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Abstract

Participants in an experiment can engage in unobservable asset integration, mentally
incorporating their own non-experimental “field” resources into an otherwise controlled
scenario. This paper extends asset integration to include intertemporal tradeoffs like
consumption smoothing. A model of “lifecycle asset integration” shows that exoge-
nous and endogenous field resources cause different interference patterns. Exogenous
resources cannot be affected by the experiment, and so their interference can be con-
trolled by accounting for their level. Endogenous resources, by contrast, are highly
substitutable with the experiment, and their interference can be controlled only by
modeling the entire experiment-field interaction. The model’s practical implications
are investigated in the context of three classic laboratory experiments on risk and time:
one static (Holt and Laury, 2002) and two dynamic (Andersen et al., 2008; Andreoni
and Sprenger, 2012). As interference worsens, decisions in these tasks tend to exhibit
a kind of attenuation bias toward less risk aversion and more patience. Interference
occurs reliably when field resources are on household scales, but amounts on the scale
of pocket change can also cause problems.
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1 Introduction

Experiments that elicit risk and time preferences are susceptible to asset integration, a design

bypass that occurs when participants mentally incorporate their own financial resources into

a supposedly controlled scenario. Because asset integration is triggered by the scenario itself,

its impacts cannot be neutralized with randomization. As an unobservable mental process,

it can introduce a particularly unfortunate confound into post hoc utility estimates.

Although asset integration was first discussed in a static context (Kahneman and Tversky,

1979), it can appear in dynamic settings just as easily. But, asset integration’s current

adaptation to time is rudimentary: the non-experimental or “field” environment consists

merely of recurring static resources. If this is the correct interpretation of asset integration,

then the confound can be eliminated rather easily by including those resource levels in the

utility argument.

However, participants almost assuredly do not regard their own field environments as

mere successions of resources that they must take as given. Instead, they sew up those

field resources into a coherent lifecycle plan. That process taps intertemporal tradeoffs

that do not emerge under the recurring-static view. A well-known example is consumption

smoothing, which distributes temporally-unbalanced resources more evenly across time. We

use the term “lifecycle asset integration” to denote the complications that arise when lifecycle

factors confound an experiment.

In this paper, we develop a model of lifecycle asset integration, and examine its impli-

cations for experiments that investigate risk and time preferences. This model is rooted

in the two-period consumption-saving framework, the canonical theory of lifecycle decision

making under risk (Drèze and Modigliani, 1966, 1972; Leland, 1968; Sandmo, 1970; Roth-

schild and Stiglitz, 1971; Kimball, 1990; Eeckhoudt and Schlesinger, 2008; Kimball and Weil,

2009). Our extension merges an experimenter’s controlled experimental incentives with a

participant’s existing field environment, producing a joint optimization problem that involves

experimental and field smoothing.
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Our main theoretical result highlights a key difference in how exogenous and endogenous

field resources interact with an experiment. Exogenous resources are very much like the

recurring-static conception of the field. They have no associated smoothing instrument

(such as saving), and so they cannot be moved across time. Endogenous resources, on the

other hand, do involve a smoothing instrument, and therefore can be moved across time.

Endogenous field instruments that would be relevant in this context include participants’

credit cards and bank accounts.

An experiment has no effect whatsoever on exogenous field resources. As a consequence,

the appropriate post hoc correction for exogenous field resources is indeed to control for their

levels in the utility argument (Andersen et al., 2018). However, this simple ceteris paribus

control strategy is inadequate for endogenous field resources, because experimental and field

smoothing instruments can substitute for each other.

We argue that the marginal rate of substitution (MRS) between experimental and field

smoothing is likely to be near 1 in most circumstances, implying near-perfect substitution. In

other words, the existence of the experiment will actually alter the amount of field smooth-

ing, another component of the utility argument. Simply conditioning on pre-existing field

outcomes is insufficient in this case, because the experiment itself will change those outcomes.

The appropriate correction here is much more onerous: modeling the entire experiment-field

interaction, including the MRS.

To illustrate the practical effects of lifecycle asset integration, we numerically investigate

the model’s predictions in the context of three classic laboratory experiments: Holt and

Laury (2002)’s risk aversion task (HL), Andersen et al. (2008)’s discounting task (AHLR),

and Andreoni and Sprenger (2012)’s discounting task (AS). In each case, our first step

is to cast the experiment’s incentives into the notation of our model. This allows us to

treat the experiment on its own terms first, and then add different integration assumptions.

Specifically, we examine how the experimental predictions change as integration changes,

holding preferences constant. If the predictions are substantively different, that experiment
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is not robust to lifecycle asset integration. The “controlled” experimental observations can

be easily contaminated by field interactions.

Because the dividing line between experimental and field incentives is very clear with

laboratory experiments, those three designs are relatively easy to adapt to the model. Inter-

estingly, asset integration does not spark uniform concern within the laboratory literature.

At one extreme, asset integration’s relevance to static choice-bracketing experiments has been

debated vigorously (Read et al., 1999; Rabin and Weizsäcker, 2009). At the other, many

temporal experiments simply assume asset integration from the start (Coller and Williams,

1999; Cubitt and Read, 2007; Andersen et al., 2008, 2014; Andreoni and Sprenger, 2012).

Critically, all experimental gains – even the gains from static tasks – are spent within par-

ticipants’ lifecycle plans, making every experiment potentially vulnerable to lifecycle asset

integration.

Our first example, the HL task, requires participants to choose between pairs of safe and

risky lotteries. As a static decision, HL does not have an experimental smoothing instrument,

and so it evades the substitution problem between field and experimental smoothing. It is

still exposed to the other issues.

Omitting exogenous field resources situates post hoc analysis at the wrong background

level. HL assumes that this level is $0, but we find a strong sensitivity to that assumption.

Adding just $0.20 of exogenous field resources causes HL decisions to change. Increasing

that level to just $7 causes those decisions to be indistinguishable from risk neutrality.

Omitting endogenous field resources ignores how the task activates consumption smooth-

ing. From the perspective of a participant’s lifecycle plan, HL payoffs are an instantaneous

windfall that the participant will want to smooth across time via the field instrument. The

larger the experimental windfall, the more field smoothing will occur. We find that the

ability to smooth acts as a kind of self-insurance, allowing the participant to mitigate exper-

imental risk in the field over time. This self-insurance pushes experimental decisions toward

risk neutrality as well, even though preferences are calibrated as risk averse.
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Our second example, the AHLR task, requires participants to choose between pairs of

current and future payoffs. Although AHLR does not explicitly call its decision “saving,”

we show that its decision problem nevertheless contains a latent variable corresponding

to our model’s experimental smoothing variable. AHLR is exposed to all issues posed by

lifecycle asset integration, but the omission of endogenous field resources results in two

notable complications.

First, as with HL, a participant can potentially smooth an AHLR experimental windfall

using a field instrument that the experimenter cannot observe. However, because the ALHR

decision is itself a smoothing decision, the participant can also satisfy that smoothing desire

during the experiment using the observable instrument. This fact actually underscores the

bigger problem: participants now have two highly substitutable smoothing instruments at

their disposal.

Intuitively, a participant will try to save as much as possible using the instrument that

provides the better outcome. The meaning of “better” in this context depends on the field

consumption path. If that path already has high future consumption, for example, offering

large experimental returns may not induce any saving. This is quite different from the

predictions that arise when the experimental smoothing instrument is assumed to operate

by itself.

Our third example, the AS task, can be viewed as an extension of AHLR that allows

participants to choose their own smoothing amounts. That freedom of choice very clearly

illustrates the MRS between experimental and field smoothing. In particular, it is quite easy

to drive experimental saving to its boundary values by making the experimental incentives

too stingy or too rich relative to the field. Andreoni and Sprenger do, in fact, observe an

unusually large fraction of boundary decisions in their data.

HL, AHLR, and AS each estimate deep structural parameters under expected utility

(EU). Our model uses recursive utility (RU) instead (Kimball and Weil, 2009). The main

reason is flexibility: RU allows smoothing preferences to be totally uncoupled from risk
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preferences, while EU fuses them. But, because EU is a special case of RU, our framework

covers all EU-based analysis. To be clear, our main theoretical result does not hinge on

whether a participant is an EU or RU decision maker. Rather, when asset integration has

a lifecycle nature, it is easier to illustrate the interference starting from the position that

relative risk aversion (RRA) and the elasticity of intertemporal substitution (EIS) are not

functionally bound to each other. That stance allows us to calibrate each domain with

plausible values taken from its own literature.

Prior research hints at aspects of our results. Cubitt and Read (2007) discuss interference

between temporal experimental choices and field variables under EU, but risk does not enter

their assessment. Schechter (2007) performs a similar evaluation, calibrating an intertem-

poral utility function with the results of a static risk task. Coble and Lusk (2010) examine

AHLR with isoelastic RU preferences, as do Miao and Zhong (2015) when examining AS.

Both find empirical support for RU over EU, but neither include any asset integration. Be-

low, we gather all these earlier concerns about the experiment-field interaction, along with

some new ones, into a single analytical framework.

2 Lifecycle Asset Integration

To formally capture the interaction between an experimental stimulus and a participant’s

lifecycle path, we extend a two-period consumption-saving model.1 The purpose of this

extension is to differentiate field incentives from experimental ones.

