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1 Introduction

Robust evidence worldwide demonstrates that the socioeconomic status of parents is a
powerful determinant of that of their children (Björklund, Jäntti and Lindquist, 2009;
Behrman et al., 2017; Mulder et al., 2009) and a growing literature explores how the
intergenerational transmission of human capital may underpin that relationship
(Björklund, Lindahl and Plug, 2006; Lefgren, Sims and Lindquist, 2012). The impact of
parental health on child health is one such mechanism, but this relationship is
intertwined with the intergenerational transmission of multiple other dimensions of
human capital. For example, schooling is also correlated across generations in both rich
and poor countries, reflecting both heritable and nurtured aspects of cognitive and
noncognitive abilities, and endogeneity to other aspects of welfare (Akresh et al., 2017;
Black, Devereux and Salvanes, 2005; Björklund, Lindahl and Plug, 2006; Grönqvist,
Öckert and Vlachos, 2017; Agüero and Ramachandran, 2018; Hertz et al., 2007). Parent
education also impacts child health (Chou et al., 2010; Currie and Moretti, 2003),
lower-income children are generally less healthy (Case, Lubotsky and Paxson, 2002;
Currie and Lin, 2007), and poor women have more variable cortisol levels, with
implications for child cognition, health, and education (Aizer, Stround and Buka, 2015).
Less healthy children, on average, obtain less schooling, earn lower wages, and own less
assets as adults (Bharadwaj, Lundborg and Rooth, 2018; Victora et al., 2008; Walker
et al., 2007).

While a large, cross-disciplinary literature examines the intergenerational transmission
of health, most papers focus on correlations. For instance, Bhalotra and Rawlings
(2011) show that maternal height and body size is associated with child birthweight,
risk of mortality, and child height-for-age z-score across the developing world. Victora
et al. (2008) document the same in an extensive review of nutrition studies in poor
countries. The association between maternal health and child health is stronger for
mothers in poor socioeconomic conditions (Bhalotra and Rawlings, 2011; Currie and
Moretti, 2007). Yet these associations could reflect a variety of causal processes, and
only a few notable papers explore their underlying mechanisms, all in rich countries.
Currie and Moretti (2007) show that low birthweight mothers are 50% more likely to
have low birthweight children. Royer (2009) use twin fixed effects to find a similar
transmission of birthweight with stronger effects for smaller born mothers. Thompson
(2014) finds that morbidity in adopted US children increases with the presence of
morbidity in both biological and adoptive parents. Biological transmission accounts for
only 20-30% of baseline transmission for non-adoptive kids.

Our paper contributes to this literature in three key ways. First, we provide a causal
estimate of the relationship between mother and child health in Cebu, the Philippines
by instrumenting mother’s health with random weather variation around the time of her
birth and early childhood. Second, we examine the persistence of this relationship from
birth through adolescence, which to our knowledge has not been done before. Finally,
we examine and compare the persistent effect of maternal health across multiple
dimensions of child health. This comparison leads to an interesting result: while the
effect of maternal health on weight-related outcomes is relatively constant, loosing
significance as children age, the effect of maternal health on child height-for-age z-score
increases over childhood until adolescence at which point it falls. This pattern does not
appear to be explained by the persistent effect of birthweight, by socioeconomic
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mechanisms, or by parental inputs. Rather, evidence suggests that maternal health
stock may shape childhood growth trajectory until the point of puberty.

Previous papers attempt to estimate a causal transmission of human capital across
generations using sibling fixed effects, twin fixed effects, or adoption studies.1 All use
data from rich countries. The necessary data for such identification strategies is scarce
in developing countries; moreover, recent evidence shows that twin birth is
systematically related to maternal health.2 We know of only one other attempt to
causally identify health transmission in a developing country: Venkataramani (2011)
uses rainfall, grandparent socioeconomic status and regional fixed effects to isolate
health-based variation in height in Vietnam. However, it is unclear whether these
instruments meet the exclusion restriction necessary for causality.

We obtain exogenous variation in maternal health by employing instruments that
capture wind, rainfall and temperature variation relevant to early life health and
agricultural conditions in Cebu, the Philippines in the 1940s-1960s, when our cohort of
mothers were born or very young. This means that we identify health transmission off
women whose adult health is influenced by early life weather, and thus estimate a local
average treatment effect (LATE) (Imbens and Angrist, 1994). However, the prevalence
of non-compliers is likely low for two reasons. First, 40% of our sample mothers list
agriculture as their parents’ primary occupation. Second, agriculture was highly
protected prior to trade liberalization in the 1990s, resulting in little to no food
imports, despite the Filipino diet’s high reliance on rice (see Appendix Figures B.1 and
B.2). Consequently, growing season weather patterns likely impacted food prices, thus
affecting the food security of both agricultural and non-agricultural households. Hence,
our LATE is likely close to an average treatment effect. Moreover, unlike much of the
literature recording the long-term health effects of weather shocks (Maccini and Yang,
2009; Caruso and Miller, 2015; Deuchert and Felfe, 2015; Fuller, 2014; Kim et al., 2014;
Currie and Rossin-Slater, 2013), we identify off of fairly minor weather variation at the
intensive margin, rather than a single, dramatic event such as a hurricane, earthquake,
or drought. Thus, our instruments are less likely to have lasting, generational impacts
on income, infrastructure, or schooling outcomes outside of the pathway between
mother and child health. Nonetheless, such contamination is impossible to rule out, and
we address this possibility in our analysis.

Because we view maternal health transmission across many ages throughout childhood,
we are uniquely positioned to investigate the factors that drive this transmission. These
mechanisms matter for policy. Maternal health transmission is commonly measured at
birth, through the association between maternal birthweight or height and child
birthweight or risk of mortality (Thomas, Strauss and Henriques, 1990; Emanuel et al.,
1992; Conley and Bennett, 2000; Currie and Moretti, 2007; Royer, 2009). If the process
through which maternal health shapes child health occurs primarily in utero, then
subsequent correlations between maternal health and child nutritional status — as
observed by a variety of authors such as Subramanian et al. (2009), Venkataramani

1See Bharadwaj, Lundborg and Rooth (2018); Grönqvist, Öckert and Vlachos (2017); Aizer, Stround
and Buka (2015); Thompson (2014); Royer (2009); Björklund, Lindahl and Plug (2006); Currie and
Moretti (2007).

2Across 72 countries, Bhalotra and Clarke (2018) find that twin birth is systematically correlated with
mother health, health-related behaviors, and the prenatal environment.
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(2011), Bhalotra and Rawlings (2011), and ourselves — could merely result from the
persistent impact of health at birth. Our results indicate that while birthweight
explains much of the persistent effect of maternal health on child weight, it only
explains approximately 15—30% of the persistent transmission to child height,
post-infancy. This result holds when we use sequential g-estimation to estimate a
controlled direct effect (Acharya, Blackwell and Sen, 2016). We might alternatively
hypothesize that persistent transmission occurs because smaller, less healthy mothers
end up in lower-income households, have a lower cognitive or physical capacity for
childcare, or have access to inferior inputs to child health. In our data, however,
socioeconomic status and parental investments in child health similarly only explain
15—30% of the persistent relationship between maternal and child height. Together,
these two mechanisms appear to account for approximately half of the transmission of
maternal health to child height-for-age z-scores.

This leads us to explore a third mechanism behind the persistent impact of maternal
health on child health – maternal constraints to childhood growth.3 The effect of
maternal constraints on intrauterine growth, postnatal growth potential and growth
trajectories during pre-pubescent childhood is well-documented in human and animal
studies (Gluckman and Harding, 1997; Gluckman and Hanson, 2007). And while it is
possible that maternal constraints might impede child growth potential without
implications for other dimensions of child health, this is unlikely since these same factors
are associated with long-term health outcomes including cardiovascular problems,
metabolic disorders, hormonal imbalance, and organ dysfunction (Chiarelli et al., 1999;
Wu, Imhoff-Kunsch and Girard, 2012; Lazar et al., 2003; Gicquel, 2008; Mullis and
Tonella, 2008). If maternal constraints shape childhood growth trajectories, we should
see a change in maternal health transmission to child growth around the time of puberty
onset—when the child transitions to a new growth regime dictated by a different set of
growth regulating hormones. This is precisely what we see for both boys and girls.
These results support, though cannot confirm, a growth trajectory mechanism.

Finally, we also estimate all results under three different first stage specifications.
Because we have too many potential instruments, we need to reduce first-stage
dimensionality. To do so, we employ a different technique in each specification: Lasso
(least absolute shrinkage and selection operator) following Belloni et al. (2012) and
Belloni, Chernozhukov and Hansen (2014), a combination of principal component
analysis and Lasso (Winkelried and Smith, 2011; Bai and Ng, 2010; Ng and Bai, 2009;
Amemiya, 1966), and a novel method of our own based on singular value analysis. Our
preferred method, singular value analysis, should sort the signal of the instrumental
variables from their associated noise by defining a cut-off point that separates noise from
signal in a rotated space of orthogonal vectors (Abu-Shikhah and Elkarmi, 2011; Zhang
et al., 2016; Lawson and Hanson, 1974). While these three methods of dimensionality
reduction differ slightly in terms of first stage parsimony and the instruments retained,
second stage estimates are virtually identical across the three methods.

Section 2 provides an overview on three mechanisms that potentially drive
mother-to-child health transmission, with an emphasis on the determinants of childhood

3Maternal constraint is a term used to describe the non-genetic and non-pathological pathways through
which a mother constrains the growth of her fetus. These pathways include maternal size, age, and
parity as well as her physiological status, placental function, maternal diet and maternal programming.
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growth. Section 3 provides an overview of our survey and climate data. Section 4 lays
out our strategy for identifying maternal-to-child health transmission, as well as for
exploring the mechanisms behind that transmission. Appendix A gives a detailed
explanation of singular value analysis, which underlies our preferred method for first
stage dimensionality reduction. Section 5 reports our results, primarily in figure form.
Appendix B provides all additional results and robustness checks. Appendix C and
Appendix D report core results using alternative methods of reducing first stage
dimensionality. Finally, Section 6 concludes.

2 Background on Maternal Health Transmission

and Child Growth Trajectory

In addition to estimating the causal transmission of health from mother to child, we
explore the potential channels through which this transmission may operate. We
suggest that maternal-child health transmission may work through three mechanisms:
(1) the effect of maternal health on socioeconomic status or capacity for child care, (2)
the effect of maternal health on fetal development, manifest through an impact on child
birth health only, and (3) the effect of maternal health on the growth trajectory of a
child, manifest through a persistent impact on child growth velocity. The first
represents a socioeconomic and/or behavioral mechanism, while the latter two represent
biological mechanisms. While we cannot isolate the causal impact of these mechanisms,
we conduct analysis that hints at their respective roles.

First, mother’s health may transmit to her child’s through its effect on her
socioeconomic status or her parenting ability. A large literature documents that health,
particularly early childhood health, improves a broad range of adult outcomes including
numerous dimensions of socioeconomic status and ability. For example, evidence finds
that early childhood health affects later cognitive outcomes, school attainment as well
as adult earnings and consumption (Black, Devereux and Salvanes, 2007; Bütikofer,
Løken and Salvanes, forthcoming; Bharadwaj, Lundborg and Rooth, 2018).
Additionally, adverse shocks in utero can result in lower educational attainment, lower
cognitive ability, and reduced earnings (Almond, Currie and Herrmann, 2012; Aizer,
Stround and Buka, 2015; Black et al., forthcoming). It is therefore plausible that
improvements in mothers’ early life health improves her adult socioeconomic status
and/or parenting ability. This, in turn, may improve child health status by relaxing
resource constraints on child health investments or simply making mothers more adept
at these investments. Indeed, parental socioeconomic status and schooling are
associated with improved child health outcomes such as child morbidity, height, and
mental health (Case, Lubotsky and Paxson, 2002; Currie and Moretti, 2003; Currie and
Lin, 2007; Chou et al., 2010; Behrman et al., 2017; Luca and Bloom, 2018). It is not
surprising, therefore, that mothers’ early life health is associated with child health
(Currie and Moretti, 2007; Conley and Bennett, 2000; Royer, 2009), and that this
association is mitigated by improved parental socioeconomic status (Bhalotra and
Rawlings, 2013; Currie and Moretti, 2003).

Second, any ongoing transmission of mother-to-child health may primarily be due to the
effect of mother’s health on child in utero and birth health. We know that maternal
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health impacts child birthweight and mortality (Black et al., 2013; Luca and Bloom,
2018), and ample evidence demonstrates the importance of birth health to later health
(Almond and Currie, 2011; Aizer, Stround and Buka, 2015; Bütikofer, Løken and
Salvanes, forthcoming; Bharadwaj, Lundborg and Rooth, 2018). It is therefore possible
that the causal effect of mother’s health on child’s health in later childhood and
adolescence is due to a transmission at birth and the subsequent effects of birth health
on health at later ages.

Finally, maternal health can affect childhood health by impacting the factors that
regulate growth velocity. Greater growth velocity will cause an increasing height
advantage as children age. Growth velocity is set by growth potential and duration,
both of which are determined by the epiphyseal growth plates, the cartilage plates
found at the end of each long bone where growth takes place. Therefore, the growth
plates, formed in utero, are one of the primary determinates of growth velocity
throughout childhood and adolescence (Boersma and Wit, 1997; Ballock and O’Keefe,
2003; Gat-Yablonski, Yackobovitch-Gavan and Phillip, 2011).

