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Abstract

This paper demonstrates that rating-based capital requirements, through their impact on
insurers' investment demand, a�ect corporate bond prices. Consistent with insurers' low de-
mand for investment-grade (IG) bonds with a rating close to non-investment-grade, these bonds
are underpriced. Consistent with insurers' high (low) demand for IG bonds with high (low)
systematic risk exposure, these bonds are overpriced (underpriced). Insurer demand, measured
by insurer holdings, explains most of these pricing e�ects. We identify rating-based capital
requirements as the driver of insurer demand, and thus the pricing e�ects, by showing that the
e�ects do not exist before these requirements' implementation in 1993.
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1 Introduction

This paper examines whether rating-based capital requirements a�ect asset prices. An extensive

literature shows that capital regulations impact the investment decisions of regulated �rms and thus

their demand for assets with certain characteristics (e.g., Pennacchi (2006), Becker and Ivashina

(2015), and Iannotta, Pennacchi, and Santos (2018)). Recent theoretical work links investor de-

mand for assets with certain characteristics to asset prices (e.g., He and Krishnamurthy (2013) and

Koijen and Yogo (2016)). In particular, the model of Harris, Opp, and Opp (2017) formalizes the

argument that capital regulations, through their impact on regulated �rms' investment decisions,

cause equilibrium asset prices to diverge from their frictionless benchmark. In this paper we provide

empirical support for this argument using U.S. corporate bonds.

The U.S. corporate bond market o�ers an ideal setting to investigate how rating-based capital re-

quirements a�ect asset prices for two main reasons. First, insurers are the most important players in

this market, owning more than a third of the market value outstanding (see Figure 1) and accounting

for a large portion of trading volume (Bessembinder, Maxwell, and Venkataraman (2006)). To the

extent that insurers are the marginal investors in corporate bonds, the impact of their investment

decisions on prices is likely to be substantial. Second, insurers' rating-based capital requirements

create incentives to invest in corporate bonds with certain characteristics (Ellul, Jotikasthira, and

Lundblad (2011) and Becker and Ivashina (2015)). These incentives lead to two speci�c hypotheses

about patterns in bond prices that are attributable to insurers' capital regulations.

The �rst hypothesis derives from the literature's empirical �nding that high capital charges for

non-investment-grade (NIG) bonds encourage insurers to quickly sell bonds downgraded from IG

to NIG, which results in short-lived underpricing of these bonds (Ellul et al. (2011) and Ambrose,

Cai, and Helwege (2008)). We argue that insurers, aware of the potential impact of these �re sales,

preemptively avoid investing in IG bonds with a rating close to NIG, resulting in low demand for

such bonds. Thus, our �rst hypothesis is that as a result of low demand, bonds with high NIG

proximity (IG bonds with a rating close to NIG) are underpriced.1

Our second bond pricing hypothesis is based on the theoretical argument that risk-based capital

requirements that do not fully re�ect systematic risk, when coupled with guaranty funds, lead

insurers to tilt their portfolios towards systematically risky bonds (Pennacchi (2006)). Guaranty

funds, which cover the claims of insolvent insurers' policyholders, create an incentive for insurers to

take on more risk than they otherwise would (Cummins (1988) and Lee, Mayers, and Smith (1997)).

Risk-based capital requirements are intended to thwart this incentive by tying required capital to

portfolio risk. However, required capital charges for corporate bonds are based on broad credit

1Throughout this paper, the terms �underpriced� and �overpriced� should be understood as relative to a frictionless
benchmark equilibrium and the mispricing we document should be viewed as re�ecting a new equilibrium resulting
from regulatory capital constraints. Black (1972), Frazzini and Pedersen (2014), and Harris et al. (2017) develop
equilibrium models in which leverage constraints cause equilibrium prices to diverge from their frictionless benchmark.
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rating-based categories and within each category there are bonds with di�erent levels of systematic

risk exposure. Therefore, among bonds in the same capital charge category, insurers have incentive

to boost expected portfolio return by tilting holdings toward (away from) high-systematic (low-

systematic) risk exposure bonds, thereby creating high (low) demand for such bonds. Thus, our

second hypothesis is that as a result of high (low) demand, conditional on required capital charge,

bonds with high (low) systematic risk exposure are overpriced (underpriced).

We test our two bond pricing hypotheses by examining a comprehensive sample of IG corporate

bond returns from the 1993-2014 period, when rating-based capital requirements for insurers are

in place.2 Speci�cally, we analyze the risk-adjusted returns of bond portfolios designed to have

variation in NIG proximity or systematic risk exposure. Bonds that are overpriced (underpriced)

should generate negative (positive) future risk-adjusted returns. In support of our �rst hypothe-

sis, we �nd that high-NIG proximity bonds, which we de�ne as bonds with the lowest IG rating

(BBB−), generate positive risk-adjusted returns, whereas the performance of better-rated bonds is

commensurate with their risk exposure. In support of our second hypothesis, we �nd that condi-

tional on capital charge, bonds with high (low) systematic risk exposure generate negative (positive)

risk-adjusted returns. The result holds for exposure to aggregate IG corporate bond market risk

(bond market risk hereafter) and systematic term risk, but not for systematic default risk. These

pricing e�ects last for at least twelve months after portfolio formation, indicating that they re�ect

persistent equilibrium pricing and distinguishing our �ndings from those of studies that document

temporary price pressure in the corporate bond market (Ellul et al. (2011) and Ellul, Jotikasthira,

Lundblad, and Wang (2015)).

We next test the hypothesis that the detected pricing patterns are a manifestation of insurer

investment demand. First, we examine whether insurers do indeed tilt their portfolios away from

bonds with a rating close to NIG and towards (away from) bonds with high (low) systematic risk

exposure. As predicted, regression and portfolio analyses demonstrate that insurers underweight

bonds rated BBB− and overweight (underweight) bonds with high (low) exposure to both bond

market risk and systematic term risk. We then investigate the extent to which insurer investment de-

mand explains the observed pricing patterns. Our tests indicate that the mispricing associated with

NIG proximity and systematic risk exposure is strongly related to insurer holdings. Taken together,

these results support our hypothesis that the outperformance of bonds with high NIG proximity and

underperformance (outperformance) of bonds with high (low) systematic risk exposure are driven

by insurer investment demand.

Finally, we examine the hypothesis that rating-based capital requirements are the driver of the

2We focus on the IG segment of the corporate bond market for two reasons. First, insurers are collectively the
most important institutional investors in IG bonds, but they hold only a small proportion of NIG bonds (Becker and
Ivashina (2015)). Insurers' limited presence in the NIG segment of the corporate bond market makes it less likely
that their investment preferences a�ect NIG bond prices. Second, NIG corporate bonds account for a small portion
of insurers investments. Using data from insurers' regulatory �lings for the 2002-2014 period, we �nd that only 9%
of insurers' corporate bond holdings are rated NIG (i.e., have an NAIC designation in the 3-6 range as described in
Table 1). Thus, within the NIG corporate bond segment insurers may be less likely to act on investment incentives
created by rating-based capital requirements, because doing so will have a minimal impact on their overall investment
income.
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observed patterns in insurer investment demand and therefore are ultimately responsible for the

documented pricing patterns. Rating-based capital requirements for insurers were implemented in

1993. Because this regulatory change was debated for several years prior to implementation and

penalties for undercapitalized insurers under the new requirements were phased in over several years,

we do not expect to observe a structural break in 1993. However, we do expect that the patterns in

insurer holdings and bond pricing are, on average, di�erent in the period before than in the period

after the implementation of rating-based capital requirements. Consistent with our hypothesis, the

same tests that provide strong evidence of pricing patterns during the 1993-2014 period fail to detect

any such patterns during 1978-1992. Examining both periods together, our results indicate that the

risk-adjusted performance of the portfolios we analyze is signi�cantly di�erent during the period in

which capital requirements are in place.

Our results allow us to rule out demand by other corporate bond market investors and factor

model misspeci�cation as alternative explanations for the pricing patterns we document. While

banks are subject to ratings-based capital charges that are similar in structure to those of insurers,

banks' own only a small portion of the corporate bond market, and only a small portion of banks'

portfolios are invested in corporate bonds. Thus, demand from banks is unlikely to move prices and

banks have little incentive to adjust their corporate bond investments to minimize required capital.

Furthermore, the pricing patterns we document were present prior to 2007, when ratings-based

capital requirements for banks that distinguish among corporate bonds of di�erent ratings went

into e�ect. Many pension funds, mutual funds, and exchange traded funds have guidelines that

limit their investment in NIG bonds. However, these investors face little pressure to quickly sell

bonds downgraded from IG to NIG (Cantor, ap Gwilym, and Thomas (2007)), which may weaken

their aversion to high-NIG proximity bonds. Additionally, managers of these funds are usually

evaluated on a risk-adjusted basis, giving them little incentive to tilt their portfolios towards high-

systematic risk bonds. Furthermore, because the pricing patterns evident during the 1993�2014

period are not present during the 1978�1992 period, for demand by another set of investors to

be consistent with our results, that set of investors would need to have had di�erent investment

incentives in the early and latter part of our sample period. To our knowledge, there is no reason

to think that this is the case for pension funds, mutual funds, or exchange traded funds. Finally,

we rule out model misspeci�cation as a potential explanation for the pricing e�ects we document

by showing that our �ndings are robust to a large number of alternative factor models and that the

portfolios we examine are correctly priced during the 1978-1992 period.

In sum, our results show that insurer investment demand induced by rating-based capital re-

quirements has a substantial impact on the equilibrium prices of corporate bonds. This �nding adds

to recent work on the implications of insurers' investment decisions for the U.S. corporate bond mar-

ket. Ellul et al. (2011) examine 1,179 bonds downgraded from IG to NIG between 2001 and 2005

and demonstrate that �re sales by insurers around these downgrades cause short-lived deviations

of market prices from fundamental values. In contrast, our paper shows that insurers' persistent

aversion to IG bonds with high-NIG proximity (i.e., bonds that have not been downgraded to NIG
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but are at the IG-NIG threshold) causes equilibrium prices to diverge from their frictionless bench-

mark. Becker and Ivashina (2015) analyze 600 IG bonds issued between 2004 and 2007, and �nd

that large primary market purchases by insurers are related to poor bond performance immediately

after issuance. We expand on this �nding by showing that insurers' demand a�ects prices long after

issuance and that this e�ect is driven by insurers' demand for high-systematic risk exposure bonds.

Another important distinction between these previous studies and ours is that we demonstrate

that insurers' demand a�ects the prices of a large cross-section and long time-series of IG corpo-

rate bonds � we examine more than 20,000 unique bonds over the entire 1993-2014 period when

rating-based capital requirements for insurers are in e�ect. This is important because persistent

distortions in a large cross-section of bond prices has rami�cations for the cost of capital of many

�rms, which may cause deviations from optimal aggregate investment (Stein (1996), Chirinko and

Schaller (2001), Baker, Stein, and Wurgler (2003), Gilchrist, Himmelberg, and Huberman (2005),

Polk and Sapienza (2009), Harford, Martos-Vila, and Rhodes-Kropf (2015), Warusawitharana and

Whited (2016), and Van Binsbergen and Opp (2017)). Finally, we extend prior work by providing

evidence linking the pricing e�ects we document to capital regulations: the e�ects are non-existent

prior to the implementation of rating-based capital requirements.

Our work also contributes to three broader strands of the literature. First, we add to a growing

number of studies on the unintended consequences of regulatory reliance on credit ratings. Pennacchi

(2006) and Iannotta et al. (2018) develop theoretical models to demonstrate that rating-based capital

requirements create incentives for regulated �rms to increase their systematic risk exposure, thus

making these �rms more likely to su�er losses during an economic downturn and undermining the

goal of prudential regulations. Acharya and Richardson (2009), Calomiris and Mason (2010), White

(2010), Stanton and Wallace (2018), Opp, Opp, and Harris (2013), and Cornaggia, Cornaggia, and

Hund (2017) provide empirical evidence that ratings-based capital requirements lead to various

forms of regulatory arbitrage by �nancial �rms, which may leave these �rms undercapitalized and

pose a threat to the stability of the �nancial sector. The use of ratings in �nancial regulations

also a�ects the allocation of credit among industrial �rms (Becker and Ivashina (2015)) and these

�rms' cost of capital (Kisgen and Strahan (2010)). We document another unintended consequence

of regulatory reliance on ratings: a distortion in the equilibrium prices of corporate bonds in the

secondary market. We then establish regulated institutions' investment demand as the channel

through which this distortion takes place.

Second, our paper provides empirical support to the theoretical literature on the asset pric-

ing implications of institutional investor demand (e.g., He and Krishnamurthy (2013) and Koijen

and Yogo (2016)). We focus on insurers' demand driven by rating-based capital requirements, and

document that it a�ects equilibrium corporate bond prices. This is consistent with the theoretical

prediction of Harris et al. (2017) that capital requirements that measure the risk of assets imper-

fectly cause distortions in the cross-section of asset prices. While previous empirical research has

documented persistent distortions in the pricing of stocks (Gompers and Metrick (2001)) and loans

(Ivashina and Sun (2011)) due to institutional demand, to our knowledge we are the �rst to link
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such an e�ect to capital regulations.

Finally, our paper contributes to the empirical asset pricing literature by providing new evidence

on the cross-section of corporate bond returns. Jostova, Nikolova, Philipov, and Stahel (2013),

Crawford, Perotti, Price, and Skousen (2015), Chordia, Goyal, Nozawa, Subrahmanyam, and Tong

(2017), and Choi and Kim (2018) show that anomalies previously documented in the equity market

are present in the corporate bond market as well. Our study adds to this literature by demonstrating

that rating-based capital requirements, which are unique to credit markets, are important for the

cross-section of bond returns.