To that end, field elements of the model are denoted with f superscripts, and experimental

elements with e superscripts. Risky variables are denoted with tildes. By convention, risk

occurs in the second period. Field and experimental risks are considered orthogonal by
1The two-period framework permits only two temporal actions: smoothing forward in time, or backward

in time. We could certainly obtain a more nuanced time path with a multiperiod value function. But, a
model of that sort would generate essentially the same first-order conditions as ours, while greatly increasing
the difficulty of the numerical exercises (solving for policy functions instead of scalars). Moreover, we could
not appeal to the theoretical corpus for intuition, because that literature largely operates with two periods.
Because we are not concerned with the time path of field smoothing per se, but with whether that smoothing
interferes with experiments, we stick with this simpler “forward or backward” approach.
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construction.

The field incentives are the first-period income yf1 , the second-period exogenous risky

income ỹf2 , and the second-period gross return to saving Rf
2 (net return rf2 ). The experimen-

tal incentives are analogously ye1, ỹe2, and Re
2.2 Intuitively, the field incentives are outside

the experimenter’s control, while the experimental incentives are the experimenter’s own

manipulation.

During the first period, the participant chooses field saving sf1 and experimental saving

se1 to maximize the RU objective over lifecycle consumption cf1 , c̃
f
2 :

max
sf1 ,s

e
1

u
(
cf1

)
+ βu

(
CE

(
c̃f2

))
s.t.



yf1 + ye1 = cf1 + sf1 + se1

ỹf2 + ỹe2 + sf1R
f
2 + se1R

e
2 = c̃f2

−ỹf2 ≤ sf1 ≤ yf1

0 ≤ se1 ≤ ye1

(1)

We call sf1 and se1 “saving,” as does most of the literature. That terminology certainly conveys

sf1 ’s and se1’s function in (1). But, those variables more precisely reflect a generic two-channel

smoothing framework that allocates consumption across time. This nuance allows us to bring

experiments under the umbrella of (1) that do not explicitly invoke the language of saving,

but nevertheless set up a latent smoothing instrument that behaves like se1.

RU’s notion of time preference has two ingredients: the utility discount factor β, and the

intertemporal felicity function u that controls consumption smoothing. This is an important

difference from EU, where time preference is considered to be simply β or some variant. The

2Limiting risk to the exogenous channels ỹf2 and ỹe2 greatly simplifies our discussion of risk attitudes
and risk responses. When risk exposure is endogenous with a choice variable, the lifecycle risk response
becomes quite complex (Eeckhoudt and Schlesinger, 2008). Risks on R̃f2 and R̃e2 would be prime examples
of endogenous exposure, because the amounts at risk sf1 R̃

f
2 and se1R̃e2 would depend on the choice variables

sf1 and se1. Fortunately, none of our three examples involve manipulations of return risk, and so we do not
lose much intuition by narrowing our focus in this way.
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risk preference ψ determines the certainty equivalent of future consumption

CE
(
c̃f2

)
≡ ψ−1

(
Ef

1E
e
1

[
ψ
(
c̃f2

)])

Unlike u, ψ is an EU function. RU thus contains both a utility-of-wealth function ψ, and a

utility-of-consumption function u. The special case u = ψ collapses RU to EU (Kreps and

Porteus, 1978).

In lifecycle models like this one, nearly any incentive – field or experimental – will activate

β, u, and ψ simultaneously (Gollier, 2001). That is equally true of risk (Kimball and Weil,

2009), somewhat counterintuitively. The lifecycle risk response differs from the more familiar

static risk response in two additional ways. First, a risk’s nth moment activates the n + 1th

utility derivative, not the nth (Eeckhoudt and Schlesinger, 2008). The lifecycle risk response

therefore depends on ψ derivatives higher than ψ′′. By corollary, the well-known Arrow-Pratt

coefficient −ψ′′/ψ′ has nothing to say about a participant’s reaction to lifecycle risk.

The first two constraints in (1) show how experimental and field assets become integrated

into the participant’s lifecycle plan. The vehicle is lifecycle consumption. Both first-period

consumption cf1 =
(
yf1 + ye1

)
−
(
sf1 + se1

)
and second-period consumption c̃f2 =

(
ỹf2 + ỹe2

)
+(

sf1R
f
2 + se1R

e
2

)
contain a mixture of experimental and field resources.

The properties of u and ψ that ensure (1) has a unique maximum also guarantee interior

equilibrium consumption levels cf∗1 and cf∗2 . For that reason, we simply assert the equality of

the first two constraints. However, the fact that the consumption path is interior does not

mean that the saving decisions are as well. Without additional information about preferences

and incentives, the constraints on sf∗1 and se∗1 must stay as inequalities.

Field saving sf1 can be be positive or negative. We place a rather loose restriction on

saving and borrowing via this channel: the participant’s own lifecycle field income. We place

a much stronger restriction on experimental saving se1: the participant cannot borrow at all

during the experiment, or save more than ye1. This reflects a common design constraint. For
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ethical reasons, participants are typically prohibited from investing – and potentially losing

– their own field resources in an experiment. Their experimental decisions must always fit

within the resource levels endowed by the experimenter.

The interpretation of the field resources yf1 and ỹf2 is context-specific. As a rule, those

terms express incentives that the participant perceives to be relevant to the experimental

decision se1, but are not actually part of the experiment. To reiterate, these perceptions are

not entirely under the experimenter’s control, nor are they fully observable. Thus, yf1 and ỹf2

should not be read merely as attributes that the experimenter could account for in principle.

They can also reflect traits that the experimenter has no hope of observing.

Even though the experimental incentives are controlled, the participant’s experimental

and field decisions remain tightly coupled. The nature of that coupling can be seen by

writing (1)’s first-order conditions in Euler form:3

sf1 : Ef
1E

e
1

β ·
u′

(
CE

(
c̃f2

))
u′
(
cf1

) /
ψ′
(
CE

(
c̃f2

))
ψ′
(
c̃f2

)
 ·Rf

2

− 1 Q 0 (2a)

se1 : Ef
1E

e
1

β ·
u′

(
CE

(
c̃f2

))
u′
(
cf1

) /
ψ′
(
CE

(
c̃f2

))
ψ′
(
c̃f2

)
 ·Re

2

− 1 Q 0 (2b)

Importantly, the first Euler equation remains pertinent even if the experimental task is static

(i.e., se1 ≡ 0), because static experimental incentives can still alter cf1 and c̃f2 (and hence sf1).

Individually, (2a) and (2b) are examples of a discounted-return equilibrium condition

Et (mt+1Rt+1) Q 1 that arises ubiquitously in dynamic models (Cochrane, 2005). Like that

generic condition, the left sides here take the form of discounted expected returns. The

quantity corresponding to the discount function mt+1 is the participant’s stochastic discount

factor (SDF)

β ·

u′
(
CE

(
c̃f2

))
u′
(
cf1

) /
ψ′
(
CE

(
c̃f2

))
ψ′
(
c̃f2

)
 (3)

3These conditions contain inequalities because sf∗1 and se∗1 are not necessarily interior.
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As a system, (2a) and (2b) are akin to the first-order conditions of a multi-asset portfolio

model (Ingersoll, 1987). A key feature of that setting is the fact that all portfolio allocations

are pinned down by the same mt+1. Our model shares this characteristic: the same SDF (3)

determines both sf1 and se1. This carries an important equilibrium implication: a change to

either one of the saving amounts will alter the SDF, and thereby affect the other’s discounted

return – and hence change the other saving amount as well.

In light of that observation, the participant’s SDF (3) can be best described as the

behavioral transmission mechanism between the experiment and the field. This transmission

is regulated by β and two marginal rates of substitution. The one involving u captures the

consumption-smoothing implications of the joint decision, and the one involving ψ captures

the risk-aversion implications.

The fact that the SDF contains all three behavioral primitives has an important ramifi-

cation for interpreting the experimental outcome se1. Namely, the presence of lifecycle asset

integration will cause all preference dimensions – consumption smoothing, risk aversion, and

discounting – to activate simultaneously in response to any set of incentives. Hence, even

if the experimenter’s intent is to design a manipulation {ye1, ỹe2, Re
2} that activates only risk

attitudes, or only smoothing attitudes, or only the pure rate of time preference, lifecycle

asset integration will nevertheless activate everything.

The participant’s elasticity of substitution between experimental and field decisions makes

the practical implications of the SDF transmission quite clear:4

εe,f =
dsf1
dse1
· s

e
1

sf1
(4)

= −
u′′
(
cf1

)
+ β

[
u′′
(
c̃f2

)
CE ′

(
c̃f2

)2

+ u′
(
c̃f2

)
CE ′′

(
c̃f2

)]
· 1

2

(
Rf

2 +Re
2

)
Re

2

u′′
(
cf1

)
+ β

[
u′′
(
c̃f2

)
CE ′

(
c̃f2

)2

+ u′
(
c̃f2

)
CE ′′

(
c̃f2

)]
· 1

2

(
Rf

2 +Re
2

)
Rf

2

· s
e
1

sf1

The MRS
∣∣∣dsf1/dse1∣∣∣ describes how well the participant’s field saving can replace experimental

4Appendix A contains the derivation of εe,f .
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saving, and vice versa. Ideally, this quantity would be 0. The experimental and field decisions

would not affect each other at all in that case, signaling that the experimenter’s manipulation

is truly exogenous.