The events regulating linear growth take place in three distinct phases: uterine/infant
growth4, childhood growth, and pubertal growth (Karlberg, 1987; Hindmarsh et al.,
2008). During each phase, growth plates are targeted by distinct sets of mechanisms
that include complex systems of hormones, genes, and proteins. Uterine/infant growth
is primarily determined by maternal physiology, placental function, and maternal and
child nutrition, which interact with key fetal growth regulating hormones, proteins, and
genes such as insulin, IGF-I, and IGF-II (insulin-like growth factors I and II)
(Gluckman and Harding, 1997; Mullis and Tonella, 2008; Hindmarsh et al., 2008).
Childhood growth is, instead, primarily dependent on growth hormone (GH) (Karlberg,
1987; Mullis and Tonella, 2008). GH affects growth by binding to receptors on the
growth plates and by orchestrating the production of IGF-I (Gat-Yablonski,
Yackobovitch-Gavan and Phillip, 2009; Mullis and Tonella, 2008). Pubertal growth is
also GH-dependent; however, it is also heavily regulated by sex hormones such as
estrogen and androgen (Karlberg, 1987; Hindmarsh et al., 2008; Gluckman and
Harding, 1997). Linear growth is therefore most dependent on GH after infancy and
before pubertal growth begins.

The timing of these three growth phases is fairly predictable, but varies slightly by
child. Childhood growth, dictated primarily by GH, begins between ages 6 months to 1
year (Karlberg, 1987; Hindmarsh et al., 2008). There is greater variation in the age
where a child transitions to pubertal growth. This age also depends on sex. Girls begin
pubertal growth between 9.5 and 14.5—after the onset of puberty around 8, but before
menarche (i.e., the first period). The transition begins later for boys, generally around
11, again after the onset of puberty. For both girls and boys, a delay in the onset of
puberty means a delay in the transition from childhood growth to pubertal growth
(Abassi, 1998; Stang and Story, 2005).

Maternal health, physiology, and size during pregnancy can impact childhood growth
trajectory due to the influence of the uterine environment on growth regulating factors.
Evidence from human and animal studies indicates that these characteristics affect

4Growth in infancy is thought to be largely a continuation of fetal growth.
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uterine growth rates through multiple mechanisms including by influencing the presence
of GH, insulin, IGF-1 and IGF-II (Gluckman and Hanson, 2007; Gluckman, Hanson and
Beedle, 2007), which, in turn, are associated with childhood growth, at least in part
through an effect on sensitivity to GH and IGF-I during childhood. Adverse fetal
environments and/or restricted uterine growth is also associated with numerous later
health problems, including metabolic disorders, dysfunction and abnormal development
of organs, cardiovascular disorders, and numerous problems related to hormonal
imbalance (Chiarelli et al., 1999; Lazar et al., 2003; Gicquel, 2008; Mullis and Tonella,
2008; Wu, Imhoff-Kunsch and Girard, 2012). In fact, the fetal environment can induce
many of these problems even without affecting birth size (Gluckman, Hanson and
Beedle, 2007; Lillycrop and Burdge, 2012). Additionally the growth plates themselves
are formed in utero, and maternal characteristics and well-being can affect the height of
the growth plate, which impacts growth potential (Gat-Yablonski, Yackobovitch-Gavan
and Phillip, 2011). Therefore it is possible for a mother’s health to affect postnatal
growth trajectories, with implications for attained height as well as long-term health.

3 Data

3.1 Cebu Longitudinal Health and Nutrition Survey

To explore mother-to-child transmission of health we exploit unique data collected by
the Cebu Longitudinal Health and Nutrition Survey (CLHNS). The CLHNS is a rich
longitudinal dataset collected from the island of Cebu, the Philippines that follows of a
cohort of Filipino women who gave birth during the one year period between May 1,
1983 and April 30, 1984. The study area encompasses 17 urban and 16 rural randomly
selected barangays in northeast Cebu and includes several urban, mountainous, and
coastal regions.5 Within these barangays, all pregnant women due to give birth during
the designated time frame were canvassed to participate in the study. Women were
surveyed in their third trimester, at birth, and then every 2 months for the first 24
months of their child’s life. Three follow up surveys were additionally conducted during
childhood and adolescence, in 1991-1992, 1994-1996, and 1998-2000. During these
surveys, index children were approximately 8, 11, and 15 years old.

The CLHNS provide broad and detailed information on numerous dimensions of human
capital. In each round, the surveys collected extensive information on the child, the
mother, the child’s household, and his/her mother’s household (if it is not the same as
the child’s). Anthropometric measures were taken in each wave for both mother and
child. These data are therefore uniquely suited to investigate the relationship between
maternal and child health.

Height-for-age z-score (HAZ) is often considered the gold standard for measuring early
life health stock. Deficits in child HAZ typically signify long-term, cumulative health
and/or nutrition shortfalls resulting in a failure to reach growth potential (WHO, 1995).
Low child HAZ is associated with increased morbidity and mortality and reduced
long-term health, and negatively associated with a wide range of socioeconomic
outcomes such as educational achievement, cognitive ability, and adult economic
productivity (Strauss and Thomas, 2008; Victora et al., 2008; Vogl, 2014; WHO, 1995).

5A barangay is the smallest administrative unit in the Philippines.
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Table 1 provides summary statistics on baseline characteristics and health outcomes for
sample children across observed ages, including HAZ.6 Sample children are short, with
HAZ hovering around two standard deviations below what is considered healthy.
Approximately 64% of the sample experienced stunting (i.e., HAZ ≤ -2) at some point
in their first year of life. Stunting rates rise to 76% at age 2 and then reduce to around
50% and below at ages 8, 11, and 15.7

Child weight is more sensitive to current nutritional inputs and morbidity than is child
height, and is therefore used to capture health flow rather than health stock.
Approximately 12% of the sample was born at a low birthweight. At later ages,
weight-for-height z-score (WHZ) and body mass index z-score (ZBMI) capture how thin
a child is for his/her height. Average WHZ and ZBMI range between a half and one
standard deviation below what is considered healthy during all the ages examined.
Wasting (i.e., WHZ, ZBMI ≤ -2) is most prevalent when the sample children are young.
Approximately a third of children experience wasting at some point during their first
year of life.8

The CLHNS also contain information on the pubertal development of the sample
children. Using this information we approximate the timing of the onset of pubertal
growth for both girls and boys. We then parse our 1994 sample of girls (who are
approximately 11) into those who likely began pubertal growth and those who likely did
not. We parse our 1998 sample of boys (who are approximately 15) in the same way.
We parse girls around age 11 because girls generally begin pubertal growth around 9.5,
and so heterogeneity in growth regime exists around age 11, while little variation exists
at ages 8 or 15. We define a girl as likely to have begun pubertal growth in 1994 if
menarche occurred by the 1994 interview date or within 2 years after that interview
date (Abassi, 1998; Stang and Story, 2005). Information on the precise timing of
menarche is gathered in both the 1994 and 1998 surveys.9

Unfortunately, the 1994 surveys do not collect information on pubertal indicators for
boys, and so we cannot parse boys by pubertal development at age 11 as we do with
girls. However, we can parse boys at age 15 as the 1998 survey gathered a series of
indicators regarding male pubertal development. From this information we generate
four indicators for male pubertal development at 15: an indicator for visible underarm
hair, whether the boy shaves, whether his voice has changed, or has high levels of pubic
hair (level four or five on the pubic development drawings).10 If any of these variables

6World Health Organization reference data was used to standardize all anthropometric z-scores. For ages
1 and 2 HAZ is calculated using recumbent length rather than height.

7To contextualize, 2015-2016 and 2016 Demographic and Health Survey (DHS) data from Malawi and
Nepal show that 12.7 and 12.4 percent of children are stunted at age 1, respectively, 25.3 and 31.8 percent
at age 2, and 33.9 and 37.6 percent at age 5. However, these statistics are not strictly comparable. For
the CLHNS data on children 1 and 2 we list a child as experiencing stunting or wasting if he or she was
stunted or wasted at any of multiple visits during the 1st and 2nd year of life. The DHS data view each
child only once at a given age.

8For comparison, again, 7.7 and 14.6 percent of children are wasted at age 1, in Malawi and Nepal.
Wasting rates continue to hover between 10 and 20% at ages 2-15.

9Ample evidence demonstrate the reliability of recall data for menarche, especially when the window
of time between recall and menarche is short (Adair, 2001; Koo and Rohan, 1997). Indeed, the two
surveys exhibit high concordance in their recalled date of menarche.

10Sample boys looked at five drawings of male genital areas, each indicating a stage of pubertal develop-
ment, and chose the drawing that best matched the thickness and spread of their pubic hair. The high
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are equal to one, the sample boy is more likely to have already begun pubertal growth
by the age of 15. However, it is worth noting that none of these indicators are as
accurate an indicator of pubertal growth as is the timing of menarche for girls.

3.2 Climate Data and Instruments

In order to causally identify the intergenerational transmission of human capital in this
setting we exploit climate information on windspeed, temperature and rainfall around
the time of the mother’s birth and early childhood. Mothers in our sample were all born
between the years 1936 and 1966, with most born in the 1950s and early 1960s,
approximately two to four decades before the birth of our sample children (see Appendix
Figure B.3). Therefore, to investigate the effect of climatic conditions on maternal
health, we use three geospatial datasets that all stretch back to the 1930s. The majority
of geospatial re-analysis data begins in 1979, with the advent of satellites. Re-analysis
data beginning prior to this relies heavily on global records of pressure levels.

We obtain data on windspeed from the 20th Century Re-Analysis project, run by the
Earth Science Research Laboratory (ESRL) at the National Oceanic and Atmospheric
Administration. It contains global 10-meter windspeed estimates at a 2 degree spatial
resolution in 3 hour intervals (8 observations per day). We average these 3-hour
estimates within day, and across the cells that overlay the island of Cebu. We use
gridded windspeed data, rather than modeling windspeed based on historical cyclone
trajectories as do Anttila-Hughes and Hsiang (2013) or Hsiang (2010), for two reasons.
Historical cyclone trajectories are less accurate prior to the advent of satellites.11 Also,
we wish to identify on high windspeeds that occur outside the presence of cyclones.

Our temperature data, also from the 20th Century Re-Analysis Project, contains global
surface temperature estimates at a 2 degree spatial resolution in 6 hour intervals (4
observations per day). We again create daily average temperature for the island of
Cebu. We procure precipitation data from the Global Precipitation Climatology Centre,
also at ESRL. This dataset provides monthly, average precipitation estimates at a 0.5
degree spatial resolution, which we extract for the island of Cebu.12 Appendix Figures
B.4-B.7 illustrate monthly averages for rainfall, temperature, and windspeed over Cebu.

Using this gridded climate data, we create three types of weather shock instruments.
First, we create instruments that capture potential morbidity due to high windspeeds or
typhoons around the time of birth. The Philippines is one of the most intensely
typhoon-exposed countries in the world. Typhoons around the time of birth increases
risk of morbidity and mortality by destroying household assets and spreading
waterborne disease through contaminated flood waters due to ocean surges
(Anttila-Hughes and Hsiang, 2013; DOH, 2017; Salas, 2015). High winds not qualifying

level of pubic development would coincide with a Sexual Maturity Rating (SMR) of 4 or 5. Pubertal
growth in males generally begins somewhere in SMR 3 (Stang and Story, 2005).

11They are even less accurate prior to the 1940s, when the United States began flying reconnaissance to
detect cyclones. Even after 1940, such missions were rare in the Western Pacific basin.

12We weight grid cells by area overlaying the island of Cebu. For robustness, we also conduct analysis
using: (1) only grid cells directly overlying Cebu city, and (2) grid cells overlaying the island of Cebu,
surrounding islands, and the island of Luzon (known as the “rice bowl” because it produces most of the
country’s rice). While these two extractions produced nearly identical results (available upon request)
to those reported in the paper, accuracy is best when we extract at the level of Cebu island only.
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as typhoons can do the same. We therefore create a monthly measure of windspeed
intensity by squaring the maximum windspeed observed in each month, between 1927
and 1970. We use as our first set of instruments these measures of monthly maximum
wind speeds for the month of our sample mothers’ births, each of the 12 months
preceding their births, and each of the 12 months following their births.

We next construct instruments that impact rice production during our sample mothers’
early childhood. The Filipino diet is highly dependent on rice.13 Prior to the 1990s when
agricultural trade was liberalized, the country’s rice was largely self-supplied. Appendix
Figure B.2 illustrates that Filipino rice consumption was almost entirely supplied by
own-production. Therefore, short-term fluctuations in rice production have implications
for local food supply, household food security, family income, and early life health.

Our second set of instruments are thus constructed to capture wind damage to rice
crops during early childhood. High windspeeds cause significant damage to rice crops,
particularly during the reproductive and ripening phase that occurs during the two
months prior to harvest (Blanc and Strobl, 2016).14 Accordingly, high wind speeds
during this period had potentially severe consequences for food security and the health
of small children or even as-yet-unborn children. Our second set of instruments
therefore consists of maximum squared windspeed ((m/s)2) observed during the two
months proceeding rice harvest for the two years prior to our sample mothers’ birth
year, their birth year, and for the five years following their birth.15

Additionally, temperature and precipitation during the monsoon months impact rice
and other crop production. Thus, we create year-specific measures of growing
conditions that include average monsoon season temperature, average monsoon season
rainfall, and interactions between the two. Appendix Figure B.4 shows that the rainiest
months are March-December. Accordingly, we define monsoon months as
May-December. Our year-specific rainfall and temperature variables are therefore given
as average rainfall (mm/day) and average temperature (degrees Celcius) over the course
of May-December in any given year. Our third set of instruments consists of these
measures for the two years prior to, for the year of, and for five years after the births of
mothers in our dataset.16 To avoid capturing spurious correlations between longer-term
time trends in temperature and precipitation (e.g., driven by el nino or climate change)
and time trends in mother’s health, we de-trend monsoon variables by year, allowing for
a quadratic shape (Christian and Barrett, 2018).