The rest of the paper is organized as follows. Section 2 discusses insurers' guaranty funds, capital

requirements, and the e�ect of these on insurers' investment demand. It then speci�es our testable

hypotheses. Section 3 describes our data sources and sample construction. Section 4 presents

evidence of the hypothesized patterns in bond pricing. Section 5 establishes rating-based capital

requirements, through their impact on insurer investment demand, as the driver of these pricing

patterns. Section 6 concludes.

2 Institutional Background and Hypotheses

In this section we describe the investment incentives created by insurers' risk-based capital require-

ments. Based on this discussion, we develop our hypotheses.

2.1 Insurer Capital Requirements and Investment Incentives

The focus of our paper is insurers' risk-based capital requirements. However, since the need for

risk-based capital requirements arises from the existence of insurer guaranty funds, we begin with

a discussion of these funds and their e�ect on insurers' investment incentives.

Insurer guaranty funds, established mostly during the 1970s and still in existence today, guaran-

tee the bene�ts of an insolvent insurer's policyholders.3 When an insurer becomes insolvent and is

unable to satisfy policyholders' claims, the claims are covered through assessments against surviving

insurers operating in the same state (Munch and Smallwood (1980)).4 Guaranty funds structured in

this manner are meant to encourage insurers to monitor their competitors and report any excessive

risk-taking to state regulators. However, in many states assessments can be recovered through rate

increases or tax o�sets (Lee et al. (1997)), thus weakening the intended monitoring incentive. In

sum, guaranty funds enable insurers to take on risk without bearing its full cost (Cummins (1988)),

thereby inducing insurers to take on more risk than they otherwise would (Lee et al. (1997)).

Capital requirements for insurers were implemented in part to reign in the risk-taking incentives

created by state guaranty funds. Early e�orts to ensure that insurers had su�cient equity to cover

3Guaranty funds were established by states at di�erent times between 1969 and 1981 (Lee et al. (1997)). All but
two states, Alabama and Oklahoma, had guaranty funds in place by 1978. Oklahoma established its guaranty fund
in 1980 and Alabama did so in 1981.

4In all states except New York, guaranty funds are funded post-insolvency and assessments are a �at percentage of
the surviving insurers' premiums in the state (Duncan (1984)). The New York guaranty fund is pre-funded through
quarterly assessments until a certain prescribed level is reached.
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policyholders' losses took on two forms. First, acquiring a state insurance license required an initial

�xed dollar amount of equity capital that varied with insurer ownership form and line of business

(Munch and Smallwood (1979) and Grace et al. (1998)). Second, to make certain that capital

grew as an insurer grew, state regulators encouraged, though did not require, insurers to hold more

capital as their premiums written increased (Munch and Smallwood (1979)). Importantly, these

early capital requirements did not constrain in a meaningful way insurers' leverage or the risk of

insurers' investments, and thus did little to curb the incentive for insurers to take on risk.

This changed in 1993 when insurer regulators introduced risk-based capital requirements.5

Speci�cally, regulators adopted the ratio of actual capital (i.e., total adjusted capital) to required

capital (i.e., authorized control level risk-based capital), commonly referred to as the risk-based

capital (RBC) ratio, as the primary measure of insurer capital adequacy. Although required capital

considers a number of risk sources, the risk of the insurer's investment portfolio is one of the most

important. Figure 2 shows the composition of insurers' portfolios through time. The �gure indicates

that insurers invest primarily in �xed-income securities, and that of these, corporate bonds are the

most represented asset class. As a result, the credit quality of an insurer's corporate bond holdings

has a �rst order impact on its RBC ratio.

For capital adequacy assessment purposes, the credit quality of corporate bonds is assessed by

the National Association of Insurance Commissioners' (NAIC) Securities Valuation O�ce, which

assigns each security in an insurer's portfolio an NAIC designation.6 Designations take integer values

from 1 to 6 with higher numbers implying worse credit quality. The NAIC designation determines

the amount of capital an insurer must hold to cover expected credit losses on a security, and as

Table 1 shows, securities with higher NAIC designations have higher required capital charges.

For corporate bonds, NAIC designations are exclusively based on credit ratings issued by ap-

proved credit rating providers (CRPs).7 Table 1 summarizes the one-to-one mapping from ratings

to NAIC designations and illustrates two important points. First, required capital charges increase

as credit rating worsens, with the best-rated NIG bonds requiring signi�cantly more capital than

the worst-rated IG bonds. Second, bond risk not captured by ratings is irrelevant for regulatory

capital purposes. We argue that these features of insurers' rating-based capital requirements create

strong incentives to avoid holding IG bonds with a rating close to NIG and prefer holding IG bonds

with high systematic risk exposure.

Empirical studies con�rm that rating-based capital requirements play an important role in in-

5The NAIC's Risk-Based Capital Model Act became e�ective in 1993. For more details, see
http://www.naic.org/documents/prod_serv_statistical_rsn_lb.pdf.

6Although insurers are regulated at the state level, state capital regulations are coordinated through the NAIC
and all states use the same NAIC designations and required capital charges (Becker and Ivashina (2015)).

7The current list of approved CRPs includes nine companies (Moody's, Standard & Poor's, Fitch, DBRS, A.M.
Best, Morningstar, Kroll, Egan Jones, and HR Ratings de Mexico), but during the majority of our sample period
insurer regulators relied on Moody's, Standard & Poor's, Fitch, DBRS, and A.M. Best. While a long history of CRP
market share is not available, the Security and Exchange Commission's 2016 Annual Report on Nationally Recognized
Statistical Rating Organizations indicates that in 2015 89% of outstanding corporate bond ratings were provided by
Moody's, Standard & Poor's, and Fitch (https://www.sec.gov/ocr/reportspubs/annual-reports/2016-annual-report-
on-nrsros.pdf). In our analysis, we focus on credit ratings by these three CRPs.
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surers' decision to dispose of securities downgraded from IG to NIG. Ambrose et al. (2008) show

that insurers engage in greater selling of bonds downgraded from IG to NIG than of comparable

bonds that are not downgraded, and Ellul et al. (2011) provide evidence that such insurer ��re sales�

temporarily depress prices. The �ndings of these studies suggest that waiting to sell a bond with

a worsening credit quality until after it is downgraded to NIG can be costly. This creates a strong

incentive for insurers to avoid investing in IG bonds with high NIG proximity.

Investment portfolio returns are a primary source of income for insurers and essential for their

ability to cover claims. Since guaranty funds allow insurers to take on risk without bearing its

full cost, insurers have an incentive to increase expected returns by taking more systematic risk.

Without the constraint imposed by capital requirements, insurers can increase systematic risk either

by tilting their portfolios towards high-systematic risk exposure securities or by levering up their

investments in low-systematic risk exposure securities. Prior to 1993, insurers had no reason to

favor one approach over the other, since early capital regulations did not meaningfully limit their

ability to borrow or to invest in high-systematic risk securities. This changed with the adoption

of rating-based capital requirements, which restricted insurers' ability to increase leverage but not

their ability to select riskier securities. Since within each NAIC designation there are bonds with

di�erent systematic risk exposures, conditional on NAIC designation, insurers can tilt their portfolios

towards (away from) bonds with higher (lower) systematic risk, thereby increasing the systematic

risk of their portfolios without increasing required capital. Increasing leverage to take on risk, on

the other hand, would increase insurers' required capital. The incentive for increased systematic-

risk taking when capital requirements do not fully account for the systematic risk of investments is

formally modeled by Pennacchi (2006) and �nds empirical support in Becker and Ivashina (2015)

and Iannotta et al. (2018). Becker and Ivashina (2015) provide evidence from the primary market

that insurers �attempt to increase the yield in their bond portfolio by taking on extra priced risk,

while leaving capital requirements una�ected.� Similarly, Iannotta et al. (2018) �nd that capital-

constrained U.S. commercial banks tend to invest in syndicated loans with higher systematic risk

exposure. In sum, rating-based capital requirements e�ectively function as a leverage constraint on

insurers' portfolios, and this leverage constraint creates a strong incentive for insurers to tilt their

portfolios towards bonds with high systematic risk exposure.

2.2 Hypotheses

In this paper we argue that insurers' low demand for corporate bonds with high NIG proximity and

high (low) demand for corporate bonds with high (low) systematic risk exposure, both induced by

rating-based capital requirements, impact equilibrium IG corporate bond prices. Insurers are the

largest investors in corporate bonds, holding about a third of the total market value outstanding

(Figure 1). Thus, insurers are likely to be the marginal investor in the IG segment of the corporate

bond market. If the supply of corporate bonds is not perfectly elastic, the e�ect of insurers' demand

on bonds' demand curves will impact equilibrium bond prices, causing highly-demanded (lowly-

demanded) bonds to be relatively overpriced (underpriced). This argument is similar to that made
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by empirical studies of the equity and loan markets documenting that demand by important market

participants has a persistent impact on prices in these markets (Shleifer (1986), Gompers and

Metrick (2001), and Ivashina and Sun (2011)).

Our reasoning leads to four hypotheses that we test in the remainder of the paper. The �rst two

hypotheses, H1 and H2, relate to the pricing patterns we expect to observe as a result of insurers'

low demand for IG bonds that have high NIG proximity and high (low) demand for IG bonds that

have high (low) systematic risk exposure.

H1: IG bonds with high NIG proximity are, on average, underpriced.

H2: Conditional on capital charge, IG bonds with high (low) systematic risk exposure are, on

average, overpriced (underpriced).

Hypothesis H1 is driven by insurers' rating-based capital requirements, which generate �re sales

when IG bonds are downgraded to NIG, and thus discourage insurers from investing in bonds imme-

diately above the the NIG threshold. Hypothesis H2 is driven by the interaction between guaranty

funds, which create an incentive for insurers to increase risk, and the structure of rating-based

capital charges, which constrains leverage but does not constrain risk-taking that is not captured

by ratings. Frazzini and Pedersen (2014) demonstrate theoretically that leverage constraints on

important market participants result in the overpricing (underpricing) of securities with high (low)

systematic risk exposure.

Securities that are underpriced are expected to generate high risk-adjusted future returns. There-

fore, we test H1 by examining whether a portfolio of high-NIG proximity bonds generates positive

risk-adjusted returns. Similarly, we test H2 by examining whether a portfolio of high-systematic

(low-systematic) risk exposure bonds produce negative (positive) risk-adjusted returns. For both

H1 and H 2, we investigate whether the pricing e�ects re�ect long-term equilibrium prices by exam-

ining whether the e�ects are persistent. These tests cover the 1993-2014 period, when rating-based

capital requirements are in e�ect.

Our next hypothesis, H3, identi�es insurer demand as the driver of the pricing e�ects hypothe-

sized in H1 and H2.

H3: Insurers' low demand for IG bonds with high NIG proximity and high (low) demand for

bonds with high (low) systematic risk exposure drive the pricing patterns predicted by hypotheses

H1 and H2.

We test H3 in two steps. First, we investigate whether insurers' holdings of corporate bonds

are indeed tilted away from high-NIG proximity bonds and towards high-systematic risk bonds.

Second, we examine whether the tilts in insurer holdings explain the hypothesized patterns in bond

performance.

Finally, our hypothesis H4 ties insurer demand, and ultimately bond performance, to rating-

based capital requirements.
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H4: Rating-based capital requirements are the driver of insurers' low demand for IG bonds

with high NIG proximity and high (low) demand for bonds with high (low) systematic risk

exposure, and therefore ultimately of the pricing patterns predicted by hypotheses H1 and H2.

We test H4 by examining whether the pricing e�ects hypothesized in H1 and H2 exist in the absence

of rating-based capital requirements by repeating our tests of these hypotheses using the 1978-1992

period, which is prior to the requirements' implementation.

3 Data and Sample

Before proceeding to the tests of our hypotheses, we describe our data and the construction of our

sample.

3.1 Bond Returns and Characteristics

Bond returns are constructed from four di�erent sources: (1) Lehman Brothers' Fixed Income

Database (Lehman), (2) Thomson Reuter's DataStream (DataStream), (3) Mergent's National As-

sociation of Insurance Commissioners Database (MNAIC), and (4) FINRA's TRACE and TRACE

Enhanced (TRACE/TRACE Enhanced). Other recent studies (e.g., Jostova et al. (2013) and Chor-

dia et al. (2017)) similarly combine data from these sources to construct a long-time series and broad

cross-section of monthly corporate bond returns.

Lehman provides monthly bond returns for the period from January 1973 through March 1998.8

Most returns re�ect dealer quotes, but some are based on �matrix� prices derived from quotes of

bonds with similar characteristics. Like Gebhardt et al. (2005) and Jostova et al. (2013), we use

returns based on both quote and matrix prices.9

From DataStream, we collect end-of-month bond prices for the period from January 1990 through

December 2014.10 Prices in DataStream are based on dealer quotes or transaction prices.

The MNAIC database contains information on bonds acquired or disposed of by insurers from

January 1994 through December 2014. We keep only records pertaining to trades, and remove

records related to non-trading activity (e.g., maturity, repayment, and calls).

