to withdraw its collateral not

only because it believes that fundamentals are bad, but also because the conjectured portion

of hedge funds withdrawing is high enough to push the dealer into illiquidity.

22The interest rate is FH0 /(T −mH
0 ) − 1 = (∆F0 + ∆m0)/(T −mH

0 ) = (1 − g(θ∗))∆m0/(T −mH
0 ) < 0,

using T = FM0 and mM
0 from the money funds problem, (20), and condition (8).

23Incorporating this feature is the methodological contribution of this paper, contributing to the Goldstein-
Pauzner type of bank-runs model where the payoffs of withdrawing agents depend on endogenous equilibrium
choices. In turn, such endogenous payoffs are important are important for policy analysis (see section
6. It is true that the liquidation value depends on the state θ in Rochet-Vives as well. However, they
assume exogenous payoffs for withdrawing agents, rendering their model less suitable for policies that affect
contracting terms. Finally, we show in an online appendix that collateral runs exist also in these two
alternative frameworks.
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As it common in incomplete information games, in Lemma 3 we derive the upper and

lower dominance regions where the actions of an individual hedge fund are independent of

the actions of other hedge funds. These regions are essential for the existence of the run

threshold.

Lemma 3. There are two regions of fundamentals defined by thresholds θLD and θUD where

the decision of an individual hedge fund to withdraw its collateral is independent of the

decisions of other hedge funds. A hedge fund will always withdraw its collateral for θ ≤
θLD = ((η− 1)∆m1 −RD∆m0 −∆F0)/((η− 1)T −RD∆m0 −∆F0 −∆m1 −∆F1), and will

always roll over for θ ≥ θUD = −(∆F0 +λRD∆m0)/(λ(RU −RD)∆m0). Moreover, θLD and

θUD lie in the support of θ, i.e., θLD, θUD ∈ (0, 1).

We seek a symmetric equilibrium characterized by two thresholds (x∗, θ∗) such that an

individual hedge fund will withdraw its collateral if its private signal realization xi is lower

than a threshold x∗ and the dealer will be fully liquidated at t = 1 if the fundamentals

realization θ is lower than a threshold θ∗.

Under such a threshold strategy, the portion of hedge funds that withdraw their collateral

at a given level of fundamentals θ is

µ(θ, x∗) =


1 if θ < x∗ − ε

Prob(xi ≤ x∗|θ) if x∗ − ε ≤ θ ≤ x∗ + ε

0 if θ > x∗ + ε.

(21)

If the fundamental value θ is lower than x∗− ε, then all hedge funds receives signals xi < x∗.

Hence, all hedge funds, following a threshold strategy, withdraw and µ(θ, x∗) = 1. The

opposite is true for θ > x∗+ ε, whereby all hedge funds receive signals xi > x∗ and roll over,

thus µ(θ, x∗) = 0. Finally, if fundamentals are not sufficiently higher or lower than x∗, i.e.,

θ ∈ [x∗ − ε, x∗ + ε], some hedge funds will receive signals that are lower than x∗ and, thus,

will withdraw their collateral; and others will receive a signal higher than x∗ and, thus, will

roll over their repo. Given that private noise, εi, is independently and identically distributed,

from the law of large numbers the portion of hedge funds withdrawing for a given level of θ

in the intermediate region is µ(θ, x∗) = Prob(xi ≤ x∗|θ) = (x∗ − θ + ε)/2ε.

The signal and fundamentals thresholds are derived in two steps as follows. First, given

the threshold strategy x∗, we can derive the threshold for fundamentals, θ∗, which determines
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whether the dealer is fully liquidated at t = 1 or survives to t = 2. Because the portion of

hedge funds withdrawing is decreasing in θ from (21), the dealer is fully liquidated only if

θ < θ∗. That is, θ∗ as a function of x∗ is the solution to f(µ(θ∗, x∗), θ∗) = 1, which from

equation (4) gives:

θ∗ = x∗ − ε∆m1 + 2∆F0 + 2λRθ∗∆m0

∆m1

. (22)

In other words, for threshold strategy x∗, if θ is lower than θ∗, then the portion of hedge

funds withdrawing is higher than what the dealer can serve by liquidating all of her assets,

or f(µ(θ, x∗), θ) < 1. On the contrary, if θ is higher than θ∗, fewer hedge funds withdraw,

allowing the dealer to decrease asset liquidations and survive to t = 2.24

Second, given the fundamentals threshold θ∗, an individual hedge fund can compute the

signal threshold x∗, below which it is optimal to withdraw conditional on its expectation

over the portion of hedge funds withdrawing and the private signal it receives. This signal

threshold depends on the utility differential between rolling over and withdrawing for a

given level of θ and µ. The difference in expected payoff is given by UH(µ, θ; a = 1)-

UH(µ, θ; a = 0) derived from (12)-(17). Given that in equilibrium FM
t = T and mM

t = 0,

the utility differential ν(µ, θ) is given by the following piecewise function:

ν(µ, θ) =



θ [(η − 1)T −∆F1] + (1− θ)GD
S (µ, θ)− η∆m1 µ ∈ [0, µS)

θ [(η − 1)T −∆F1] + (1− θ)GD
I (µ, θ)− η∆m1 µ ∈ [µS, µI)

θGU
I (µ, θ) + (1− θ)GD

I (µ, θ)− η∆m1 µ ∈ [µI , µR)

−η λRθ∆m0+∆F0+∆m1

µ
µ ∈ [µR, 1]

(23)

whereGD
S (µ, θ) =

(
RD∆m0 + ∆F0 + (1− µ)∆m1

)
/ (1− µ), GD

I (µ, θ) = (RD∆m0+RD/λRθ·
(∆F0 + (1− µ)∆m1))/(1− µ), and θGU

I (µ, θ) + (1− θ)GD
I (µ, θ) = (Rθ∆m0 + 1/λ · (∆F0 +

(1− µ)∆m1))/(1− µ) from (6), (9) and (10).

Looking at the two first legs, the payment in the bad state for a hedge fund that rolled

over is decreasing in µ and limµ→µS− G
D
S (µ, θ) = limµ→µS+ GD

I (µ, θ). 25 The third leg is

also decreasing in µ for λRθ∆m0 + ∆F0 < 0, i.e., for θ < θUD. The utility differential is

24The fraction of assets distributed is strictly decreasing in µ, i.e., ∂f(µ, θ)/∂µ = (λRθ∆m0 + ∆F0 +
∆m1)/(µ2∆F0) < 0 given condition in equation (1).

25∂GDS (µ, θ)/∂µ = (RD∆m0 + ∆F0)/(1− µ)2 < 0, because RD < 1 and ∆m0 + ∆F0 < 0 from Lemma 2,
while ∂GDI (µ, θ)/∂µ = RD/(λRθ(λRθ∆m0 + ∆F0)/(1− µ)2 < 0 for θ < θUD.
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discontinuous at µI because the hedge fund fails to receive the non-pecuniary benefit η if

the dealer defaults. However, limµ→µI− ν(µ, θ) − limµ→µI+ ν(µ, θ) = θ(η − 1)T > 0, and,

thus, ν(µ, θ) is strictly decreasing in µ ∈ [0, µR) for θ < θUD which is the relevant region

where a coordination problem may occur. The final leg in (23) is increasing in µ given that

λRθ∆m0 +∆F0 +∆m1 > 0 from the condition in equation (1). Thus, the model features one-

sided, rather than global, strategic complementarities as in Goldstein and Pauzner (2005).

That is, once the dealer is fully liquidated, a hedge fund has fewer incentives to withdraw

as withdrawals increase. Note that ν “crosses” zero as µ increases from above. That is,

depending on the contract terms, this can happen within any of the first two legs or at the

jump, but not within the third and fourth legs where ν(µ, θ) always takes negative values.26

Consider an individual hedge fund that receives signal xi. The hedge fund will use the

signal to update its beliefs about the realization of θ. Given that both θ and εi are uniformly

distributed, the posterior distribution of θ given xi is θ|xi ∼ U [xi−ε, xi+ε]. This implies that

the utility differential between rolling over and withdrawing for a hedge fund that receives

signal xi as a function of the cutoff value is

∆(xi, x
∗) =

1

2ε

∫ xi+ε

xi−ε
ν(µ(θ, x∗), θ)dθ. (24)

In a threshold equilibrium, a hedge fund prefers to withdraw, i.e., ∆(xi, x
∗) < 0, for all

xi < x∗, and prefers to roll over, i.e., ∆(xi, x
∗) > 0, for all xi > x∗. ∆(xi, x

∗) is continuous

in xi because a change in the signal only changes the limits of integration [xi− ε, xi + ε] and

the integrand is bounded. Hence, a hedge fund that receives signal xi = x∗ is indifferent

between rolling over and withdrawing if

∆(x∗, x∗) =
1

2ε

∫ x∗+ε

x∗−ε
ν(µ(θ, x∗), θ)dθ = 0. (25)

Equations (22) and (25) jointly determine the threshold for fundamentals θ∗ and the

threshold strategy x∗. As in Goldstein-Pauzner, the model features one-sided strategic com-

plementarities. Hence, we follow the steps in Goldstein-Pauzner and make similar assump-

tions, most importantly that noise is uniformly distributed, to show the uniqueness of a

26ν(µ, θ) < 0 for µ ∈ [µI , µR) —third leg— requires µ > 1+(λRθ∆m0 +∆F0)/∆m1 > µI , which is always
true.
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threshold equilibrium. However, our framework features two additional complications akin

to Kashyap et al. (2017).27 First, due to limited liability, the dealer’s default threshold is

endogenous. Second, and most importantly, the liquidation value matters for the payoff in

a run and, thus, state monotonicity of ν(µ, θ) which typically used to find unique equilibria,

is not straightforward.

Figure 6 illustrates how the liquidation value in our framework affects the utility differen-

tial ν for different values of fundamentals, θ′ and θ′′, as µ varies. The left panel corresponds

to the case of a fixed liquidation value, while the right panel corresponds to the case of an

uncertain liquidation value, modeled in this paper. Both cases are characterized by one-

sided strategic complementarities as ν increases in the region where a run occurs. Namely,

once a run has materialized, the incentive to withdraw is lower for a higher µ. This is akin

to Goldstein-Pauzner and is typical in bank-run models. The two cases differ in how liq-

uidation values change with fundamentals. Consider that θ′ > θ′′. When the liquidation

value is fixed (left panel), the utility differential unambiguously increases, because θ only

affect the probability of getting a high payoff conditional on a run not occurring. Once we

allow the liquidation value to vary with θ (right panel), the utility differential changes in a

non-monotone way: it is increasing in θ in the region where a run does not occur, but it

is decreasing in the region where a run materializes. This latter effect is because the rela-

tive payoff from withdrawing is higher conditional on a run materializing. We employ the

same strategy as in Kashyap et al. (2017) to address this issue of non-state monotonicity.