However, the numerator and denominator of the MRS differ by only their very last terms,

Re
2 and R

f
2 . Thus, barring any implausibly extreme experimental incentives, the MRS is likely

to be close to 1. This unfortunately means that experimental smoothing and field smoothing

can perfectly substitute for each other. In that case, the experimenter must worry about

field contamination from not only the exogenous sources yf1 and ỹf2 , but also the endogenous

source sf1R
f
2 . The participant’s own choices during the experiment fortunately cannot affect

the former. But, per the MRS, they can affect the latter.

Finally, because many experimental studies assume EU, it is worth noting the EU SDF’s

behavior when it is viewed as an RU special case. As a rule, EU requires the “reduction

of compound lotteries” axiom to hold in all circumstances. In lifecycle settings, this means

that the axiom must hold both within and across time. RU loosens that requirement into

“temporal consistency,” which requires conformity within time only (Kreps and Porteus,

1978; Selden, 1978). Temporal consistency materializes in the SDF (3) as the distinction

between risk substitution and intertemporal substitution.

As u and ψ become more similar, that distinction becomes irrelevant. This is reflected

in the SDF, which collapses to

β ·
u′
(
c̃f2

)
u′
(
cf1

) = β ·
ψ′
(
c̃f2

)
ψ′
(
cf1

)
in the EU special case u = ψ. In this circumstance, it notably does not matter whether the

felicity function is taken to be an “intertemporal preference” u or a “risk preference” ψ. The

same decisions will be made under either interpretation.

That result, if valid, provides a powerful design shortcut. The experimenter can elicit

a participant’s risk preference and immediately treat it as the intertemporal preference, or
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Line ỹe,safe2 ($) ỹe,risky2 ($)
1 1/10 of 2.00 9/10 of 1.60 1/10 of 3.85 9/10 of 0.10
2 2/10 of 2.00 8/10 of 1.60 2/10 of 3.85 8/10 of 0.10
3 3/10 of 2.00 7/10 of 1.60 3/10 of 3.85 7/10 of 0.10
4 4/10 of 2.00 6/10 of 1.60 4/10 of 3.85 6/10 of 0.10
5 5/10 of 2.00 5/10 of 1.60 5/10 of 3.85 5/10 of 0.10
6 6/10 of 2.00 4/10 of 1.60 6/10 of 3.85 4/10 of 0.10
7 7/10 of 2.00 3/10 of 1.60 7/10 of 3.85 3/10 of 0.10
8 8/10 of 2.00 2/10 of 1.60 8/10 of 3.85 2/10 of 0.10
9 9/10 of 2.00 1/10 of 1.60 9/10 of 3.85 1/10 of 0.10
10 10/10 of 2.00 0/10 of 1.60 10/10 of 3.85 0/10 of 0.10

Table 1: Holt and Laury’s baseline MPL

vice versa. Problematically, a good deal of empirical literature, particularly from macroe-

conomics, rejects the hypothesis that risk substitution and intertemporal substitution have

the same elasticity (Epstein and Zin, 1989, 1991; Bansal and Yaron, 2004).

3 Merging Lifecycle Asset Integration into Three Exper-

iments

3.1 Holt and Laury

As a static experiment, HL has no internal concept of time. Even so, we will motivate it

with temporal notation consistent with (1). Within the context of HL itself, that notation is

pure surplusage: nothing would be gained or lost by adding or removing it. But, including

it from the outset makes the transition to our model much easier.

Table 1 presents the baseline HL task, a multiple price list (MPL) of ten safe and risky

lotteries. The payoffs for each safe lottery ỹe,safe2 and each risky lottery ỹe,risky2 remain the

same throughout the MPL. The payoffs of ỹe,risky2 always have more spread than those of

ỹe,safe2 .

Moving down the MPL, the probabilities increasingly favor each lottery’s high payoff.

The two lotteries have equal means at line 5. The safe lottery’s mean is higher before that
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Lifecycle Variable HL “Safe” HL “Risky”
ye1 0 0
se1 - -
ỹe2 ỹe,safe2 ỹe,risky2

Re
2 - -

yf1 - -
ỹf2 - -
sf1 - -
Rf

2 - -

Table 2: Translation between model (1) and HL

line, and the risky lottery’s mean is higher after that line.

On each line, the participant indicates a preference for the safe or risky lottery. That

decision is governed by the comparison

Ee
1

[
ψ
(
ỹe,safe2

)]
R Ee

1

[
ψ
(
ỹe,risky2

)]
(5)

Given the ordering of the MPL, a risk-neutral participant would switch from safe to risky

for good at line 5. A risk-averse participant would switch later.

Table 2 summarizes how these incentives translate to model (1).5 Two items are of

particular note. First, because HL does not have a smoothing instrument, the se1 aspect does

not apply. Second, HL does not address the field at all.

The comparison analogous to (5) under lifecycle asset integration is

u
(
cf,safe1

)
+ βu

(
CE

(
c̃f,safe2

))
R u

(
cf,risky1

)
+ βu

(
CE

(
c̃f,risky2

))
5Because the first period is usually taken to be the “present” and the second period the “future,” a more

natural timeline might place the HL experimental resources in the first period. However, that would require
either breaking (1)’s timing convention (where risk can fall only in the second period), or adding more
periods. The first option would obfuscate otherwise crisp theoretical predictions about the consumption-
smoothing and precautionary motives, while the second would result in more convoluted comparisons. Both
would add complexity that is not needed to see the intuition on HL interference from lifecycle factors.
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Applying simplifications from Table 2 and expanding terms yields

u
(
yf1 − s

f,safe
1

)
+ βu

(
ψ−1

(
Ef

1E
e,safe
1

[
ψ
(
ỹf2 + ỹe,safe2 + sf,safe1 Rf

2

)]))
R (6)

u
(
yf1 − s

f,risky
1

)
+ βu

(
ψ−1

(
Ef

1E
e,risky
1

[
ψ
(
ỹf2 + ỹe,risky2 + sf,risky1 Rf

2

)]))

Critically, the participant’s field incentives
{
yf1 , ỹ

f
2 , R

f
2

}
do not change on either side of this

comparison. The question is whether the participant’s field decision sf1 does.

If sf1 does not actually change, then the lifecycle comparison (6) collapses right back to

the static one. To see this, note that after simplifying and rearranging terms, the comparison

becomes

Ef
1E

e,safe
1

[
ψ
(
ỹe,safe2 +

(
ỹf2 + sf1R

f
2

))]
R Ef

1E
e,risky
1

[
ψ
(
ỹe,risky2 +

(
ỹf2 + sf1R

f
2

))]

when sf,safe1 = sf,risky1 . This expression is nothing more than (5) with an additional field

term ω̃f2 = ỹf2 + sf1R
f
2 in the utility argument. If this is the correct assumption about sf1 ’s

behavior, then the only essential refinement to HL is to include the participant’s background

field assets and risks (Heinemann, 2008; Harrison et al., 2017; Andersen et al., 2018).

However, it is more likely that each side of the comparison will yield different values of

sf1 . The reason is that the total risk c̃f2 has different means and variances on each side. Those

two moments

E1

(
c̃f2

)
= Ef

1

(
ỹf2

)
+ Ee

1 (ỹe2) + sf1R
f
2

V1

(
c̃f2

)
= V f

1

(
ỹf2

)
+ V e

1 (ỹe2)

influence saving in well-known ways (Kimball, 1990; Eeckhoudt and Schlesinger, 2008; Bos-

tian and Heinzel, 2018). The most consequential response is the one to E1

(
c̃f2

)
, which trig-

gers consumption smoothing. The second-most consequential is the one to V1

(
c̃f2

)
, which
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triggers precaution.6

Because Ee,safe
1

(
ỹe,safe2

)
Q Ee,risky

1

(
ỹe,risky2

)
, the field saving amounts sf,safe1 and sf,risky1

will generally have different consumption-smoothing components. The lottery with the

higher mean will induce more smoothing. Because the risk is dated the second period,

that lottery will have lower sf1 , and thus higher cf1 .

Similarly, because V e,safe
1

(
ỹe,safe2

)
< V e,risky

1

(
ỹe,risky2

)
, the field saving amounts sf,safe1

and sf,risky1 will have different precautionary components as well. The risky lottery will induce

more precaution for sure. Because the risk is dated the second period, the risky lottery will

have higher sf,risky1 , and thus lower cf,risky1 .

Comparing (5) to (6) reveals two specification errors that will arise during structural

estimation by failing to include lifecycle asset integration. The root of both problems is the

omitted field term ω̃f2 = ỹf2 + sf1R
f
2 .

The first is failing to control for the exogenous field resources ỹf2 . The error here arises

from implicitly assuming ỹf2 = 0, thereby situating the participant’s decisions at the wrong

background level. Because HL’s ψ specification allows increasing, decreasing, and constant

RRA, centering the decision making at the correct ỹf2 level is of paramount concern.

The second is failing to account for the endogenous field resources sf1R
f
2 . This also injects

a background-level problem, but that is not the only one. The compounded error arises from

implicitly assuming that the participant’s field saving remains the same (at sf1 = 0) on both

sides of (6). This treats an endogenous field resource as if it is exogenous.