Our fourth and last set of instruments consists of mother’s birth month dummies.
Appendix Figure B.7 plots maternal height as a function of birth months,

13Between the years 1961 and 2017, Filipinos consumed between 0.13 (286.60) and 0.21 (467.38) metric
tons (lbs.) per capita per year. See appendix Figure B.1.

14Strong typhoon winds can damage rice crops through lodging, stripping and injuring plant organs.
Rice plants can also suffer from water stress due to enforced transpiration (Blanc and Strobl, 2016).

15The reproductive/ripening phase for rice crops in Cebu occurs over the months of August and Septem-
ber (season 1) and January and February (season 2). We use the squared maximum wind speed in Cebu
across these four months for our windspeed instruments. We also conducted analysis using squared
maximum windspeeds for each crop cycle separately, resulting in two measures per year instead of one.
This gave almost identical results.

16We include pre-harvest and monsoon season conditions for two years prior to the mother’s birth to
allow potential measurement error in mothers’ recalled year of birth.
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demonstrating seasonality in maternal health stock. This last set of instruments thus
captures the predictable seasonality of health, driven by typhoons, monsoon seasons,
disease vectors or other factors. Our sample mothers’ birth months are fairly evenly
distributed (Appendix Figure B.8), and so mothers born in a particular month or
season are not overweighted in later estimations.

All together our four sets of instruments consist of 69 instruments in total. We are
therefore concerned that we may have a many, weak instrument problem which will
yield biased estimates in the traditional 2SLS environment. We discuss and and address
this issue in Section 4.1. We also address and provide a series of checks for violations of
the the exclusion restriction in Section 5.1.

4 Estimation Strategy

4.1 Identifying Transmission in a Data Rich Environment

We wish to estimate the transmission of maternal health to child health. Accordingly,
Equation 1 models the health of child i at age a born to mother j living in barangay v,
Ca

ijv. The health of mother j is captured by Mjv, and the point estimate γ̂a1 therefore
captures the coefficient of intergenerational transmission of health to the child at age a.
We use mother’s height, measured in cm at baseline when the women were in their third
trimester of pregnancy, as a proxy for mother’s health stock. However, because we
identify transmission from the component of mother’s height that is driven by early life
shocks to health, we interpret γa1 as the effect of mother’s multidimensional health, not
mother’s height. Specifically, γa1 can be interpreted as the effect of a change in any of
the dimensions of mother’s adult health that is associated with a 1 cm change in her
height as a result of early life health realizations.

Ca
ijv = γa1Mjv + κa1X

a
ijv + λav + εaijv (1)

We estimate Equation 1 separately for child ages a ∈ {0, 1, 2, 8, 11, 15}. The matrix Xa
ijb

includes mother’s age, mother birth cohort dummies indicating whether she was under
20, 20-35 years old, or older than 35 at baseline, a dummy for child gender, child
barangay of birth fixed effects, and child month of birth fixed effects. Note that because
all sample children were born in one year, controlling for maternal age is equivalent to
controlling for maternal birth year time trends. At birth only (a = 0), Xa

ijb includes an
indicator for whether the child’s gestational age is in question.17 λav is a vector of
baranagay of residence fixed effects.18

We consider two dimensions of child health: health stock and flow. We proxy health
stock with HAZ at each age a (length-for-age for a < 2). We proxy health flow using
three weight measures, as appropriate by age: weight at birth, weight-for-length z-scores
(WHZ) for a = 1, 2, and body-mass-index-for-age z-scores (ZBMI) for a = 8, 11, 15.

17Approximately, 500 of our sample children were born with at least of the following: (1) low birthweight,
(2) mother had diabetes during pregnancy. (3) Mother experienced bleeding during early pregnancy,
or (4) mother does not remember her last regular menstrual period. If any one of these circumstances
were true, then the child’s gestational age at birth was uncertain.

18This is equivalent to barangay of birth for a ≤ 2.
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Estimating Equation 1 using OLS will return a biased estimate of γa1 , as mother’s
health is correlated with numerous, omitted dimensions of socioeconomic status that
also affect child health. We therefore instrument for mother’s health in Equation 1
using variation in weather from the time of her birth and early childhood (as described
in Section 3.2): windspeed in the months surrounding birth, WBjv, monsoon conditions
(temperature and rainfall and their interaction) for the years prior to and after birth,
MNjv, windspeed during harvest months for the years prior to and after birth, HWjv,
and maternal month of birth fixed effects, λjb. If we retained the entire set of exogenous
weather instruments, the first stage equation would be specified as Equation 2, except
that it would additionally include all Equation 1 covariates.

Mjv = β1WBjv + β2MNjv + β3HWjv + λjb + ujv, (2)

However, this large set of 69 instruments is weak (Stock and Yogo, 2005; Belloni et al.,
2012); tests of the joint first stage significance of these instruments return F-statistics
that hover around one. Therefore, while our instruments likely meet the exclusion
restriction (addressed in Section 5.1), they do not meet the relevance condition, and
estimated two-stage least squares (2SLS) parameters may be biased towards OLS
parameters. This well-known bias, which increases with the number of weak
instruments, stems from the first stage over-fitting to random noise within the
endogenous variable and the instruments. When the first stage model is over-fit, the
predicted first stage outcome retains a degree of the endogenous variation that biases
the 2SLS parameters towards OLS estimates (Winkelried and Smith, 2011).

Since our instruments are both many and weak, we reduce first-stage dimensionality
using three separate machine learning methods, each of which chooses or creates one or
more “optimal” first stage instruments. First, we estimate Equation 2 via Lasso which
creates a subset of optimal first stage instruments (Belloni et al., 2012; Belloni,
Chernozhukov and Hansen, 2014). Lasso is a shrinkage estimator designed to reduce
model dimensionality by isolating key sources of variation. Lasso estimates coefficients
by minimizing the sum of squares subject to a penalty on large coefficients, forcing the
majority of coefficients to zero and thereby leaving only the strongest predictive
covariates in the model. We choose Lasso’s penalty function via cross-validation, as is
most commonly done (Tibshirani, 1996).

Second, we decompose the entire set of instruments into 69 new, orthogonal vectors via
principal component analysis (PCA). Kloek and Mennes (1960) first proposed principal
components as potentially optimal linear combinations of instruments. Choosing
principal components lowers dimensionality, retaining the bulk of a matrix’s original
variation, and increases prediction stability. Principal components also satisfy several
desirable properties of a theoretically optimal linear combination of instruments
(Amemiya, 1966). We choose the components to retain in the first stage via Lasso,
following the boosting procedure employed by (Ng and Bai, 2009).19 Again, we choose
the Lasso penalty function via cross-validation.

Third, we propose a new but related method employing singular value analysis (SVA).
SVA is often used in signal processing to de-noise data in a least squares environment

19While boosting is an algorithm rather than an estimator, the subset chosen by boosting is very similar
to that chosen by Lasso (Ng and Bai, 2009).
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(Abu-Shikhah and Elkarmi, 2011; Zhang et al., 2016), making it appropriate for the
first stage of a 2SLS estimation. While PCA decomposes the instrument covariance
matrix, SVA decomposes the original instrument matrix itself into eigenvectors and
“singular values” (a direct transformation of eigenvalues). An optimal subset of these
principal axes is then used to solve the original, first-stage minimization problem in the
rotated space of orthogonal vectors (Lawson and Hanson, 1974). This “optimal” subset
is determined by a cutpoint k that theoretically separates the eigenvectors representing
signal from those providing noise.

This single separating point between noise and signal differentiates SVA from the first
two methods. Lasso subsets instruments or principal components in no particular order
– if the first and third principal component are chosen by Lasso, the second need not
be. Under SVA all eigenvectors of index less than or equal to k are included in the
solution, while those above k are discarded as noise. This ordering reflects a belief that
the largest components of variation reflect signal, the smaller components reflect noise,
and a cut-point k separates the two. This theory makes SVA particularly appropriate
for noisy data such as the gridded climate data we are working with. PCA performs
best when data have an underlying factor structure (Ng and Bai, 2009; Bai and Ng,
2010). Lasso performs best when the endogenous variable is directly driven by a small
subset of the potential instruments, and the other instruments carry little information
(Ng and Bai, 2009; Kapetanios and Marcellino, 2010b,a).

We employ SVA in our primary specification because the underlying assumptions make
sense for our data. However, recognizing that the reality of our data structure may not
fall cleanly into any of the three camps, we replicate all core results using Lasso
(Appendix C) and PCA-Lasso (Appendix D). In all three cases, the optimal linear
combination or subset of instruments is then used to estimate Equation 1 via 2SLS.

While Lasso chooses a subset of instruments (or principal components) for the first
stage, SVA results in only one optimal linear combination of the original instruments.
This instrument, M̂k∗

j , is given by the linear combination of the original instruments
defined in Equation 3. The coefficients in Equation 3 are defined critically by the
chosen cut-point k that separates presumed signal (eigenvectors retained) from
presumed noise (eigenvectors discarded) in the rotated space. It therefore determines
the parsimony of the solution. The cutpoint k can vary from 1 to kmax and determines
the total number of non-zero singular values (Lawson and Hanson, 1974). While k is
often chosen via rules of thumb (Abu-Shikhah and Elkarmi, 2011; Van Der Veen,
Deprettere and Swindlehurst, 1993; Zhang et al., 2016), we choose k = k∗, where k∗ is
chosen through group-wise cross validation.20 More details regarding the SVA
estimation of β̂k∗

1 , β̂
k∗
2 β̂

k∗
3 and λ̂k

∗
can be found in Appendix A.

M̂k∗

j = β̂k∗

1 WBjv + β̂k∗

2 MNjv + β̂k∗

3 HWj + λ̂k
∗

jv . (3)

20We choose the k that optimizes predictive power for out-of-sample mothers. Instrument variation that
predicts mother’s health in sample but does not contribute to forecast power, under k > k∗, is likely
to be over-fitting noise in the data, picking up endogeneity that will bias second stage results.
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4.2 Persistence and Mechanisms

The causal transmission of mother-to-child health identified by γ̂a1 might operate
through a variety of mechanisms, and isolating mechanisms in non-experimental data is
often possible only under stringent assumptions (Acharya, Blackwell and Sen, 2016;
Imai et al., 2011). We therefore explore the three mechanisms outlined in Section 2 with
some caution regarding the interpretation of our findings.

Mother’s health may impact child health outside of any biological transmission, because
healthier mothers enjoy higher income levels, greater educational attainment, or for
other reasons invest differently in their child’s health. Thus, socioeconomic status
and/or parenting ability may serve as mediating factors between treatment (mother’s
health) and outcome (child’s health). To explore this possibility, we estimate the
mother-to-child health transmission at each age conditioning on a large set of
socioeconomic variables and inputs to child health.

Ca
ijv = γa2Mjv + δa2S

a
ijv + κa2X

a
ijv + λaijv + ηaijv. (4)

where Sa
ijv includes numerous measures of socioeconomic status and parental inputs

including household income, mother’s education, child vaccination status, child
expenditures, child time allocation, and many others. We estimate Equation 4 first
including all controls that capture socioeconomic status (listed in Column 1, Table 3),
and then including those socioeconomic controls alongside controls capturing parental
investment in children (listed in Column 2, Table 3).21

Ideally, if mother’s health transmits to her child’s health partly through improving her
socioeconomic status/parenting ability, then γa2 estimates the “direct effect” of mother’s
health—the effect that operates through any other pathway. However, γa2 will not
estimate this direct effect if unobserved, intermediate confounders exist, affected by the
treatment (mother’s health) and also correlated with both the outcome (child health)
and the mediator (some aspect of socioeconomic status/ parenting ability) (Acharya,
Blackwell and Sen, 2016).22

Any of the socioeconomic or input variables included in Sa
ijv might serve either as

mediator or intermediate control. Therefore, as a robustness check, we estimate the
average direct controlled effect (ACDE) using sequential g-estimation as proposed by
Acharya, Blackwell and Sen (2016).23 To do so we choose a single variable, mother’s

21Note, the socioeconomic and parental input controls we employ differ by age, partly because survey
questions differed slightly by round, and also because some inputs are important at one age but not
another (e.g., arental help with homework may be an important input at 11, but not during infancy).

22However, if controls Sa
ijv include mediators and also all intermediate confounders, then γa2 estimates

the residual effect of mother’s health that operates through neither the mediators nor the intermediate
confounders, which is again different from the direct effect (Acharya, Blackwell and Sen, 2016). If
this residual effect is non-zero, we can infer that additional mechanisms exist. That is, if Sa

ijv include
all mediators and cofounders, then Equation 4 examines whether alternative mechanisms exist, rather
than providing support for any particular mechanism.

23Acharya, Blackwell and Sen (2016) propose sequential g-estimation of the ACDE as a way of “de-
mediating” the dependent variable to address intermediate variable bias. Under certain assumptions,
the ACDE avoids this bias by not conditioning the demediated regression on either the mediator or
intermediate controls.
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education, as a mediator.24 We choose mother’s education since it is highly correlated
with both socioeconomic status and ability. We then treat all other socioeconomic and
input controls listed in Table 3 as intermediate confounders. We treat all controls
included in Equation 1 as pretreatment controls.

Next, we turn to potential biological channels for the transmission of health. If health
transmission occurs at birth, and health at birth continues to impact child health over
childhood, then birthweight, a widely used measure of health at birth, may serve as a
mediator for health transmission at all ages. We therefore estimate Equation 5 for ages
a ∈ {1, 2, 8, 11, 15}, continuing to control for socioeconomic status and parental inputs
Sa
ijv, and now also holding constant birthweight, C0

ijv.