Finally, we collect data on all transactions in publicly traded TRACE-eligible securities between

July 2002 and March 2014 from FINRA's TRACE Enhanced database. The data end in March 2014

because FINRA distributes TRACE Enhanced data with an 18-month lag. We therefore augment

TRACE Enhanced data with TRACE data from April 2014 through December 2014. TRACE

data are available in real time and during this period include all trades that will eventually be

8Data are largely unavailable for August 1978 and December 1984.
9In Section I and Tables A1-A5 of the Internet Appendix, we demonstrate that our results hold when we exclude

returns based on matrix prices from our sample.
10We calculate returns from price data instead of from DataStream's cumulative total return indices because we

detect errors in these indices. The errors include negative index values (28 securities a�ected), decreasing index values
but increasing prices (more than 4,000 securities a�ected), and missing index values when price and accrued interest
data are available (more than 3,000 securities a�ected).
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distributed through TRACE Enhanced.11 Taken together, the TRACE/TRACE Enhanced data

provide a comprehensive database of transactions in TRACE-eligible securities from July 2002

through December 2014. We �lter out trade cancellations and corrections using the approach in

Dick-Nielsen (2009) and Dick-Nielsen (2014), and also remove trades where the reported price cannot

be correctly interpreted as the transaction price.12

The MNAIC and TRACE/TRACE Enhanced databases provide intraday transaction data. For

these databases, we follow Jostova et al. (2013) and Chordia et al. (2017) and construct daily prices

as the trade size-weighted average of intraday prices.13 The month-end price is then taken to be

the last available daily price from the last �ve trading days of the month. We combine MNAIC

and TRACE/TRACE Enhanced month-end prices into one data set, giving precedence to the latter

when prices are available from both sources.14

We then use month-end prices from DataStream or from the combined TRACE/TRACE En-

hanced/MNAIC data to calculate monthly returns separately for each dataset.15 The return of

bond i in month t, ri,t, is calculated as:

ri,t =
(Pi,t +AIi,t + Ci,t)− (Pi,t−1 +AIi,t−1)

Pi,t−1 +AIi,t−1
(1)

where Pi,t is the bond's clean price at the end of month t, AIi,t is the bond's accrued interest at

the end of month t, and Ci,t is the bond's coupon paid during month t. Coupon information and

data needed to calculate accrued interest come from Mergent's Fixed Income Securities Database

(FISD) and Thomson Reuter's DataScope (DataScope).16 We do not calculate returns for bonds

with variable-rate coupons or bonds with non-standard coupon features (step-up, increasing-rate,

pay-in-kind, and split-coupon) because we have no information on how these bonds' coupons change

over time.

We combine monthly returns from the three di�erent datasets, giving precedence to trade-

based returns. When returns for the same bond-month observation are available from multiple

11We use TRACE Enhanced for the early part of the sample for two reasons. First, prior to 2005 TRACE is
incomplete due to its gradual phase-in and therefore contains only a subset of the trades in TRACE Enhanced.
Second, for the entire period, TRACE reports the size of all IG bond trades larger than $5 million as �$5MM+�
whereas TRACE Enhanced reports the actual trade size.

12Speci�cally, we remove agency customer transactions without commission, when-issued trades, locked-in trades,
trades with special sales conditions, trades with more than three days to settlement, and commission trades.

13This approach is motivated by Bessembinder, Kahle, Maxwell, and Xu (2009), who �nd that using trade size-
weighted intraday prices minimizes the impact of the bid-ask bounce and results in more informative prices than
using the last traded price of the day. We do not exclude trades of $100,000 or less because, as discussed in O'Hara,
Wang, and Zhou (2018), insurers frequently execute such trades.

14Combining TRACE/TRACE Enhanced and MNAIC month-end prices prior to calculating monthly returns allows
us to retain observations where a price is available in one database in one month and the other database in the next
month, but not available in any one database in both months.

15Before calculating monthly returns, we remove from all databases observations with negative prices as well as
observations with issuance or trade dates after the maturity date, since these observations are obvious data errors.

16Computing accrued interest requires the bond's coupon amount, coupon frequency, and day count convention.
Following Jostova et al. (2013), we assume a semi-annual coupon frequency if the coupon frequency is missing, and
30/360 day count convention if the day count convention is missing. If information on the bond's coupon amount is
missing, we do not calculate a return.
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sources, we take the �rst available return in the following sequence: combined TRACE/TRACE

Enhanced/MNAIC, Lehman, and DataStream. To ensure data quality we follow Jostova et al.

(2013) and remove the bottom and top 0.5 percent of return observations. Finally, we de�ne the

excess return of bond i in month t, Ri,t, as the return of the bond minus the return of the one-month

U.S. Treasury bill.17

Bond ratings and other characteristics come from several sources and are measured for each bond

i at the end of each month t. Data on S&P, Moody's, and Fitch ratings come from DataScope.

To determine a bond's rating for regulatory capital purposes when ratings from multiple CRPs

are available in the same month, we follow the insurers' regulatory capital guidance and use the

lower rating when two are available and the second lowest rating when three are available (Becker

and Ivashina (2015)). These regulatory ratings are then converted to NAIC designations using

the mapping in Table 1. Data on bond par value outstanding are taken from FISD, Lehman, and

DataStream, as available in that order. We de�ne MV to be the bond's market value, calculated

as the par value outstanding times the market price of the bond per dollar of par.18

We retain return observations for corporate bonds traded in the U.S. with at least one year to

maturity. We exclude observations for bonds with less than one year to maturity following Warga

(1991) and Eom, Helwege, and Huang (2004), because bonds become relatively illiquid when close

to maturity. We further exclude mortgage-backed and asset-backed securities, equity-linked notes,

convertible bonds, putable bonds, bonds with warrants, and bonds that are part of unit deals.

However, we retain callable bonds because they represent a signi�cant portion of corporate bonds

outstanding. Finally, we exclude bonds that are not U.S. dollar-denominated.

3.2 Bond Factors

We construct three corporate bond market factors. The �rst factor is designed to capture aggregate

IG corporate bond market risk, which we refer to as bond market risk. Our proxy for this factor,

CBMKT , is de�ned as the MV -weighted average excess return of the IG bonds in our return

data. Fama and French (1993) and Gebhardt, Hvidkjær, and Swaminathan (2005) suggest that two

sources of systematic risk impact corporate bond returns � a term factor driving risk associated

with changes in interest rates for default risk-free bonds of di�erent maturities, and a default factor

related to changes in economic conditions that a�ect default probabilities. Following Jostova et al.

(2013) and Becker and Ivashina (2015), we proxy for the term factor using TERM , de�ned as

the return of the Barclays Long Maturity U.S. Treasury index (LHTRYLG) minus the return of

the one-month U.S. Treasury bill. We proxy for the default factor, DEF , with the component of

CBMKT that is orthogonal to TERM . Assuming that U.S. Treasury securities are default risk-

free, any covariation between CBMKT and TERM must be due to term factor exposure. De�ning

DEF to be orthogonal to TERM , therefore, ensures that DEF has zero exposure to term risk.

17The one-month U.S. Treasury bill return comes from Ken French's website,
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

18Price data come from the database used to calculate the bond return.
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If, as suggested by Fama and French (1993) and Gebhardt, Hvidkjær, and Swaminathan (2005),

corporate bond market returns are driven by exposure to term and default factors, DEF can be

considered a pure default factor. If factors other than term and default play a role, then DEF can

be interpreted as absorbing the variation in corporate bond returns driven by all factors other than

the term factor.19

In addition to the clean economic interpretation of TERM and DEF , de�ning DEF as the

component of CBMKT that is orthogonal to TERM has several empirical advantages. First, since

CBMKT is constructed from the bonds in our return data, our de�nitions of TERM and DEF

ensure that these factors span the bonds' aggregate returns. Second, our methodology does not

make any assumptions about the aggregate corporate bond market's exposure to term risk. This

contrasts with the commonly used approach of proxying for the default factor with the returns of

a zero-cost long-short portfolio that is long a portfolio of corporate bonds and short a portfolio of

long-maturity U.S. Treasuries (see Fama and French (1993), Acharya, Amihud, and Bharath (2013),

Chordia et al. (2017), Bai, Bali, and Wen (2018), and Choi and Kim (2018)), which implicitly

assumes that the term factor exposure of both the long and short portfolios is the same.20 Indeed,

our analysis suggests that the exposure of the aggregate bond market to term risk is only about

0.30 (see discussion in next paragraph). Thus, if we were to take DEF to be the di�erence between

CBMKT and TERM , while TERM and DEF would still span the aggregate returns of the bonds

in our data, ourDEF factor would have a strong negative (−0.70) exposure to TERM , which would

complicate the economic interpretation of our results.21 Nonetheless, in Section IV and Tables A14-

A24 of the Internet Appendix, we perform several robustness tests to ensure that our results do not

depend on our factor de�nitions.

Table 2 presents summary statistics for the monthly factor excess returns for 1993-2014, the

period examined in the tests of our two bond pricing hypotheses, H1 and H2. Panel A shows that

CBMKT generates an average (median) excess return of 0.35% (0.40%) per month, with a standard

deviation of 1.28%. TERM produces an average monthly excess return of 0.47% with a standard

deviation of 2.84%. Summary statistics for DEF are generated from a regression of CBMKT on

19Lin, Wang, and Wu (2011), Dick-Nielsen, Feldhütter, and Lando (2012), Acharya, Amihud, and Bharath (2013),
and Bongaerts, de Jong, and Driessen (2017) suggest that a liquidity factor is an important driver of corporate bond
returns. Our main bond pricing tests adjust for exposure to aggregate stock liquidity. In Section II and Tables
A6-A9 of the Internet Appendix, we demonstrate that the pricing patterns we document persist after accounting for
aggregate bond liquidity. We also investigate whether there is an intermediary asset pricing-based explanation for
our �ndings by including Adrian, Etula, and Muir (2014)'s broker-dealer leverage risk factor in our factor model. The
results of tests in Section III and Tables A10-A13 of the Internet Appendix rule out this explanation.

20If the term factor exposures of the long and short portfolios are di�erent, then the zero-cost portfolio has exposure
to term risk and is therefore likely to be correlated with TERM .

21Since both methodologies de�ne DEF as a linear combination of TERM and CBMKT , the space spanned by
TERM and DEF together is the same in both cases. Thus, factor regressions that include TERM and DEF as
independent variables will produce the exact same point estimate and inferential statistics for the intercept coe�cient
(alpha or risk-adjusted returns) in both cases. Default beta estimated from a regression of excess bond returns on
TERM and DEF will also be the same regardless of the DEF de�nition used, since the slope coe�cient on DEF
measures the covariance between the bond's excess return and the component of DEF that is orthogonal to TERM ,
which in both cases is simply the component of CBMKT that is orthogonal to TERM . However, the slope coe�cient
on TERM from such regressions will di�er for di�erent de�nitions of DEF .
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TERM using data from 1993-2014. The intercept coe�cient from the regression indicates thatDEF

generates a premium of 0.21% per month, which is notably smaller than the premium generated

by TERM . The regression's slope (unreported in the table) coe�cient is 0.30, suggesting that the

exposure of the aggregate IG corporate bond market to term factor risk is substantially less than

one. The standard deviation of the regression residuals, which re�ects default factor variation, is

0.95% per month. Panel B shows that during 1993-2014, the correlation between CBMKT and

TERM is 0.67, while that between CBMKT and DEF is 0.74. The correlation between DEF

and TERM is zero by construction.

3.3 Proximity to NIG

NIG proximity is intended to capture the possibility that a bond is downgraded to NIG. Figure 3

shows that over horizons of one to 12 months, bonds rated BBB−, the worst-rated NAIC designation

2 bonds, are downgraded to NIG much more often than bonds with any other IG rating. For

instance, BBB− bonds are downgraded to NIG in the following month eight times more often than

BBB bonds. We therefore take bonds with a BBB− regulatory rating to be bonds with high NIG

proximity.22

3.4 Systematic Risk Exposure

We measure bonds' systematic risk exposure (beta) to the three bond factors described in Section

3.2: bond market risk, systematic term risk, and systematic default risk. The bond market beta

of each bond is estimated from a regression of excess bond returns on CBMKT . The regression

speci�cation is:

Ri,t = β0i + βCBMKT
i CBMKTt + εi,t. (2)

We take the estimated slope coe�cient on CBMKT , βCBMKT
i , as our measure of the bond's ex

ante bond market beta. Term and default betas are estimated from a multivariate regression of

excess bond returns on TERM and DEF :23

Ri,t = β0i + βTERMi TERMt + βDEFi DEFt + νi,t. (3)

We take the estimated slope coe�cients βTERMi and βDEFi as our measures of the bond's ex ante

term and default factor betas, respectively. We calculate βCBMKT , βTERM , and βDEF for each

bond i at the end of each month t using a 60-month rolling window covering months t− 59 through

t, inclusive. To reduce measurement error, we follow Gebhardt et al. (2005) and require a minimum

22Our use of a BBB− rating as a proxy for high NIG proximity is further supported by the �nding of Ellul et al.
(2011) that three-quarters of the NIG downgrades they analyze are downgrades from BBB−.

23Gebhardt et al. (2005) demonstrate that betas estimated from regressions are more closely related to corporate-
bond returns than bond characteristics that proxy for these betas (e.g., rating and duration).
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of 24 monthly bond return observations during the 60-month estimation window. Betas for bond-

month observations not satisfying this criterion are considered missing.