Casting endogenous resources as exogenous ones fails to appreciate the full array of

preferences operating on c̃f2 . The specific problem here is that the sf1R
f
2 component of c̃f2 is

governed by u, not just ψ. A structural model consisting of ψ alone would thus improperly

assign all of the experimental decision to risk attitudes, when some of it is actually prompted

by smoothing attitudes. The resulting “ψ” estimates would be an uninterpretable mash of

risk and intertemporal preferences.

6All of c̃f2 ’s higher moments also trigger precaution, but their contributions are negligible here.
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Line xe1 (DKK) xe2 (DKK) APR (%) re2 (%)
1 3000 3075 5 2.5
2 3000 3152 10 5.1
3 3000 3229 15 7.6
4 3000 3308 20 10.3
5 3000 3387 25 12.9
6 3000 3467 30 15.6
7 3000 3548 35 18.3
8 3000 3630 40 21.0
9 3000 3713 45 23.8
10 3000 3797 50 26.6

Table 3: Andersen et al.’s MPL for a six-month delay

Without question, the second error requires a much more invasive correction than the

first. The solution to omitting exogenous field resources is the usual prescription for omitted-

variable bias: include those resources. Importantly, that correction does not require changing

the structural model (5). The solution to omitting endogenous field resources, on the other

hand, requires specifying how those resources interact with the experiment. Because that

interaction pulls in field smoothing, the structural model itself must change to (6).

3.2 Andersen et al.

AHLR simultaneously elicits utility discount rates and utility curvature. The discounting

task is a choice between two rewards xe1 and xe2 spaced τ days apart.

Table 3 presents the MPL for τ = 180 days. On each line, the earlier payment xe1 is DKK

3,000, and the later payment xe2 is higher than DKK 3,000. Moving down the MPL, xe2 rises.

With an analogy to saving in mind, the design requires the percentage increase from xe1 to

xe2 to be larger than any conceivable field interest rate rf2 over the same τ interval.

On each line, the participant indicates a preference for the earlier or later option. That

decision is governed by the comparison

u
(
xe1 + ωf1

)
+

(
1

1 + δ

)τ
u
(
ωf2

)
R u

(
ωf1

)
+

(
1

1 + δ

)τ
u
(
xe2 + ωf2

)
(7)
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Lifecycle Variable AHLR “Early” AHLR “Late”
ye1 xe1 xe1
se1 0 xe1
ỹe2 0 0
Re

2 xe2/x
e
1 xe2/x

e
1

yf1 ωf1 ωf1
ỹe2 ωf2 ωf2
sf1 - -
Rf

2 - -

Table 4: Translation between model (1) and AHLR

where δ is the utility discount rate, and ωf1 and ωf2 are field resources. Andersen et al.’s version

of (7) also includes a breakdown of how long the participant draws out the consumption of xe1

and xe2. Because that detail is tangential to our interference question, we focus on a special

case where consumption is immediate in both periods.

As a temporal task, AHLR is relatively easy to adapt to (1). First, we can set the

discounting parameter to β =
(

1
1+δ

)τ . Next, we can continue the saving analogy: instead

of taking xe1 during the first period, a participant can defer that amount and take xe2 in the

second. We refer to these as the “early” and “late” options.

Table 4 summarizes how these incentives translate to model (1). The first option is to

take the earlier payment ye1 = xe1, thus saving se,early1 = 0 and earning nothing later. The

second option is to save se,late1 = ye1, thus taking nothing early, but earning

xe2 = se,late1 · x
e
2

xe1
→ xe2 = se,late1 Re

2

later. The quantity Re
2 = xe2/x

e
1 is the gross increase in the payment, exactly our notion of

return. In both cases, ỹe2 = 0.
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Applying those notational changes to (7) yields the comparison

u
((
ye1 − s

e,early
1

)
+ ωf1

)
+ βu

(
se,early1 Re

2 + ωf2

)
R (8)

u
((
ye1 − s

e,late
1

)
+ ωf1

)
+ βu

(
se,late1 Re

2 + ωf2

)

We have intentionally left alone the obvious simplifications in this expression. The reason

is that (8) clearly draws out the latent smoothing variable se1, which has a direct analog in

(1). Thus, AHLR’s core comparison does indeed involve smoothing, even though it restricts

the smoothing options to the extremes se1 ∈ {0, ye1}.

This task therefore activates the participant’s intertemporal preference u and discounting

β. To provide additional utility variation outside β’s influence, AHLR also includes a HL

task. That identification is problematic from an RU perspective, because HL’s riskiness

activates ψ. This extra HL data generates the intended supplemental variation only when

u = ψ – the EU special case.

AHLR structural estimates do indeed assume EU. If that is the correct framework, then

both tasks identify the same u = ψ preference. If not, then the restriction u = ψ results in

estimates that mash together risk and intertemporal attitudes.

The final quantities to reconcile are the field assets. Comparing (8) with (1), the models

match exactly when ωf1 = yf1 −s
f
1 and ω̃f2 = ỹf2 +sf1R

f
2 . But, because AHLR does not include

any notion of field smoothing or field risk, its internal conception of field assets is simply

ωf1 = yf1 and ω̃f2 = yf2 . That is, only the exogenous field assets are relevant.

Indeed, Andersen et al. describe ωf1 and ωf2 as “the optimized consumption stream based

on wealth and income that is perfectly anticipated before allowing for the effects of the money

offered in the experimental tasks.” In other words, the field assets are frozen in place before

the experiment starts, and the experiment cannot subsequently affect them. This begs the

question of endogenous resources altogether.

The elasticity between field and experimental decisions underscores the problem with
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Lifecycle Variable AS Variable
ye1 me

se1 pe2t
e
2

ỹe2 0
Re

2 1
yf1 −ωf1
ỹf2 −ωf2
sf1 -
Rf

2 -

Table 5: Translation between model (1) and AS

that interpretation. If the experiment truly cannot affect the field, this elasticity is 0. But,

that outcome is difficult to square with (4): field smoothing is likely to be highly elastic with

experimental smoothing if any lifecycle asset integration is present.

3.3 Andreoni and Sprenger

AS elicits utility discount rates using a task that is more open-ended than an MPL. The

participant must split a money budget me into current and future payoffs using tokens te1

and te2. This split takes place along the constraint

me = pe1t
e
1 + pe2t

e
2

under token prices pe1 and pe2.

Unusually, AS’s structural model has Stone-Geary utility:

max
te1,t

e
2

u
(
pe1t

e
1 − ω

f
1

)
+ γητu

(
pe2t

e
2 − ω

f
2

)
s.t. me = pe1t

e
1 + pe2t

e
2 (9)

The field resources ωf1 and ωf2 are interpreted as a minimum amount of background consump-

tion that the participant must acquire in each period. The parameter γ reflects present bias,

and η the daily utility discount factor. As with AHLR, this last aspect can be reconciled

with (1) by setting β = γητ .
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Reconciling the rest requires converting token units to saving units (money). Table 5

summarizes the translation to model (1). Normalizing the constraint in (9) by pe1 reveals an

incentive that looks like a return:

me

pe1
= te1 +

pe2
pe1
te2 → t̄e1 = te1 + R̄e

2t
e
2 (10)

The ratio R̄e
2 = pe2/p

e
1 is the gross increase in the token price between the two periods.

Unfortunately, this return applies to tokens, not to money as in (1).

Even though this is not the exact match we need, the normalized form (10) provides

some useful clarifications that help to translate (9) into (1). First, it casts the seemingly

atemporal money endowment me into a first-period resource: the normalized endowment t̄e1.

This is the maximum possible number of first-period tokens that could possibly be bought.

It is analogous to the initial money endowment, but in tokens.

Second, the normalization shows that one of AS’s decision variables is redundant. Per-

forming the substitution te1 = t̄e1 − R̄e
2t
e
2 casts the problem purely in terms of future tokens.

This is the variable that most closely resembles our saving decision. Helpfully, like the ex-

perimental saving constraint 0 ≤ se1 ≤ ye1, the normalized equation ensures that the number

of future tokens stays in bounds: 0 ≤ te2 ≤ t̄e1/R
e
2.

Third, whenever it is necessary to operate in money units rather than tokens, the nor-

malization can be undone by multiplying by pe1 throughout:

t̄e1 = te1 + R̄e
2t
e
2 → pe1t̄

e
1 = pe1t

e
1 + R̄e

2p
e
1t
e
2

0 ≤ te2 ≤
t̄e1
R̄e

2

→ 0 ≤ pe1t
e
2 ≤

pe1t̄
e
1

R̄e
2

Once again, we have not made the obvious simplifications here. The reason is that this

denormalization suggests an analogy to monetary saving in (1): s̄e1 = pe1t
e
2 is the current

opportunity cost of buying te2 future tokens.
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After making that substitution and simplifying, (9) becomes

max
s̄e1

u
((
me − s̄e1R̄e

2

)
− ωf1

)
+ βu

(
s̄e1R̄

e
2 − ω

f
2

)
s.t. 0 ≤ s̄e1 ≤

me

R̄e
2

Comparing this to (1), the exogenous experimental resources now match by setting ye1 = me

and ye2 = 0. The endogenous resources posed in R̄e
2 terms, on the other hand, still do not

have a natural analog. The money return in (1) appears in the future alone, but this token

return appears in both periods.