Proposition 1 establishes the existence and uniqueness of a threshold equilibrium.28

Proposition 1. Given contract terms satisfying θLD < θUD in Lemma 3, there exist a

threshold, x∗, such that a hedge fund rolls over if xi > x∗ and withdraws if xi < x∗, and a

threshold θ∗, such that the dealer does not experience any withdraws if θ ≥ θ∗ and is fully

liquidated if θ < θ∗. Moreover, the thresholds are unique if noise is not too large.

Proposition 1 establishes the existence of a unique threshold strategy conditional that

27Our frameworks differ because we consider a different source of stochastic uncertainty. In Kashyap et al.
(2017) the liquidation value of the risky assets can vary independently of their expected long-term payoff. In
our model, the variation in the liquidation value stems from the variation in the long-term expected payoff.
In technical terms, they allow λ to vary keeping θ constant, while we allow θ to vary keeping λ constant.

28To simplify the analysis we have restricted attention to a uniformly distributed probability of a good
realization. The difficulty arises from the uncertain liquidation value. Goldstein-Pauzner allow for more
general distributions of the probability of a good realization, p(θ), where θ is uniformly distributed and
p′(θ) > 0. In our case, p(θ) = θ and p′(θ) = 1.
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(a) Fixed liquidation value (b) Uncertain liquidation value

Figure 6: Utility differential for different fundamental values under certain and uncer-
tain liquidation values

there exist equilibrium contract terms such that the lower dominance threshold, θLD, is

strictly smaller than the upper dominance threshold, θUD. In the proof of Proposition 2 we

actually show that the equilibrium contracting terms are such that 0 < θLD < θUD < 1. As

a result, collateral runs accrue from the dealer’s optimal behavior in equilibrium.

Hereafter, we focus on the case that the noise goes arbitrarily close to zero. Note that

taking the limit ε → 0 implies that x∗ → θ∗ from (22). A hedge fund that receives signal

x∗, the posterior distribution of θ is uniform over the interval [x∗ − ε, x∗ + ε]. Thus, that

hedge fund’s belief of the portion of hedge funds withdrawing as a function of θ, µ(θ, x∗),

is uniform over [0, 1].29 In other words, as θ decreases from x∗ + ε to x∗ − ε, µ increases

from 0 to 1. Changing variables in ∆(x∗, x∗) = 0 provides the indifference condition that

determines the unique value θ∗:

V (θ∗) =

∫ 1

0

ν(µ, θ∗)dµ = 0. (26)

The detailed expression for V (θ∗), with its derivatives with respect to θ∗ and the contract

29This is true because limx∗→θ∗ Prob(µ(θ, x∗) ≤ N) = Prob(µ(θ, θ∗) ≤ N) = 1−Prob(θ ≤ θ∗+ε−2εN) =
1− (θ∗ + ε− 2εN − θ∗ + ε)/(2ε) = N . Hence, µ(θ, θ∗) ∼ U [0, 1].
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terms, are shown in equation (B.31) in Appendix B. Moreover, (26) implies that ν(0, θ∗) > 0

given that ν is decreasing in µ when positive. Because in equilibrium µ is zero or one we

can establish the following Corollary.

Corollary 1. The period 1 participation constraint (19) is always slack for all θ ≥ θ∗.

5 Threshold Equilibrium

Having characterized hedge funds’ threshold strategy under incomplete information, we turn

to see the take-it-or-leave-it contracting terms the dealer chooses, anticipating hedge funds’

optimal strategy. Because a hedge fund’s problem is scalable, we normalize T = 1 for

simplicity. This implies that feasible contract terms should satisfy ∆mt ∈ [0, 1] and ∆Ft ∈
[−1, 0].

Given a threshold for fundamentals θ∗ defined in (26), all hedge funds withdraw their

collateral for θ < θ∗, inducing the dealer to default and receive zero profits. Conversely, if the

realization of θ is above θ∗ all hedge funds roll over their repos to period t = 2 and the dealer

is exposed to the risky projects’s payoff. With probability θ, the good state realizes and

the dealer enjoys positive profits. Otherwise, the bad state realizes and the dealer defaults

receiving nothing. Her expected utility is, then, given by:

UD =

∫ θ∗

0

u(0)dθ +

∫ 1

θ∗

[
θu(RU∆m0 + ∆m1 + ∆F0 + ∆F1) + (1− θ)u(0)

]
dθ

=
(1− θ∗2)

2
u(RU∆m0 + ∆m0 + ∆F0 + ∆F1), (27)

where u(·) is a concave utility function–not excluding linear utility–with u(0) = 0.30.

The dealer will internalize that changing the contracting terms directly affects hedge

funds’ threshold strategy θ∗ through the global game condition (26), and, thus, the probabil-

30Note that a coordination problem can exist only if ∆m0 > 0. If hedge funds do not have an unsecured
claim on the dealer, i.e., ∆m0 = 0, there cannot be an advantage to withdraw early. This situation can be
appreciated graphically through Figure 4: if there is nothing hedge funds’ can claim, beyond their collateral,
there is no reason to withdraw. In this case the dealer would not invest in the risky project, and the only
feasible contracting terms that give dealer non-negative profits are ∆m0 = ∆m1 = ∆F0 = ∆F1 = 0, i.e.,
u(0) = 0. This implies that the dealer is better off setting contracting terms that expose them to a run as
long as the profits in the good state are positive and θ∗ < 1
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ity of a collateral run. In many global games applications, the run threshold can be derived

in closed-form using a condition similar to (26). Given the complexity herein, we are not able

to solve for the threshold in closed-form to substitute intp the dealer’s problem.31 Instead,

we will explicitly impose (26) as a constraint that the dealer faces and have her optimize

also over θ∗, respecting its relationship with the other contract terms.

Hence, the dealer chooses {∆m0,∆m1,∆F0,∆F1, θ
∗} to maximize (27) subject to hedge

funds’ period-0 participation constraint (18), the global game constraint (26), the positive

liquidity injection constraint (1), and the bad-state default constraint (7) (see the proof

of Proposition 2 for the Lagrangian of the dealer’s problem and the first-order optimality

conditions, which determine the equilibrium of the model).32 We have imposed the last

constraint in the dealer’s problem to guarantee the existence of a lower dominance region,

which is essential for the existence of a threshold equilibrium in the incomplete information

game. We will elaborate further on the presence of these four constraints below, after we

have established the existence of contract terms that give rise to a coordination problem

and, hence, the possibility of a collateral run.33

Proposition 2. For λRU > 2, RD < ηRU/(η + RU), and dealer’s risk-aversion sufficiently

high enough, there exist optimal contracting terms ∆mt(θ
∗) and ∆Ft(θ

∗) under which hedge

funds adopt a threshold strategy θ∗.

Note that the existence result in Proposition 2 requires a high degree of dealer risk

aversion so that that the marginal utility of the dealer is low enough to push θ∗ below its

upper bound θUD. In other words, conditional on survival at θUD the dealer would prefer a

lower run probability over higher profits in the good state. As we will see later on, this can

be true when the dealer is risk-neutral, but under stricter parameter conditions.

The optimal contracting terms of Proposition 2 are only a function of the threshold

θ∗ and given by ∆m0(θ∗) = −θ∗(η − 1)µI/h(θ∗), ∆m1(θ∗) = g(θ∗)∆m0(θ∗), ∆F0(θ∗) =

31A closed-form solution is attainable in Goldstein and Pauzner (2005) because the liquidation value does
not depend on fundamentals. In Rochet and Vives (2004), the liquidation value depends on fundamentals,
but the payoff structure does not, allowing for a closed-form solution.

32Alternatively, the problem can be stated with θ∗ determined implicitly, and the dealer internalizing how
contracting terms change the threshold. These approaches are mathematically equivalent.

33The participation constraint in period one is always slack from Corollary 1, and the contract terms will
be interior. Thus, for the sake of conciseness, we do not include (19), 0 ≤ ∆mt ≤ 1 and −1 ≤ ∆Ft ≤ 0 in
the dealer’s optimization problem. The Lagrangian and the first-order optimization conditions are reported
in (A.18)-(A.23) in Appendix A.
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−g(θ∗)∆m0(θ∗), and ∆F1(θ∗) = −RD∆m0(θ∗), where g(θ∗) and h(θ∗) are given by (20) and

(A.25), respectively. Finally, the run threshold is the solution to the following optimization

condition:

1

2
(1− θ∗2)u′((RU −RD)∆m0(θ∗))(RU −RD) +

θ∗u
(
(RU −RD)∆m0(θ∗)

)
h(θ∗)

∂V
∂θ∗
−∆m0(θ∗)g′(θ∗)

(
∂V
∂∆F0

− ∂V
∂∆m1

) = 0,

(28)

which can be easily interpreted. The first term captures the incremental utility to the dealer

from an increase in the initial risky investment while keeping the run probability unchanged.

The second term captures the effect on the probability that the dealer suffers a run, and,

hence, forfeits any profits in the final period (note that the term is negative). So, the dealer

balances the higher profits conditional on a run not occurring, with the associated increase

in the probability of a run.

The optimal contracting terms of Proposition 2 are characterized by four binding con-

straints: the global game constraint, the initial participation constraint, the positive liquidity

injection constraint, and the dealer default constraint.34 The last three constraints allow us

to write the contract terms ∆F0, ∆m1, and ∆F1 as function of ∆m0 and θ∗. The global

game constraint gives ∆m0 as a function of θ∗. The binding initial participation constraint

relates the initial margin with the initial repurchase price, and implies that an individual

hedge fund is indifferent between participating initially or waiting to participate in t = 1.

We, now, discuss in more detail the intuition behind the other two binding constraints.