3.5 Sample

The sample we use to test our hypotheses contains all observations in our return data for which the

variables necessary to execute our tests are available. Speci�cally, the sample constructed at the

end of each month t, used to examine month t+ 1 returns, contains all IG bonds with at least one

year to maturity and available values of MV , βCBMKT , βTERM , and βDEF . During the 1993-2014

period when rating-based capital requirements are in e�ect, the sample contains 3,405 bonds in

the average month. Table 3 Panel A presents the time-series averages of monthly cross-sectional

summary statistics for these bonds. The mean (median) bond has βCBMKT of 1.13 (1.10), βTERM

of 0.51 (0.49), and βDEF of 0.84 (0.77). The mean (median) MV is $215 ($94) million. Month

t+1 bond excess returns (Rt+1) are on average (in median) 0.39% (0.33%) per month with a cross-

sectional standard deviation of 1.54%. Panel B shows the percentage of bonds by NAIC designation

with the percentage of BBB− bonds reported separately. 62% of the bonds in our sample have an

NAIC designation of 1. Bonds rated BBB−, which we consider to have high NIG proximity, are 9%

of the sample bonds.

The time-series averages of the cross-sectional correlations between each pair of variables are

shown in Panel C of Table 3. In the average month, the cross-sectional correlation between βCBMKT

and βTERM is 0.80. This high correlation is not surprising given the high correlation between

CBMKT and TERM (Table 2). In contrast, the correlation between βDEF and βCBMKT is much

lower (0.37), and that between βDEF and βTERM is close to zero (−0.05). MV has a positive

cross-sectional correlation of 0.24 with βDEF and close to zero correlation with each of βCBMKT

and βTERM .

4 Bond Pricing

In this section, we test hypotheses H1 and H2, which provide predictions for patterns in bond

pricing. We focus on the 1993-2014 period, during which rating-based capital requirements for

insurers are in e�ect.

4.1 NIG Proximity and Bond Pricing

We �rst test our hypothesis H1 that IG bonds with high NIG proximity are underpriced. We do

so by investigating whether a portfolio of bonds rated BBB−, which as we discuss in Section 3.3

have high NIG proximity, generate positive risk-adjusted returns. Additionally, to ensure that any

mispricing we document is speci�c to high-NIG proximity bonds, we examine the risk-adjusted

performance of portfolios of better-rated bonds, as well as that of portfolios that are long BBB−
bonds and short better-rated bonds.

14



Speci�cally, at the end of each month t, we form �ve portfolios. The �rst through fourth

portfolios contain all bonds with an NAIC designation of 1 (NAIC 1), all bonds with an NAIC

designation of 2 not rated BBB− (NAIC 2 No BBB−), all IG bonds not rated BBB− (IG No

BBB−), and bonds rated BBB. The last portfolio contains only bonds rated BBB−. We then

calculate the MV -weighted month t + 1 excess returns for each portfolio, as well as for zero-cost

long-short portfolios that are long the BBB− portfolio and short one of the other four portfolios.

The result is a time-series of monthly excess returns for each portfolio, including the long-short

portfolios.

To measure risk-adjusted portfolio performance we regress the time-series of excess portfolio

returns on the excess returns of factor-mimicking portfolios. The regressions are of the form:

Rp,t+1 = αp + β
F
Post,pFt+1 + εp,t+1 (4)

where Rp,t+1 is portfolio p's post-formation excess return, Ft+1 is a vector of month t + 1 factor-

mimicking portfolio excess returns, and βF
Post,p is a vector of coe�cients measuring the post-

formation exposures of the portfolio to the factors in Ft+1. The estimated intercept αp measures the

risk-adjusted return (alpha) generated by the portfolio, where the risk-adjustment re�ects expected

returns under a frictionless benchmark. A positive (negative) alpha indicates that the portfolio

outperforms (underperforms) the benchmark, meaning that the bonds in it are, on average, under-

priced (overpriced). If the bonds in the portfolio are correctly priced, i.e. the portfolio's return is

commensurate with its risk, then the alpha should be zero, indicating that the market's pricing of

the portfolio is consistent with the frictionless benchmark.

While previous research focuses on term and default factors as the main drivers of corporate

bond returns, Fama and French (1993) show that some corporate bonds have exposure to stock

market factors as well. Therefore, in addition to TERM and DEF , we also include several stock

return-based factors in Ft+1. Speci�cally, we include the excess return on the aggregate U.S. stock

market (STOCKMKT ), the size (SMB) and value (HML) factors of Fama and French (1993), a

momentum factor (MOM) motivated by Carhart (1997), and the traded liquidity factor (LIQ) of

Pastor and Stambaugh (2003).24 As long as the factors included in our model span the true set of

factors important for pricing our sample bonds, the estimated coe�cient αp is an unbiased estimate

of the portfolio's risk-adjusted performance. Inclusion of unimportant or redundant factors does

not bias the estimate of αp, but does increase its standard error. Our inclusion of a large set of

stock return factors in the factor model re�ects our choice to be conservative in our assessment

of risk-adjusted performance. In Sections II-V and Tables A6-A29 of the Internet Appendix, we

demonstrate that our results from this and subsequent sections are robust when using alternative

factor models.

24Monthly STOCKMKT , SMB, HML, and MOM values come from Ken French's website. Monthly LIQ
values are for the traded liquidity factor from Lubos Pastor's website (http://faculty.chicagobooth.edu/lubos.pastor).
SMB, HML,MOM , and LIQ are the excess returns of portfolios that are long (short) stocks with low (high) market
capitalization, high (low) book-to-market ratio, high (low) momentum, and high (low) return sensitivity to aggregate
liquidity, respectively.
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Since TERM and DEF are pure term and default factor mimicking portfolios, we orthogonalize

each of STOCKMKT , SMB, HML, MOM , and LIQ with respect to TERM and DEF prior

to running the factor regression. This orthogonalization does not a�ect the estimate of αp or its

statistical signi�cance, but it ensures that βTERMPost,p and βDEFPost,p accurately measure the portfolio's

post-formation exposures to term and default factor risk, respectively.25

Our hypothesis H1 predicts that the BBB− portfolio, as well as portfolios that are long BBB−
bonds and short other IG bonds, should generate a positive alpha. The results of the portfolio

analyses, shown in Table 4, strongly support this hypothesis. The BBB− portfolio generates an

alpha of 0.13% per month (t-statistic = 3.07). The alphas of the NAIC 1, NAIC 2 No BBB−,
and IG No BBB− portfolios are small and statistically insigni�cant, suggesting that the pricing

of these bonds is consistent with their frictionless benchmark. The BBB portfolio generates a

marginally signi�cant alpha of 0.05% per month (t-statistic = 1.67), perhaps due to the moderately

high NIG proximity of BBB bonds. The long-short portfolios all generate a positive and highly

statistically signi�cant alpha. The portfolio that is long BBB− bonds and short NAIC designation

1 bonds ([BBB−]−NAIC 1) generates an alpha of 0.14% per month (t-statistic = 2.86). The

portfolios that are long bonds rated BBB− and short either all other NAIC designation 2 bonds

([BBB−]−NAIC 2 No BBB−) or all other IG bonds ([BBB−]−IG No BBB−) produce similar

results. The BBB− portfolio even outperforms the portfolio of bonds rated BBB ([BBB−]−BBB)
by 0.09% per month (t-statistic = 2.10).26 Consistent with ratings measuring idiosyncratic but not

systematic risk (Iannotta et al. (2018)), the long-short portfolios have economically small and in

most cases statistically insigni�cant post-formation risk factor exposure.27

We conduct several additional portfolio analyses to assess whether NIG proximity is behind

the e�ect we document and whether a similar e�ect exists around the threshold between NAIC

designations 1 and 2. Our �rst two tests identify subsets of BBB− bonds that have higher NIG

proximity than others and examine whether their outperformance is stronger. First, since for bonds

rated by all three CRPs the middle of the three ratings is the one used for regulatory capital

purposes, some bonds we classify as BBB− have an even worse rating from one of the CRPs. In

Section VII.A and Table A34 of the Internet Appendix, we take these bonds to have even higher

NIG proximity than other BBB− bonds and show that, consistent with our hypothesis, while

outperformance is strong in both groups of BBB− bonds, it is stronger among BBB− bonds that

are rated NIG by one CRP. Second, Lando and Skødeberg (2002) document momentum in bond

25Another rami�cation of orthogonalizing STOCKMKT , SMB, HML, MOM , and LIQ to TERM and DEF
is that the estimated coe�cients βTERM

Post,p and βDEF
Post,p, and their inferential statistics, are exactly the same as those

that would have resulted from estimating a two-factor model with TERM and DEF as the factors, which is how we
estimate the ex-ante values of βTERMand βDEF (see equation (3)).

26The �nancial crisis of 2007-2009 was a period characterized by a large number of credit rating downgrades and
substantial price volatility in �xed-income markets. To ensure that our results are not driven by the events of this
period, in Section VI and Tables A30-A33 of the Internet Appendix we remove the �nancial crisis period from our
sample and repeat our main bond pricing tests. The results are qualitatively unchanged.

27Nanda, Wu, and Zhou (2017) argue that rating-based capital requirements result in �re sale risk being a priced
factor. Interpreted in this light, our long-short portfolio returns may serve as empirical proxies for a �re sale risk
factor and the alpha generated by these portfolios as compensation for exposure to this factor.
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ratings, suggesting that BBB− bonds recently downgraded from a better rating have higher NIG

proximity than other BBB− bonds. In Section VII.B and Table A35 of the Internet Appendix

we isolate recently downgraded BBB− bonds and show that, as expected, they have higher risk-

adjusted returns than other BBB− bonds. Again, both groups of BBB− bonds outperform various

subsets of other IG bonds. Since bonds rated BBB have the second highest NIG proximity, our

third test examines the performance of long-short portfolios that are long bonds rated BBB and

short better-rated bonds. Consistent with bonds rated BBB being closer to an NIG rating than

better-rated bonds, albeit not nearly as close as BBB− bonds, Section VII.C and Table A36 of the

Internet Appendix show that these long-short portfolios generate positive but economically small

and statistically weak risk-adjusted returns. Finally, since bonds rated A− are the worst-rated

bonds with NAIC designation of 1, and any downgrade of these bonds would result in a slightly

higher required capital charge, it is possible that insurers are also averse to owning bonds rated

A−, and that this aversion a�ects prices. Tests of this hypothesis, shown in Section VII.D and

Table A37 of the Internet Appendix, provide no evidence that bonds rated A− have di�erential

performance. This is consistent with the evidence in Becker and Ivashina (2015) that the threshold

between NAIC designation 1 and 2 does not a�ect insurers' purchases of newly issued bonds, which

suggests that insurers do not �re sell bonds downgraded across the A− to BBB+ threshold.

4.2 Systematic Risk Exposure and Bond Pricing

We turn now to testing our hypothesis H2 that IG bonds with high (low) systematic risk exposure

are overpriced (underpriced). We do so by examining whether bonds with high (low) systematic

risk exposure generate negative (positive) risk-adjusted returns. Speci�cally, at the end of each

month t we sort all bonds into decile portfolios based on an ascending ordering of one of our

risk factor exposure measures (βCBMKT , βTERM , or βDEF ). We then calculate the MV -weighted

month t + 1 excess returns for each portfolio. If high-systematic (low-systematic) risk bonds are

overpriced (underpriced), as predicted by our hypothesis H2, the high-systematic (low-systematic)

risk portfolio should generate negative (positive) alpha. To rigorously test for di�erential pricing

between high-systematic and low-systematic risk bonds, we also calculate the excess returns for the

zero-cost long-short portfolio that is long the decile 10 portfolio and short the decile one portfolio.

Our hypothesis predicts that this long-short portfolio should generate a negative alpha.

Since our hypothesis H2 is conditional on capital charge, we repeat our tests using portfolios

that are constructed to be capital charge-neutral. Speci�cally, at the end of each month t, we �rst

separate bonds into two groups based on their NAIC designation and repeat the portfolio analysis

within each group. We then calculate monthly excess returns in each systematic risk decile portfolio

for the average NAIC designation group by averaging the excess returns of the given systematic risk

decile portfolio (including the long-short portfolio) across the two NAIC designation groups, and

examine the performance of these portfolios. We refer to these analyses as conditional portfolio

analyses and the analyses that do not condition on NAIC designation, described in the previous

paragraph, as unconditional analyses.
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4.2.1 Bond Market Risk Exposure and Bond Pricing

Our �rst tests of the relation between bond pricing and systematic risk exposure examine the per-

formance of portfolios formed by sorting bonds on βCBMKT . The results of these tests are presented

in Table 5. The objective of sorting on βCBMKT , which is measured using data from the period

prior to portfolio formation, is to generate a set of portfolios that have strong post-formation disper-

sion in bond market risk exposure. To ensure that our portfolios satisfy this criterion, we perform

time-series regressions of each portfolio's excess returns on CBMKT .28 The slope coe�cients from

these regressions, reported in the rows labeled βCBMKT
Post , demonstrate that our portfolio forma-

tion procedure works as intended. For the unconditional analyses, the post-formation exposures to

CBMKT increase monotonically from 0.36 for the decile one portfolio to 1.65 for the decile 10 port-

folio. The portfolio that is long bonds in the highest βCBMKT decile and short bonds in the lowest

βCBMKT decile (βCBMKT 10− 1) has a post-formation exposure to CBMKT of 1.29 (t-statistic =

27.34). The results are similar for the conditional analyses. Consistent with the increasing pattern

in bond market risk exposure, the average excess returns of the portfolios generally increase across

the βCBMKT deciles. Although both the unconditional and conditional analyses indicate that the

average excess return of the βCBMKT 10 − 1 portfolio is positive, in both cases it is statistically

insigni�cant.