The monetary implications of R̄e
2 can be reconciled with (1) by normalizing Re

2 = 1 and

setting se1 = s̄e1R̄
e
2:

max
se1

u
(

(me − se1)− ωf1
)

+ βu
(
se1 − ω

f
2

)
s.t. 0 ≤ se1 ≤ me (11)

This formulation shows that AS, like AHLR, sets up a latent smoothing variable se1. However,

AS’s version does not entail a money return (re2 = 0). The token return R̄e
2 ultimately acts

as an exchange rate between tokens and money, not as a return on saving. Importantly, in

situations like this where re2 = 0, the participant’s only reason to save is to smooth out the

experimental windfall ye1 = me. Saving has no investment use.

Formulation (11) underscores that AS’s main source of experimental variation is me.

Every me results in a unique saving amount se1, no matter the token prices. (Given se1, those

prices can be used to back out the token quantities.) Hence, changing the token prices while

keeping me constant would simply pose the same smoothing question to the participant in

different ways.

Because this task involves no risk, it activates only the intertemporal preference u and

discounting β. It makes no statement about the other RU component, the risk preference ψ.

AS can be viewed as an extension of AHLR that allows participants to select their own

saving amount, not just the extreme amounts se1 ∈ {0, ye1}. Interestingly, participants seem

to prefer those extremes anyway: over half of Andreoni and Sprenger’s decisions fall on the
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boundaries. Formulation (11) suggests two reasons this might occur.

First, participants cannot use experimental saving as an investment. This eliminates one

of the main reasons to save, and can lead to se1 = 0. Second, if participants are on a skewed

field consumption path, they will use experimental saving to force as many experimental

resources as possible into the disadvantaged period. This can lead to either se1 = 0 or

se1 = ye1, depending on which period needs more support. As we show in the numerical

exercises below, the balance of field and experimental incentives needed to sustain an interior

se1 in AS is actually quite delicate.

AS’s field assets ωf1 and ωf2 , like AHLR’s, are considered exogenous. The specification

errors we discussed for AHLR therefore apply to AS as well, but the Stone-Geary form raises

a new concern. Because Stone-Geary utility is not even defined before reaching the ωf1 and

ωf2 consumption levels, those amounts are effectively exempted from smoothing. That is not

the way consumption smoothing is usually understood. Indeed, when Andreoni and Sprenger

estimate these quantities rather than imputing them, they do not always find negative values.

4 Robustness to Lifecycle Asset Integration

Having placed HL, AHLR, and AS into the framework of (1), we next examine their ro-

bustness to various integration assumptions. That analysis involves numerically changing

the levels of field resources, without paying much attention to what those resources mean.

To provide some context in that regard, we begin by summarizing how the literature on

background resources in the utility function has evolved to date.

4.1 Literature on Background Resources

In the theory of choice under static risk, decision makers evaluate their utility with respect to

a terminal criterion. That framework conveniently compacts temporal problems into static

ones whose goal resolves during a “final period.” In such settings, parameters like ωf1 and ωf2
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are considered to be background wealth levels (Pratt, 1964; Arrow, 1971; Binswanger, 1981;

Heinemann, 2008).

That formulation of utility carries some problematic implications. In critiques based on

the terminal-wealth interpretation of EU, Hanssen (1988) and Rabin (2000) show that the

assumption of reasonable risk aversion at low stakes implies absurd forms of risk aversion

at high stakes. Both Rabin and Rabin and Thaler (2001) consider this inconsistency to be

serious enough to warrant scrapping EU.

Cox and Sadiraj (2006) show that this troublesome issue does not arise if utility is

evaluated with respect to changes in wealth. Those changes are usually interpreted as

income. As a practical matter, incorporating those changes requires adding a wealth baseline

to the utility argument.

Adopting that notion of background wealth, Andersen et al. (2018) investigate the rele-

vance of asset integration in a static risk experiment. Their wealth baseline is defined quite

broadly: it includes durable goods, real estate, and debt service; but not cash, equity in pri-

vate companies, or non-tradeable assets. They find that participants integrate those baseline

assets with experimental cash incentives quite weakly.

In the theory of lifecycle choices under risk, by contrast, ωf1 and ωf2 are often considered

to be background consumption levels. Experiments with a temporal aspect usually assume

that asset integration originates from background consumption (Cubitt and Read, 2007). For

example, AHLR and AS each take utility to be consumption-based rather than wealth-based,

and they each include a background parameter in the utility argument.

Somewhat confusingly, both consumption- and wealth-based utility are amenable to time

interpretations. For example, the multiperiod portfolio model has a terminal-wealth objec-

tive, while the multiperiod saving model has a lifecycle-consumption objective. Both have

first-order conditions that take the canonical dynamic form Et (mt+1Rt+1) Q 1 discussed

earlier. However, their respective outcomes are governed by very different utility features.

As a consequence, it is critical to be able to identify a model as consumption- or wealth-
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based. Eeckhoudt and Schlesinger provide a reliable way to do this, by observing what

happens when an nth-order risk is added to the utility argument. This will activate the nth

derivative if utility is wealth-based, and the n+1th derivative if it is consumption-based. For

EU (u = ψ), that reduces to determining whether the response to a second-order variance

risk is governed by the Arrow-Pratt coefficient −ψ′′/ψ′, or the Kimball coefficient −ψ′′′/ψ′′.

Meyer and Meyer (2005) discuss another tricky feature of the utility argument: its ability

to create paradoxes in lifecycle models. For example, the equity-premium and riskfree-rate

puzzles manifest as inconsistencies among intertemporal substitution, equity premia, and

riskfree rates. These inconsistencies can be traced to artifacts of the utility specification.

The EU model at the root of the problem has isoelastic consumption utility and an

isoelastic wealth value function. It also defines consumption quite broadly, while binding

consumption tightly to wealth. That set of assumptions ultimately proves to be incompatible

with US data.

When consumption is only a fraction of wealth (as in the US), consumption utility can

be isoelastic only if wealth utility exhibits increasing elasticity, and vice versa. Keeping both

aspects isoelastic requires defining wealth more narrowly than consumption. Because that

redefinition would make wealth and consumption incoherent, Meyer and Meyer recommend

using utility functions that are more flexible than isoelastic ones.

RU is one route to that flexibility. The version we use has a utility-of-wealth func-

tion that ranks risky consumption possibilities via the certainty equivalent, and a utility-of-

consumption function that allocates the certainty equivalent across time. These two functions

admit different risk and intertemporal elasticities by default. Those concepts could certainly

be disentangled in other ways, but this method results in an intuitive SDF (3) where each

attitude is governed by its own marginal rate of substitution.
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4.2 Holt and Laury

HL implements ψ as the expo-power function7

ψ (c) =
1

αψ

[
1− exp

(
−αψ ·

c1−ρψ

1− ρψ

)]

Consistent with Meyer and Meyer’s stress on flexibility, the expo-power form permits increas-

ing, decreasing, and constant RRA. Exponential utility (ρψ = 0) and isoelastic power utility

(αψ → 0) are special cases. Our baseline calibration uses Holt and Laury’s representative-

agent estimates αψ = 0.03 and ρψ = 0.73, a combination that generates IRRA.

Exogenous Field Resources

A risk-neutral participant facing the baseline MPL in Table 1 would switch from the safe

lottery to the risky one at line 5. Holt and Laury’s cohort switches further down the MPL

on average, signalling risk aversion. But, the position of that switch point is highly sensitive

to the the level of exogenous resources yf2 .

Figure 1 shows how the baseline switch-point prediction changes as yf2 increases. At HL’s

assumed level yf2 = $0, the switch-point prediction is line 8.8 That prediction remains intact

only up to yf2 = $0.10 of exogenous resources. It falls to line 7 by yf2 = $0.20, and to line 6

by yf2 = $2. Line 5 – full risk neutrality – occurs by yf2 = $7.

As a consequence, the original HL structural estimates are probably strongly predicated

on the assumption of no asset integration. It is hard to imagine that participants did not

consider the consequences of a mere $0.20 of field resources during that task. If they did,

they would have had to almost purposefully erect a mental divider between the experiment

and the field.

HL also presents participants with a second MPL at a multiple of the original payoffs.
7HL’s expo-power function is actually slightly less flexible than this one (Xie, 2000). HL’s a and r

parameters can be reconciled with αψ and ρψ by setting αψ = a and ρψ = 1− r.
8HL also includes decision error by adding a discrete-choice framework on top of the structural comparison

(5). To make our model’s predictions as crisp as possible, we abstract from these sorts of errors throughout.
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Figure 1: Predicted HL switch points as exogenous field resources increase

Figure 1 repeats the baseline analysis at multiples of 20x, 50x, and 90x. This shows that

the interference can be postponed, but not escaped, by scaling up the payoffs. Risk-neutral

decisions eventually occur around yf2 = $100 at 20x, and around yf2 = $700 at 90x.

In exercises not shown here, we scale the exogenous field assets instead of the lottery

stakes. We examine yf2 = $1, 000 and $5,000, two amounts that could easily reflect a house-

hold’s monthly resources. Risk-neutral decisions occur all the way up to the 137x MPL in

the first case, and up to the 611x MPL in the second.