The binding liquidity injection constraint implies that the dealer does not collect any net

funds in t = 1. The intuition behind the tightness of this restriction stems from inspecting

θ∗’s sensitivity to both ∆m1 and ∆F0. To see this, consider contracting terms which do not

have a binding PC0 constraint. In that case, the only difference between ∆m1 and ∆F0 is how

those variables affect θ∗. In the proposed equilibrium we have, ∂θ∗/∂∆m1−∂θ∗/∂∆F0 > 0.35

34In a model extension where the dealer can default for reasons outside of the rehypothecation process,
a threshold equilibrium exists even when the default condition is slack. In that case, we can show that
the contracting term ∆F1 is an interior solution to the dealer’s optimization problem rather than being
pinned down by the binding default constraint. In this version of the model all other contracting terms are
determined as in the original model. Given that this extension does not add additional intuition for our
mechanism we have decided to omit its exposition.

35From the implicit function theorem ∂θ∗/∂∆m1 − ∂θ∗/∂∆F0 = (∂V/∂∆F0 − ∂V/∂∆m1)(∂V/∂θ∗)−1.
∂V/∂∆F0 − ∂V/∂∆m1 pins down the value of the multiplier on the participation constraint and thus is
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Intuitively this is because a hedge fund loss due to an increase in ∆m1 only affects hedge

funds that roll over. A hedge fund loss due to an increase in ∆F0 is mutualized between

those that roll over and those that do not. That is, the dealer gets more “bang for its buck”

by altering the roll over haircut. Thus, to increase the possibility for hedge funds to rollover

(i.e., lower θ∗), it is optimal to reduce hedge funds’ loss via a reduction in ∆m1 rather than

∆F0, which in equilibrium is pinned down by the initial participation constraint.

The final active constraint is the dealer’s default condition. The intuition behind this

active constraint is that an increase in ∆F1 affects the dealer’s payoff directly with a minimal

impact on the sensitivity of θ∗: It has a small impact on µI , and only affects the final

repayment of hedge funds’ that roll over directly, with no effect on the incentives between

rolling over and withdrawing. This is why in equilibrium the dealer decides to set contracting

terms such that they default in the bad state.

Finally, it is important to note that not extracting any liquidity in t = 0 is a feasibly

strategy, yet the optimal contracting terms characterized in Proposition 2 call for ∆m0 > 0.

This implies that the dealer is willing to expose itself to the possibility of a run in order to

gain exposure to the risky project. One could consider more sophisticated strategies, like for

example investing a fraction of the windfall in the risky project and holding the remaining

in the safe asset to safeguard for possible withdrawals. But as long as the value of the

risky project is sufficiently low in the bad state (small RD), to ensure the existence of a

lower dominance region, any small positive allocation to the risky project would generate a

coordination problem amongst hedge funds, regardless of the additional liquidity the dealer

may have to meet withdrawals. That is, the main mechanism behind the model still holds.36

Having a general characterization of the equilibrium in Proposition 2 we focus on a

specific case that gives a more precise characterization of the equilibrium outcome, and also

allows us to do comparative statics. Specifically, we shall assume that the risky project’s

payoff is zero in the down state RD = 0 and the dealer is risk neutral. In this case, we have

the following result,

Corollary 2. For RD = 0, λRU ∈
(

2, 4+8
√

2
7

)
, and risk neutral dealer, there exist optimal

positive. Given that ∂V/∂θ∗ > 0 from the proof of Proposition 1, ∂θ∗/∂∆m1−∂θ∗/∂∆F0 is positive as well.
36We discuss a policy prescription that would force a dealer to safely store the windfall in section 6.2.
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contracting terms

∆m0(θ∗) = (η−1)θ∗

ηg(θ∗)

(
1−ln

(
λRθ∗
g(θ∗)

)) , ∆m1(θ∗) = g(θ∗)∆m0(θ∗)

∆F0(θ∗) = −g(θ∗)∆m0(θ∗), ∆F1(θ∗) = 0

under which hedge funds adopt a threshold strategy θ∗ that solves,

(1 + θ∗)

[
(1− θ∗)− θ∗

(
1− λRθ∗

g(θ∗)

)](
2− ln

(
λRθ∗

g(θ∗)

))
− 2θ∗2

(
1− ln

(
λRθ∗

g(θ∗)

))
= 0

with ∂θ∗

∂λRU
> 0.

The optimal contracting terms have the same functional form as in Proposition 2 with

many of the expressions simplified because in this case µI = µR. Because RD = 0, the no

default condition can be replaced by the reasonable restriction of having the ∆F1 ≤ 0. If

this were not the case, the dealer would never default.

Note that the partial derivative is with respect to λRU , that is the comparative statics

with respect to RU , but these are identical to the ones with respect to λ.37 As the asset

becomes more valuable at liquidation for all realizations of θ, either due to a higher payment

on the good state or a lower liquidity discount, the possibility of a run becomes higher. This

result may seem counterintuitive, but it is not that surprising within bank-run models fea-

turing one-sided strategic complementarities. For given contract terms, a higher liquidation

value increases the payoff from running conditional on a collateral run occurring, while at

the same time it decreases the region of withdrawals that the run occurs. The former effects

dominates the later in this special case of our model resulting in higher θ∗ all else equal.38

The dealer facing a more unfavorable run risk/liquidity windfall tradeoff can respond by

reducing the liquidity windfall and risky project holdings in order to mitigate the increase

in run risk. But, as we show, the first order effect on θ∗ is not undone and θ∗ is higher under

the new equilibrium contract terms.

Finally, changes in η do not affect the equilibrium threshold, but matter for the optimal

37With dealer risk aversion this would not be the case, because the dealer’s marginal utility is affected by
the final payoff (see equation (28)).

38This can be seen by totally differentiating V for this special case and evaluating dθ∗/dλRU =
−[(∂V/∂λRU )/(∂V/∂θ)]|θ=θ∗ > 0, because (∂V/∂λRU )|θ=θ∗ < 0 and (∂V/∂θ)θ=θ∗ > 0.
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contracting terms. Hedge funds are willing to accept a higher haircut (or, equivalently, ∆m0)

for given θ∗ if the benefits from leveraging (η) are higher. Because the payoff in the bad state

is zero, ∆m0 depends proportionally on the relative marginal no-run and run expected gains

with the leverage gain, (η − 1)/η being the degree of proportionality. A risk-neutral dealer

also benefits from a higher η, but the tradeoff she faces is between the marginal no-run and

run expected gains which is independent of the leverage gain. Thus, the equilbrium θ∗ is

independent of η.

6 Policy Analysis

The evidence provided in the Section 1 is suggestive that during the 2007–09 financial crisis

some firms relied on repo intermediation as a source of liquidity. In addition, Gorton and

Metrick (2012) provide evidence that haircuts in the bilateral repo market increased, while

Krishnamurthy et al. (2014) and Copeland et al. (2014) show stable haircuts in the tri-party

market. This is consistent with the idea that dealers sourced liquidity by lending less than

what they received when intermediating collateral.39 Infante (2019) also provides evidence

suggestive of dealers’ ability to extract a liquidity windfalls from repo intermediation, and

shows that this extraction can be sizable. In this paper, we characterize how this activity

can generate a coordination failures amongst cash borrowers and introduce a new source of

fragility. These observations raise two natural policy questions: how can regulators monitor

and identify the risks of a collateral run, and what regulatory framework might reduce

the risk of these runs to materialize? To address these questions it is useful to remember

three necessary ingredients for a collateral run: to rehypothecate collateral (i.e., to create

a collateral liability), set different contracting terms between borrowers and lenders, and

reinvest cash windfalls into risky investments.

6.1 Monitoring and Identifying Collateral Runs

The three ingredients for a collateral run suggest that the risk is higher for firms with some

degree of market power that rehypothecate large amounts of securities between different

39Although Gorton and Metrick focus on repos backed by riskier collateral classes, the increase in haircuts
they document would correspond to a windfall for dealers providing funds through repo intermediation.
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counterparties. To monitor these risks it would be important to measure the degree of

overcollateralization of their secured borrowing and lending for each collateral class. If

differences in these contracting terms correspond to a significant part of their total secured

funding—much like the calculation in Figure 2—then the exposure of collateral providers

would be relatively high, increasing the risk of a run.

Nevertheless, in the context of rehypothecation, it would be challenging to distinguish

a collateral run from a more traditional repo run, as the equilibrium outcome is an abrupt

reduction of both borrowing and lending. Haircut dynamics leading up to the run event

may be informative. The theoretical framework in Infante (2019) suggests that haircuts

to cash lenders are collateral specific while haircuts to collateral providers depend on the

dealer–borrower relationship. Moreover, in this paper collateral runs involves safe collateral,

which are likely to hold have more stable cash lending haircuts, as uncertainty over the

collateral’s value is relatively low.40 Thus, a dealer engaged in repo intermediation is more

likely suffer from a collateral run we observe an increase in reverse repo haircuts for relatively

safe collateral across all counterparty types, along with relatively stable repo haircuts.

6.2 Regulatory Framework

Since the 2007–09 financial crisis there have been numerous proposals to make the repo

market more resilient. The vast majority have focused on the liability side of the balance

sheet, and thus, their impact on the risk of a collateral run are unclear. For example,

the Financial Stability Board (FSB) has proposed minimum haircuts requirements, i.e.,

“haircut floors”, to limit the amount of leverage a cash borrower can take in a single repo

transactions.41 In this section we analyse the impact of this specific policy proposal and

show that in our model haircut floors make collateral runs more likely. We then discuss

alternative policy prescriptions that may directly address the risks of a collateral run.

40Copeland et al. (2014) show that during the crisis tri-party haircuts for government collateral were less
volatile than for private collateral, and of similar magnitude when compared to stable times.

41See the FSB, “Strengthening Oversight and Regulation of Shadow Banking: Regulatory framework for
haircuts on non-centrally cleared securities financing transactions,” October 14, 2014, http://www.fsb.org/
wp-content/uploads/r_141013a.pdf. Note, however, that the overcollateralization of secured positions can
increase run risk from unsecured claimants, which has been pointed out by Ahnert et al. (2018).
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6.2.1 Haircut Floors

The introduction of haircut floors is directly aimed at limiting the risks borne by cash

providers. We show that even under assumptions that should alleviate the risks borne by

collateral providers, haircut floors increase the risk of a collateral run. Specifically, for the

analysis we have to take a stand as to what happens with the money funds overcollateral-

ization in case of a dealer default. Current repo contracting conventions stipulate that upon

a default event, if the underlying collateral is valuable enough to make the lender’s claim

whole, then the lender must return the excess funds to the defaulted borrower. In the con-

text of rehypothecation, it is unclear as to whether these excess funds would be pooled with

the rest of the borrowers defaulted assets, immediately returned to the collateral provider,

or someway split between these two extreme alternatives. In this section we assume that in

case of a dealer default the hedge fund immediately recieves its corresponding money fund’s

overcollateralization. This resolution assumption would be the safest option for collateral

providers and gives rise to the following proposition.