Most importantly, the results in Table 5 provide strong evidence that bonds with high (low)

CBMKT exposure generate low (high) risk-adjusted returns, thus supporting our hypothesis that

high-systematic (low-systematic) risk exposure bonds are overpriced (underpriced). Alphas, mea-

sured using the factor model given by equation (4) and shown in the rows labeled α, generally

decrease across the βCBMKT decile portfolios. The unconditional decile 1 portfolio generates a

signi�cantly positive alpha of 0.23% per month (t-statistic = 8.57) and the decile 10 portfolio gener-

ates a signi�cantly negative alpha of −0.13% per month (t-statistic = −3.00).29 The unconditional

βCBMKT 10 − 1 portfolio generates a monthly alpha of −0.36% (t-statistic = −6.14). Results for
the conditional portfolios are similar. For instance, the βCBMKT 10− 1 portfolios produce alpha of

−0.31% (t-statistic = −5.04) and −0.38% (t-statistic = −5.57) among NAIC designation 1 and 2

bonds, respectively. The βCBMKT 10 − 1 portfolio in the average NAIC designation group, there-

fore, generates a monthly alpha of −0.35% (t-statistic = −6.30). Each of these alphas is both

economically large and highly statistically signi�cant.

28We estimate post-formation exposure to CBMKT using the one-factor model given by equation (2) because
CBMKT is not one of the factors in the model we use to evaluate risk-adjusted performance (equation (4)). Since
by construction CBMKT is a linear combination of TERM and DEF , including CBMKT in equation (4) would
introduce multicolllinearity. If we were to replace TERM and DEF with CBMKT in equation (4) and orthogonalize
STOCKMKT , SMB, HML, MOM , and LIQ with respect to CBMKT , the estimate of post-formation exposure
would be the same as the one obtained from the one-factor model.

29To conserve space, in the main paper we present only the estimates of α from the factor regressions. The full
set of estimated coe�cients for each portfolio are discussed in Section VIII and shown in Table A38 of the Internet
Appendix.
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4.2.2 Term Factor Exposure and Bond Pricing

Table 6 presents the results of our analysis of portfolios formed by sorting on βTERM . The results

strongly support our hypothesis that bonds with high (low) term factor exposure are overpriced

(underpriced). The decile 1 portfolios generate signi�cantly positive alpha while the decile 10 port-

folios generate negative and, with one exception, statistically signi�cant alphas. The unconditional

βTERM 10−1 portfolio generates alpha of −0.37% per month (t-statistic = −5.99). The conditional
βTERM 10 − 1 portfolios generate monthly alphas of −0.37% (t-statistic = −5.75) among NAIC

designation 1 bonds, −0.32% (t-statistic = −4.16) among NAIC designation 2 bonds, and −0.34%
(t-statistic = −5.77) in the average NAIC designation group. The portfolios' post-formation ex-

posures to TERM , measured using the factor model given by equation (4), demonstrate that the

test design successfully achieves its objective of producing portfolios with strong post-formation

dispersion in term factor exposure. For both the unconditional and conditional portfolios, βTERMPost

increases monotonically across the βTERM deciles and the βTERM 10− 1 portfolios have large and

highly statistically signi�cant positive βTERMPost .30

4.2.3 Default Factor Exposure and Bond Pricing

Finally, we investigate the hypothesis that bonds with high systematic default risk exposure are

overpriced relative to bonds with low systematic default risk exposure by examining the risk-adjusted

returns of portfolios formed by sorting on βDEF . Table 7 shows that both the unconditional and

conditional βDEF portfolios have generally increasing post-formation exposure to default factor

risk, and the βDEF 10−1 portfolios have an economically large and statistically signi�cant positive

βDEFPost . The alphas of the decile 1 portfolios are (with one exception) statisticially positive, but small,

ranging from 0.07 to 0.12 per month, while those of the decile 10 portfolios are all very close to zero.

The alphas of the βDEF 10− 1 portfolios are all negative but statistically insigni�cant. The results

suggest that if there is a negative relation between default factor exposure and risk-adjusted bond

returns, it is economically weak.31 A potential explanation for this �nding is that insurers have a

strong preference for systematic term risk but not for systematic default risk because the premium

for systematic term risk is larger than that for systematic default risk (see Table 2). Analysis of

insurer holdings in Section 5.1.1 supports this conjecture.

4.3 Persistence of Pricing E�ects

As discussed in Van Binsbergen and Opp (2017), while the e�ects on the real economy of transient

alpha generated by temporary price pressure are minimal, those of persistent alpha can be substan-

tial. We therefore test whether the price patterns we detect are temporary or whether they re�ect a

30To conserve space, in the main paper we present only the estimates of α and βTERM
Post from the factor regressions.

The full set of estimated coe�cients for each portfolio are discussed in Section VIII and shown in Table A39 of the
Internet Appendix.

31To conserve space, in the main paper we present only the estimates of α and βDEF
Post from the factor regressions.

The full set of estimated coe�cients for each portfolio are discussed in Section VIII and shown in Table A40 of the
Internet Appendix.
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persistent equilibrium that diverges from the frictionless benchmark by examining the performance

of the portfolios for a year after they are created. Speci�cally, we repeat the analyses described in

Sections 4.1 and 4.2, except that now we analyze the performance of the portfolios k months after

they are formed, for k ∈ {2, . . . , 12}. The results of these analyses, shown in Table 8, demonstrate

that the pricing e�ects we document are highly persistent. To save space, for rating-sorted portfo-

lios, we only present results for the BBB− and long-short portfolios, and for portfolios sorted on

systematic risk exposure, we only present results for the decile 1, decile 10, and long-short portfo-

lios. The BBB− portfolio and portfolios that are long bonds rated BBB− and short other sets of

IG bonds all generate positive and highly signi�cant alphas for at least 12 months after portfolio

formation, with one exception: the alphas of the [BBB−]−BBB portfolios are marginally signi�cant

from t+7 onward. For portfolios sorted on βCBMKT or βTERM , the alphas of the decile 1 portfolio

are all positive and signi�cant and those of the decile 10 portfolio and the long-short portfolios are

all negative and signi�cant. The alphas of the βDEF portfolios are once again small and, in most

cases, statistically insigni�cant. In addition to demonstrating that the pricing e�ects are highly

persistent, the results in Table 8 address any concern that our �ndings are driven by microstructure

e�ects arising from forming portfolios at the end of month t and assessing their performance in

month t+ 1.

5 Drivers of Bond Pricing E�ects

Having demonstrated support for our bond pricing hypotheses H1 and H2, we next investigate the

drivers of the pricing patterns. We �rst test our hypothesis H3 that the detected bond pricing

patterns are attributable to insurer demand. We then turn to tests of our hypothesis H4 that the

driver of insurer demand, and thus of the pricing patterns, is rating-based capital requirements.

5.1 Insurer Demand and Bond Pricing

Our tests of H3 require data on insurers' corporate bond holdings, which we gather from insurers'

statutory �lings with the NAIC for the 2002-2014 period. Schedule D Part 1 of each insurer's �ling

lists every bond the insurer held at calendar year-end. For each bond, we aggregate the par value

held across all insurers in a given year. We then de�ne %InsHeld as the bond's par value held by all

insurers scaled by the bond's contemporaneous par value outstanding, obtained from Mergent FISD

(or Thomson Reuters SDC, if Mergent FISD data are missing), times 100 so the value represents

a percentage. Since insurer holdings data from the NAIC are available at an annual frequency,

%InsHeld is calculated each December and remains the same through the following November.

Also, since the data start in 2002, the analyses in this section cover months t (return months t+1)

from December 2002 (January 2003) through November (December) 2014, inclusive.
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5.1.1 Insurer Holdings

We �rst examine whether insurers invest less in bonds with high NIG proximity and more (less) in

bonds with high (low) systematic risk exposure, consistent with incentives created by rating-based

capital requirements. We do so by estimating weighted least squares (WLS) regressions, with MV

as the weight, of %InsHeld on NIG proximity (BBB− indicator) and systematic risk exposure

(βCBMKT , βTERM , or βDEF ). We also control for the possibility that any detected pattern in

insurer holdings is a function of a bond's NAIC designation (NAIC2 indicator). By using WLS

regressions we give equal weight to each dollar invested in the bond market, instead of equal weight

to each bond as in OLS regressions. This alleviates the concern that insurers' investment in small

bonds, which are a large portion of the number but a small portion of the market value of IG

corporate bonds (see Panel A of Table 3), drive our results. The regressions are of the form:

%InsHeldi,t = γ0 + γBBB−BBB−i,t + γβjβ
j
i,t + γNAIC2NAIC2i,t + ωi,t (5)

where BBB− equals one if the bond is rated BBB− and zero otherwise, βj is either βCBMKT ,

βTERM , or βDEF , and NAIC2 equals one for NAIC designation 2 bonds and zero otherwise.

Regression speci�cation (5) is not intended to be a complete model of insurer corporate bond

holdings. The objective here is simply to test whether insurers' aggregate corporate bond portfolios

do indeed overweight high-systematic risk bonds and underweight high-NIG proximity bonds.

We estimate the regression speci�cation (5) in two ways. First, each month t we run cross-

sectional bond-level regressions in the spirit of Fama and MacBeth (1973, FM hereafter). We then

report the time-series averages of the cross-sectional regression coe�cients, and Newey and West

(1987)-adjusted t-statistics testing the null hypothesis that the time-series average equals zero.

The results of these regressions, presented in columns (1)�(3) of Table 9, provide strong evidence

that insurers are averse to high NIG proximity bonds and have a preference for bonds with high

systematic risk exposure, albeit not default factor risk exposure. In all three speci�cations, the

coe�cient on BBB− is negative and highly statistically signi�cant, ranging from −4.53 (t-statistic
= −8.48) in speci�cation (2) to −7.88 (t-statistic = −12.39) in speci�cation (3). That is, insurers

hold approximately 4 to 8 percentage points less of the outstanding par value of BBB− bonds

than of other NAIC designation 2 bonds. Speci�cation (1) indicates that a one unit increase in

bond market risk exposure is associated with insurers holding 10.03 percentage points (t-statistic

= 13.04) more of the outstanding par value of the bond. For term factor exposure, this number

increases to 35.69 percentage points (t-statistic = 25.45). Finally, the analysis detects no signi�cant

relation between βDEF and insurer holdings. This is not surprising given that the default risk

premium is substantially smaller than the term risk premium among IG bonds (see Table 2), giving

insurers less incentive to take default risk than term risk. If, as we will test in the next section,

insurer demand drives the pricing patterns observed in Tables 4-8, the lack of a relation between

βDEF and insurer demand explains why we do not see a relation between βDEF and risk-adjusted

bond returns. Second, to alleviate any concern that the persistence of %InsHeld may result in
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correlated error terms and in�ated t-statistics (Petersen (2009)), we estimate speci�cation (5) as

a panel regression with year �xed e�ects and standard errors clustered by time and rating. The

results of these estimations, reported in columns (4)�(6) of Table 2, are similar to those of the FM

regressions reported in columns (1)�(3).

5.1.2 Insurer Holdings and Bond Performance

Having demonstrated that insurers strongly tilt their corporate bond portfolios away from bonds

with high NIG proximity and towards bonds with high systematic risk exposure, bond characteristics

that our hypotheses link to investment incentives created by rating-based capital requirements, we

next investigate whether insurers' demand for these bonds is the driver of the pricing patterns

documented in Section 4. We do so by examining the relation between insurer holdings and risk-

adjusted bond returns.

While our hypothesis is that high (low) insurer demand causes high (low) bond prices and

thus low (high) future risk-adjusted returns, our analysis is complicated by the possibility that

insurer demand may also be a function of bond mispricing - insurers may be sophisticated investors

who, in addition to the portfolio tilting that arises from incentives created by rating-based capital

requirements, also overweight underpriced bonds. Such alpha-seeking behavior by insurers would

suggest a positive, not a negative, relation between insurer holdings and future risk-adjusted bond

returns. Our empirical tests, therefore, must be designed to measure the relation between future

risk-adjusted returns and the component of insurers' demand that is not driven by alpha-seeking

behavior. We therefore examine the relation between insurer holdings and risk-adjusted returns of

portfolios formed by sorting bonds on NIG proximity and systematic risk exposure. Speci�cally, at

the end of each month t we sort all NAIC designation 2 bonds into deciles based on an ascending

ordering of βTERM . We also separate the NAIC designation 2 bonds into those rated BBB− and

those with any other rating. The intersections of the 10 βTERM groups and the two NIG proximity

(BBB− and NAIC 2 No BBB−) groups form the 20 portfolios whose MV -weighted month t + 1

returns we examine. Since insurers have low (high) demand for bonds with high NIG proximity (high

systematic risk exposure) and these bonds tend to generate high (low) risk-adjusted returns, it is

unlikely that any relation between insurer holdings and bond performance across these portfolios is

driven by alpha-seeking behavior. Indeed, alpha-seeking by insurers would only serve as a deterrent

for insurers to exhibit the demand patterns we have documented, thus potentially weakening the

power of our tests. We focus on NAIC designation 2 bonds because this allows us to hold capital

charge constant while also allowing variation in NIG proximity, and we use βTERM as our measure

of systematic risk exposure because the results in Table 9 indicate that insurers' demand for high-

systematic risk bonds is particularly strong for bonds with high term factor risk exposure.32 If, as

our hypothesis H3 predicts, insurers' demand drives the pricing patterns documented in Section 4,

then the alphas of the 20 portfolios should be negatively related to insurer holdings.

32In Section IX and Table A41 of the Internet Appendix we demonstrate that our results are robust when we use
other sets of IG bonds or βCBMKT as the measure of systematic risk exposure.

