An Active-Learning Exercise for Syllabus Day in Intermediate Microeconomics Dickinson Stephen Erfle, International Business and Management, Dickinson College

 ASSOCIATION1. Visualizing the Marginal Value of x Task 1. Visualizing z Slope in the \mathbf{x} Direction

The surface of the balloon $z(x, y)$ can represent a number of economic concepts including profits attained by a multi-product firm, $\pi(x, y)$
A partial derivative calculates slope a specific direction, in this instance, the x direction - This treats other variables (here y) as constants subscript rather than d or
If $\pi(x, y)=25 x-x^{2}+40 y-2 y^{2}+x y$, the partial with respect to x is: $\partial \pi / \partial \mathrm{x}=\boldsymbol{\pi}_{\mathrm{x}}=\mathbf{2 5 - 2 x + y}$ - Note that π_{x} varies as x varies for fixed y

The π-maximizing x for a given y occurs when $\pi_{\mathrm{x}}=0$ - $\pi_{x}=25-2 x+y=0$ occurs when $x=25 / 2+y / 2$
2. Visualizing the Marginal Value of Task 2. Visualizing z Slope in the y Direction - Marginal value of y, MV V, is $\Delta z / \Delta y$, the z slope in the y direction, holding x fixed (Imagine walking S to

The manainal value of y is in infinite ies. the ruerer is w

The slope in the y direction at any value of y, MV depends on the specific value of x that is being held fixed (as was the case for y when visualizing $M V_{x}$) - It is important to rotate the model clockwise 90° to look at the slope in the y direction from E to W This ensures that y increases to the right, just as x
increased to the right when we viewed the balloon from S to N in visualizing $M V_{x}$ in Task 1 If $\pi(x, y)=25 x-x^{2}+40 y-2 y^{2}+x y$, the partial
with respect to y is: $\partial \pi / \partial y=\pi_{y}=40-4 y+x$ The π-maximizing y for a given x occurs when $\pi_{y}=0$ - $\pi_{y}=40-4 y+x=0$ occurs when $y=10+x / 4$

Task 4. Level Sets, Tradeoff Ratios, and Constrained Optimization 4A.1 Estimating Δz in any Direction Tasks 1 and 2 focused on understanding how one describes
slope in two specific directions: $x, M V_{x}$ and $y, M V_{y}$ - We can use these slopes to describe the change in height
on the balloon that would occur if we move in any direction One way to describe the move uses points of a compass;
another uses change coordinates ($\Delta x, \Delta y$) - For eramole, a move to the North East (along a 45° ine) involves
moving $(\Delta x, \Delta y)$ where $\Delta x==\Delta y>0$

 -This change would be exact ithe surace was a p pane
The first componet is the chang in $\begin{aligned} & \text { duut to the ehange in } \\ & \text { and the seond is the change in } z \text { due to the change in } y\end{aligned}$

The algebraic counterpart re
equations in two unknowns:
a) constraint function \& b) Tradeoff ratio = price ratio $\begin{array}{ll}\text { a) } x+2 y=18 & \text { b) } T R=\pi x / \pi r=(25-2 x+y) /(40-4 y+x)=1 / 2\end{array}$ Solve for x in a) we obtain:
Cross-multiplying b) we obtai -Cross-multiplying b) we obtain: $50-4 x+2 y=40-4 y+x$
This simplififs to: $10-5 x+6 y=0$
-Substitute for xand solve for y : $10-5(18-2 y)+6 y=0$ Substitut for x and solve for $y: 10-5(18-2 y)+6 y=0$
$10-90+10 y+6 y=0,16 y=80$, or $y=5 \& x=18-2.5=8$ At $\mathrm{C}=(8,5)$, the $\mathrm{M} \mathrm{V}_{y}, \pi_{y}=28$, is twice as much as the
$\mathrm{M} \mathrm{V}_{x} \pi_{x}=14$, just as required because y is twice as costly as x (the opportunity cost implicit in the constraint) - And on the balloon, MV is twice as steep as $M V_{x}$ at C Both results are simply restatements of the Equal Barg
for-the-Buck rule learned in introductory economics
3. Using MV to find the Top of a Hill Task 3. Finding and Graphing the Top of
Hill using MV $=0 \& V_{V}=0$ Lines

This area has
postive MV and
 MvN. H is called he
Economic Region The MV $=0$ lines are the quadrants on the balloon
-The third quadrant is called the "economic region" -The third quadrant is called the "economic region
The of the hill occurs when $M V_{x}=0$ and $M V_{y}=0$ The (x, y) value where this occurs will differ from
balloon to balloon balloon to balloon

- Algebraically, we must solve two eq
unknowns to find the top of the hill
- There are many ways to osolve for x and y, one
involves
involves suing the horizontals sand verticicals lines
$x=25 / 2+y / 2$ and $y=10+x / 4$ imples $x=25 / 2+y / 2$ and $y=10+x / 4$ implies
$x=12.5+(10+x / 4 / 2=12.5+5+x / 8=17.5$ $x=12.5+(10+x / 4 / 2=12.5+5+x / 8=17.5+x / 8$
Subtract $x / 8$ from both sides: $(7 / 8) \cdot x=17.5$ So, $x=17.5 \cdot 8 / 7=20$ and $y=10+20 / 4=15$

Presented at the January 2020 ASSA, AEA Committee on Economic Education Annual Conference, San Diego, CA