Ca
ijv = γa3Mjv + φaC0

ijv + δa3S
a
ijv + κa3X

a
ijv + λaijv + ωa

ijv. (5)

The parameter γa3 will only capture the direct effect of mother’s health, net of
socioeconomic status, parent inputs, and now birth health, if no intermediary
confounders exist. Because such confounders may exist, we again estimate the ACDE
using sequential g-estimation treating birthweight as the mediator. In this case, our
situation more closely mirrors the appropriate context for estimating an ACDE:
birthweight is our only mediator of interest. We include controls from Equation 1 as
pre-treatment variables, and all controls in Sa

ijv as intermediary confounders. If both γa3
and the ACDE are non-zero, we infer that alternative mechanisms likely exist,
underpinning health transmission across ages. One such mechanism could be a
persistent biological transmission through child growth trajectory/velocity.

We explore the possibility of a transmission of maternal health to child growth
regulation and velocity in two ways. First, we exploit the differential timing of puberty
onset and the subsequent transition to pubertal growth across sexes, by re-estimating
Equation 5 for girls and boys separately. Girls begin pubertal growth earlier. Therefore,
if transmission is working through factors that are specific to childhood growth, we
should see a change in the pattern of estimated marginal effects of maternal health
earlier for girls than for boys.

Second, we exploit information on the timing of the transition from childhood growth to
pubertal growth, within sex. As explained in Section 3.1, we use the timing of menarche
for 11 year old girls and visible signs of puberty for 15 year old boys to define a binary
indicator for likely pubertal growth P a

ijv. In Equation 6 we interact maternal height Mjv

with P a
ijv, for a = 11 for girls and a = 15 for boys, to investigate whether the impact of

mother’s health varies with probable growth regime.25

Ca
ijv = γa4Mjv + αaP a

ijv + ψa(Mjv × P a
ijv) + δa4S

a
ijv + κa4X

a
ijv + λav + εaijv (6)

24We also estimated the ACDE treating household per capita income as the socioeconomic mediator and
included mother’s education as an intermediate confounder. This produced nearly identical results,
available upon request.

25This gives us an additional endogenous variable. We create an additional exogenous instrument by
interacting the SVA-optimal instrument with the pubertal growth dummy.
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5 Results

5.1 First-Stage Specification and Identification

The M̂k∗
j compiled by singular value analysis (our SVA-optimal instrument) is a linear

combination of all 69 original instruments. However only 45 rotated, orthogonal vectors
are chosen (i.e., k∗ = 45). The bulk of the variation in the SVA-optimal instrument is
provided by just over a dozen instruments, all capturing monsoon agricultural
conditions. Appendix Figure B.9 illustrates the relative weight of these instruments,
i.e., their average contribution to M̂k∗

j .26 Because these weights are clustered around
zero with long tails in either direction, we only include in the figure instruments that
fall below the 10th weight percentile (i.e., those with a highly negative effect on M̂k∗

j )
and instruments that fall above the 90th weight percentile (i.e., those with a highly

positive effect on M̂k∗
j ). Remaining weights are available upon request. Figure B.9

illustrates that while monsoon temperature and simultaneously high monsoon
temperatures and rainfall positively predict maternal health, high monsoon rainfall on
it’s own negatively predicts maternal health, perhaps indicating flooding or storms.

Identifying variation comes from an overlapping but distinct set of instruments when we
use Lasso or PCA-Lasso to reduce first stage dimensionality. The 28 first stage
instruments chosen by Lasso feature every category of instrument (Appendix Table
B.1). However, weights representing the average contribution of each instrument to first
stage prediction illustrate that 6 instruments, bolded in Table B.1, provide the bulk of
the first stage variation.27 As with the SVA-optimal instrument, monsoon temperature
positively predicts maternal health, while high pre-harvest winds — likely capturing
rice crop destruction — negatively predict maternal health. Last, Appendix Figures
B.10 and B.11 illustrate the relative weights of the instruments that provide the bulk of
the variation in the first two of the Lasso-chosen components, under PCA-Lasso. Again,
we include only the instruments that fall below the 10th weight percentile or above the
90th weight percentile.28 A similar graphic for every component is available upon
request. Figures B.10 and B.11 suggest that PCA-Lasso instruments share identifying
variation with both the SVA-optimal instrument and the Lasso-chosen instruments,
which makes sense since this method includes both linear combination and subsetting.29

While these three methods of dimensionality reduction result in overlapping but distinct
sets of instruments, estimating the first stage of Equation 1 is effective under all three
methods and provides similar second-stage estimates. Appendix Table B.2 reports the
first-stage estimates using our SVA-optimal instrument. Tables B.3 and B.4 reports the
first-stage estimates using Lasso-chosen instruments and Lasso-chosen principal
components.30

26Weights are given by the instrument’s coefficient from Equation 3 (elements of β̂k∗

1 , β̂k∗

2 , β̂k∗

3 , or λ̂k
∗

jv )
multiplied by the mean of the instrument itself.

27As with the SVA-optimal instrument, weights are given by the mean of each instrument multiplied
by it’s coefficient from a regression of mother’s height on the Lasso-chosen instruments. The bolded
instruments are those that fall below the 10th weight percentile or above the 90th weight percentile.

28In this case weights are given by the instrument-specific elements of the eigenvectors/components
29However, interpretation is most difficult with this method since the influence of any given instrument

is spread across all Lasso-chosen components.
30Table B.2 reports first stage estimates for each child age, while Tables B.3 and B.4 so so only at birth.

The first stage is identical at all ages, except that sample size and second stage covariates differ.
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The causal effect of mother health on child health is only identified if the exclusion
restriction for our instruments holds, for any first-stage specification. If early-life
weather impacts the long-term socioeconomic status of mothers’ families, this would
violate the exclusion restriction, as child health might be effected by aspects of
maternal welfare other than health. Because we identify on minor year-to-year weather
variation rather than major weather shocks, such a violation seems unlikely. However,
to further dispel this concern, we check for a relationship between grandparent
socioeconomic status (grade attainment and occupation type) and the SVA-optimal
instrument. While grandparent socioeconomic status is associated with mother’s
(endogenous) adult height, it is not associated with the SVA-optimal instrument. These
checks can be found in Appendix Figures B.12 and B.13 and Tables B.6 and B.7.

If mother’s birth month is endogenous to grandparent socioeconomic status, this would
also violate the exclusion restriction. However, scarce contraceptive use makes it
unlikely that birth month was endogenous to socioeconomic status. As a predominately
Roman Catholic country modern contraceptive use is low in the Philippines, and was
even lower prior to the 1970s when our mothers were born. For example, the 1968
National Demographic Survey found that only 15.5% of married women in the
Philippines used any contraceptive practice and the majority of those that did (almost
70%) used traditional methods such as withdrawal or rhythm methods. Less than 4% of
contraception users used modern contraception such as pills, IUD, sterilization, or
condoms (Laing, 1984). Regardless, we check for correlation between mother’s birth
month and grandparent grade attainment in Appendix Table B.8. Mother’s birth
months do not individually or jointly predict grandparent school attainment.

5.2 Mother-to-Child Health Transmission

Figure 1 and Table 4 estimate Equation 1 via 2SLS, using the SVA-optimal instrument,
to report the estimated causal effect of maternal health on child health. Panel A of
Figure 1 and Table 4 report the transmission of maternal health to child HAZ from
birth to approximately age 15. Panel B reports the corresponding transmission effects
to child weight outcomes: birthweight, weight-for-length z-scores (WHZ) at ages 1 and
2, and BMI-for-age z-scores (ZBMI) at ages 8, 11, and 15. Birthweight is included in
Panel B of Table 4 but not in Panel B of Figure 1 as its scale, grams, differs from that
of the other weight outcomes.

Again, the coefficients reported in Figure 1 and Table 4 can be interpreted as the causal
effect of a change in all aspects of mother’s health associated with a 1 cm change in her
adult height, as predicted by early life weather shocks. The effect on child HAZ persists
and in fact increases through childhood until adolescence (Panel A of Figure 1). That
is, transmission increases child HAZ by 0.09, 0.13, 0.13, 0.15, and 0.11 standard
deviations at ages 1, 2, 8, 11, and 15, respectively. Birth length is not significantly
affected by maternal health, but birthweight (the most widely used measure of birth
health) is: a one unit increase in mother’s health increases birthweight by 41.72 grams.
The transmission of maternal health to child weight outcomes persists through
childhood, with significant estimated effects on WHZ and ZBMI of 0.08, 0.10 and 0.08
at ages 1, 2, and 8, respectively. At ages 11 and 15, this effect decreases slightly to 0.06
but is not significant at standard levels (p-value=0.102, 0.120).
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Given the well-documented association between maternal health and child birth health,
we expected to find the strongest transmission in early life, which then diminishes with
child age. Instead, we find a fairly stable (maybe slightly diminishing) maternal health
transmission to child weight, and a transmission to child HAZ that increases through
childhood before decreasing slightly in adolescence. To better understand this pattern
of transmission across childhood stages, we examine the mechanisms through which it
may operate in Section 5.3.

Before moving to mechanisms, however, it is worth noting that Appendix Figures C.1
and D.1 hold virtually identical health transmission estimates, produced by 2SLS
estimations with instruments subset/combined by Lasso and PCA-Lasso, respectively.
The similarity in second stage outcomes is notable given that first stage identifying
variation differs slightly under each of the three dimensionality reduction methods.

Appendix Table B.5 reports OLS and traditional 2SLS estimates (using all instruments)
of maternal health transmission to both child height and weight outcomes, at all ages.
Comparing these estimates (Columns 1, 2, 4, and 6) to the estimates obtained with our
SVA-optimal instrument (Columns 4 and 8) demonstrates that indeed, a weak first
stage biases traditional 2SLS estimates towards OLS. Table B.5 illustrates that early
life weather shocks to mother’s health also directly predict child health, in a reduced
form regression (Columns 3 and 7).

5.3 Socioeconomic and Parenting Ability Mechanisms

The intergenerational health transmission displayed in Figure 1 and Table 4 may
operate through the ongoing effect of mother’s health on her socioeconomic status
and/or her parenting ability. If this socioeconomic/ability channel represents the
primary mechanism through which maternal health transmission operates, we might
expect the transmission to be strongest during early childhood. The first few years of
life are known to be a sensitive period for child health (particularly for child height)
when the effects of parental and environmental inputs are strongest (Villa, 2017;
Grantham-McGregor et al., 2007).31 However, instead of seeing the strongest
transmission to child height occurring at ages 1 and 2, we see an increasing transmission
coefficient as the child ages up until early adolescence. This hints that the
socioeconomic channel may not the primary mechanism at work.

Figures 2 and 3 report Equation 4 estimates, exploring the possibility that maternal
health transmission operates through socioeconomic or parenting ability. Each subplot
provides point estimates of the effect of maternal health associated with a 1 cm height
increase at a given child age, with 95% confidence intervals. Within each subplot, we
first provide the baseline transmission coefficient from Table 4, then the coefficient
estimated with socioeconomic controls included, and last the coefficient estimated with
all socioeconomic and parental input controls. Estimating a non-zero transmission
coefficient after including all controls suggests that socioeconomic status and parenting
ability does not fully explain the transmission.32

31Sensitive periods refer to stages in childhood during which inputs (e.g., parental investment, home
environment) exert a stronger impact on a child’s development of a trait or skill than in other periods.

32Appendix Table B.9 reports the corresponding point estimates illustrated in Figures 2 and 3.
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Adding this rich set of controls does little to mitigate the transmission to child height at
any age (Figure 2). We do however, see slightly larger reductions in the magnitude of
the transmission coefficients during sensitive periods for growth than in others (ages 1,
2, and 11).33 Similarly, the transmission to child weight (Figure 3) appears more
sensitive to external inputs during the sensitive periods of early childhood. At all other
ages, including additional socioeconomic or input controls does almost nothing to move
our point estimates for the effect of maternal height on child weight.

Overall, this analysis suggests that socioeconomic status and parental ability/inputs
may explain part of maternal health transmission, perhaps most importantly during
sensitive periods, but that other mechanisms are also at play. Our results are almost
identical when using Lasso or PCA-Lasso instead of SVA (Appendix Figures C.2, C.3,
D.2 and D.3). Estimates of the ACDE are nearly identical or actually higher than the
conditional effect estimated by Equation 4 (Appendix Figures B.14 and B.15 and Table
B.10), for all ages and health outcomes, likely because Equation 4 underestimates the
direct effect by controlling for intermediate confounders directly. All results suggest
that mother-to-child health transmission operates through additional mechanisms
outside of the socioeconomic/ability channel.

5.4 Biological Mechanisms

We next turn to examining biological mechanisms. First we examine whether the
persistent transmission through childhood and into adolescence is due primarily to a
biological transmission of health at birth, and the subsequent importance of birth
health to later health. We then examine the possibility that this persistence is due to a
transmission to growth velocity, possibly due to a biological transmission to the factors
regulating childhood growth.

To explore transmission to birth health as a potential channel, we estimate Equation 5,
controlling for birthweight in addition to all our socioeconomic and input controls.
Figure 4 reports the estimated transmission coefficients of maternal health to child
height (Panel A) and weight outcomes (Panel B)—conditional on the health
transmission at birth.34 Again, a non-zero transmission coefficient suggests other
mechanisms likely exist.

For child weight outcomes, the transmission of health at birth appears to explain much
of the persistent effect of maternal health. At almost every age, the transmission
coefficient reduces in both magnitude and significance.35 Conversely, the transmission of
health at birth does not appear to explain the persistent effect of maternal health on
child height outcomes. That is, Panel A of Figures 4 and 1 are quite similar. The
magnitude of the transmission at each age declines slightly, indicating that transmission
at birth may explain part of the persistence. However, coefficients on maternal health
remain statistically and clinically significant at each observed age except age 1. These
results indicate that the transmission of maternal health to child height, specifically,
operates through additional mechanisms beyond birth health, socioeconomic, and
parenting ability channels. Results are similar when instruments are subset using Lasso

33Early adolescence is a second sensitive period for linear growth due to the onset of puberty.
34Appendix Table B.11 reports corresponding coefficients.
35The effect at age 2 is weakly significant.
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and PCA-Lasso (Appendix Figures C.4 and D.4). And again, the ACDE of mother’s
health, excluding the pathway working through birthweight, is higher than the
conditional effect estimated by Equation 5 at every age, for both child weight and
height (Appendix Figures B.16 and B.17 and Table B.12).