Proposition 3. For RD = 0, λRU ∈
(

2, 4+8
√

2
7

)
, and a risk neutral dealer, if haircuts have

to satisfy mM
t ,m

H
t ≥ m > 0 and money funds’ overcollateralization are directly returned

to hedge funds after a dealer default, then, for m sufficiently small, there exist optimal

contracting terms

∆m0(θ∗) = (η−1)(θ∗−m)

ηλg(θ)

(
1−ln

(
λRθ∗
g(θ∗)

)) , ∆m1(θ∗) = g(θ∗)∆m0(θ∗)

∆F0(θ∗) = −g(θ∗)∆m0(θ∗), ∆F1(θ∗) = 0

under which hedge funds adopt a threshold strategy θ∗ that solves,

(1 + θ∗)

[
(1− θ∗)− θ∗

(
1− λRθ∗

g(θ∗)

)](
2− ln

(
λRθ∗

g(θ∗)

))
− 2θ∗2

(
1− ln

(
λRθ∗

g(θ∗)

))
= −

(
m

θ −m

)
(1− θ2)

(
1− ln

(
λRθ∗

g(θ∗)

))
with ∂θ∗

∂m
> 0.

Proposition 3 shows that even if the money fund’s overcollateralization is directly returned

to each individual hedge fund, an increase in minimum haircuts makes collateral runs more
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likely. The intuition is that haircut floors increase hedge funds’ incentives to run because

they receive the money fund’s haircut earlier, allowing them to invest in Treasuries which

they value more than cash. On the contrary, overcollaterlization constitutes an opportunity

cost absent a run because it is remains idle. Thus, haircut floors would increase hedge funds’

incentives to withdraw. It is easy to imagine that any other bankruptcy regimes that pools

a fraction of money funds overcollateralization would increase hedge funds incentives to run

even more, making collateral runs more likely.

6.2.2 Restrictions to Rehypothecation

Regulations that limit rehypothecation activity are more suitable to reduce the risk of a col-

lateral run. The three necessary ingredients we identify for a collateral run are instructive to

consider what type of regulation may be more effective. The first is to limit rehypothecation

in the altogether. By doing so dealers would not be able to reap any windfall from differences

in contracting terms, and pledged collateral would be easier to seize in bankruptcy. The sec-

ond is to restrict dealers’ use of said windfall. By safely storing differences in contracting

terms, collateral providers exposures would still be pooled, but there would be enough funds

to the dealer to recuperate all rehypothecatd collateral, regardless of what others do.

Naturally, taken to an extreme, these policy prescription would eliminate a collateral

run altogether. In fact, versions of these prescriptions have been adopted in other contexts.

For example, the Securities Exchange Act Rule 15c3-3 allows brokers to rehypothecate up

to 140% of a customer’s total loan balance, and prohibits brokers from financing their own

activity with clients assets, that is, use the windfall for their own purposes. Currently, this

rule do not apply to repo because repo counterparties are not considered to be “clients”, but

rather as investors who entrust their securities to a dealer.42

However, this type of regulation would have important repercussions in repo and other

markets. In effect, the ability to use and reuse securities using repo is said to be crucial

for market functioning.43 Although introduction limits to rehypothecation would alleviate

42See Mitchell and Pulvino (2012) for a description of broker limits on client asset use and Infante (2019)
for how these rules apply to repo.

43See the FSB. “Re-hypothecation and collateral re-use: Potential financial stability issues, market
evolution and regulatory approaches” January 25, 2017, http://www.fsb.org/wp-content/uploads/

Re-hypothecation-and-collateral-re-use.pdf. See Infante et al. (2018) for the role of repo in col-
lateral reuse.
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the financial stability concerns that come with it, the overall welfare implications due to a

decrease in aggregate secured funding and/or market liquidity for the underlying collateral

are unclear. Future work in needed to address the overall costs and benefits of limiting

rehypothecation.

7 Conclusion

This paper presents a model which highlights fragility that can arise from the re-use of

collateral in a short-term collateralized lending context. Specifically, this paper formalizes

the idea of a coordination failure that can arise amongst cash borrowers, inducing a panic-

based default on an intermediary. In contrast to traditional wholesale funding runs, the

model shows that when intermediating secured financing fragility can materialize on the asset

side of a dealer’s balance sheet. The model delivers a unique threshold equilibria in which

panic-based runs can ensue. In addition, the paper shows how different repo contracting

terms, specifically the haircut and repurchase price, can have differential effects on collateral

providers’ incentives to run. Namely, when rolling over short-term contracts new haircuts

affect those choosing to roll over, whereas existing repurchasase prices affect all those that

participated initially. This provides another mechanism in which to disentangle different

repo contracting terms.

The results in this paper also pose a challenge for regulators concerned with the fragility

of large broker dealers. Much of the regulation introduced since the 2007–09 is designed to

monitor and restrict the repo contracting terms to avoid runs from the liability side. This

paper cautions that this focus is too narrow. Given that the total amount of collateral

received is an important source of liquidity, fragility can present itself on the asset side of

the balance sheet, as well.

Policy prescriptions that could address the source of fragility studied in this paper might

be to restrict the amount of over-collateralization in dealers’ rehypothecation activity, which

effectively limits the cash windfall dealers are able to extract, or to restrict dealers’ rein-

vestment of said cash windfall. This type of policy intervention can be implemented using

existing rules that limit rehypothecation in other contexts, but the overall impact must also

balance the effect these rules may have on market functioning. These are important areas

of future research.
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Appendices

A Proofs

Proof of Lemma 1

For values of θ such that a run of the dealer is possible, i.e., µR < 1, or equivalently ∆F0 +λRθ∆m0 < 0,

the default threshold, µI , is always lower than the run threshold, µR, if λRθ∆F1 + RU∆m1 > 0. The

latter expression can be written as λRθ∆F1 + RU∆m1 > (RU∆m0∆m1 − ∆F0∆F1)/∆m0 using the fact

that ∆F0 + λRθ∆m0 < 0 and ∆F0,∆F1 < 0. Given that ∆m1 ≥ −∆F0 from condition C0 in (1),

RU∆m0∆m1 −∆F0∆F1 > −∆F0(RU∆m0 + ∆F1) > 0, using condition C2 in (8). For ∆F1 = 0, µI = µR.

Finally, to ensure that the dealer will begin to sell before it comes insolvent, i.e., µS < µI , we also need

RU∆m1∆m0 −∆F1∆F0 > 0, which we proved above.

Proof of Lemma 2

From (18), and using T = FM0 and mM
0 from the money funds problem, we get that:

−∆F0

[∫ 1

θ∗
dθ +

∫ θ∗

0

f(1, θ)dθ

]
≥ ∆m0 ⇒ −∆F0 > ∆m0, (A.1)

because
∫ 1

θ∗
dθ +

∫ θ∗
0
f(1, θ)dθ < 1. This proves claim 1.

Combining (A.1) and (1), we get that ∆m1 > ∆m0. This proves claim 2.

Proof of Lemma 3

The lower dominance region is defined by the values of θ for which an individual hedge fund chooses to

withdraw even if other hedge funds do not. The utility differential between rolling over and withdrawing

when µ = 0 from (12) and (16) is UH(0, θ; 1)− UH(0, θ; 0) = θ[(η − 1)T −∆F1] + (1− θ)[RD∆m0 + ∆F0 +

∆m1] − η∆m1, where we have substituted the equilibrium conditions FMt = T and mM
t = 0 derived in

section 3.2. Given that the differential is increasing in θ the lower dominance region comprises of values for

θ ≤ θLD, where θLD is the solution to UH(0, θLD; 1)− UH(0, θLD; 0) = 0, i.e.,

θLD =
(η − 1)∆m1 −RD∆m0 −∆F0

(η − 1)T −RD∆m0 −∆F0 −∆m1 −∆F1
.

The lower dominance threshold θLD is greater than zero because, from Lemma 2 and RD < 1, RD∆m0 +

∆F0 < (RD − 1)∆m0 < 0, and from condition (7) RD∆m0 + ∆F0 + ∆m1 + ∆F1 < 0. It is also lower than

one because (η − 1)T −∆F1 > η∆m1 from the period 1 participation constraint (19).

The upper dominance region is defined by the values of θ for which an individual hedge fund rolls over

even if all other hedge funds withdraw. First, we need to guarantee that for θ ≥ θUD, the dealer has enough

liquidity to serve all early withdraws, i.e., λRθ∆m0 + ∆F0 ≥ 0. Given that the last expression is increasing
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in θ, the upper dominance threshold is the root, i.e.,

θUD = − ∆F0 + λRD∆m0

λ(RU −RD)∆m0
.

The upper dominance threshold θUD is greater than zero because, from Lemma 2 and λRD < 1, ∆F0 +

λRD∆m0 < (λRD − 1)∆m0 < 0. To show that θUD is lower than one, we impose a binding partic-

ipation constraint (18), which is always the case under the equilibrium contract terms. Then, θUD =

(g(θ∗) − λRD)/(λRU − λRD), where g(θ∗) is given by (20), and is smaller than one if g(θ∗) < λRU .

Substituting the expression for g(θ∗), the latter condition can be written as X (θ∗) ≡ λ(RU − RD)θ∗2 −
2λ(RU − RD)θ∗ + 2(λRU − 1) > 0. X does not have real roots because the discriminant 4λ(RU −
RD)

[
λ(RU −RD)− 2(λRU − 1)

]
< 0 given the restriction λ(RU +RD)/2 > 1.

We have shown that for θ ≥ θUD, the hedge fund believes the liquidation price is high enough to avoid a

liquidity default. Now we must ensure that the hedge fund in fact wants to roll over. To conclude the proof,

we need to show that for θ ≥ θUD and µ → 1, the utility differential between rolling and withdrawing for

an individual hedge fund is positive. Technically, we need to check whether an infinitesimal hedge fund with

mass ε that deviates from the strategy of other fund that withdraw can repurchase its collateral at t = 2. In

other words, we need to check whether the dealer default on the remaining −ε∆F1 obligations when ε→ 0.