HL’s salience thus depends strongly on the relative levels of field and experimental re-

sources. Because HL is a risk task, this finding can be partly contextualized within the

Rabin critique. Namely, as exogenous field resources push the domain of experimental deci-

sion making to higher wealth levels, participants no longer make risky experimental decisions,

even though they are truly risk averse. Unlike some of Rabin’s examples, however, the in-

terference here does not require large or infinite amounts. The consequences manifest at low

levels of field resources, levels that probably describe many real participants.
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Endogenous Field Resources

To investigate the role of endogenous resources in HL, we must first parameterize the partic-

ipant’s field smoothing environment. We consider the time interval to be monthly, so that

field resources are relatively small. We set the baseline field return to rf2 = 1% for a similar

reason.

To keep sf1 ’s behavior within the scope of existing theoretical results, we limit risks to

mean-preserving spreads (MPS). We construct an MPS starting from a balanced income

stream yf1 = E1

(
ỹf2

)
. We then create a two-outcome lottery centered around the future

mean, which has 50-50 probabilities. The lottery payments are thus E1

(
ỹf2

)
±∆yf2 , where

∆yf2 is the spread.

We must also flesh out the other two preference domains. We parameterize the discount-

ing parameter with β = 0.999, which corresponds to an annual parameter of 0.988. We

implement the smoothing preference u with another expo-power function

u (c) =
1

αu

[
1− exp

(
−αu ·

c1−ρu

1− ρu

)]

The analog to RRA for u is the relative resistance to intertemporal substitution (RRIS), or

inverse EIS. We set the baseline parameters to αu = 0 and ρψ = 2, a power utility function

in the neighborhood of macroeconomic estimates.

We illustrate the interference from endogenous field resources using the 20x MPL. We

set the field income levels to yf1 = E1

(
ỹf2

)
= $100, and omit field risk for clarity (∆yf2 = 0).

We assume first that no field smoothing instrument exists, and then that a field smoothing

instrument exists and pays returns of rf2 = 1% and 10%.

Table 6 presents the switch points under each assumption, as well as the hidden field

saving amounts sf,safe1 and sf,risky1 that arise on each line of the MPL. Several features of

this table are important. First and foremost, just by assuming that the participant has some

form of field smoothing, the switch-point prediction rises from line 8 to line 6. This occurs
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No field saving rf2 = 1% rf2 = 10%

Line sf,safe1 sf,risky1 sf,safe1 sf,risky1 sf,safe1 sf,risky1

1 0 0 33.60 46.66 33.50 45.71
2 0 0 33.22 44.32 33.15 43.46
3 0 0 32.84 41.81 32.79 41.07
4 0 0 32.45 39.10 32.43 38.49
5 0 0 32.06 36.16 32.06 35.69
6 0 0 31.66 32.91 31.68 32.61
7 0 0 31.26 29.25 31.30 29.15
8 0 0 30.84 24.99 30.92 25.13
9 0 0 30.43 19.68 30.53 20.18
10 0 0 30.00 11.64 30.13 12.91

Switch Point 8 6 6

Table 6: HL 20x decisions with and without a field saving instrument (yf1 = yf2 = $100)

because ỹe2 represents a second-period windfall that the participant would like to smooth

back to the first period, but that option was previously unavailable.

To reiterate, when field smoothing is impossible, the participant tolerates the second

period’s lopsided but risk-averse consumption outcome. But, when field smoothing is allowed,

the participant seemingly becomes less risk averse. This is very strange: we have not touched

ψ (or any other preference domain), and so we know for a fact that the participant’s risk

attitude is the same in both cases.

This movement up the MPL occurs because field smoothing allows the participant to

self-insure by moving funds from the first period to the second. This “hedge across time”

ends up being much more powerful than the “hedge within time” afforded by static risk

aversion. The ability to self-insure with lifecycle resources ultimately allows the participant

to engage in more MPL risk.

Second, as our theoretical discussion suggested, each side of the utility comparison (6)

does indeed entail a different amount of field saving. The increase from sf,safe1 to sf,risky1 on

each line is due to the classic smoothing and precautionary responses. Specifically, the change

in the smoothing response is triggered by the difference in ỹe,safe2 ’s and ỹe,risky2 ’s means, and

the change in the precautionary response is triggered by the difference in their variances.
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(a) CARA (αψ = 0.03, ρψ = 0)
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(b) Strong IRRA (αψ = 0.73, ρψ = 0.73)

Figure 2: Predicted HL switch points for other ψ specifications

Third, for each value of rf2 , s
f
1 always decreases moving down the MPL. This occurs

because the highest payoff becomes increasingly more assured, and so less field saving is

needed to guarantee a good consumption path.

Thus, HL decisions are also sensitive to whether the participant has a field smoothing

instrument. A participant who seems to be risk neutral per the MPL may be truly risk

averse, but self-insuring outside the experimenter’s view.

Other Considerations

Figure 2 re-examines interference from exogenous field resources under two rather extreme

risk attitudes. These exercises illustrate how αψ and ρψ act together to explain decisions at

very different payoff scales.

The left panel plots decisions under CARA. For this attitude, the only aspect of risk

that matters is the level of ỹe2’s payoffs. Because that level is fixed for a given scaling, and

because yf2 is not risky, the switch point within a scaling never varies with yf2 .

Under this CARA parameterization, the switch point at the baseline scaling is line 5,

completely indistinguishable from risk neutrality. The 20x scaling now yields the switch

point at line 8. And, no switches ever occur at 50x and 90x. CARA thus implies a huge
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amount of risk aversion at large stakes.

The right panel repeats this exercise under much stronger IRRA. Unlike the CARA

results, these switch points do eventually change as yf2 increases. Thus, ρψ’s role in the

expo-power function is to tamp down αψ’s explosive tendencies at large amounts, and to

provide some risk aversion at small amounts.

4.3 Andersen et al.

Andersen et al.’s baseline estimates entail an isoelastic u with ρu = 0.74, and an annual pure

rate of time preference of 10%.

We illustrate the interference from lifecycle asset integration using the annual percentage

rate (APR) structure in Table 3 at intervals of 1, 3, 6, and 12 months. We construct a

two-period environment by breaking those intervals into two equally long segments.

To keep the units uniform across our examples, we convert DKK to USD at 6.55 to

1, Andersen et al.’s reported exchange rate. This places ye1 at about $450. Because u is

isoelastic, multiplicatively scaling its argument by the exchange rate does not affect any of

the switch-point predictions.

Exogenous Field Resources

Figure 3 presents the switch-point predictions as exogenous field resources increase. Andersen

et al. calibrate their exogenous field resources to a government consumption survey that

finds average daily field consumption to be DKK 118. In Figure 3’s units, one day’s worth

of background consumption is about $20, and three months’ worth about $1,600.

The switch points in the left panel are certainly sensitive to yf1 and yf2 . The switch point

moves from line 8 at yf1 = yf2 = $0 to line 3 at yf1 = yf2 = $1, 000. That prediction evolves in

essentially the same way at different τ intervals.

Because u is estimated in conjunction with a supplemental HL task, it is not entirely

surprising that Andersen et al. find ρu to be close to Holt and Laury’s ρψ (0.74 vs. 0.73).
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Figure 3: Predicted AHLR switch points as exogenous field resources increase

But, it is important to remember that those parameters address different attitudes: ρu

measures u’s RRIS, while ρψ measures ψ’s RRA. Thus, the same numerical estimate signals

something different in AHLR’s intertemporal context than it does in HL’s static context.

For AHLR, this estimate means that RRIS is 0.74, and so EIS is 1/0.74 = 1.35.9

Problematically, elastic EIS is hardly ever found in macroeconomic data. So, the right

panel of Figure 3 repeats this exercise under ρu = 2, the same inelastic value used in the

HL analysis. These switch-point predictions move much more sharply than the elastic ones.

They do not even dislodge from the bottom of the MPL until about yf1 = yf2 = $100, but they

still reach line 3 by yf1 = yf2 = $1, 000. There is slightly more separation in the predictions

at different time intervals, but they largely move in tandem as before.

Importantly, many switch-point predictions can be rationalized under either elasticity

assumption. For example, line 5 arises at about yf1 = yf2 = $10 under the elastic u, and at

about yf1 = yf2 = $300 under the inelastic u. This illustrates that AHLR, like HL, is sensitive

to the level of exogenous resources. In this case, as field resources increase, the participant

appears to be more patient.
9This distinction between RRA and RRIS cannot be extinguished by forcing them to be “mathematically

equivalent” by setting u = ψ. In this intertemporal context, that equivalence simply collapses RU to EU. It
does not somehow compress RRA and RRIS into a single attitude. Both of those elasticities are still present
under EU – they just take the same value.
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No field saving rf2 = 1% rf2 = 10%

Line sf,early1 sf,late1 sf,early1 sf,late1 sf,early1 sf,late1

1 0 0 209.37 -252.19 240.82 -201.37
2 0 0 209.37 -258.14 240.82 -206.76
3 0 0 209.37 -264.16 240.82 -212.21
4 0 0 209.37 -270.26 240.82 -217.72
5 0 0 209.37 -276.43 240.82 -223.31
6 0 0 209.37 -282.67 240.82 -228.96
7 0 0 209.37 -288.99 240.82 -234.67
8 0 0 209.37 -295.38 240.82 -240.45
9 0 0 209.37 -301.84 240.82 -246.30
10 0 0 209.37 -308.37 240.82 -252.21

Switch Point 3 1 4

Table 7: AHLR 6-month decisions with and without a field saving instrument (yf1 = yf2 =
$500)

Unlike HL, this loss of salience cannot be attributed to the Rabin critique. Because

AHLR has no risk, it evades that concern entirely. Here, the loss is wholly a consequence

of the participant using the experiment to smooth out the field consumption path. When

field resources are large enough, the desired smoothness always results in choosing the early

option.