Furthermore, Figure 4 again suggests an accumulating (rather than diminishing)
transmission of mother health to child HAZ as children age. While the difference
between transmission coefficients to child HAZ across ages are unlikely statistically
significant, we estimate the same inverse-U shape when pooling our data across ages,
and allowing for a quadratic shape in the effect of maternal health on child HAZ across
ages (Appendix Table B.13, Figure B.18). One possible explanation for this pattern is
that increased mother health transmits not only increased child height (in the form of a
size advantage at birth) but also an increased childhood growth velocity. Higher growth
velocity would translate into a marginal child height advantage that increases with
age—such as we observe. In other words, if improved maternal health causes higher
growth velocity, then the marginal impact of maternal health on child HAZ will increase
as the child ages. It is worth noting at this point that if child height was measured in
terms of height deficit, rather than height-for-age, as proposed by Leroy et al. (2015),
then this height advantage would increase even more as children age.36

Next, we explore the possibility that maternal health transmits to child growth
trajectories by exploiting sex-specific variation in pubertal development. For this reason
we will only focus on child HAZ. Figure 5 reports the marginal effect of maternal health
on child HAZ across ages, separated by sex. We continue to control for all pretreatment
controls, all socioeconomic and parental input controls, and birthweight. Most of the
estimates of the effect of maternal health on boy HAZ are statistically insignificant.
However, this likely represents a lack of precision due to the large number of included
controls and reduced sample size rather than a true zero. The effect on age 11 girl HAZ
is significant at the 10% level.37 If we exclude all but the pretreatment controls, then we
see a similar pattern with similar point estimates that are all statistically significant.38

Figure 5 displays a pattern of transmission that matches up remarkably with
sex-specific growth trajectories and pubertal development.39 The transmission of
maternal health to girl height increases until it peaks at age 8 (the average age of
female puberty onset) and then declines. Similarly, the transmission coefficient to boy
height increases until it peaks at age 11 (the average age of male puberty onset) and
then declines. Again, the difference between coefficients are likely insignificant. Yet, the
presence of this pattern is at least suggestive that the transmission to height may peak
just before the transition to the pubertal growth regime.

The patterns of transmission illustrated in Figure 5 suggest that maternal health (as

36Leroy et al. (2015) propose measuring child height in terms of height deficits (HAD) rather than height-
for-age (HAZ), where HAD is not normalized by age-sex-specific standard deviation (SD) as is HAZ.
That is, HAD=HAZ*SD. Since SD grows as children age, this has the potential to hide growing deficits
as measured in standard units (Leroy et al., 2015). Since the marginal effect of maternal health on
child health happens through an effect on the numerator in HAZ, any impact on HAD will be even
larger, and larger in a way that increases with SD as children age.

37The effects for age 1 and age 2 girl HAZ insignificant but are close to significant at accepted levels.
38Results available upon request.
39Coefficients corresponding to Figure 5 are reported in Appendix Tables B.14 and B.15
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determined by her early life weather experience) may transmit to the regulating factors
of childhood growth. We further explore this possibility by exploiting variation in
indicators of pubertal development (Equation 6). Figure 6 plots the different
transmission coefficients for girls who are more likely to be in childhood versus pubertal
growth depending on menarche timing.40

If maternal health transmission to height operates through childhood growth regulating
factors, we would expect health transmission to be greater in magnitude for girls likely
still experiencing childhood growth. Indeed this magnitude is higher and statistically
significant for girls likely in the childhood growth stage where as that for girls likely in
pubertal growth is smaller and insignificant.41 We must interpret these results with
caution as effects for the two groups are not statistically different. However, this
difference is statistically significant at the 1% level if we employ PCA-Lasso in our first
stage (Appendix Figure D.6). These results are in line with a health transmission
mechanism working through childhood growth regulation.

Figure 7 plots the different transmission coefficients for boys who are more likely to be
in childhood versus pubertal growth.42 Overall, it is hard to distinguish a discernible
pattern for boys. This is likely because by the time of the 1998 (Age 15) survey, the
vast majority of boys would have begun pubertal growth, making any differences hard
to identify.

Overall, our results indicate a reduced effect of maternal health on child height after
puberty onset. The results for girls suggest that the transmission may operate partly
through the factors regulating pre-pubertal growth. The results for boys provide no
evidence against this hypothesis. Yet, we must be cautious as we cannot directly test
this interpretation. The evidence is merely in line with a biological transmission to
growth trajectories; it does not clearly identify such an underlying mechanism.

6 Conclusion

We contribute to a small but growing literature on the intergenerational transmission of
health, using unique data from the Philippines that track a cohort of mother-child pairs
as the children age from birth to adolescence. This allow us to examine the causal
impact of maternal health on child health at multiple ages throughout childhood. The
CLHNS . Additionally, the unique climatology of the Philippines allows us to obtain
exogenous variation in maternal health through early life weather variation, which
impacted disease environment and food availability. Jointly, these data allows us to
tackle a critical question — at which ages does maternal health most critically impact
child health, and why?

Previous papers generally estimated maternal health transmission at a single age, often
birth, and our results suggest that doing so dramatically underestimates magnitude and
complexity of this transmission. Mother’s health continues to impact child health

40Table B.16 reports corresponding estimated coefficients and marginal effects.
41Again, we define girls to be in childhood growth if their first period occurs 2 years or more after their

1994 interview date. These results are robust to different specifications of early versus late menarche.
42Corresponding coefficients and marginal effects are in Appendix Table B.17.
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throughout childhood. The transmission of health at birth explains part of the ongoing
relationship between mother and child health, and so does maternal socioeconomic
status and ability. Jointly, these two mechanisms seem to account for approximately
30—50% of the transmission, depending on child age. Maternal ability and inputs to
child health may be slightly more influential during “sensitive periods”, when child
health is more responsive to health environment.

After controlling for these two pathways, or “demediating” maternal health by
removing their effect, we still observe a persistent, significant effect of maternal health
on child HAZ, which rises with age, up until the age of puberty onset. The effect of
maternal health on child weight outcomes does not display this pattern but is fairly
constant over age, and non-zero but insignificant once birthweight and
socioeconomic/ability controls are added.

We hypothesize that effect of maternal health on child HAZ rises with age due to an
effect on childhood growth velocity. Human and animal studies find that maternal
health, physiology and size during pregnancy may impact the factors regulating
childhood growth such as GH, insulin, IGF-I and -II, and growth plates. These same
factors are linked to later health in a number of ways, largely related to metabolism,
hormone regulation, and organ development. Observational evidence on the subject is
scarce, and we cannot confirm that the patterns we estimate do indeed stem from the
influence of maternal health on childhood growth trajectory. However, if this
mechanism is at play, we would expect to see the effect of maternal health on child HAZ
increase over childhood until puberty onset, which is exactly what we observe.

More work is needed to explore the mechanisms behind intergenerational transmission
of health, and how it plays into socioeconomic mobility as a whole. In particular, more
studies are needed in poor countries, where health may play a especially strong role in
determining human productivity and adult welfare.
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Figure 1: Marginal Effect of Maternal Health on Child Health across Ages
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Bars represent 95% confidence intervals.

Figure 2: Marginal Effect of Maternal Health on Child Height Outcomes across Ages—
Controlling for Different Categories of Socioeconomic Characteristics
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Figure 3: Marginal Effect of Maternal Health on Child Weight Outcomes across Ages—
Controlling for Socioeconomic Characteristics
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Figure 4: Marginal Effect of Maternal Health on Child Health Controlling for Socioeco-
nomic Characteristics and Birthweight
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Figure 5: Marginal Effect of Maternal Health on Child Height-for-Age By Sex Controlling
for Socioeconomic Characteristics and Birthweight
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Figure 6: Marginal Effect of Maternal Health on Age 11 Girl HAZ Depending Probable
Growth Stage Controlling for Socioeconomic Characteristics and Birthweight
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Figure 7: Marginal Effect of Maternal Health on Age 15 Boy HAZ at Age 15 Depending
Probable Growth Stage Controlling for Socioeconomic Characteristics and Birthweight
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Table 1: Summary Statistics I (Birth – Age 2)

Females Males Total

Birth

Height-for-age Z-score -0.47 -0.64 -0.56
(1.08) (1.08) (1.08)

Birth Weight 2,964.96 3,025.90 2,997.31
(433.56) (455.76) (446.44)

Low birth Weight 0.13 0.11 0.12
(0.33) (0.31) (0.32)

Per Capital Income 2,750.23 2,796.54 2,774.81
(4,085.68) (3,977.72) (4,028.13)

Household Size 5.71 5.64 5.67
(2.88) (2.75) (2.81)

Age 1

Height-for-age Z-score -1.21 -1.41 -1.32
(0.98) (1.02) (1.00)

Weight-for-age Z-score -0.57 -0.58 -0.58
(0.79) (0.89) (0.85)

Experienced Stunting in First Year 0.62 0.66 0.64
(0.49) (0.47) (0.48)

Experienced Wasting in First Year 0.29 0.34 0.32
(0.46) (0.48) (0.47)

Per Capital Income 2,704.47 2,693.98 2,698.90
(4,755.89) (3,649.03) (4,203.78)

Household Size 6.69 6.92 6.81
(2.81) (2.82) (2.82)

Age 2

Height-for-age Z-score -2.23 -2.38 -2.31
(1.08) (1.14) (1.11)

Weight-for-age Z-score -0.71 -0.73 -0.72
(0.84) (0.92) (0.88)

Experienced Stunting in Second Year 0.73 0.78 0.76
(0.44) (0.41) (0.43)

Experienced Wasting in Second Year 0.21 0.22 0.21
(0.40) (0.41) (0.41)

Per Capital Income 3,272.52 3,362.11 3,319.70
(7,993.72) (5,267.41) (6,696.52)

Household Size 6.73 6.88 6.81
(2.74) (2.77) (2.76)
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Summary Statistics II (Ages 8 – 11)

Females Males Total

Age 8

Child age in 1991 8.51 8.51 8.51
(0.04) (0.05) (0.05)

Height-for-age Z-score -1.99 -2.08 -2.04
(0.95) (0.94) (0.95)

BMI-for-age Z-score -0.81 -0.81 -0.81
(0.84) (0.94) (0.89)

Stunted 0.52 0.54 0.53
(0.50) (0.50) (0.50)

Wasted 0.08 0.09 0.09
(0.27) (0.29) (0.28)

Per Capital Income 10,462.59 10,583.86 10,526.52
(10,330.76) (12,291.09) (11,403.84)

Household Size 6.86 6.91 6.88
(2.24) (2.28) (2.26)

Age 11

Child age in 1994 11.55 11.53 11.54
(0.40) (0.40) (0.40)

Height-for-age Z-score -1.93 -2.00 -1.96
(1.10) (0.97) (1.03)

BMI-for-age Z-score -1.02 -1.14 -1.09
(1.05) (1.13) (1.09)

Stunted 0.48 0.52 0.50
(0.50) (0.50) (0.50)

Wasted 0.17 0.20 0.18
(0.38) (0.40) (0.39)

Per Capital Income 14,479.75 15,178.44 14,845.31
(15,480.39) (19,616.55) (17,764.33)

Household Size 7.06 7.11 7.09
(2.40) (2.46) (2.43)

Age 15

Child age in 1998 15.09 16.12 15.63
(0.35) (0.33) (0.62)

Height-for-age Z-score -1.83 -1.87 -1.85
(0.80) (0.86) (0.84)

BMI-for-age Z-score -0.67 -1.01 -0.85
(0.99) (1.07) (1.05)

Stunted 0.42 0.42 0.42
(0.49) (0.49) (0.49)

Wasted 0.09 0.16 0.13
(0.29) (0.37) (0.34)

Per Capital Income 23,493.57 27,125.65 25,389.81
(21,960.64) (26,766.31) (24,648.01)

Household Size 6.95 6.75 6.84
(2.41) (2.44) (2.43)
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Table 2: Pubertal Timing Indicators

Mean Standard Dev Min Max

Mother’s Age 26.80 5.87 17.00 47.00
Male 0.53 0.50 0.00 1.00

Girls
Age at menarche 13.05 0.98 10.25 15.33
Menarch four years or more after 1991 interview date 0.72 0.45 0.00 1.00
Menache 2+ yrs post 1994 survey 0.35 0.48 0.00 1.00
Menarche 1+ yrs before 1998 survey 0.84 0.37 0.00 1.00

Boys
Begun shaving 0.21 0.40 0.00 1.00
Voice has changed in recent years 0.95 0.22 0.00 1.00
Has visible underarm hair 0.61 0.49 0.00 1.00
Has high level of pubic hair 0.42 0.49 0.00 1.00
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Table 3: Socioeconomic and Parental Input Controls at each Age

Socio-Economic Controls
1

Parental Input Controls
2

Birth Per capita household income, House-
hold size, Mother’s education, Base-
line asset value; Access to piped water,
Flushable toilet, Electricity; Garbage
taken away after disposal; Uses clean
cooking fuel, Food area kept clean;
Excreta visible around HH

Took prenatal vitamins; Received pre-
natal care; Baby delivered by doctor;
Baby delivered in hospital

Age 1 Per capita household income, House-
hold size, Mother’s education, Year 1
asset value; Access to piped water,
Flushable toilet, Electricity; Garbage
taken away after disposal; Household
uses clean cooking fuel, Food area kept
clean; Excreta visible around HH; Ani-
mals kept inside HH