The dealer will not default if the value of her remaining asset is higher that her remaining obligations, i.e.,

limµ→1G
U
I (µ, θ)/(−∆F1) > 1 with GUI (µ, θ) given by (10). Changing variables such that µ = 1 − ε and

substituting λRθ∆m0 = λRθUD∆m0 + Ω(θ)∆m0, where Ω(θ) ≥ 0 because θ ≥ θUD, we get that:

lim
ε→0

GUI (1− ε, θ)
−∆F1

=− RU

λRθ
lim
ε→0

λRθUD∆m0 + Ω(θ)∆m0 + ∆F0 + ε∆m1

ε∆F1

= − RU

λRθ

∆m1

∆F1
+

Ω(θ)∆m0

∆F1
lim
ε→0

1

ε
,

where we used the fact that λRθUD∆m0+∆F0 = 0 from the definition of θUD. Given that limε→0
Ω(θ)∆m0

ε∆F1
→

∞ for θ > θUD, it suffices to show that for θ = θUD, i.e., Ω(θ) = 0 irrespective of the value of ε, the limit

converges to a value higher than 1. Using λRθUD∆m0 + ∆F0 = 0, we get that the limit converges to

−(RU∆m1/(λRθUD∆F1) = RU∆m0∆m1/(∆F0∆F1), which is greater than 1 because, as proved in Lemma

1, RU∆m0∆m1 − ∆F0∆F1 > 0. Hence, the dealer will not default at t = 2 if RU realizes and the hedge

fund will be able to repurchase its collateral.

If, instead RD realizes at t = 2, the limit is

lim
ε→0

GUI (1− ε, θ)
−∆F1

= − R
D

λRθ

∆m1

∆F1
+

Ω(θ)∆m0

∆F1
lim
ε→0

1

ε
.

Again, for the θ > θUD, the second term goes to infinity and the dealer does not default. But, for θ = θUD,

the limit goes to −(RD∆m1/(λRθUD∆F1) = RD∆m0∆m1/(∆F0∆F1). Using conditions (1) and (7) we get

that RD∆m0 + ∆F1 < 0 and, hence, the limit is higher than 1 for ∆m1 > ∆F0∆F1/(R
D∆m0) > −∆F0
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and less than one otherwise. If the former case, the dealer does not default and the hedge fund is able to

repurchase its collateral. In the latter case, the dealer defaults and the hedge fund gets −RD∆m1∆m0/∆F0.

In most cases described above the dealer does not default either in the good or in the bad state and it is

straightforward that the hedge fund’s period 1 participation constraint (19) is satisfied. Thus, the hedge fund

rolls over its collateral. However, for the special cases that θ = θUD and ∆m1 ∈ [−∆F0,∆F0∆F1/(R
D∆m0)],

the dealer defaults in the bad state. A sufficient condition such that the period 1 participation con-

straint is satisfied is −RD∆m1∆m0/∆F0 ≥ GDS (0, θ) = RD∆m0 + ∆F0 + ∆m1. For the lower bound

on ∆m1 = −∆F0 the latter relationship becomes RD∆m0 ≥ RD∆m0, while for the upper bound on

∆m1 = ∆F0∆F1/(R
D∆m0) it becomes ∆F1 < RD∆m0 + ∆F0 + ∆F1, which is always true because of

condition (7). Given that both sides of the inequality are monotonically increasing in ∆m1, we conclude

that the repayment is the case of default is higher than GDS (0, θ) and, thus, the participation constraint is

satisfied.

Note that the participation constraint (19) holds for θ ≥ θ∗, while in all the aforementioned cases the

utility differential is computed for θUD > θ∗. Hence, the participation constraint is easily satisfied for

θ ≥ θUD and an individual hedge fund will always roll over even if all other hedge fund withdraw.

Proof of Proposition 1

The proof follows Goldstein and Pauzner (2005), but introduces additional steps and derivations due to

the complexity accruing from the limited liability of the dealer and the fact that the liquidation value of the

risky project depends on θ.

An equilibrium with threshold x∗ exists only if ∆(x∗, x∗) = 0 given by (25). Consider a potential

threshold x′. We will show that x′ exists and it satisfies (25) at exactly one point, ξ′ = ξ∗.

By the existence of θLD and θUD in Lemma 3, ∆(x′, x′) is negative for x′ < θLD − ε and positive for

x′ > θUD + ε. Thus, it suffices to show that ∆(x′, x′) is continuous in x′ to establish that a threshold

equilibrium exists. It is convenient to write the utility differential ∆(x′, x′) as ∆(x̂+ ∆x, x̂+ ∆x) for some

x̂ such that ∆x is the change in both the signal that the marginal hedge fund receives and the threshold

strategy. Then,

∆(x̂+ ∆x, x̂+ ∆x) =
1

2ε

∫ x̂+∆x+ε

x̂+∆x−ε
ν(µ(θ, x̂+ ∆x), θ)dθ

=
1

2ε

∫ x̂+ε

x̂−ε
ν(µ(θ + ∆x, x̂+ ∆x), θ + ∆x)dθ

=
1

2ε

∫ x̂+ε

x̂−ε
ν(µ(θ, x̂), θ + ∆x)dθ, (A.2)

because µ(θ+ ∆x, x̂+ ∆x) = µ(θ, x̂) from (21). In other words, the marginal hedge fund’s belief about how

many other hedge funds withdraw is unchanged when its private signal and the threshold strategy change by

the same amount. Yet, it expects the θ to be higher for ∆x > 0 and lower for ∆x < 0 which is reflected in

the calculation of ν(µ(θ, x̂), x+ ∆x). Thus, we need to show that for a given distribution of µ′s the integral
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in (A.2) is continuous in ∆x.

The integrand ν(µ(θ, x̂), θ+∆x) in (A.2) is a piecewise function such that each sub-function is computed

over a distribution of µ unaffected by ∆x, but the interval for each sub-function depends on ∆x apart from

µ ∈ [0, µS) in (2). In other words, µI and µR given by (11) and (3), respectively, move with θ+∆x. Note that

θ always lies between x̂−ε and x̂+ε, hence only ∆x will matter. Given that the distribution of µ is unchanged,

we can compute the levels of threshold θ′s as functions of ∆x, such that µ(θµS (∆x), x̂) = µS(θµS (∆x)+∆x),

µ(θµI (∆x), x̂) = µI(θµI (∆x) + ∆x) and µ(θµR(∆x), x̂) = µR(θµR(∆x) + ∆x) as follows:44

µ(θµS (∆x), x̂) = µS(θµS (∆x) + ∆x)

⇒ x̂− θµS (∆x) + ε

2ε
= 1 +

∆F0

∆m1
, (A.3)

µ(θµI (∆x), x̂) = µI(θµI (∆x) + ∆x)

⇒ x̂− θµI (∆x) + ε

2ε
= 1 +

RU (∆F0 + λRθµI (∆x)+∆x∆m0)

λRθµI (∆x)+∆x∆F1 +RU∆m1

, (A.4)

µ(θµR(∆x), x̂) = µR(θµR(∆x) + ∆x)

⇒ x̂− θµR(∆x) + ε

2ε
= 1 +

∆F0 + λRθµR (∆x)+∆x∆m0

∆m1
. (A.5)

Because the number of hedge funds withdrawing decreases as fundamentals improve for given strategy

threshold (see equation (21)), we have θµR(∆x) < θµI (∆x) < θµS (∆x), which is the reverse ordering of µS ,

µI and µR from Lemma 1. Thus, using (23), (A.2) can be written as:

∆(x̂+ ∆x, x̂+ ∆x) =

1

2ε

∫ θµR (∆x)

x̂−ε
−ηλRθ+∆x∆m0 + ∆F0 + ∆m1

µ(θ, x̂)
dθ

+
1

2ε

∫ θµI (∆x)

θµR (∆x)

[
(θ + ∆x)GUI (µ(θ, x̂), θ + ∆x) + (1− (θ + ∆x))GDI (µ(θ, x̂), θ + ∆x)− η∆m1

]
dθ

+
1

2ε

∫ θµS (∆x)

θµI (∆x)

[
(θ + ∆x)[(η − 1)T −∆F1] + (1− (θ + ∆x))GDI (µ(θ, x̂), θ + ∆x)− η∆m1

]
dθ

+
1

2ε

∫ x̂+ε

θµS (∆x)

[
(θ + ∆x)[(η − 1)T −∆F1] + (1− (θ + ∆x))GDS (µ(θ, x̂), θ + ∆x)− η∆m1

]
dθ. (A.6)

44Note that for θ∗ and x∗, then µ(θ∗, x∗) = µR(θ∗), which yields (22).
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Then, ∆(x̂+∆x, x̂+∆x) in (A.6) is continuous in ∆x, because all the integrands are bounded and continuous,

θµI and θµR change continuously with ∆x from (A.4) and (A.5) (θµS doesn’t move from (A.3)), and the

discontinuity in ν occurs only at one discrete point, θµI . Hence, a threshold equilibrium exists.