22



Panel A of Table 10 presents the alphas for each of the 20 portfolios, as well as for the βTERM

10 − 1 portfolio in each NIG proximity group, and the [BBB−]−NAIC 2 No BBB− portfolio in

each βTERM group. The results indicate that the pricing patterns documented in Section 4 remain

strong in the shortened 2003-2014 period. The average βTERM 10− 1 portfolio generates large and

highly signi�cant monthly alpha of −0.44% (t-statistic=−5.06). Similarly, in the average βTERM

group, the alpha of the [BBB−]−NAIC 2 No BBB− portfolio is positive and signi�cant.

We next calculate the proportion of the aggregate market value of all bonds in each portfolio

that is held by insurers. Speci�cally, in any given month we de�ne portfolio-level %InsHeld to

be the MV -weighted average of bond-level %InsHeld across all bonds in that portfolio. Table 10

Panel B presents the time-series averages of the portfolio-level %InsHeld for each of the βTERM

and rating-based portfolios. The patterns are highly consistent with the results of the bond-level

FM regressions reported in Table 9. In each βTERM group, the average portfolio-level %InsHeld is

substantially smaller for the BBB− portfolio than for the NAIC 2 No BBB− portfolio. Similarly,

in both the BBB− group and the NAIC 2 No BBB− group, the average portfolio-level %InsHeld

values of high-βTERM portfolios are much higher than those of low-βTERM portfolios.

We test the impact of insurer holdings on bond pricing in two ways.33 First, we run a single

regression of the 20 portfolio alphas from Table 10 Panel A on the corresponding average portfolio-

level %InsHeld from Table 10 Panel B. The results of this regression, shown in column (1) of Table

11, strongly support our hypothesis that the pricing patterns we document earlier in the paper are

driven by insurer demand, since the coe�cient on the average portfolio-level %InsHeld is negative

and highly statistically signi�cant. The adjusted R2 value from the regression is 68.22%, indicating

that most of the variation in portfolio alphas can be attributed to insurer demand.

Our second approach to examining the impact of insurer demand on corporate bond prices

is to perform FM regression analyses of monthly portfolio-level alphas on monthly portfolio-level

%InsHeld for the 20 portfolios described earlier. We calculate the alpha for a portfolio in month

t+1 by taking the portfolio's month t+1 excess return and subtracting from it the estimated factor

sensitivities from factor model (4) times the corresponding factor excess returns in the same month.

The result is a monthly time-series of alphas for each of our 20 portfolios. We then perform monthly

cross-sectional regressions of month t + 1 portfolio alphas on month t portfolio-level %InsHeld.

The time-series averages of the monthly cross-sectional regression coe�cients, shown in column (2)

of Table 11, are consistent with the results of the single regression. The average coe�cient on

%InsHeld is negative and highly signi�cant. The average adjusted R2 value from these monthly

cross-sectional regressions is lower than that of the single regression because the relation between

%InsHeld and alphas is noisier in any given month than in the average month.

If the ultimate driver of the pricing patterns we document is, as we hypothesize, constraints

arising from rating-based capital requirements, we expect that the risk-adjusted performance of

the portfolios we examine is more closely related to the holdings of constrained insurers than the

33These tests use portfolio-level observations to overcome noise associated with estimating alphas and risk-factor
exposures for individual bond-month observations (Fama and MacBeth (1973)).
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holdings of unconstrained insurers. To test whether this is the case, we repeat our analysis of the

relation between insurer holdings and bond pricing using only holdings by constrained insurers, and

then only holdings by unconstrained insurers. We de�ne a bond's %InsHeldConstrained to be the

percentage of its par value held by constrained insurers, and a bond's %InsHeldUnconstrained as the

di�erence %InsHeld−%InsHeldConstrained. Following Ellul et al. (2015), we identify constrained

insurers as those with an RBC ratio in the bottom quartile of the sample for their type (life or

property/casualty). Portfolio-level %InsHeldConstrained and %InsHeldUnconstrained are then taken

to be the MV -weighted averages of the corresponding bond-level values.

Since at the portfolio level %InsHeldConstrained and %InsHeldUnconstrained are highly corre-

lated, to di�erentiate between their e�ect on bond pricing we also construct their orthogonalized

versions. Speci�cally, we de�ne a bond's %InsHeldConstrained,⊥ to be the residual from a bond-

level cross-sectional regression of %InsHeldConstrained on %InsHeldUnconstrained. Similarly, we

de�ne a bond's %InsHeldUnconstrained,⊥ to be the residual from a bond-level cross-sectional re-

gression of %InsHeldUnconstrained on %InsHeldConstrained. Portfolio-level %InsHeldConstrained,⊥

and %InsHeldUnconstrained,⊥ are calculated anologously to the other portfolio-level insurer holding

measures.

Columns (3)-(10) of Table 11 present the results of the single and FM regressions of portfolio-

level alphas on portfolio-level constrained and unconstrained insurer holdings. While both

%InsHeldConstrained (in columns (3) and (4)) and %InsHeldUnconstrained (in columns (5) and

(6)) have a strong and highly signi�cant negative relation with alpha, the single-regression (FM-

regression) coe�cient on %InsHeldConstrained of −0.048 (−0.041) is more than three times as

large as the corresponding coe�cient on %InsHeldUnconstrained of −0.015 (−0.007). When both

%InsHeldConstrained and %InsHeldUnconstrained,⊥ are included in the same regression, the coe�-

cient on %InsHeldConstrained is nearly unchanged while the coe�cient on %InsHeldUnconstrained,⊥

is statistically insigni�cant. Similarly, when %InsHeldConstrained,⊥ and %InsHeldUnconstrained are

included in the same regression, the coe�cient on %InsHeldConstrained,⊥ is negative and highly

statistically signi�cant, while the coe�cient on %InsHeldUnconstrained is insigni�cant. The results

support the hypothesis that demand from constrained insurers is more strongly related to the pricing

e�ects we document than demand from unconstrained insurers.

5.2 Insurers' Rating-Based Capital Requirements and Bond Pricing

Having attributed the bond pricing patterns to insurer demand, we turn to testing our last hypoth-

esis H4 that the driver of insurer demand, and thus of the pricing patterns, is rating-based capital

requirements. Although rating-based capital requirements for insurers are implemented in 1993,

the resultant change in regulated �rms' behavior may not have been instantaneous. The regulatory

change was debated for several years prior to implementation and thus some insurers may have

altered their investment decisions prior to 1993. Additionally, penalties for undercapitalized insur-

ers under the new requirements were phased in over several years, and it may have taken insurers

time to optimally react to the new regulations. For these reasons, we do not expect to observe an
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abrupt change in insurer demand and thus in bond pricing in 1993. However, we do expect that the

patterns in insurer holdings and bond pricing are, on average, di�erent in the period before than

in the period after the implementation of rating-based capital requirements. Furthermore, if these

requirements are indeed the driver of the e�ects we document, the patterns in insurer holdings and

bond prices should not exist prior to the regulatory change.

Since insurer holdings data during and prior to the 1990s are unavailable, we are unable to

investigate whether insurers' holdings are di�erent in the period before compared to the period

after the implementation of rating-based capital requirements. Instead, we test our hypothesis by

examining whether the pricing patterns we attribute to insurer demand exist before the change in

capital regulations. Speci�cally, we repeat each of the asset pricing tests of Section 4 using portfolio

formation months t (return months t+ 1) from December 1977 (January 1978) through November

(December) 1992. We choose the 1978-1992 period because bond return data are available starting

in 1973, making December 1977 the �rst month for which βCBMKT , βTERM , and βDEF can be

calculated using a full 60 months of data. In the average month during the 1978-1992 period,

our sample contains 3796 bonds, which is slightly larger than the 3405 bonds in the average month

during the 1993-2014 period. The large number of bonds during the earlier period indicates that our

tests should have su�cient power to detect a pricing e�ect, if one exists. As discussed in Section 2.1,

we expect the frictionless benchmark to accurately characterize bond prices during the 1978-1992

period. The pricing tests should therefore not detect mispricing during this period.

The results of the portfolio analysis for the 1978-1992 period, shown in Table 12, provide no

evidence of pricing patterns prior to the implementation of rating-based capital requirements in

1993. To save space, the table presents only the alphas of the BBB− portfolio, the unconditional

extreme beta decile portfolios, and the long-short (unconditional in the case of βCBMKT -sorted,

βTERM -sorted, and βDEF -sorted) portfolios examined earlier, with complete results provided in

Section X and Tables A42-A45 of the Internet Appendix. The results demonstrate that during the

1978-1992 period, BBB− bonds do not generate positive alpha, nor do they generate higher risk-

adjusted returns than NAIC designation 1 bonds ([BBB−]−NAIC 1), NAIC designation 2 bonds not

rated BBB− ([BBB−]−NAIC 2 No BBB−), IG bonds not rated BBB− ([BBB−]−IG No BBB−),
or bond rated BBB ([BBB−]−BBB). These long-short portfolios generate economically small and

statistically insigni�cant alphas. Similarly, the alphas of the beta-sorted extreme decile portfolios

are small and, with the exception of the βCBMKT and βTERM decile 1 portfolios, statistically

insigni�cant. The results provide no evidence that the unconditional βCBMKT 10−1, βTERM 10−1,
and βDEF 10− 1 portfolios underperform during the 1978-1992 period, since the alphas of each of

these portfolios are all statistically indistinguishable from zero. Importantly, since guaranty funds

were in e�ect for the entirety of the 1978-1992 period, our results demonstrate that guaranty funds

alone, which provide the incentive to increase risk-taking, are insu�cient to generate mispricing

related to systematic risk exposure. As discussed in our development of hypothesis H2 (Section

2.2), it is the combination of guaranty funds and rating-based capital requirements that is ultimately

responsible for the systematic-risk related pricing patterns we document.
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The corresponding alphas from 1993-2014, previously shown in Tables 4, 5, 6, and 7 and repeated

here for ease of comparison, suggest a di�erence in bond pricing patterns between the 1978-1992

and the 1993-2014 periods. To more rigorously test whether the risk-adjusted performance of the

portfolios is di�erent before compared to after rating-based capital requirements are implemented,

we conduct a factor analysis of the full 1978-2014 time-series of portfolio excess returns but allow

the alpha and factor exposures to di�er after 1993. Speci�cally, we augment our factor regressions

with an indicator variable set to one for return months in 1993-2014 and to zero otherwise, and with

this indicator's interaction with the factors. Table 12 presents the alphas from these regressions

(complete results provided in Section X and Table A46 of the Internet Appendix), which indicate

large and highly signi�cant di�erences in bond pricing patterns during 1993-2014 compared to 1978-

1992. For each NIG proximity-based portfolio, the coe�cient on the 1993-2014 indicator, α1993−2014,

is positive and statistically signi�cant (marginally in the case of the BBB− and [BBB−]−NAIC 1

portfolios). The estimated alphas in the 1993-2014 period are between 0.14% and 0.16% per month

higher than the corresponding alphas in the 1978-1992 period. For βCBMKT and βTERM , the alphas

of the decile 1 (decile 10) portfolios are signi�cantly higher (lower) for 1993-2014 than for 1978-1992.

The alphas of the βCBMKT 10 − 1 and βTERM 10 − 1 portfolios during the 1993-2014 period are

0.31% per month lower than the corresponding alphas during the 1978-1992 period. As expected,

given that the βDEF 10−1 portfolio does not generate signi�cant alpha during the 1993-2014 period
(see Table 7) and insurers do not appear to have excess demand for bonds with large default factor

exposure (see Table 9), we �nd no evidence of a change in the pricing of the βDEF portfolios after

the implementation of rating-based capital requirements. The results in Table 12 demonstrate that,

on average, the performance of the portfolios we examine, except for the βDEF -sorted portfolios, is

di�erent during the period in which rating-based capital requirements are in e�ect than before they

are implemented.

5.3 Alternative Explanations for the Pricing E�ects

The results in Sections 5.1 and 5.2 provide strong evidence that demand by insurers, induced by

rating-based capital requirements, is the driver of the bond pricing e�ects we document. Here, we

discuss several potential alternative explanations and argue that they are unlikely to drive these

pricing e�ects.

5.3.1 Demand by Other Market Participants

While we argue that the pricing e�ects we document are due to demand by insurers, it is conceivable

that demand by other investor groups, i.e., banks, pension funds, mutual funds, and/or exchange

traded funds (ETFs), is responsible for our �ndings. For an explanation based on demand by another

group of investors to be plausible, three conditions must be met. First, the investors must have a

large enough presence in the corporate bond market to a�ect prices. Second, the investors must face

investment incentives consistent with the observed pricing e�ects. Third, the investors must have
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investment incentives that change substantially around 1993. Below we explain why these three

conditions are unlikely to be met by any corporate bond market investors other than insurers.

Similar to insurers, banks that are subject to rating-based capital charges that increase sub-

stantially for NIG bonds might have an incentive to avoid bonds with high NIG proximity. As

discussed in Pennacchi (2006) and Iannotta et al. (2018), when combined with liability guaran-

tees (e.g., deposit insurance), these capital requirements also provide an incentive for banks to tilt

their investment portfolios towards high-systematic risk bonds. However, it is unlikely that banks

alone are responsible for the pricing e�ects we document for the following reasons. First, during

1993-2014, banks hold only 6-16% of corporate bonds outstanding, compared to 29-38% for insurers

(see Figure 1). Therefore, investment demand from banks is likely to have less of an impact on

corporate bond prices than demand from insurers. Second, corporate bonds represent only 4%-10%

of banks' investment portfolios during 1993-2014.34 As a result, measures of bank capital adequacy

are unlikely to be signi�cantly a�ected by corporate-bond capital charges, thus making banks' in-

centives to overweight or underweight certain bonds relatively weak. Finally, rating-based capital

requirements for banks are introduced through the implementation of Basel II in 2007, and become

e�ective in 2008.35 Since the pricing e�ects are present during the 1993-2007 period (see Section

XI and Tables A47-A50 of the Internet Appendix), it is unlikely that demand from banks explains

these e�ects, though it may be a contributing in�uence in the last few years of our sample period.