Endogenous Field Resources

Table 7 presents the switch-point predictions for the six-month MPL, with and without the

assumption that the participant has a field smoothing instrument. We again set field returns

to rf2 = 1% and 10%. We set field resources to yf1 = E1

(
yf2

)
= $500, and continue to omit

field risk (∆yf2 = 0).

As with HL, the AHLR switch-point predictions change just by assuming that the par-

ticipant has a field smoothing instrument. The no-field-smoothing prediction is line 3. This

rises to line 1 when rf2 = 1%, and actually falls to line 4 when rf2 = 10%.

Also like HL, the amount of field smoothing changes markedly on each side of the AHLR

comparison (8). The value of sf1 is always positive for the early option, indicating that the
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participant will smooth forward some of the early experimental windfall. Similarly, sf1 is

always negative for the late option, indicating that the participant will smooth back some

of the late windfall.

The move from line 3 to line 1 when rf2 = 1% makes the participant appear more patient.

But, because we have not changed anything about preferences, we know that this outcome

arises from some sort of substitution. In this case, the ability to smooth in the field allows

the participant to support a seemingly more patient outcome in the MPL. That “patience”

is nothing more than opting for the larger late experimental payment, and smoothing some

of it back with the field instrument.

Those same smoothing attitudes are present when rf2 = 10%. But, this situation raises

another consideration: the high return on field saving makes it a very attractive investment.

That countervailing factor causes the participant to opt for the earlier experimental payment,

and save it with the field instrument. The switch point therefore moves down the MPL

instead of up.

So, the mere ability to smooth in the field can also result in different AHLR predictions.

Saving’s smoothing use can be triggered with fairly small field returns. Larger returns can

also pull in saving’s investment use.

Other Considerations

Even though AHLR involves no experimental risk, a participant could still be exposed to field

risk. We explore those implications by again setting yf1 = E1

(
yf2

)
= $500, and varying the

MPS spread ∆yf2 from $0 to $500. For clarity, we assume away endogenous field resources.

Because this set of incentives will activate both risk preferences and smoothing prefer-

ences, we use a full RU specification. We set ψ to Holt and Laury’s IRRA estimates, and u

to the previous power function with ρu = 2. To reiterate our earlier note on the difference

between RRA and RRIS, it would be unwise to impute u with Holt and Laury’s estimates.

Those values would imply IRRIS, which would eventually send the EIS all the way to 0.
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Figure 4: Predicted AHLR switch points under RU, for MPS of ỹf2 (yf1 = E1

(
ỹf2

)
= $500)

Figure 4 plots the resulting switch points. As ∆yf2 increases, the switch point moves up

the MPL. Because this exercise involves pure changes in risk, that movement comes from

the participant’s precautionary motive alone. The precautionary motive, as a rule, offsets

higher future risk with more saving. In the context of AHLR, “more saving” means “choosing

the late option.”

So, because participants can potentially use experimental smoothing to mitigate field

risk, the experimenter should also have a good grasp on how much field risk participants

face. Higher field risk will lead to more experimental smoothing.

4.4 Andreoni and Sprenger

Because the nature of AS interference does not depend on Andreoni and Sprenger’s specific

me values, we keep AHLR’s payoff structure for the AS exercises. In other words, we ask

what decisions AHLR participants would have made if the incentives had been presented as

an AS task with me = DKK 3, 000. This allows us to easily compare the AS findings to the

results above.
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Figure 5: Predicted AS saving amounts when exogenous field resources are construed as
positive or negative

Exogenous Field Resources

An obvious difference between AHLR and AS is AS’s Stone-Geary treatment of exogenous

field resources. Figure 5 plots the predicted AS saving amounts se1 assuming that yf1 and yf2

can be positive or negative. This shows that Stone-Geary inverts the standard relationship

between saving and field resources.

The downward-sloping lines reflect the usual understanding of that relationship, where

the propensity to save falls as the participant holds additional positive resources. This occurs

because those extra resources push the consumption interval away from the highly curved

parts of u, thereby diminishing the desire to smooth.

The upward-sloping lines reflect the Stone-Geary conception. Because the movements

along the utility function now operate in reverse, the propensity to save rises. As the partic-

ipant receives additional negative resources, a greater part of the consumption interval falls

into the very curved areas of u. Because those areas reflect undesirably lumpy outcomes,

the participant saves more to smooth out the consumption path.

Because AS entails re2 = 0, experimental saving has no investment use here. Figure 5

shows that participants will save anyway. This illustrates that saving does indeed have
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Figure 6: Predicted AS saving amounts when a field saving instrument is present

a meaningful smoothing function separate from its investment function. Unfortunately,

Figure 5 also shows that the field resources yf1 and yf2 can once again interfere with the

experimental decision se1. As the participant’s field resources increase, the desire to save in

the experiment falls.

Endogenous Field Resources

Figure 6 repeats this exercise assuming that the participant has field smoothing instruments

that return rf2 = 1%, 5%, and 10%. These plots provide the clearest illustration yet of the

elasticity (4) between experimental and field smoothing: whenever se1 falls, s
f
1 simultaneously

rises to compensate.
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Because rf2 is always greater than re2 = 0 in Figure 6, that tradeoff always moves in the

direction of substituting experimental saving with field saving. Importantly, the fact that

field saving has a higher return does not necessarily mean that the participant will forego

experimental saving. Instead, up to about yf1 = yf2 = $200, the participant saves using both

instruments. That mixture allows the participant to trade some experimental saving for

better-returning field saving, while also keeping the consumption path sufficiently smooth.

Past yf1 = yf2 = $200, however, the participant does forego experimental saving. In

fact, the participant would like to borrow from the experimenter and save that money in

the field, but the rules forbid doing so. As a consequence, a participant with more than

$200 of field resources will always choose se1 = 0 in AS. Importantly, the experimenter will

not be able to determine ex post whether that boundary outcome has been generated by

the participant’s preferences (e.g., strong impatience or high RRIS) or by this interference.

Those explanations are observationally equivalent.

Elasticity (4) can cause problems at the upper bound just as easily. Figure 7 contains a

similar exercise assuming that the AS task could be modified to pay experimental returns

re2 = 5% and 10%, while the participant’s field return is rf2 = 1%. This change makes

the experiment a better investment than the field, and so the MRS operates in reverse.

Experimental saving now reaches its upper bound se1 = me at about yf1 = yf2 = $200. The

participant compensates for higher experimental saving by borrowing in the field.

In sum, AS is sensitive to endogenous field resources in a way that naturally results

in boundary decisions. Notably, interference from these resources can result in higher or

lower experimental saving. The former is like the attenuation towards patient outcomes that

occurs with AHLR.
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Figure 7: Predicted AS saving amounts if se1 has a return (rf2 = 1%)
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5 Discussion

Our theoretical framework allows us to hold preferences constant while changing experi-

mental and field incentives. That, in turn, allows us to pin down whether an experimental

outcome arises from the preferences that the experimenter is ostensibly trying to elicit, or

from interference by lifecycle asset integration. Our numerical exercises show that experi-

ments investigating risk and time preferences, even static ones, are susceptible to this sort

of interference.

Because they involve choosing from predefined menus, HL and AHLR illustrate the pit-

falls quite clearly. The interference generally acts an attenuation bias, with HL decisions

pulled toward risk neutrality, and AHLR decisions toward patience. This occurs even though

the exercises are calibrated with risk-averse and impatient preferences. Extravagant field en-

vironments are not required: complete attenuation usually occurs with $100 to $1,000 of

field resources, and sometimes with much less.

The cause of this interference is simple. When evaluating an experimental decision, a

participant can make a mental exchange between experimental and field resources, partic-

ularly across time. Indeed, the main difference between our treatment of asset integration

and earlier ones is the use of a field instrument to smooth out an experimental payoff. This

causes a controlled scenario to become more like a natural experiment, with the stimulus

mixing with the field. In the likely event that this mental exchange is unobservable, the ex-

perimenter will erroneously interpret the attenuation as less risk aversion or more patience,

a kind of false negative.

Endogenous field resources, the resources that enable field smoothing, pose a particularly

pernicious problem. Interference from this quarter does not seem to be an issue of properly

tuning experimental returns to field returns. It rests on a more fundamental question:

whether or not a field smoothing instrument is present at all. Endogenous interference is not

rooted primarily in the scope of investment options, but in the participant’s desire to avoid

a lumpy consumption path. Indeed, we find that interference can occur with field returns

39



comparable to bank interest rates.

For clarity, we have illustrated this interference using only laboratory experiments and fi-

nancial tradeoffs. However, natural and field experiments are exposed to the same underlying

substitution issue, and the tradeoffs in those contexts could be more subtle. For example,

a field experiment with financial incentives conducted among developing-country farmers

could trigger interference from non-financial smoothing instruments like grain storage.