We will now establish that the threshold equilibrium is unique. By implicitly differentiating (A.4) and

(A.5) we get:

dθµI (∆x)

d∆x
= −

2εΓθµI (RU −RD)

1 + 2εΓθµI (RU −RD)
< 0 (A.7)

because ΓθµI ≡ λR
U (RU∆m0∆m1 −∆F0∆F1)/(λRθµI (∆x)+∆x∆F1 +RU∆m1)2 > 0 from Lemma 1, and

dθµR(∆x)

d∆x
= −

2εΓθµR (RU −RD)

1 + 2εΓθµR (RU −RD)
< 0, (A.8)

because ΓθµR ≡ λ∆m0/∆m1 > 0

The derivative of (A.6) with respect to ∆x is:

d
∆(x̂+ ∆x, x̂+ ∆x)

d∆x
=

− 1

2ε

∫ θµR (∆x)

x̂−ε
η
λ(RU −RD)

µ(θ, x̂)
dθ − 1

2ε

dθµI (∆x)

d∆x
(θµI (∆x) + ∆x)(η − 1)T +

1

2ε

∫ θµI (∆x)

θµR (∆x)

RU −RD

1− µ(θ, x̂)
∆m0dθ

+
1

2ε

∫ θµS (∆x)

θµI (∆x)

[
(η − 1)T −∆F1 −GDI (µ(θ, x̂), θ + ∆x) + (1− θ −∆x)

dGDI (µ(θ, x̂), θ + ∆x)

d∆x

]
dθ

+
1

2ε

∫ x̂+ε

θµS (∆x)

[
(η − 1)T −∆F1 −GDS (µ(θ, x̂), θ + ∆x)

]
dθ. (A.9)

The third, fourth and fifth terms in (A.9) are positive – dGDI (µ(θ, x̂), θ + ∆x)/d∆x = −(RD(RU −
RD)(∆F0 + (1− µ)∆m1)/(λ(1− µ)R

2

θ+∆x) > 0 in the respective region of fundamentals. The second term

in (A.9) represents the utility change from changing the threshold θµI (∆x) where default occurs and hedge

funds forfeit the extra benefit η − 1 and is positive due to (A.7). However, the first term, which correspond

to the change in the range that the run occurs, is negative. In order to establish that the positive terms

outweigh the negative term we will evaluate (A.9) at a candidate threshold x̂, which we know that exists. If

the derivative is positive at candidate threshold, we can conclude that (A.6) does not cross zero from above

and, given continuity, the threshold is unique. Using (A.6), we can derive the following lower bound for
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(A.9):

d
∆(x̂+ ∆x, x̂+ ∆x)

d∆x
>

1

2ε

∫ θµR (∆x)

x̂−ε
η
λRθ+∆x∆m0 + ∆F0 + ∆m1 − λ(RU −RD)∆m0

µ(θ, x̂)
dθ

− 1

2ε

dθµI (∆x)

d∆x
(θµI (∆x) + ∆x)(η − 1)T

+
1

2ε

∫ θµI (∆x)

θµR (∆x)

[
η∆m1 +

RU −RD

1− µ(θ, x̂)
∆m0 −

Rθ+∆x∆m0 + 1/λ[∆F0 + (1− µ(θ, x̂))∆m1]

1− µ(θ, x̂)

]
dθ

+
1

2ε

∫ θµS (∆x)

θµI (∆x)

[
η∆m1 −GDI (µ(θ, x̂), θ + ∆x) + (1− θ −∆x)

GDI (µ(θ, x̂), θ + ∆x)

d∆x

]
dθ

+
1

2ε

∫ x̂+ε

θµS (∆x)

[
η∆m1 −GDS (µ(θ, x̂), θ + ∆x)

]
dθ. (A.10)

From the lower dominance region, the last three terms on the right-hand side are positive. The second term

in also positive as mentioned above. The first term is always positive if (x̂−ε−1)(RU−RD)+RD > 0, which

in general would not be true for low values of RD and certainly not true for RD = 0. Thus, we consider that

(x̂− ε− 1)(RU −RD) +RD < 0 and show that the negative part is outweighed by the other positive terms

given that noise is not too big. Taking the first and third terms in (A.10) in isolation we obtain:

1

2ε

[(
θµI(∆x) − θµR(∆x)

)
η∆m1 − 2ε(θµR(∆x) − x̂+ ε)ηλ∆m0(RU −RD)

]
+ Ω

=η
[
(µ(θµR(∆x), x̂)− µ(θµI (∆x), x̂)) ∆m1 − 2ελ∆m0(RU −RD)µ(θµR(∆x), x̂)

]
+ Ω, (A.11)

where

Ω =
1

2ε

∫ θµI (∆x)

θµR (∆x)

[
(RU −RD)∆m0 −Rθ+∆x∆m0 − 1/λ[∆F0 + (1− µ(θ, x̂))∆m1]

1− µ(θ, x̂)

]
dθ

+
1

2ε

∫ θµR (∆x)

x̂−ε
η
λ∆m0R

D + ∆F0 + ∆m1

µ(θ, x̂)
dθ

− ηλ∆m0(RU −RD)(1− x̂− ε) [1− ln (µ(θµR(∆x), x̂))] ln(2ε) > 0. (A.12)

(A.11) is positive for small enough noise, satisfying

ε < εA ≡ (µR(θµR(∆x) + ∆x)− µI(θµI (∆x) + ∆x)) ∆m1

2λ∆m0(RU −RD)µR(θµR(∆x) + ∆x)
, (A.13)
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using (A.4) and (A.5).

The second and third terms in (A.12) are positive given that ε < 1/2. The first term is unambiguously

positive if (1− θ)(RU −RD)−RD > 0. Thus, θ should be lower than (RU − 2RD)/(RU −RD). Given that

a threshold equilibrium exists, the threshold for fundamentals θ∗ is between the upper and lower dominance

regions and, thus, bounded above by a hypothetical threshold θ̄, which solves λRθ̄ − g(θ̄) = 0, where g(·) is

given by (20). This threshold is given by:

θ̄ = 1−

√
1− 2(1− λRD)

λ(RU −RD)
. (A.14)

From (22) the upper bound for the signal threshold is θ̄+ ε, and a hedge fund that receives threshold signals

believes that θ∗ can be at most θ̄. Hence, the first term in (A.12) is positive if

ε < εB ≡ 1

2

(
RU − 2RD

RU −RD
− θ̄
)
, (A.15)

where εB > 0 because λRU > 2. In sum, the threshold equilibrium is uniqueness for ε < min (εA, εB) given

by (A.13) and (A.13).

To conclude the proof we need to show that the threshold equilibrium is indeed an equilibrium, i.e.,

∆(xi, x
∗) in (24) is positive for all xi > x∗, and negative for all xi < x∗. The steps (and notation) below are

the same as in Goldstein and Pauzner (2005).

First, consider that xi < x∗. Then we can decompose the intervals [xi − ε, xi + ε] and [x∗ − ε, x∗ + ε]

into a common part c = [xi − ε, xi + ε] ∩ [x∗ − ε, x∗ + ε], and two disjoint parts di = [xi − ε, xi + ε]\c and

d∗ = [x∗ − ε, x∗ + ε]\c. Thus, (24) and (25) can be written as:

∆(xi, x
∗) =

1

2ε

∫
θ∈c

ν(µ(θ, x∗), θ)dθ +
1

2ε

∫
θ∈di

ν(µ(θ, x∗), θ)dθ, (A.16)

∆(x∗, x∗) =
1

2ε

∫
θ∈c

ν(µ(θ, x∗), θ)dθ +
1

2ε

∫
θ∈d∗

ν(µ(θ, x∗), θ)dθ. (A.17)

From (23), ν is always one over di, thus
∫
θ∈di ν(µ(θ, x∗), θ)dθ < 0. As a result, it suffices to show

that
∫
θ∈c ν(µ(θ, x∗), θ)dθ < 0. ν only crosses zero once and it is positive for higher values of θ and neg-

ative for lower values of θ in the interval [x∗ − ε, x∗ + ε]. Hence, given that (A.17) is zero, we get that∫
θ∈d∗ ν(µ(θ, x∗) > 0 and

∫
θ∈c ν(µ(θ, x∗), θ)dθ < 0, since the fundamentals are higher over d∗ than c. Es-

sentially, observing a signal xi below x∗ shifts probability from positive values of ν to negative values of ν

because noise is uniformly distributed. Note that the argument goes through even if the interval c is empty.

The proof for xi > x∗ is similar.

Proof of Proposition 2
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In a threshold strategy equilibrium, the dealer’s optimization problem has the following Lagrangian,

L =
1

2
(1− θ2)u(RU∆m0 + ∆F1 + ∆F0 + ∆m1)

−ξ0(∆F0 + g(θ)∆m0) + ξPL(∆m1 + ∆F0)− ξDD(RD∆m0 + ∆F0 + ∆m1 + ∆F1) + ξV V (θ).(A.18)

Taking the first order conditions with respect to the contract terms and the run threshold gives:

∂L
∂∆m0

=
1

2
(1− θ2)u′(RU∆m0 + ∆F1 + ∆F0 + ∆m1)RU − ξ0g(θ∗)− ξDDRD + ξV

∂V

∂∆m0
= 0, (A.19)

∂L
∂∆m1

=
1

2
(1− θ2)u′(RU∆m0 + ∆F1 + ∆F0 + ∆m1) + ξPL − ξDD + ξV

∂V

∂∆m1
= 0, (A.20)

∂L
∂∆F0

=
1

2
(1− θ2)u′(RU∆m0 + ∆F1 + ∆F0 + ∆m1)− ξ0 + ξPL − ξDD + ξV

∂V

∂∆F0
= 0, (A.21)

∂L
∂∆F1

=
1

2
(1− θ2)u′(RU∆m0 + ∆F1 + ∆F0 + ∆m1)− ξDD + ξV

∂V

∂∆F1
= 0, (A.22)

∂L
∂θ

= −θu(RU∆m0 + ∆F1 + ∆F0 + ∆m1)− ξ0g′(θ)∆m0 + ξV
∂V

∂θ
= 0, (A.23)

where g(θ) is given by (20) and g′(θ) = (g(θ)− λRθ)/(1− θ).
The global games expression holds always will equality in equilibrium, i.e., ξV 6= 0. Moreover, we

conjecture that the participation constraint in t = 0, the positive liquidity injection constraint, and the

dealer default constraint are all binding in equilibrium, i.e., ξ0, ξPL, ξDD > 0. These constraints pin down

the optimal ∆F0, ∆m1 and ∆F1 as functions of θ and ∆m0 such that ∆F0 = −g(θ)∆m0, ∆m1 = −∆F0 =

g(θ)∆m0 and ∆F1 = −RD∆m0. Substituting in the conjectured contract terms, the global game expression

V (θ) = 0 (the detailed expression is reported in (B.31) in Appendix B) becomes:

θ(η − 1)µI + h(θ)∆m0 = 0, (A.24)

where µI = λRθ(R
U −RD)/(g(θ)RU − λRθRD), µR = λRθ/g(θ), and

h(θ) = θRDµI − ηg(θ)µR +
g(θ)

λ
(µR − µI) +

(λRθ − g(θ))

λ
ln

(
1− µI
1− µR

)
+ ηλRθ ln(µR)

+ (1− θ) R
D

λRθ

[
g(θ)µI − (λRθ − g(θ)) ln(1− µI)

]
. (A.25)

Subtracting A.20 from A.21 gives an expression for ξ0, which substituted in A.23 gives us the following

expression

ξV =
θu(RU∆m0 + ∆F1 + ∆F0 + ∆m1)

∂V
∂θ − g′(θ)∆m0

(
∂V
∂∆F0

− ∂V
∂∆m1

) .
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Using the expression for ξV , and equation (A.22) to solve for ξD, equation (A.19) gives

1

2
(1− θ2)u′((RU −RD)∆m0(θ))(RU −RD) +

θu
(
(RU −RD)∆m0(θ)

)
h(θ)

∂V
∂θ −∆m0(θ)g′(θ)

(
∂V
∂∆F0

− ∂V
∂∆m1

) = 0, (A.26)

where we used the fact the h(θ) = ∂V
∂∆m0

− g(θ)
(

∂V
∂∆F0

− ∂V
∂∆m1

)
− ∂V

∂∆F1
RD when the partial derivatives

of V (θ) are evaluated at the conjectured contract terms (the detailed expressions for these derivatives are

reported in (B.32)-(B.36) in Appendix B).