In last year child given vitamins or min-
erals, vaccinations, or non-treated wa-
ter; Child breastfed for full first year

Age 2 Per capita household income, House-
hold size, Mother’s education, Base-
line asset value; Access to piped water,
Flushable toilet, Electricity; Garbage is
taken away after disposal; Uses clean
cooking fuel, Food area kept clean;
Excreta visible around HH; Animals
kept inside HH

In last year child given vitamins or min-
erals, vaccinations, or non-treated wa-
ter

Age 8 Per capita household income, House-
hold size, Mother’s education; Access
to piped water, Flushable toilet, Elec-
tricity; Garbage taken away after dis-
posal; Uses clean cooking fuel, Food
area kept clean; Excreta visible around
HH

Since last survey child given vitamins
or minerals or vaccinations; Child given
worm medication; Child’s food con-
sumption score for average week; Ex-
tended family in HH

Age 11 Per capita household income, House-
hold size, Mother’s education; Access
to piped water, Flushable toilet, Elec-
tricity; Garbage taken away after dis-
posal; Uses clean cooking fuel, Food
area kept clean; Excreta visible around
HH

Parent usually helps child with home-
work; Hours spend on chores in avg
week; Child’s food consumption score
for average week; Extended family in
HH; Per capita expenditure on food,
child allowances, and school fees

Age 15 Per capita household income, House-
hold size, Mother’s education; Access
to piped water, Flushable toilet, Elec-
tricity; Garbage taken away after dis-
posal; Uses clean cooking fuel, Food
area kept clean; Excreta visible around
HH

Child’s food consumption score for av-
erage week; Extended family in HH;
Per capita expenditure on food, child
allowances, and school fees
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Table 4: Transmission of Maternal Health to Child Health

Panel A: Child Height Outcomes

(1) (2) (3) (4) (5) (6)
Birth HAZ Age 1 HAZ Age 2 HAZ Age 8 HAZ Age 11 HAZ Age 15 HAZ

Mother’s height 0.0206 0.0931∗∗∗ 0.134∗∗∗ 0.128∗∗∗ 0.147∗∗∗ 0.109∗∗∗

(0.0294) (0.0265) (0.0344) (0.0301) (0.0325) (0.0260)

Observations 2988 2996 2604 2210 2133 2045

Panel B: Child Weight Outcomes

Birth Weight Age 1 WHZ Age 2 WHZ Age 8 ZBMI Age 11 ZBMI Age 15 ZBMI

Mother’s height 30.38∗∗ 0.0764∗∗∗ 0.0971∗∗∗ 0.0768∗∗ 0.0487 0.0618
(12.23) (0.0258) (0.0307) (0.0321) (0.0358) (0.0378)

Observations 2990 2980 2606 2210 2133 2045

Robust standard errors in parentheses
∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1

Controls include gender, mother’s age, mother age cohorts, birth month fixed effects,
and baseline and current barangay fixed effects (which are equivalent at birth year).

For birth outcomes only an indicator for whether gestational age is in question is included.
Child outcomes are length-for-age z-scores from birth through age 2, and height-for-age z-scores for ages 8-15.
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Appendix A Choosing an Optimal Instrument via Singular

Value Analysis

The ordinary least squares (OSL) estimator minimizes ||Xβ − y||2, where X is an m× n matrix, β is
an m× 1 matrix, and y is an m× 1 matrix. Yet singular value analysis (SVA) solves the same
problem, by minimization an equivalent distance problem in a rotated space.

First, using singular value decomposition (SVD), we may decompose X as follows

X = USVT

where U is an orthogonal m× n matrix, S is a diagonal n× n matrix with successive, positive and
non-decreasing entries, and VT is an orthogonal n× n matrix.

Because U is orthogonal, UT is also orthogonal, and both are therefore distance preserving under
multiplication. Thus,

||Xβ − y||2 = ||UT (Xβ − y)||2

= ||UT (USVTβ − y)||2

= ||SVTβ −UTy)||2

= ||Sγ − g||2

where the third line follows from the fact that U is an orthogonal matrix, and we define γ =VTβ and
g =UTy, both n× 1 matrices.

To minimize ||Xβ − y||2, we can therefore choose a γ̂ to minimize ||Sγ − g||2. The original parameter

vector β̂ is calculated as Vγ̂.

Predicted outcome ŷ may be equivalently calculated as either Xβ̂ or USγ̂, since Xβ ' y and
Sγ̂ ' g= UTy. The residual r̂ may be equivalently calculated as either y −Xβ̂ or U(g − Sγ̂) since
y −Xβ = Ug −USVTβ = U(g − Sγ).

However, because S holds successively non-increasing diagonal values, the elements of γ̂ become
increasingly insignificant to β̂ = Vγ̂. The candidate solution γ(k) may therefore be considered, where
each element of γ(k) is identical to that of the full solution γ̂ up until the k’th element, and all
subsequent elements are zero, as below.

γ(k) =



γ̂1
...
γ̂k
0
...
0


In many cases the candidate solution γ(k), for some particular k < n, minimizes mean squared
forecasting error (MSFE) better than the full solution γ. This is because the rows of matrix V hold
“averages” for the columns of matrix X, but with each row explaining less and less of the variation in
X. One might imagine that, past some particular column k, the rows of matrix V hold only
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sample-specific variation in X, rather than variation that can be predicted out of sample. In other
words, a solution vector β̂ that captures such variation is over-fitting the model, leading to an increase
in R2 within sample, but also an increase in MSFE out of sample. A solution vector β̂ that captures
only the variation within the first k vectors of V will better minimize MSFE.

Often, k is chosen based on the condition number of the implied system, i.e., the instability of the
solution. We instead use group-wise cross-validation to choose k, dividing the sample into 100
test/training groups, and measuring MSFE for each k in each of those 100 trials. We then choose the
k that minimizes forecast error best, on average.
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Appendix B Extra Results and Robustness Checks

Figure B.1: Rice Production and Trade, the Philippines 1961—2017
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Source: Food and Agricultural Organization (FAO): http://www.fao.org/faostat/en/#data

Figure B.2: Rice Production and Trade as Proportion of Consumption, the Philippines 1961—2017
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Figure B.3: Distribution of Maternal Year of Birth
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Figure B.4: Monthly Average Rainfall Figure B.5: Monthly Average Temperature

Figure B.6: Monthly Average Windspeed
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Figure B.7: Mother’s Height by Month of Birth Figure B.8: Maternal Month of Birth
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Figure B.9: Variables Providing Main Identifying Variation for SVA instrument
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Table B.1: Instruments Chosen by Lasso

Variables Chosen Weights

Max windspeed 12 mo prior to birth 0.30
Max windspeed 11 mo prior to birth 0.27
Max windspeed 10 mo prior to birth -0.49
Max windspeed 9 mo prior to birth -0.38
Max windspeed 8 mo prior to birth -0.25
Max windspeed 5 mo prior to birth -0.13
Max windspeed 4 mo prior to birth -0.37
Max windspeed 3 mo prior to birth 0.19
Max windspeed 1 mo prior to birth -0.47
Max windspeed 2 mo after birth -0.29
Max windspeed 3 mo after birth 0.20
Max windspeed 6 mo after birth 0.40
Max windspeed 8 mo after birth -0.23
Max windspeed 10 mo after birth 0.30
Monsoon rain 2 years before birth 0.12
Monsoon rain 3 years after birth 0.93
Monsoon rain 5 years after birth 0.60
Monsoon temp 1 years before birth 36.99
Monsoon temp 3 years after birth 49.64
Monsoon temp 4 years after birth 36.44
(Monsoon rain)x(Monsoon temp) 2 years after birth 0.46
Harvest high winds 2 years before birth -1.38
Harvest high winds the year of birth -0.57
Harvest high winds 2 years after birth -0.83
Harvest high winds 3 years after birth -0.65
Born in month 3 -0.05
Born in month 5 -0.02
Born in month 11 0.07

Instruments providing main identifying variation are bolded
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Figure B.10: Variables Providing Main Identifying Variation for 1st PCA-Lasso Instrument
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Figure B.11: Variables Providing Main Identifying Variation for 2nd PCA-Lasso Instrument
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Table B.2: First Stage Results: SVA-Optimal Instrument

(1) (2) (3)
Birth Age 1 Age 2

Optimal SVA for Mother’s Height (k=45) 0.872∗∗∗ 0.910∗∗∗ 0.821∗∗∗

(0.129) (0.129) (0.139)

Observations 2988 2996 2604

R2 0.0529 0.0443 0.0481

Age 8 Age 11 Age 15

Optimal SVA for Mother’s Height (k=45) 0.930∗∗∗ 0.957∗∗∗ 0.922∗∗∗

(0.157) (0.158) (0.164)

Observations 2210 2133 2045

R2 0.114 0.125 0.135

Robust standard errors in parentheses
∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1

Controls include gender, mother’s age, mother age cohorts, birth month
fixed effects, and baseline and current barangay fixed effects (which are

equivalent at birth year). For birth outcomes only an indicator for
whether gestational age is in question is also included. Child outcomes

are length-for-age z-scores from birth through age 2, and
height-for-age z-scores for ages 8, 11, and 15.
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Table B.3: First Stage Results at Birth: Lasso-Chosen Instruments

(1)
Mother’s height

Max windspeed 12 mo prior to birth 0.00177
(0.00200)

Max windspeed 11 mo prior to birth 0.00103
(0.00192)

Max windspeed 10 mo prior to birth -0.00312∗

(0.00178)

Max windspeed 9 mo prior to birth -0.00406∗∗

(0.00195)

Max windspeed 8 mo prior to birth -0.00212
(0.00198)

Max windspeed 5 mo prior to birth 0.00000677
(0.00181)

Max windspeed 4 mo prior to birth -0.00211
(0.00192)

Max windspeed 3 mo prior to birth 0.00117
(0.00192)

Max windspeed 1 mo prior to birth -0.00390∗

(0.00202)

Max windspeed 2 mo after birth -0.00187
(0.00190)

Max windspeed 3 mo after birth 0.00358∗

(0.00190)

Max windspeed 6 mo after birth 0.00380∗∗

(0.00188)

Max windspeed 8 mo after birth -0.00115
(0.00195)

Max windspeed 10 mo after birth 0.00354∗

(0.00190)

Monsoon rain 2 years before birth -0.00382
(0.00419)

Monsoon rain 3 years after birth 0.00710∗

(0.00374)

Monsoon rain 5 years after birth -0.000937
(0.00475)

Monsoon temp 1 years before birth 1.260
(0.803)

Monsoon temp 3 years after birth 1.179
(0.842)

Monsoon temp 4 years after birth 1.921∗∗

(0.865)

(Monsoon rain)x(Monsoon temp) 2 years after birth 0.0000951
(0.000166)

Harvest Max Winds 2 Years before Birth -0.00939∗∗∗

(0.00359)

Harvest Max Winds Year of Birth -0.00609
(0.00483)

Harvest Max Winds 2 Years after Birth -0.00441
(0.00432)

Harvest Max Winds 3 Years after Birth -0.00872
(0.00617)

Born in month 3 -0.523
(0.356)

Born in month 5 -0.525
(0.367)

Born in month 11 0.704∗

(0.368)

Observations 2988

R2 0.0554

Robust standard errors in parentheses
∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1

Controls include gender, mother’s age, mother age cohorts, birth month
fixed effects, baseline/current barangay fixed effects, and

an indicator for whether gestational age is in question
Child outcome is length-for-age z-scores.
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Table B.4: First Stage Results at Birth: Lasso-Chosen Principal Components

(1)
Mother’s height

Scores for component 2 0.0286
(0.0495)

Scores for component 3 0.0792
(0.0763)

Scores for component 4 0.0474
(0.0510)

Scores for component 5 0.0511
(0.0545)

Scores for component 8 -0.0434
(0.0575)

Scores for component 9 0.109∗

(0.0629)

Scores for component 11 0.118
(0.0876)

Scores for component 14 -0.203∗∗

(0.0872)

Scores for component 19 0.0126
(0.0854)

Scores for component 20 0.0944
(0.0863)

Scores for component 21 0.169∗

(0.0873)

Scores for component 24 0.182∗∗

(0.0874)

Scores for component 25 -0.136
(0.0886)

Scores for component 27 0.0738
(0.0930)

Scores for component 29 0.212∗∗

(0.0985)

Scores for component 32 0.224∗∗

(0.103)

Scores for component 34 -0.150
(0.139)

Scores for component 35 -0.248∗∗

(0.117)

Scores for component 38 -0.121
(0.122)

Scores for component 42 0.250∗

(0.138)

Scores for component 47 -0.458∗∗∗

(0.147)

Scores for component 49 -0.345∗∗

(0.169)

Scores for component 50 0.353∗

(0.185)

Scores for component 51 0.367∗∗

(0.178)

Scores for component 59 1.187
(0.758)

Observations 2988

R2 0.0578

Robust standard errors in parentheses
∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1

Controls include gender, mother’s age, mother age cohorts, birth month
fixed effects, baseline/current barangay fixed effects, and

an indicator for whether gestational age is in question
Child outcome is length-for-age z-scores.
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Table B.5: Effects of Maternal Height on Child Height and Weight Outcomes using OLS, 2SLS,
Reduced Form and SVA

Birth Height Zscore Birth Weight

(1) (2) (3) (4) (5) (6) (7) (8)

OLS
2SLS

(All IVs)
Reduced

Form
2SLS

(SVA IV) OLS
2SLS

(All IVs)
Reduced

Form
2SLS

(SVA IV)

Mother’s height 0.0336∗∗∗ -0.00222 0.0206 17.16∗∗∗ 24.05∗∗∗ 30.38∗∗

(9.33) (-0.09) (0.70) (10.48) (2.59) (2.48)

Optimal SVA for Mother’s Height (k=45) 0.0180 62.35∗∗∗

(0.69) (6.19)