In terms of modeling consequences, many studies in this area adopt two approaches

that increase their vulnerability to this rather complex omitted variable. First, many elicit

preferences on a “one task per attitude” basis, and then pool those data for joint structural

estimation at the end. The resulting likelihood function is something like

likelihood = smoothing likelihood + risk-aversion likelihood + discounting likelihood

This weighs all three attitudes equally, but they do not actually have equal weights in the

decision model (1) that is generating the data. So, even before adding corrections for lifecycle

asset integration, this likelihood would need to be re-weighted.10

An alternative is to design an experiment around a single decision like se1,11 and then

estimate preferences using the experimental first-order condition (2b). Because this condition

contains the SDF (3), each preference domain would automatically receive the correct weight.

Moreover, because the same SDF controls the experiment-field interaction, any interference

from lifecycle asset integration could be controlled by jointly estimating the sibling field

condition (2a).

Second, many experiments assume some form of EU. This opens up the experimenter to

confusing RRA with RRIS, particularly if an assortment of tasks on risk and time is being

combined into a single likelihood. Helpfully, RU preferences make clear that some descrip-
10In a decomposition of saving into its smoothing motive (controlled by u) and precautionary motive

(controlled by ψ), Bostian and Heinzel (2018) find that, under a wide range of risky scenarios, more than
80% of saving is attributable to smoothing.

11Only a few experiments intentionally style their tasks as “saving” (Ballinger et al., 2003, 2011; Brown
et al., 2009; Filiz-Ozbay et al., 2015).
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tions of risk aversion just do not make sense as elasticities of intertemporal substitution. For

example, Holt and Laury’s IRRA estimate would not make a good RRIS, because IRRIS

eventually implies no intertemporal elasticity.

RU forces the experimenter to continuously contemplate whether a particular combina-

tion of attitudes provides a coherent description of a task. The benefits of this “RU stance”

are not especially rooted in the RU functional form. Instead, they are rooted in the default

contextualization of experimental decisions within the trio of discounting, risk aversion, and

intertemporal substitution. If the experimenter then determines that one of those attitudes

is irrelevant in a particular circumstance, a simplification (e.g., to EU) can certainly be made.

The presence of lifecycle asset integration could be an important factor in that deter-

mination. Lifecycle asset integration can simultaneously activate discounting, risk aversion,

and intertemporal substitution in nearly any experiment, even if the task is not specifically

designed to do that. It causes a participant to realign field decisions while evaluating ex-

perimental incentives. Because this experiment-field feedback loop is a largely unobservable

mental process, differences in interference across cohorts could be a source of replication

failure (Camerer et al., 2016). The required empirical corrections involve collecting much

more data about a participant’s field environment than has usually been gathered during

experiments.
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A Derivation of the First-Order Conditions and εe,f

The Lagrangian underpinning (1) is

L ≡ u
(
cf1

)
+ βu

(
CE

(
c̃f2

))
+ µ1

(
yf1 + ye1 − c

f
1 − s

f
1 − se1

)
+ µ2

(
ỹf2 + ỹe2 + sf1R

f
2 + se1R

e
2 − c̃

f
2

)
+ λ1c

f
1

+ λ2c̃
f
2

+ λf
(
sf1 − ỹ

f
2

)
+ υf

(
yf1 − s

f
1

)
+ λese1

+ υe (ye1 − se1)

The choice variables are cf1 , c̃
f
2 , s

f
1 , and se1. Instead of relying on Kuhn-Tucker shortcuts, L

spells out every Lagrange multiplier. We will shortly collapse the choice variables to just

sf1 and se1, but starting from this expanded perspective illustrates why that simplification is

warranted.
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L’s first-order conditions are

cf1 : u′
(
cf1

)
− µ1 + λ1 = 0

cf2 : βu′
(
CE

(
c̃f2

))
CE ′

(
c̃f2

)
− µ2 + λ2 = 0

sf1 : −µ1 + µ2R
f
2 + λf − υf = 0

se1 : −µ1 + µ2R
e
2 + λe − υe = 0

µ1 : yf1 + ye1 − c
f
1 − s

f
1 − se1 ≥ 0

µ2 : ỹf2 + ỹe2 + se1R
e
2 + sf1R

f
2 − c̃

f
2 ≥ 0

λ1 : cf1 ≥ 0

λ2 : c̃f2 ≥ 0

λf : sf1 − ỹ
f
2 ≥ 0

υf : yf1 − s
f
1 ≥ 0

λe : se1 ≥ 0

υe : ye1 − se1 ≥ 0

The properties of u and ψ that satisfy L’s second-order conditions (Gollier, 2001) also guaran-

tee cf∗1 , c̃
f∗
2 > 0, and that the two resource constraints hold with equality. As a consequence,

µf∗1 , µ
f∗
2 > 0 and λ∗1, λ∗2 = 0. Because the consumption path is then fully determined by state

variables and saving amounts, cf1 and c̃f2 become redundant choice variables.
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Applying those simplifications yields the shorter Lagrangian

L ≡ u
(
yf1 + ye1 − s

f
1 − se1

)
+ βu

(
CE

(
ỹf2 + ỹe2 + sf1R

f
2 + se1R

e
2

))
+ λf

(
sf1 − y

f
2

)
+ υf

(
yf1 − s

f
1

)
+ λese1

+ υe (ye1 − se1)

with first-order conditions

sf1 : −u′
(
cf1

)
+ βu′

(
c̃f2

)
CE ′

(
c̃f2

)
Rf

2 + λf − υf = 0

se1 : −u′
(
cf1

)
+ βu′

(
c̃f2

)
CE ′

(
c̃f2

)
Re

2 + λe − υe = 0

λf : sf1 − ỹ
f
2 ≥ 0

υf : yf1 − s
f
1 ≥ 0

λe : se1 ≥ 0

υe : ye1 − se1 ≥ 0

Conveniently, L recasts L’s consumption-saving tradeoffs in terms of saving decisions alone.

This is the mathematical motivation for (1).

The Lagrange multipliers on those saving variables cannot be characterized in general.

However, because experimental incentives are usually smaller than field incentives, sf∗1 should

be interior to lifecycle field income in most cases. That would imply λf∗, υf∗ = 0. But,

one can certainly think of circumstances where that assumption might not hold (e.g., an

experiment conducted in a developing country where ye1 is on the scale of several months’

field income).

To illustrate how this setup admits boundary values of se1, Figure 8 contains two related
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se1

marginal utility

0 ye1

0

current MU

future MU
se∗1 at lower bound

future MU
se∗1 interior

future MU
se∗1 at upper bound

λe∗ > 0

υe∗ > 0

(a) Current and future MU

se1

net marginal utility

0 ye1

0

se∗1 at lower bound

se∗1 interior

se∗1 at upper bound

λe∗ > 0

υe∗ > 0

(b) Net MU

Figure 8: Two visualizations of λe and υe using the marginal utilities from se1’s first-order
condition

visualizations of the Lagrange multipliers λe and υe. The first is rooted in an intuitive de-

composition of se1’s first-order condition into its current and future marginal utility (MU)

components, which is plotted as a supply-and-demand system (Carroll and Kimball, 2005;

Bostian and Heinzel, 2018). Under this reading, the participant’s future self demands re-

sources via saving, which its current self supplies. The second is the first-order condition

itself: given the supply-and-demand interpretation, this equation can be viewed as the net

MU (“consumer surplus”) from the participant’s mental trade.

As these graphs show, interior values of se∗1 occur when the participant’s current self

can exactly supply the saving that its future self demands (equivalently, when net MU is 0).

But, if current MU is always higher than future MU within the allowed saving interval [0, ye1],

the participant chooses se∗1 = 0, and the utility gap λe∗ > 0 appears on the left boundary.

Similarly, if future MU is always higher than current MU within that interval, the participant

chooses se∗1 = ye1, and the utility gap υe∗ > 0 appears on the right boundary.

Figure 8 illustrates these gaps by shifting future MU alone. Such shifts could be caused

by changes to ye2, y
f
2 , Re

2 or Rf
2 . Of course, these rather simplistic shifts are not the only

way to create boundary decisions. As a rule, any experimental incentives that are too stingy
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relative to the field will result in se∗1 = 0, and any that are too rich will result in se∗1 = ye1.

The elasticity (4) of sf1 with respect to se1 can be developed from the usual definition

εe,f ≡
d ln

(
sf1

)
d ln (se1)

=
dsf1
dse1
· s

e
1

sf1

The derivative dsf1/dse1 can be extracted from L’s first-order conditions. Summing the sf1

and se1 conditions yields

O ≡ −u′
(
cf1

)
+ βu′

(
c̃f2

)
CE ′

(
c̃f2

) 1

2

(
Rf

2 +Re
2

)
+

1

2

(
λf − υf

)
+

1

2
(λe − υe) = 0

The derivative follows by applying the implicit function theorem to O:

dsf1
dse1

= −∂O/∂s
e
1

∂O/∂sf1

where

∂O
∂sf1

= u′′
(
cf1

)
+ β

[
u′′
(
c̃f2

)
CE ′

(
c̃f2

)2

+ u′
(
c̃f2

)
CE ′′

(
c̃f2

)]
· 1

2

(
Rf

2 +Re
2

)
Rf

2

∂O
∂se1

= u′′
(
cf1

)
+ β

[
u′′
(
c̃f2

)
CE ′

(
c̃f2

)2

+ u′
(
c̃f2

)
CE ′′

(
c̃f2

)]
· 1

2

(
Rf

2 +Re
2

)
Re

2
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