Using the above characterization, and the expression for ∆m0(θ∗) in equation (A.24), reduces the problem

down to one equation (A.29) for the equilibrium θ∗. We proceed to show that a solution θ∗ ∈ (θLD, θUD)

exists. Recall that 0 < θLD, θUD < 1 from Lemma 3, which will also verify in equilibrium (see last part of

the proof).

As a first step, consider the hypothetical upper bound θ̄ = 1 −
√

(λRU + λRD − 2)/(λ(RU −RD)).

This upper bound was used to show the uniqueness of threshold strategy, derived it in (A.14). Then,

∆m0(θ̄) = θ̄(η − 1)/(ηλRθ̄ −RD), which is strictly positive if RD < ηRU/(η +RU ).

Next, consider a θ′ relatively close to θ̄. In that case, because ∆m0(θ) is continuous and ∆m0(θ̄) =

θ̄(η − 1)/(ηλRθ̄ −RD) is strictly greater than zero, ∆m0(θ′) is strictly positive. In addition, (λRθ′ − g(θ′))

is very close to zero, ∂V/∂θ is finite and positive, and h(θ′) is negative. Thus for a dealer sufficiently risk

averse, i.e., u′ small enough, the left-hand side of equation (A.29) is negative. Moreover, for θ′′ = 0, f(0) is

finite, because λRD < 1 implying that µI , µR ∈ (0, 1), and therefore ∆m0(0) = 0. Hence, for θ′′ = 0, the

left-hand side of (A.29) becomes 1/2u′(0)(RU −RD) > 0. Because of continuity there exists θ∗ between zero

and θ̄ such that the equation holds.

Finally, given that λR̄θ − g(θ) is an increasing function in θ, λR̄θ∗ − g(θ∗) < 0, and hence lower

than θUD. In addition, for any ∆m0(θ∗) solving (A.24), we know from Corollary 1 that the participa-

tion constraint (19) in period 1 is not binding for θ∗. Rearranging (19), we get that η − 1 − ∆F1 >

(η∆m1 − (1 − θ∗)(RD∆m0 + ∆F0 + ∆F1))/θ∗, which implies that θLD < θ∗ by substituting the latter ex-

pression in the definition of θLD in Lemma 3. These observations ensures that θ∗ ∈ (θLD, θUD), completing

the proof.

Proof of Corollary 2

With RD = 0 the proposed equilibrium has ∆F1 = 0, therefore µI = µR = λRθ
g(θ) := fµR(θ, λRU ), allowing

us to solve for ∆m0 as a function of θ (from V (θ) = 0 ) and the relevant partial derivatives of V

∆m0 =
(η − 1)θ

ηg(θ) (1− ln (fµR))
,
∂V

∂θ
= (η − 1)

(
2− ln (fµR)

1− ln (fµR)

)
fµR , and

∂V

∂∆F0
− ∂V

∂∆m1
= η (2− ln (fµR)) fµR

This gives the following expression for ∂V
∂θ − g

′(θ)∆m0

(
∂V
∂∆F0

− ∂V
∂∆m1

)
and h(θ):

(η − 1)

(1− θ)

(
2− ln (fµR)

1− ln (fµR)

)
fµR (1− θ − (1− fµR)θ) and − ηλRθ(1− ln(fµR)),
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respectively. Replacing this expression in (28) results in the expression in the Corollary, which we can rewrite

as,

T (θ) := (1 + θ) [(1− θ)− θ (1− fµR)] (2− ln (fµR))− 2θ2 (1− ln (fµR)) = 0

To ensure the existence of an equilibrium we have to determine under what conditions T (θ) = 0 has a

solution. Because of continuity it suffices to show under what conditions T is positive and negative for the

possible limits of θ∗. Recall that from the proof of Proposition 28 we know that θ∗ must be below θ̄, defined

by λRθ = g(θ). 45

Note that,

lim
θ−→0

T (θ) =∞ and lim
θ−→θ̄

T (θ) = 2(1− 2θ̄2)

therefore we have to ensure that 1 < 2θ̄2. Using the expression for θ̄ = 1 −
√

1− 2/λRU the inequality is

reduced to 7(λRU )2 − 8λRU − 16 < 0 which holds for λRU < 4+8
√

2
7 . From Proposition 28 we also know

that λRU needs to be greater than 2. Therefore, a solution to the equation exists if λRU ∈
(

2, 4+8
√

2
7

)
(see

proof of proposition 2 for why θ∗ ∈ (θLD, θUD; same argument applies).

For the comparatives statics we rewrite the equilibrium condition as,

T (θ) = 2
(
1− θ − 3θ2 + θ(1 + θ)fµR

)
− ln (fµR)

(
1− θ − 4θ2 + θ(1 + θ)fµR

)
= 0 (A.27)

where fµR(θ, λRU ) = λRθ
g(θ) . It will be useful to note that from equation (A.27)

(
1− θ∗ − 4θ∗2

)
= − 2θ∗2

2− ln (fµR)
− θ(1 + θ∗)fµR < 0.

Taking the partial derivative of T with respect to λRU gives,

∂T

∂λRU
=

∂fµR
∂λRU

(
(1− ln (fµR))θ(1 + θ)− (1− θ − 4θ2)

1

fµR

)

which is positive in θ∗ because θ∗ > −1+
√

17
8 and

∂fµR
∂λRU

> 0. Because T (0) > 0 and T (θ̄) < 0, we know that

(at least one) θ∗ that solves T (θ∗) = 0 also satisfies ∂T
∂θ |θ=θ∗ < 0. Focusing on that equilibria, and invoking

the implicit function theorem, gives ∂θ∗

∂λRU
> 0.

Proof of Proposition 3

Because of money funds’ risk aversion we know that 1−FMt = mM
t , that is, the degree of money funds’

overcollateralization is equal to their haircut. Because hedge funds receive money funds’ overcollateralization

if a dealer defaults, hedge funds’ payoff after default—either through a bad asset outcome in t = 2 or a

collateral run in t = 1—increases by the degree of money funds overcollateralization, that is, mM
t . Specifically,

using equations (6) – (10) the payoff of hedge funds’ that roll over after a dealer default in t = 2 can be

expressed as ĜDS = GDS +mM
1 , ĜUI = GUI +mM

1 and ĜDI = GDI +mM
1 . Moreover, in case of a collateral run,

45θ∗ must be below θ̄ because λRθ − g(θ) is increasing and any feasible threshold equilibria requires that
the liquidation value λRθ∆m0 be below ∆F0.

53



hedge funds that do not get their collateral in t = 1 receive mM
0 , which they will value by η. As we will show

below, this will give hedge funds even more of an incentive to run.

Because the money funds haircut is always returned to the hedge fund, the expression of the t = 0

participation constraint in equation (18) does not change. The t = 1 participation constraint in equation

(19) can be rewritten as θ((η − 1) −∆F1) + (1 − θ)(∆F0 + ∆m1) ≥ η∆m1 + (η − 1)mM
1 , but, as before, it

remains slack due to the global game constraint. From these observations it is direct to see that Lemmas 1

and 2 still hold.

In this case, upper dominance takes the same functional form as in the original model (solves λRUθUD∆m0+

∆F0 = 0) and lower dominance is,

θ̂LD = θLD +
(η − 1)mM

1

(η − 1)− (∆F1 + ∆m1 + ∆F1)

where θLD is the lower dominance threshold in the original model. Because upper dominance takes the same

expression as before, and because lower dominace is larger than the original expression and the participation

constraint in t = 1, we have that ˆθUD, θ̂LD ∈ (0, 1).

We must ensure that for θ ≥ θUD and µ −→ 1, the dealer would not default on those hedge funds that

decide to roll over. That is, it suffices to show that for θ = θUD,

lim
ε−→0

ĜUI (1− ε, θUD)

−∆F1
=

RU∆m1

λRUθUD
+mM

1

−∆F1
=
RU∆m0∆m1

∆F0∆F1
+

mM
1

−∆F1
≥ 1

which holds because of condition 1 and 8. Thus, in this case, a hedge fund that deviates gets θUD((η− 1)−
∆F1) + (1 − θUD)(∆F0 + ∆m1) + mM

1 if it rolls over which is greater than η(∆m1 + mM
1 ) if it does not

because of t = 1 the participation constraint.

Putting all these observations together implies that in this case hedge funds differential ν̂, and its integral

V̂ are expressed as

ν̂(µ, θ) =



ν − (η − 1)mM
1 µ ∈ [0, µS)

ν − (η − 1)mM
1 µ ∈ [µS , µI)

ν − (η − 1)mM
1 µ ∈ [µI , µR)

ν µ ∈ [µR, 1]

and V̂ = V − µR(η − 1)mM
1 (A.28)

where ν and V are the expressions of the utility differential in the original model. Intuitively, because hedge

funds receive the money funds haircut, regardless of what happens to the dealer, the only difference in the

utility differential is when hedge funds can access those funds for investing in Treasuries to capture η. In

particular, for those agents that decide to roll over, if there is no run they access those funds in t = 2 while

if there is a run they access those funds in t = 1.

Given that the V̂ is different that in the original model, we show briefly that the run threshold is unique

under minimum haircuts as well. For ease of exposition, we focus on the limiting case that noise goes to
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zero. At the threshold, θ∗, we have that V̂ = 0 or (η − 1)(θ∗ − m) − ηg(θ∗)(1 − log(λRθ∗/g(θ∗)))∆m0.

Then, taking the derivative with respect to θ and evaluating it at θ = θ∗—employing V̂ = 0—we get

dV ∗/dθ = θ∗−1[(η − 1)m+ (2− log(λRθ∗/g(θ∗)))η∆m0(λRU − g(θ∗)θ∗/(1− θ∗)] > 0, because λRU > g(θ∗)

from upper dominance. Hence, using the same argument as in the original model, θ∗.