Observations 2988 2988 2988 2988 2990 2990 2990 2990
IV F-stat 1.199 45.87 1.204 46.39

Age 1 Height Zscore Age 1 Weight Zscore

Mother’s height 0.0582∗∗∗ 0.0684∗∗∗ 0.0931∗∗∗ 0.0129∗∗∗ 0.0610∗∗∗ 0.0764∗∗∗

(16.87) (3.24) (3.52) (4.14) (3.10) (2.96)

Optimal SVA for Mother’s Height (k=45) 0.0847∗∗∗ 0.0690∗∗∗

(3.39) (3.07)

Observations 2996 2996 2996 2996 2980 2980 2980 2980
IV F-stat 1.240 49.93 1.224 48.95

Age 2 Height Zscore Age 2 Weight Zscore

Mother’s height 0.0702∗∗∗ 0.0758∗∗∗ 0.134∗∗∗ 0.0244∗∗∗ 0.0495∗∗ 0.0971∗∗∗

(17.19) (3.29) (3.89) (7.15) (2.55) (3.17)

Optimal SVA for Mother’s Height (k=45) 0.110∗∗∗ 0.0801∗∗∗

(3.77) (3.37)

Observations 2604 2604 2604 2604 2606 2606 2606 2606
IV F-stat 1.476 34.97 1.526 35.34

Age 8 Height Zscore Age 8 Weight Zscore

Mother’s height 0.0680∗∗∗ 0.0737∗∗∗ 0.128∗∗∗ 0.00636 0.0394∗∗ 0.0768∗∗

(16.94) (3.61) (4.26) (1.53) (1.97) (2.39)

Optimal SVA for Mother’s Height (k=45) 0.119∗∗∗ 0.0714∗∗

(4.03) (2.44)

Observations 2210 2210 2210 2210 2210 2210 2210 2210
IV F-stat 1.499 35.12 1.499 35.12

Age 11 Height Zscore Age 11 Weight Zscore

Mother’s height 0.0667∗∗∗ 0.0718∗∗∗ 0.147∗∗∗ 0.0117∗∗ 0.0224 0.0487
(14.82) (3.57) (4.53) (2.35) (0.93) (1.36)

Optimal SVA for Mother’s Height (k=45) 0.141∗∗∗ 0.0466
(4.43) (1.31)

Observations 2133 2133 2133 2133 2133 2133 2133 2133
IV F-stat 1.564 36.72 1.564 36.72

Age 15 Height Zscore Age 15 Weight Zscore

Mother’s height 0.0713∗∗∗ 0.0675∗∗∗ 0.109∗∗∗ 0.00679 0.0121 0.0618
(19.75) (4.06) (4.21) (1.34) (0.51) (1.64)

Optimal SVA for Mother’s Height (k=45) 0.101∗∗∗ 0.0569
(3.67) (1.61)

Observations 2045 2045 2045 2045 2045 2045 2045 2045
IV F-stat 1.458 31.76 1.458 31.76

Robust standard errors in parentheses
∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1

Regression includes fixed effects for mother’s month of birth and for baseline barangay
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Figure B.12: Association between Grandfather Grade Attainment and Maternal Height and SVA IV
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Figure B.13: Association between Grandmother Grade Attainment and Maternal Height and SVA IV
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Table B.6: Effect of Maternal Maternal Height and SVA IV on Grandparent Grade Attainment

(1) (2)
Maternal Height SVA IV

Maternal grandmother education 0.129∗∗∗ -0.00454
(0.0440) (0.00627)

Maternal grandfather education 0.110∗∗∗ 0.000124
(0.0402) (0.00573)

Observations 1751 1751
Fstat p-value 7.42e-09 0.685

Robust standard errors in parentheses
∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1
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Table B.7: Effect of Grandparent Occupation on Maternal Height and SVA IV

Maternal Grandfather Maternal Grandmother

(1) (2) (3) (4)
Maternal Height SVA IV Maternal Height SVA IV

Administrative 0.329 -0.0200 -2.838 -0.00158
(1.095) (0.156) (1.469) (0.209)

Clerical 0.608 -0.0263 -2.160 -0.120
(1.122) (0.160) (1.773) (0.252)

Retail/Vendor -0.370 -0.143 -1.878∗ 0.0632
(0.936) (0.133) (0.747) (0.106)

Agriculture -0.968 -0.0569 -2.227∗∗ 0.127
(0.851) (0.121) (0.763) (0.108)

Miner 0.529 0.0125
(1.148) (0.163)

Transport 0.00440 -0.0832 -0.864 -0.322
(0.893) (0.127) (2.218) (0.315)

Craftsmen -0.863 -0.0678 -2.009∗ 0.110
(0.869) (0.124) (0.810) (0.115)

Laborer -1.895∗ -0.175 -2.446∗ 0.00265
(0.926) (0.132) (0.969) (0.138)

Service -1.074 -0.109 -2.419∗∗ 0.0381
(0.923) (0.131) (0.867) (0.123)

Non-Participant -0.741 -0.215 -2.111∗∗ 0.0877
(1.567) (0.223) (0.740) (0.105)

Constant 150.2∗∗∗ 149.8∗∗∗ 151.4∗∗∗ 149.6∗∗∗

(1.228) (0.175) (1.122) (0.160)

Observations 2017 2017 2047 2047
Fstat p-value 0.0130 0.723 0.277 0.685

Robust standard errors in parentheses
Controls include mother’s age, mother age, and baseline barangay fixed effects.

∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1
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Table B.8: Association between Maternal Birth Month and Grandparent Grade Attainment

(1) (2)
Grandmother Grandfather

February 0.146 0.0336
(0.422) (0.471)

March -0.137 0.489
(0.405) (0.450)

April 0.109 0.164
(0.419) (0.464)

May -0.0294 0.182
(0.414) (0.462)

June 0.302 0.889∗

(0.428) (0.472)

July -0.0902 -0.194
(0.420) (0.466)

August 0.0116 0.0569
(0.442) (0.491)

September 0.332 0.720
(0.425) (0.475)

October -0.520 0.0535
(0.414) (0.462)

November -0.141 -0.130
(0.414) (0.461)

December -0.135 0.406
(0.401) (0.450)

Constant 4.574∗∗∗ 5.187∗∗∗

(0.301) (0.337)

Observations 1912 1823
Fstat p-value 0.821 0.389

Robust standard errors in parentheses
∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1
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Table B.9: Maternal Transmission to Child Health Controlling for Socioeconomic Characteristics—
Coefficients Corresponding to Figures 2 and 3

Birth HAZ Birthweight

(1) (2) (3) (4) (5) (6)

Mother’s height 0.0206 0.0189 0.0212 30.38∗∗ 30.00∗∗ 29.56∗∗

(0.0293) (0.0312) (0.0312) (11.91) (12.67) (12.72)

Observations 2988 2988 2988 2990 2990 2989
R2 0.166 0.169 0.172 0.177 0.184 0.189

Age 1 HAZ Age 1 WHZ

(1) (2) (3) (4) (5) (6)

Mother’s height 0.0931∗∗∗ 0.0754∗∗∗ 0.0732∗∗ 0.0764∗∗∗ 0.0580∗∗ 0.0546∗∗

(0.0266) (0.0292) (0.0287) (0.0254) (0.0283) (0.0278)

Observations 2996 2599 2599 2980 2595 2595
R2 0.121 0.189 0.208 . . 0.00925

Age 2 HAZ Age 2 WHZ

(1) (2) (3) (4) (5) (6)

Mother’s height 0.134∗∗∗ 0.100∗∗∗ 0.0998∗∗∗ 0.0971∗∗∗ 0.0728∗∗ 0.0716∗∗

(0.0357) (0.0341) (0.0338) (0.0312) (0.0302) (0.0299)

Observations 2604 2461 2461 2606 2462 2462
R2 0.0867 0.221 0.231 . 0.0271 0.0374

Age 8 HAZ Age 8 ZBMI

(1) (2) (3) (4) (5) (6)

Mother’s height 0.128∗∗∗ 0.118∗∗∗ 0.118∗∗∗ 0.0768∗∗ 0.0731∗∗ 0.0723∗∗

(0.0296) (0.0310) (0.0304) (0.0306) (0.0330) (0.0324)

Observations 2210 2209 2205 2210 2209 2205
R2 0.134 0.206 0.222 . . 0.00366

Age 11 HAZ Age 11 ZBMI

(1) (2) (3) (4) (5) (6)

Mother’s height 0.147∗∗∗ 0.124∗∗∗ 0.120∗∗∗ 0.0487 0.0346 0.0585
(0.0334) (0.0341) (0.0361) (0.0346) (0.0372) (0.0408)

Observations 2133 2133 2016 2133 2133 2016
R2 0.0536 0.193 0.212 0.0928 0.141 0.118

Age 15 HAZ Age 15 ZBMI

(1) (2) (3) (4) (5) (6)

Mother’s height 0.109∗∗∗ 0.101∗∗∗ 0.0978∗∗∗ 0.0618∗ 0.0609 0.0660∗

(0.0261) (0.0275) (0.0275) (0.0358) (0.0387) (0.0393)

Observations 2045 2038 2038 2045 2038 2038
R2 0.231 0.275 0.290 0.0800 0.0888 0.0847

Baseline Controls Yes Yes Yes Yes Yes Yes
SES Controls No Yes Yes No Yes Yes
Parent Input Controls No No Yes No No Yes

Robust standard errors in parentheses
∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1

All controls from Table 4 are included.
Additionally, controls include all socioeconomic characteristics and parental inputs from Table 3.
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Figure B.14: Comparison of Conditional Marginal Effect with ACDE of Maternal Height on Child
Height Outcomes across Ages—Using Maternal Education as Mediator
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Baseline refers to a regression with only pretreatment controls included. “’Including M” includes pretreatment

controls and the mediator. “Including M and Z” pretreatment controls, mediator, and intermediating confounders.
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Figure B.15: Comparison of Conditional Marginal Effect with ACDE of Maternal Height on Child
Weight Outcomes across Ages—Using Maternal Education as Mediator
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Baseline refers to a regression with only pretreatment controls included. “’Including M” includes pretreatment

controls and the mediator. “Including M and Z” pretreatment controls, mediator, and intermediating confounders.
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Table B.10: Comparison of Conditional Marginal Effect with ACDE of Mother Height on Child Height
and Weight Outcomes Using Maternal Education as Mediator

Age 1 HAZ Age 1 WHZ

Baseline

Including

M

Including

M and Z ACDE Baseline

Including

M

Including

M and Z ACDE

Mother’s Height 0.0931∗∗∗ 0.0817∗∗∗ 0.0444∗ 0.0851∗∗∗ 0.0764∗∗∗ 0.0760∗∗∗ 0.0381 0.0753∗∗∗

(0.0266) (0.0289) (0.0269) (0.0270) (0.0254) (0.0280) (0.0275) (0.0216)

Observations 2996 2996 2593 2996 2980 2980 2589 2980
R2 0.121 0.151 0.385 0.115 . . 0.139 .

Age 2 HAZ Age 2 WHZ

Baseline

Including

M

Including

M and Z ACDE Baseline

Including

M

Including

M and Z ACDE

Mother’s Height 0.134∗∗∗ 0.109∗∗∗ 0.0815∗∗ 0.122∗∗∗ 0.0971∗∗∗ 0.0868∗∗ 0.0567∗ 0.0938∗∗∗

(0.0357) (0.0380) (0.0342) (0.0322) (0.0312) (0.0340) (0.0303) (0.0326)

Observations 2604 2604 2457 2604 2606 2602 2455 2602
R2 0.0867 0.177 0.303 0.0919 . . 0.134 .

Age 8 HAZ Age 8 ZBMI

Mother’s Height 0.128∗∗∗ 0.114∗∗∗ 0.107∗∗∗ 0.123∗∗∗ 0.0768∗∗ 0.0787∗∗ 0.0535 0.0780∗∗

(0.0296) (0.0317) (0.0323) (0.0292) (0.0306) (0.0340) (0.0340) (0.0307)

Observations 2210 2210 2202 2210 2210 2210 2202 2210
R2 0.134 0.190 0.266 0.133 . . 0.0870 .