The presence of the pricing e�ects during the 1993-2007 period also indicates that they are not due

to the Dodd-Frank Act, which was signed into law in 2010.

Like insurers' capital requirements, investment guidelines for pension funds, mutual funds, and

ETFs (collectively asset managers) also make use of credit ratings and often distinguish between

IG and NIG bonds (e.g., Baghai, Becker, and Pitschner (2019)). This may create an incentive for

asset managers to avoid high NIG-proximity bonds. However, unlike insurers that incur the cost

of higher capital charges if they retain bonds downgraded to NIG, asset managers face no strong

incentive to quickly sell such bonds and are rarely required to do so. A survey of 200 asset managers

by Cantor et al. (2007) �nds that only 4% are required to take action if a bond is downgraded and

no longer meets the fund's retention/eligibility requirements. Thus, since asset managers have no

strong aversion to purchasing bonds with high NIG proximity, the underpricing of these bonds is

unlikely to be due to asset managers' demand. Asset managers also have little incentive to tilt

their portfolios towards bonds with high systematic risk exposure because, unlike insurers, they are

typically evaluated on a risk-adjusted basis (Becker and Ivashina (2015)). It is therefore unlikely

that demand from asset managers drives the relative overpricing (underpricing) of high-systematic

(low-systematic) risk exposure bonds. Finally, to the best of our knowledge there have been no

34Statistics are based on data from the Federal Reserve Statistical Release Z.1, Financial Accounts of the United
States.

35Bank capital requirements became risk-based with Basel I, which was issued in 1988 and implemented in the
U.S. by the end of 1992. However, risk weights under Basel I did not di�erentiate between the degrees of risk within
corporate debt, most of which carried a risk weight of 100%. The implementation of Basel I therefore provided
no incentives for banks to underweight high-NIG proximity bonds or overweight (underweight) bonds with high-
systematic (low-systematic) risk exposure.
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regulatory or market changes in or around 1993 that would have caused a shift in asset managers'

investment demand. This makes it di�cult to reconcile the absence of the documented pricing e�ect

during 1978�1992 with an explanation based on asset managers' rating-based investment guidelines.

5.3.2 Model Misspeci�cation

Since a misspeci�ed factor model could produce signi�cant alphas even when assets are correctly

priced, we next consider the possibility that a poorly speci�ed model could be the driver of the

pricing e�ects we document. If model misspeci�cation were responsible for our �ndings, we would

expect the model to produce signi�cant alphas in both the 1978�1992 and 1993�2014 periods. The

absence of signi�cant alphas prior to 1993 suggests that model misspeci�cation does not drive our

results. To further investigate whether our model correctly prices the portfolios we analyze during

the 1978�1992 period, when we do not expect mispricing to exist, we conduct Gibbons, Ross, and

Shanken (1989, GRS hereafter) tests on these portfolios. If our factor model is poorly speci�ed, the

GRS tests should reject the null hypothesis that the model correctly prices all of the portfolios. In

Section XII and Table A51 of the Internet Appendix, we show that the GRS tests fail to reject this

null hypothesis. Finally, as discussed in Sections II-V and Tables A6-A29 of the Internet Appendix,

our results are robust when using several di�erent factor models and alternative de�nitions for

the CBMKT , TERM , and DEF factors. Our �ndings also remain unchanged when we add an

aggregate bond liquidity risk factor to our model or use the broker-dealer leverage factor of Adrian

et al. (2014).

6 Conclusion

In this paper, we show that rating-based capital requirements, through their impact on investment

demand, a�ect equilibrium market prices. Speci�cally, we document two patterns in corporate

bond prices and attribute them to demand induced by rating-based capital requirements. First,

we demonstrate that IG bonds with high NIG proximity generate positive risk-adjusted returns,

indicating that high-NIG proximity bonds are underpriced. Second, we show that bonds with high

(low) systematic risk exposure generate negative (positive) risk-adjusted returns, meaning that

high-systematic (low-systematic) risk exposure bonds are overpriced (underpriced). These pricing

patterns are persistent across a large cross-section and long time-series of more than 20,000 corporate

bonds over the 1993-2014 time period.

We then attribute these patterns in bond prices to insurer demand and in turn to rating-based

capital requirements. Our results demonstrate that insurers do indeed invest proportionally less in

high NIG proximity bonds and proportionally more (less) in bonds with high (low) systematic risk

exposure. These patterns in insurer holdings explain most of the patterns in bond pricing. Finally,

we tie the patterns in bond pricing to capital regulations by showing that the patterns do not exist

prior to the implementation of rating-based capital requirements for insurers in 1993.

Our paper contributes to several important policy debates on the unintended consequences of
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capital regulations. First, since market prices are known to in�uence industrial �rms' real invest-

ment decisions (Stein (1996), Chirinko and Schaller (2001), Baker et al. (2003), Gilchrist et al.

(2005), Polk and Sapienza (2009), Harford et al. (2015), and Warusawitharana and Whited (2016)),

our results provide a clear link between capital regulations and real economic outcomes. Because

persistent alphas are known to have greater implications for corporate investment than transient

alphas (Van Binsbergen and Opp (2017)), the persistence of the pricing patterns we document

suggests that the real economic consequences of capital regulations for unregulated �rms can be

considerable.

A second implication of our results is that by creating an incentive among insurers to invest in

high-systematic risk exposure bonds, rating-based capital requirements may contribute to a buildup

of systemic risk in the economy. The Financial Stability Oversight Council has designated several

insurers as systemically important �nancial institutions in part because of a concern that their in-

terconnectedness may pose a threat to �nancial stability. Consistent with this concern, insurers'

preference for the most systematically risky bonds makes their portfolio returns both highly cor-

related and highly sensitive to economic downturns. Furthermore, insurers' tendency to overinvest

in high systematic risk borrowers may also contribute to the pro-cyclicality of real investment. En-

hanced awareness of these e�ects of capital regulations on the real economy and systemic risk is

particularly valuable to prudential regulators whose objective is to balance the bene�ts of a safe

and sound insurance industry against the costs of capital regulations' unintended consequences.

29



References

Acharya, Viral V., Yakov Amihud, and Sreedhar T. Bharath, 2013, Liquidity risk of corporate bond
returns: conditional approach, Journal of Financial Economics 110, 358�386.

Acharya, Viral V., and Matthew Richardson, 2009, Causes of the �nancial crisis, Critical Review
21, 195�210.

Adrian, Tobias, Erkko Etula, and Tyler Muir, 2014, Financial intermediaries and the cross-section
of asset returns, Journal of Finance 69, 2557�2596.

Ambrose, Brent W., Nianyun (Kelly) Cai, and Jean Helwege, 2008, Forced selling of fallen angels,
Journal of Fixed Income 18, 72�85.

Baghai, Ramin P., Bo Becker, and Stefan Pitschner, 2019, The private use of credit ratings: evidence
from investment mandates, Working paper available at http://ssrn.com/abstract=3201006.

Bai, Jennie, Turan G. Bali, and Quan Wen, 2018, Common risk factors in the cross-section of
corporate bond returns, Journal of Financial Economics forthcoming.

Baker, Malcolm, Jeremy C. Stein, and Je�rey Wurgler, 2003, When does the market matter? Stock
prices and the investment of equity-dependent �rms, Quarterly Journal of Economics 118, 969�
1005.

Becker, Bo, and Victoria Ivashina, 2015, Reaching for yield in the bond market, Journal of Finance
70, 1863�1902.

Bessembinder, Hendrik, Kathleen M. Kahle, William F. Maxwell, and Danielle Xu, 2009, Measuring
abnormal bond performance, Review of Financial Studies 22, 4219�4258.

Bessembinder, Hendrik, William Maxwell, and Kumar Venkataraman, 2006, Market transparency,
liquidity externalities, and institutional trading costs in corporate bonds, Journal of Financial
Economics 82, 251�288.

Black, Fischer, 1972, Capital market equilibrium with restricted borrowing, Journal of Business 45,
444�455.

Bongaerts, Dion, Frank de Jong, and Joost Driessen, 2017, An asset pricing approach to liquidity
e�ects in corporate bond markets, Review of Financial Studies 30, 1229�1269.

Calomiris, Charles W., and Joseph R. Mason, 2010, Con�icts of interest, low-quality ratings, and
meaningful reform of credit and corporate governance ratings, E21 Report, Manhattan Institute
for Policy Research.

Cantor, Richard, Owain ap Gwilym, and Stephen Thomas, 2007, The use of credit ratings in
investment management in the U.S. and Europe, Journal of Fixed Income 17, 13�26.

Carhart, Mark M., 1997, On persistence in mutual fund performance, Journal of Finance 52, 57�82.

Chirinko, Robert S., and Huntley Schaller, 2001, Business �xed investment and �bubbles�: the
Japanese case, American Economic Review 91, 663�680.

Choi, Jaewon, and Yongjun Kim, 2018, Anomalies and market (dis) integration, Journal of Mone-

tary Economics forthcoming.

30



Chordia, Tarun, Amit Goyal, Yoshio Nozawa, Avanidhar Subrahmanyam, and Qing Tong, 2017,
Are capital market anomalies common to equity and corporate bond markets? An empirical
investigation, Journal of Financial and Quantitative Analysis 52, 1301�1342.

Cornaggia, Jess, Kimberly J. Cornaggia, and John E. Hund, 2017, Credit ratings across asset classes:
a long-term perspective, Review of Finance 21, 1�45.

Crawford, Steve, Pietro Perotti, Richard A. Price, and Christopher J. Skousen,
2015, Accounting-based anomalies in the bond market, Working paper available at
http://ssrn.com/abstract=2423850.

Cummins, J. David, 1988, Risk-based premiums for insurance guaranty funds, Journal of Finance
43, 823�839.

Dick-Nielsen, Jens, 2009, Liquidity biases in TRACE, Journal of Fixed Income 19, 43�55.

Dick-Nielsen, Jens, 2014, How to clean Enhanced TRACE, Working paper available at
http://ssrn.com/abstract=2337908.

Dick-Nielsen, Jens, Peter Feldhütter, and David Lando, 2012, Corporate bond liquidity before and
after the onset of the subprime crisis, Journal of Financial Economics 103, 471�492.

Duncan, Michael P., 1984, An appraisal of property and casualty post-assessment guaranty funds,
Journal of Insurance Regulation 3, 289�303.

Ellul, Andrew, Chotibhak Jotikasthira, and Christian T. Lundblad, 2011, Regulatory pressure and
�re sales in the corporate bond market, Journal of Financial Economics 101, 596�620.

Ellul, Andrew, Chotibhak Jotikasthira, Christian T. Lundblad, and Yihui Wang, 2015, Is historical
cost accounting a panacea? Market stress, incentive distortions, and gains trading, Journal of
Finance 70, 2489�2537.

Eom, Young Ho, Jean Helwege, and Jing-Zhi Huang, 2004, Structural models of corporate bond
pricing: an empirical analysis, Review of Financial Studies 17, 499�544.

Fama, Eugene F., and Kenneth R. French, 1993, Common risk factors in the returns on stocks and
bonds, Journal of Financial Economics 33, 3�56.

Fama, Eugene F., and James D. MacBeth, 1973, Risk, return, and equilibrium: empirical tests,
Journal of Political Economy 81, 607�636.

Frazzini, Andrea, and Lasse H. Pedersen, 2014, Betting against beta, Journal of Financial Eco-
nomics 111, 1�25.

Gebhardt, William R., Søeren Hvidkjær, and Bhaskaran Swaminathan, 2005, The cross-section of
expected corporate bond returns: betas or characteristics?, Journal of Financial Economics 75,
85�114.

Gibbons, Michael R, Stephen A Ross, and Jay Shanken, 1989, A test of the e�ciency of a given
portfolio, Econometrica 57, 1121�1152.

Gilchrist, Simon, Charles P. Himmelberg, and Gur Huberman, 2005, Do stock price bubbles in�uence
corporate investment?, Journal of Monetary Economics 52, 805�827.

31



Gompers, Paul, and Andrew Metrick, 2001, Institutional investors and equity prices, Quarterly
Journal of Economics 116, 229�259.

Grace, Martin F, Scott E Harrington, and Robert W Klein, 1998, Risk-based capital and solvency
screening in property-liability insurance: hypotheses and empirical tests, Journal of Risk and

Insurance 65, 213�243.

Harford, Jarrad, Marc Martos-Vila, and Matthew Rhodes-Kropf, 2015, Corporate �nancial policies
in overvalued credit markets, Working paper available at http://ssrn.com/abstract=2200093.

Harris, Milton, Christian C. Opp, and Marcus M. Opp, 2017, Bank capital and the composition of
credit, Working paper available at https://ssrn.com/abstract=2467761.

He, Zhiguo, and Arvind Krishnamurthy, 2013, Intermediary asset pricing, American Economic

Review 103, 732�770.

Iannotta, Giuliano, George Pennacchi, and João Santos, 2018, Ratings-based regulation and sys-
tematic risk incentives, Review of Financial Studies forthcoming.