Therefore to the new dealer’s optimization problem is exactly the same before except now V̂ = V −
µR(η − 1)mM

1 = 0 is the global game condition and mM
t ≥ m.46. The Lagrangian in this case, L̂, has two

additional multipliers corresponding to the lower bound on mM
0 and mM

1 . Taking the derivative for mH
t and

mM
t separately, we have that ∂L̂

∂mH0
= − ∂L̂

∂mM0
+ ξ

0
and ∂L̂

∂mH1
= − ∂L̂

∂mM1
− ξV µR(η− 1) + ξ

1
. Conjecturing that

ξ0 = 0 and ξ1 = ξV µR(η − 1) give the following set of first order conditions:

∂L̂
∂mH0

= ∂L
∂∆m0

− ξV (η − 1)
mM1
∆m1

λRθ = 0, ∂L̂
∂mH1

= ∂L
∂∆m1

− ξV (η − 1)
mM1
∆m1

(1− µR) = 0,

∂L̂
∂∆F0

= ∂L
∂∆F0

− ξV (η − 1)
mM1
∆m1

, ∂L̂
∂∆F1

= ∂L̂
∂∆F1

= 0,
∂L̂
∂θ = ∂L

∂θ − ξV (η − 1)
mM1
∆m1

λRU .

With RD = 0, the proposed equilibrium has ∆F1 = 0, therefore µI = µR = λRθ
g(θ) := fµR(θ, λRU ).

Evaluating in the conjectured equilibrium and subtracting ∂L̂
∂mH1

from ∂L
∂∆F0

gives an expression for ξ0, which

substituted in equation ∂L̂
∂θ gives

ξV =
θu(RU∆m0)

∂V
∂θ − g′(θ)∆m0

(
∂V
∂∆F0

− ∂V
∂∆m1

)
+ (η − 1)mg (fµRg

′ − λRU )

Using the expression for ξV , under risk neutrality, ∂L̂
∂mH0

gives

1

2
(1− θ2)∆m0(θ) +

θ∆m0(θ)ηλRθ(1− ln(fµR))

∂V
∂θ −∆m0(θ)g′(θ)

(
∂V
∂∆F0

− ∂V
∂∆m1

)
+ (η − 1)mg (fµRg

′ − λRU )
= 0, (A.29)

We solve for ∆m0 as a function of θ (from V̂ (θ) = 0 ) and the relevant partial derivatives of V̂

∆m0 =
(η − 1)(θ −m)

ηg(θ) (1− ln (fµR))
,

∂V̂

∂θ
= (η − 1)

2−
(
θ+m
θ

)
ln (fµR)

1− ln (fµR)

 fµR ,

and
∂V̂

∂∆F0
− ∂V̂

∂∆m1
=

(
1

θ −m

)
η (2θ − ln (fµR −m)) fµR

Placing these ingredients together allows us to solve for the expression in the Proposition, and assuming

46In equilibrium, mH
t ≥ m will not bind and any optimal solution will have ∆m0 > 0.
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θ > m, we have the following equilibrium expression,

T̂ (θ) = (1 + θ) [(1− θ)− θ (1− fµR)] (2− ln (fµR))− 2θ2 (1− ln (fµR))

+
m

θ −m
(1− θ2) (1− ln (fµR)) = 0

Note that the first term of T̂ coincides with the equilibrium condition in Corollary 2 when m = 0. As

before, to ensure the existence of an equilibrium we have to determine under what conditions T̂ (θ) = 0 has

a solution. Because of continuity it suffices to show under what conditions T̂ is positive and negative for the

possible limits of θ∗. Evaluating in θ = 0 and θ = θ̄ (defined by fµR(θ̄, λRU ) = 1, gives

Note that,

lim
θ−→0

T̂ (θ) =∞ and lim
θ−→θ̄

T̂ (θ) = 2(1− 2θ̄2) +
m

θ̄ −m
(1− θ̄2)

Therefore, we have to ensure that

2(1− 2θ̄2)θ̄ −m(1− 3θ̄2) < 0 (A.30)

Note that from the proof of Corollary 2 we know that 1 − 2θ̄2 is negative for the admisible λRU of the

propsition. Thus, there exists an m sufficiently small enough for the condition in equation (A.30) to hold.

Thus, there exists a θ∗ such that T̂ (θ) = 0.

For the comparatives statics, note that the derivative of T̂ with respect to m is

∂T̂

∂m
=

θ

(θ −m)2
(1− θ2) (1− ln (fµR)) > 0.

Because T̂ (0) > 0 and T̂ (θ̄) < 0, we know that (at least one) θ∗ that solves T̂ (θ∗) = 0 also satisfies
∂T̂
∂θ |θ=θ∗ < 0. Focusing on that equilibria, and invoking the implicit function theorem, gives ∂θ∗

∂m > 0.

B Detailed expression for V (θ∗) and its derivatives

Expanding (26), the threshold θ∗ is the solution to the V (θ∗) = 0 shown in (B.31) below.

V (θ∗) =θ∗ [(η − 1)−∆F1]µI − η∆m1µR +
∆m1

λ
(µR − µI) + (1− θ∗)∆m1µS

− (1− θ∗)∆F0 ln(1− µS) +
∆F0 + λRθ∗∆m0

λ
ln

(
1− µI
1− µR

)
+ η(λRθ∗∆m0 + ∆F0 + ∆m1) ln(µR)

+ (1− θ∗) R
D

λRθ∗

[
−λRθ∗∆m0 ln(1− µS) + (∆F0 + λRθ∗∆m0) ln

(
1− µS
1− µI

)
+ ∆m1(µI − µS)

]
.

(B.31)

The derivative of V (θ∗) with respect to the contract terms and θ∗ are shown in (B.32)–(B.36) below.
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∂V

∂∆m0
= θ∗(η − 1)

∂µI
∂∆m0

+Rθ∗ ln

(
1− µI
1− µR

)
+ ηλRθ∗ ln(µR) + (1− θ∗)RD

[
− ln(1− µS) + ln

(
1− µS
1− µI

)]
,

(B.32)

∂V

∂∆m1
= θ∗(η − 1)

∂µI
∂∆m1

− ηµR +
(µR − µI)

λ
+ (1− θ∗)µS + η ln(µR) + (1− θ∗) R

D

λRθ∗
(µI − µS), (B.33)

∂V

∂∆F0
= θ∗(η − 1)

∂µI
∂∆F0

− (1− θ∗) ln(1− µS) +
1

λ
ln

(
1− µI
1− µR

)
+ η ln(µR) + (1− θ∗) R

D

λRθ∗
ln

(
1− µS
1− µI

)
,

(B.34)

∂V

∂∆F1
= θ∗(η − 1)

∂µI
∂∆F1

− θ∗µI , (B.35)

∂V

∂θ∗
= θ∗(η − 1)

∂µI
∂θ∗

+ [(η − 1)−∆F1]µI −∆m1µS

+ ∆F0 ln(1− µS) + (RU −RD)∆m0 ln

(
1− µI
1− µR

)
+ ηλ(RU −RD)∆m0 ln(µR)

− RD

λRθ∗

[
−λRθ∗∆m0 ln(1− µS) + (∆F0 + λRθ∗∆m0) ln

(
1− µS
1− µI

)
+ ∆m1(µI − µS)

]
+ (1− θ∗)RD

[
−∆F0

(RU −RD)

λR
2

θ∗

ln

(
1− µS
1− µI

)
−∆m1

(RU −RD)

λR
2

θ∗

(µI − µS)

]
, (B.36)

with

∂µI
∂θ∗

=
λ(RU −RD)RU

(
RU∆m0∆m1 −∆F0∆F1

)
(λRθ∗∆F1 +RU∆m1)2

,
∂µI
∂∆m0

=
RUλRθ∗

λRθ∗∆F1 +RU∆m1

,

∂µI
∂∆m1

= −R
U (∆F0 + λRθ∗∆m0)RU

(λRθ∗∆F1 +RU∆m1)2
=

RU (1− µI)
λRθ∗∆F1 +RU∆m1

,
∂µI
∂∆F0

=
RU

λRθ∗∆F1 +RU∆m1

,

∂µI
∂∆F1

= −R
U (∆F0 + λRθ∗∆m0)λRθ∗

(λRθ∗∆F1 +RU∆m1)2
=

λRθ∗(1− µI)
λRθ∗∆F1 +RU∆m1

.
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C Interpretation of FRBNY’s Primary Dealer Survey

The model’s notation is useful to interpret the data from FRBNY’s primary dealer survey. The total amount

of funds distributed and collected (i.e., Securities In and Securities Out) can be interpreted as loans made

to hedge funds TI −mH and loans received from money funds TO −mM , respectively. In this case, TI is the

total amount of collateral received from hedge funds and TO is the total amount of collateral posted with

money funds. It is important to note that the total amount of collateral posted with money funds TO may

not necessarily come from hedge fund counterparties. That is, a fraction of collateral posted in Securities

Out can be part of the dealer’s own asset position. But when dealing in cash and secured financing markets,

dealers have a natural collateral restriction to follow, known as the box constraint. This constraint forces

dealers to have a non-negative stock of collateral. That is, denoting L and S the dealer’s long and short

position, respectively, the box constraint can be translated into

(L− S) + (TI − TO) ≥ 0.

That is, the amount of collateral owned and sourced must be larger than the amount of collateral sold and

posted.

In figure 2 we argue that the difference between Securities Out and Securities In plus net position is a

lower bound for the amount of liquidity coming from different haircuts. In effect,

(TO −mM )︸ ︷︷ ︸
sec−out

−((TI −mH)︸ ︷︷ ︸
sec−in

+(L− S)) ≤ (TO − TI) +mH −mM + (TI − TO) = mH −mM

where the inequality comes from imposing the box constraint.

An important caveat to this lower bound is that survey asks respondents to also report the total amount

of long and short positions in forward contracts.47 Because forward contracts are derivatives, they do not

enter into the box constraint, which is strictly a cash market restriction. Regrettably, we cannot tease out

how much the lower bound is attributable to haircut differences and how much is due to large forward

positions.

From Figure 2, we can see that in the last year of Bear Stearn’s activity, the estimated amount of

liquidity the firm captured through rehypothecation was at least between $10 and $50 billion, equivalent to

1/10 or 1/3 of its entire repo activity.

47Forwards are the only derivative contracts that are reported in the FR 2004.
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