Age 11 HAZ Age 11 ZBMI

Mother’s Height 0.147∗∗∗ 0.134∗∗∗ 0.111∗∗∗ 0.144∗∗∗ 0.0487 0.0409 0.0407 0.0474
(0.0334) (0.0356) (0.0388) (0.0331) (0.0346) (0.0377) (0.0435) (0.0345)

Observations 2133 2133 2013 2133 2133 2133 2013 2133
R2 0.0536 0.109 0.243 0.0526 0.0928 0.107 0.166 0.0929

Age 15 HAZ Age 15 ZBMI

Mother’s Height 0.109∗∗∗ 0.102∗∗∗ 0.0813∗∗∗ 0.108∗∗∗ 0.0618∗ 0.0631 0.0543 0.0666∗

(0.0261) (0.0279) (0.0296) (0.0260) (0.0358) (0.0390) (0.0428) (0.0360)

Observations 2045 2045 2035 2045 2045 2045 2035 2045
R2 0.231 0.256 0.338 0.230 0.0800 0.0771 0.121 0.0742

∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1
Robust standard errors in parentheses

Baseline refers to a regression with only pretreatment controls included. “’Including M” includes pretreatment
controls and the mediator. “Including M and Z” pretreatment controls, mediator, and intermediating confounders.
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Table B.11: Transmission of Maternal Height to Child Health, Controlling for Socioeconomic Charac-
teristics and Birthweight—Coefficients Corresponding to Figure 4

Panel A: Child Height Outcomes

(1) (2) (3) (4) (5) (6)
Birth HAZ Age 1 HAZ Age 2 HAZ Age 8 HAZ Age 11 HAZ Age 15 HAZ

Mother’s height -0.0256 0.0444∗ 0.0815∗∗ 0.107∗∗∗ 0.111∗∗∗ 0.0813∗∗∗

(0.0276) (0.0266) (0.0330) (0.0331) (0.0381) (0.0299)

Birth Weight (g) 0.00157∗∗∗ 0.000929∗∗∗ 0.000591∗∗∗ 0.000282∗∗∗ 0.000241∗∗∗ 0.000318∗∗∗

(0.0000749) (0.0000623) (0.0000766) (0.0000776) (0.0000917) (0.0000695)

Observations 2988 2593 2457 2202 2013 2035
IV F-stat

Panel B: Child Weight Outcomes

Birth Weight Age 1 WHZ Age 2 WHZ Age 8 ZBMI Age 11 ZBMI Age 15 ZBMI

Mother’s height 29.56∗∗ 0.0381 0.0552∗ 0.0535 0.0407 0.0543
(13.02) (0.0279) (0.0296) (0.0357) (0.0451) (0.0450)

Birth Weight (g) 0.000573∗∗∗ 0.000494∗∗∗ 0.000344∗∗∗ 0.000401∗∗∗ 0.000267∗∗∗

(0.0000628) (0.0000669) (0.0000824) (0.000107) (0.0000997)

Observations 2989 2589 2458 2202 2013 2035

Robust standard errors in parentheses
∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1

All controls from Table 4 are included.
Additionally, controls include all socioeconomic characteristics and parental inputs from Table 3.
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Figure B.16: Comparison of Conditional Marginal Effect with ACDE of Maternal Height on Child
Height Outcomes across Ages Using Birthweight as Mediator
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Baseline refers to a regression with only pretreatment controls included. “’Including M” includes pretreatment

controls and the mediator. “Including M and Z” pretreatment controls, mediator, and intermediating confounders.
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Figure B.17: Comparison of Conditional Marginal Effect with ACDE of Maternal Height on Child
Weight Outcomes across Ages Using Birthweight as Mediator
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Baseline refers to a regression with only pretreatment controls included. “’Including M” includes pretreatment

controls and the mediator. “Including M and Z” pretreatment controls, mediator, and intermediating confounders.
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Table B.12: Comparison of Conditional Marginal Effect with ACDE of Mother Height on Child Height
and Weight Outcomes Using Birthweight as a Mediator

Age 1 HAZ Age 1 WHZ

Baseline

Including

M

Including

M and Z ACDE Baseline

Including

M

Including

M and Z ACDE

Mother’s Height 0.0931∗∗∗ 0.0817∗∗∗ 0.0732∗∗ 0.0844∗∗∗ 0.0764∗∗∗ 0.0760∗∗∗ 0.0546∗∗ 0.0748∗∗

(0.0266) (0.0289) (0.0287) (0.0261) (0.0254) (0.0280) (0.0278) (0.0321)

Observations 2996 2996 2599 2996 2980 2980 2595 2980
R2 0.121 0.151 0.208 0.115 . . 0.00925 .

Age 2 HAZ Age 2 WHZ

Mother’s Height 0.134∗∗∗ 0.109∗∗∗ 0.0998∗∗∗ 0.121∗∗∗ 0.0971∗∗∗ 0.0868∗∗ 0.0730∗∗ 0.0935∗∗∗

(0.0357) (0.0380) (0.0338) (0.0346) (0.0312) (0.0340) (0.0301) (0.0340)

Observations 2604 2604 2461 2604 2606 2602 2459 2602
R2 0.0867 0.177 0.231 0.0922 . . 0.0314 .

Age 8 HAZ Age 8 ZBMI

Mother’s Height 0.128∗∗∗ 0.114∗∗∗ 0.118∗∗∗ 0.123∗∗∗ 0.0768∗∗ 0.0787∗∗ 0.0723∗∗ 0.0786∗∗

(0.0296) (0.0317) (0.0304) (0.0292) (0.0306) (0.0340) (0.0324) (0.0307)

Observations 2210 2210 2205 2210 2210 2210 2205 2210
R2 0.134 0.190 0.222 0.133 . . 0.00366 .

Age 11 HAZ Age 11 ZBMI

Mother’s Height 0.147∗∗∗ 0.134∗∗∗ 0.120∗∗∗ 0.145∗∗∗ 0.0487 0.0409 0.0585 0.0482
(0.0334) (0.0356) (0.0361) (0.0331) (0.0346) (0.0377) (0.0408) (0.0345)

Observations 2133 2133 2016 2133 2133 2133 2016 2133
R2 0.0536 0.109 0.212 0.0527 0.0928 0.107 0.118 0.0928

Age 15 HAZ Age 15 ZBMI

Mother’s Height 0.109∗∗∗ 0.102∗∗∗ 0.0978∗∗∗ 0.109∗∗∗ 0.0618∗ 0.0631 0.0660∗ 0.0671∗

(0.0261) (0.0279) (0.0275) (0.0261) (0.0358) (0.0390) (0.0393) (0.0360)

Observations 2045 2045 2038 2045 2045 2045 2038 2045
R2 0.231 0.256 0.290 0.231 0.0800 0.0771 0.0847 0.0736

∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1
Robust standard errors in parentheses

Baseline refers to a regression with only pretreatment controls included. “’Including M” includes pretreatment
controls and the mediator. “Including M and Z” pretreatment controls, mediator, and intermediating confounders.
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Table B.13: Nonlineariy in Marginal Effect on Child Height with Pooled Data

Maternal Grandfather

(1)
Maternal Height

Mother’s Height 0.0853∗∗∗

(0.0237)

Mother’s Height × Child Age 0.00912
(0.00692)

Mother’s Height × Child Age × Child Age -0.000516
(0.000367)

Child Age -2.450∗

(1.061)

Child Age × Child Age 0.115∗

(0.0557)

Constant -13.19∗∗∗

(3.588)

Observations 11342

Robust standard errors in parentheses
∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1

Figure B.18: Nonlineariy in Marginal Effect on Child Height with Pooled Data
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Table B.14: Maternal Transmission to Girl Height—Coefficients Corresponding in Figure 5

Panel A: Child Height Outcomes

(1) (2) (3) (4) (5)
Age 1 HAZ Age 2 HAZ Age 8 HAZ Age 11 HAZ Age 15 HAZ

Mother’s height 0.0757 0.102 0.172∗∗ 0.0921 0.122∗∗

(0.0562) (0.0656) (0.0794) (0.0573) (0.0474)

Observations 1216 1164 1041 975 972

Panel A: Child Weight Outcomes

(1) (2) (3) (4) (5)
Age 1 WHZ Age 2 WHZ Age 8 ZBMI Age 11 ZBMI Age 15 ZBMI

Mother’s height 0.0191 0.0125 0.0561 -0.0102 -0.00536
(0.0520) (0.0537) (0.0670) (0.0575) (0.0607)

Observations 1214 1164 1041 975 972

Robust standard errors in parentheses
∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1

All controls from Table 4 are included.
Additionally, controls include all socioeconomic characteristics and parental inputs from Table 3.
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Table B.15: Maternal Transmission to Boy Height—Coefficients Corresponding in Figure 5

Panel A: Child Height Outcomes

(1) (2) (3) (4) (5)
Age 1 HAZ Age 2 HAZ Age 8 HAZ Age 11 HAZ Age 15 HAZ

Mother’s height 0.0188 0.0630 0.0924∗∗∗ 0.130∗∗∗ 0.0407
(0.0297) (0.0388) (0.0339) (0.0493) (0.0358)

Observations 1377 1293 1161 1038 1063

Panel A: Child Weight Outcomes

(1) (2) (3) (4) (5)
Age 1 WHZ Age 2 WHZ Age 8 ZBMI Age 11 ZBMI Age 15 ZBMI

Mother’s height 0.0479 0.0730∗∗ 0.0621 0.0539 0.103∗

(0.0314) (0.0357) (0.0395) (0.0591) (0.0556)

Observations 1375 1294 1161 1038 1063

Robust standard errors in parentheses
∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1

All controls from Table 4 are included.
Additionally, controls include all socioeconomic characteristics and parental inputs from Table 3.

Table B.16: Maternal Transmission to Girl Height by Early/Late Menarche—Coefficients Correspond-
ing to Figure 6

Estimated Average Marginal Effects

Average Marginal Effect of Mother’s Height

Menache 2+ yrs post 1994 survey=0 0.0339
(0.0646)

Menache 2+ yrs post 1994 survey=1 0.118∗∗

(0.0599)

Observations 892

Estimated Coefficients

Mother’s height 0.0339
(0.0646)

Age at menarche -0.611∗∗∗

(0.0509)

Menache 2+ yrs post 1994 survey=1 × Mother’s height 0.0845
(0.0709)

Menache 2+ yrs post 1994 survey=1 -12.72
(10.66)

Birth Weight (g) 0.000371∗∗∗

(0.000127)

Observations 892

Robust standard errors in parentheses
∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1

All controls from Table 4 are included.
Additionally, controls include all socioeconomic characteristics and parental inputs from Table 3.
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Table B.17: Maternal Transmission to Boy Height by Early/Late Menarche—Coefficients Correspond-
ing to Figure 6

Calculated Average Marginal Effects

Shaving Voice Change Underarm Hair High Pubic

Mother’s Height
Begun shaving=0 0.0389

(0.0377)

Begun shaving=1 0.0375
(0.0602)

Voice changed=0 0.00759
(0.0836)

Voice changed=1 0.0438
(0.0369)

Visible underarm hair=0 0.0453
(0.0508)

Visible underarm hair=1 0.0487
(0.0379)

Has high level of pubic hair=0 0.00636
(0.0525)

Has high level of pubic hair=1 0.0453
(0.0351)

Observations 1056 1059 1056 1041

Estimated Coefficients

Shaving Voice Change Underarm Hair High Pubic

Mother’s Height 0.0389 0.00759 0.0453 0.00636
(0.0377) (0.0836) (0.0508) (0.0525)

Begun shaving=1 × Mother’s Height -0.00139
(0.0593)

Begun shaving=1 0.331
(8.932)

Voice changed=1 × Mother’s Height 0.0362
(0.0868)

Voice changed=1 -5.386
(13.07)

Visible underarm hair=1 × Mother’s Height 0.00343
(0.0528)

Visible underarm hair=1 -0.179
(7.959)

Has high level of pubic hair=1 × Mother’s Height 0.0390
(0.0512)

Has high level of pubic hair=1 -5.579
(7.730)

Observations 1056 1059 1056 1041

Robust standard errors in parentheses
∗∗∗ p<0.01, ∗∗ p<0.05, ∗ p<0.1

All controls from Table 4 are included.
Additionally, controls include all socioeconomic characteristics and parental inputs from Table 3.
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Appendix C Results with Lasso Selection of IVs

Figure C.1: Marginal Effect of Maternal Health on Child Health across Ages
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Figure C.2: Marginal Effect of Maternal Health on Child Height Outcomes across Ages—Controlling
for Different Levels of Socioeconomic Characteristics
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Note: PreTreat includes pretreatment controls, Xa
ijb , SES includes socioeconomic controls (Column 1 of Table 3), and Input includes

parental input variables (Column 2 of Table 3).
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Figure C.3: Marginal Effect of Maternal Health on Child Weight Outcomes across Ages—Controlling
for Different Levels of Socioeconomic Characteristics
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Note:The vertical axis unit at birth is grams while that at other ages is standard deviations

Note: PreTreat includes pretreatment controls, Xa
ijb , SES includes socioeconomic controls (Column 1 of Table 3), and Input includes

parental input variables (Column 2 of Table 3).

Figure C.4: Marginal Effect of Maternal Health on Child Health Controlling for Socioeconomic Char-
acteristics and Birthweight
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Figure C.5: Marginal Effect of Maternal Health on Child Health for Boys and Girls Separately Con-
trolling for Socioeconomic Characteristics and Birthweight
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Figure C.6: Marginal Effect of Maternal Health on Age 11 Girl HAZ Depending on Probable Growth
Stage Controlling for Socioeconomic Characteristics and Birthweight
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Figure C.7: Marginal Effect of Maternal Health on Age 15 Boy HAZ Depending on Probable Growth
Stage Controlling for Socioeconomic Characteristics and Birthweight
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Appendix D Results with Lasso Selection of PCA-IVs

Figure D.1: Marginal Effect of Maternal Health on Child Health across Ages
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Figure D.2: Marginal Effect of Maternal Health on Child Height Outcomes across Ages—Controlling
for Different Levels of Socioeconomic Characteristics
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Note: PreTreat includes pretreatment controls, Xa
ijb , SES includes socioeconomic controls (Column 1 of Table 3), and Input includes

parental input variables (Column 2 of Table 3).
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Figure D.3: Marginal Effect of Maternal Health on Child Weight Outcomes across Ages—Controlling
for Different Levels of Socioeconomic Characteristics
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Note:The vertical axis unit at birth is grams while that at other ages is standard deviations

Note: PreTreat includes pretreatment controls, Xa
ijb , SES includes socioeconomic controls (Column 1 of Table 3), and Input includes

parental input variables (Column 2 of Table 3).

Figure D.4: Marginal Effect of Maternal Health on Child Health Controlling for Socioeconomic Char-
acteristics and Birthweight
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Figure D.5: Marginal Effect of Maternal Health on Child Health for Boys and Girls Separately Con-
trolling for Socioeconomic Characteristics and Birthweight
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Figure D.6: Marginal Effect of Maternal Health on Age 11 Girl HAZ Depending on Probable Growth
Stage Controlling for Socioeconomic Characteristics and Birthweight
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Figure D.7: Marginal Effect of Maternal Health on Agw 15 Boy HAZ Depending on Probable Growth
Stage Controlling for Socioeconomic Characteristics and Birthweight
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