Ivashina, Victoria, and Zheng Sun, 2011, Institutional demand pressure and the cost of corporate
loans, Journal of Financial Economics 99, 500�522.

Jostova, Gergana, Stanislava Nikolova, Alexander Philipov, and Christof W. Stahel, 2013, Momen-
tum in corporate bond returns, Review of Financial Studies 26, 1649�1693.

Kisgen, Darren J., and Philip E. Strahan, 2010, Do regulations based on credit ratings a�ect a
�rm's cost of capital?, Review of Financial Studies 23, 4324�4347.

Koijen, Ralph, and Motohiro Yogo, 2016, An equilibrium model of institutional demand and asset
prices, Working paper available at https://ssrn.com/abstract=2537559.

Lando, David, and Torben M. Skødeberg, 2002, Analyzing rating transitions and rating drift with
continuous observations, Journal of Banking and Finance 26, 423�444.

Lee, Soon-Jae, David Mayers, and Cli�ord W. Smith, 1997, Guarantee funds and risk-taking: Evi-
dence from the insurance industry, Journal of Financial Economics 44, 3�24.

Lin, Hai, Junbo Wang, and Chunchi Wu, 2011, Liquidity risk and expected corporate bond returns,
Journal of Financial Economics 99, 628�650.

Munch, Patricia, and Dennis E. Smallwood, 1979, Solvency regulation in the property/casualty
insurance industry, The Rand Corporation.

Munch, Patricia, and Dennis E. Smallwood, 1980, Solvency regulation in the property-liability
insurance industry: empirical evidence, The Bell Journal of Economics 11, 261�279.

Nanda, Vikram K., Wei Wu, and Xing (Alex) Zhou, 2017, Investment commonality across in-
surance companies: �re sale risk and corporate yield spreads, Working paper available at
https://ssrn.com/abstract=2995872.

Newey, Whitney K., and Kenneth D. West, 1987, A simple, positive semi-de�nite, heteroskedasticity
and autocorrelation consistent covariance matrix, Econometrica 55, 703�708.

32



O'Hara, Maureen, Yihui Wang, and Xing (Alex) Zhou, 2018, The execution quality of corporate
bonds, Journal of Financial Economics forthcoming.

Opp, Christian C., Marcus M. Opp, and Milton Harris, 2013, Rating agencies in the face of regula-
tion, Journal of Financial Economics 108, 46�61.

Pastor, Lubos, and Robert F. Stambaugh, 2003, Liquidity risk and expected stock returns, Journal
of Political Economy 111, 642�685.

Pennacchi, George, 2006, Deposit insurance, bank regulation, and �nancial system risks, Journal of
Monetary Economics 53, 1�30.

Petersen, Mitchell A, 2009, Estimating standard errors in �nance panel data sets: Comparing
approaches, The Review of Financial Studies 22, 435�480.

Polk, Christopher, and Paola Sapienza, 2009, The stock market and corporate investment: a test
of catering theory, Review of Financial Studies 22, 187�217.

Shleifer, Andrei, 1986, Do demand curves for stocks slope down?, Journal of Finance 41, 579�590.

Stanton, Richard, and Nancy Wallace, 2018, CMBS subordination, ratings in�ation, and regulatory-
capital arbitrage, Financial Management 47, 175�201.

Stein, Jeremy C., 1996, Rational capital budgeting in an irrational world, Journal of Business 69,
429�455.

Towns, John, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither, Andrew Grimshaw, Vic-
tor Hazlewood, Scott Lathrop, Dave Lifka, Gregory D Peterson, et al., 2014, XSEDE: accelerating
scienti�c discovery, Computing in Science & Engineering 16, 62�74.

Van Binsbergen, Jules H., and Christian C. Opp, 2017, Real anomalies, Working paper available at
https://ssrn.com/abstract=2747739.

Warga, Arthur D., 1991, Corporate bond price discrepancies in the dealer and exchange markets,
Journal of Fixed Income 1, 7�16.

Warusawitharana, Missaka, and Toni M. Whited, 2016, Equity market misvaluation, �nancing, and
investment, Review of Financial Studies 29, 603�654.

White, Lawrence J., 2010, Markets: the credit rating agencies, Journal of Economic Perspectives

24, 211�226.

33



Figure 1: Investors in the Corporate Bond Market

This �gure presents the proportion of U.S. and foreign corporate bonds held by major U.S. investor
types. Insurers are both life insurers and property/casualty insurers. Data come from the Federal
Reserve Statistical Release Z.1, Financial Accounts of the United States for the periods 1985-1994,
1995-2004, and 2005-2015.
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Figure 2: Insurer Portfolio Composition

This �gure presents the combined portfolio composition of life insurers and property/casualty insur-
ers. Data come from the Federal Reserve Statistical Release Z.1, Financial Accounts of the United
States for the periods 1985-1994, 1995-2004, and 2005-2015.
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Figure 3: NIG Downgrades by Regulatory Rating

This �gure presents the average percentage of bonds, by regulatory rating, that are downgraded to
NIG. A bond's regulatory rating is its credit rating for regulatory capital purposes. For securities
rated by multiple CRPs, the regulatory rating is the lower rating when two ratings are available
and the second lowest rating when more than two ratings are available. At the end of each month
t, we group bonds according to their regulatory rating. For each group we calculate the percentage
of bonds that are downgraded to an NIG rating at some point in months t + 1 through t + k,
for k ∈ {1, 2, . . ., 12}. The �gure shows the time-series averages of the percentages of bonds
downgraded to NIG from each regulatory rating and for each value of k. The analysis of k-month-
ahead downgrades covers initial rating months t from December 1992 to k months prior to December
2014, inclusive.
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Table 1: Regulatory Ratings and Required Capital Charges for Corporate Bonds

This table presents the mapping of corporate bonds' regulatory rating to grade, NAIC designation,
and required capital charge. Regulatory rating is the credit rating for regulatory capital purposes.
For bonds rated by multiple CRPs, the regulatory rating is the lower rating when two are available
and the second lowest rating when more than two are available. We use the S&P/Fitch rating
scale without loss of generality. Grade indicates whether a bond with the given regulatory rating is
investment grade (IG) or non-investment-grade (NIG). Columns labeled Life (P&C) give required
capital charges for life (property/casualty) insurers.

NAIC Required Capital Charge

Regulatory Rating Grade Designation Life P&C

A- and above IG 1 0.4% 0.3%
BBB+, BBB, BBB− IG 2 1.3% 1.0%
BB+, BB, BB− NIG 3 4.6% 2.0%
B+, B, B− NIG 4 10.0% 4.5%
CCC+, CCC, CCC− NIG 5 23.0% 10.0%
CC, C, D NIG 6 30.0% 30.0%

Table 2: Factor Summary Statistics

This table presents summary statistics and correlations for the monthly excess returns of corporate
bond factors. CBMKT is the market value-weighted average excess return of the bonds in
our return data. TERM is the Barclays Long Maturity U.S. Treasury index return minus the
one-month U.S. Treasury bill return. DEF is the component of CBMKT that is orthogonal to
TERM . Returns are in percent. Panel A shows the time-series mean (Mean), standard deviation
(SD), minimum (Min), �rst percentile (1%), �fth percentile (5%), 25th percentile (25%), median
(Median), 75th percentile (75%), 95th percentile (95%), 99th percentile (99%), and maximum
(Max) for each time-series. Panel B shows Pearson product-moment correlations. The summary
statistics and correlations cover returns from January 1993 through December 2014, inclusive.
Values of DEF are taken to be the intercept term plus the residual from a regression of CBMKT
on TERM using data from this same period.

Panel A: Summary Statistics

Factor Mean SD Min 1% 5% 25% Median 75% 95% 99% Max

CBMKT 0.35 1.28 −3.60 −3.29 −1.83 −0.42 0.40 1.06 2.39 3.00 5.44
TERM 0.47 2.84 −9.01 −5.89 −3.78 −1.35 0.48 2.15 4.58 8.96 12.27
DEF 0.21 0.95 −3.67 −2.57 −1.16 −0.23 0.20 0.71 1.73 2.90 4.04

Panel B: Correlations

T
E
R
M

D
E
F

CBMKT 0.67 0.74
TERM 0.00
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Table 3: Bond Summary Statistics

This table presents summary statistics for the bonds in our sample. βCBMKT is the slope coe�cient
from a regression of excess bond returns on CBMKT . βTERM and βDEF are the slope coe�cients
on TERM and DEF , respectively, from a regression of excess bond returns on TERM and DEF .
The regressions used to calculate month t values of βCBMKT , βTERM , and βDEF are �t using data
from months t − 59 through t, inclusive. MV is the par value outstanding times the market price
of the bond per dollar of par, recorded in $millions. βCBMKT , βTERM , βDEF , and MV are
measured at the end of month t. Rt+1 is the excess bond return in month t+1, de�ned as the bond
return minus the one-month U.S. Treasury bill return, recorded in percent. Panel A shows the
time-series averages of the monthly cross-sectional mean (Mean), standard deviation (SD), 25th
percentile (25%), median (Median), and 75th percentile (75%) for each variable. Panel B shows
the time-series average of the monthly cross-sectional percentage of bonds with NAIC designation
1 (NAIC 1), bonds with NAIC designation 2 that are not rated BBB− (NAIC 2 No BBB−), and
bonds rated BBB− (BBB−). Panel C shows the time-series averages of monthly cross-sectional
Pearson product-moment correlations between βCBMKT, βTERM , βDEF , andMV . Each variable is
winsorized at the 0.5% and 99.5% levels on a monthly basis prior to calculating the cross-sectional
correlations. The summary statistics, NAIC designations, and correlations cover sample formation
(return) months t (t + 1) from December 1992 (January 1993) to November (December) 2014,
inclusive.

Panel A: Summary Statistics

Variable Mean SD 25% Median 75%

βCBMKT 1.13 0.47 0.80 1.10 1.44
βTERM 0.51 0.24 0.35 0.49 0.66
βDEF 0.84 0.65 0.44 0.77 1.15
MV 215 451 23 94 257
Rt+1 0.39 1.54 −0.24 0.33 0.96

Panel B: NAIC Designation Groups

NAIC 1 NAIC 2 No BBB− BBB−
62.50% 28.46% 9.04%

Panel C: Correlations

β
T
E
R
M

β
D
E
F

M
V

βCBMKT 0.80 0.37 0.05
βTERM −0.05 −0.06
βDEF 0.24
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Table 4: Performance of Portfolios Sorted on NIG Proximity - 1993-2014

This table presents the results of a portfolio analysis examining the performance of portfolios
formed by sorting on NIG proximity. At the end of each month t, all bonds are sorted into
�ve portfolios based on whether they have (1) an NAIC designation of 1 (NAIC 1), (2) an
NAIC designation of 2 but not a BBB− rating (NAIC 2 No BBB−), (3) an IG rating but not
a BBB− rating (IG No BBB−), (4) a BBB rating (BBB), or (5) a BBB− rating (BBB−). We
then calculate the market value-weighted month t + 1 excess return of each portfolio, as well
as that of zero-cost long-short portfolios that are long the BBB− portfolio and short each of
the other four portfolios. The row labeled Excess Return presents the time-series average of
the monthly excess returns for each portfolio. The remainder of the table presents alphas and
post-formation factor sensitivities for each portfolio, calculated by regressing excess portfolio
returns on TERM , DEF , STOCKMKT , SMB, HML, MOM , and LIQ. We orthogonalize
STOCKMKT , SMB, HML, MOM , and LIQ to TERM and DEF prior to running the
regression. t-statistics, adjusted following Newey and West (1987) using three lags and testing the
null hypothesis of a zero mean excess return, alpha, or factor sensitivity, are shown in parentheses.
Excess returns and alphas are in percent per month. The analysis covers portfolio formation (re-
turn) months t (t+1) from December 1992 (January 1993) to November (December) 2014, inclusive.

Value N
A
IC

1

N
A
IC

2
N
o
B
B
B
−

IG
N
o
B
B
B
−

B
B
B

B
B
B
−

[B
B
B
−
]−
N
A
IC

1

[B
B
B
−
]−
N
A
IC

2
N
o
B
B
B
−

[B
B
B
−
]−
IG

N
o
B
B
B
−

[B
B
B
−
]−
B
B
B

Excess Return 0.32 0.38 0.34 0.40 0.48 0.16 0.11 0.14 0.08
(4.14) (4.65) (4.39) (4.88) (5.71) (3.24) (2.71) (3.35) (2.06)

α −0.01 0.02 −0.00 0.05 0.13 0.14 0.12 0.14 0.09
(−0.45) (0.67) (−0.17) (1.67) (3.07) (2.86) (2.92) (3.14) (2.10)

βTERMPost 0.30 0.30 0.30 0.29 0.23 −0.07 −0.06 −0.07 −0.06
(15.34) (13.58) (15.11) (13.07) (8.94) (−4.21) (−4.84) (−4.51) (−4.18)

βDEFPost 0.90 0.97 0.93 0.99 1.05 0.14 0.08 0.12 0.06
(47.21) (37.55) (67.76) (37.64) (24.45) (2.89) (2.08) (2.80) (1.42)

βSTOCKMKT
Post −0.02 0.01 −0.01 −0.01 0.02 0.03 0.01 0.02 0.03

(−3.49) (0.99) (−1.84) (−1.39) (1.37) (2.53) (0.85) (1.97) (2.30)

βSMB
Post 0.00 0.01 0.01 0.00 0.00 −0.00 −0.00 −0.00 0.00

(0.80) (0.64) (1.22) (0.23) (0.24) (−0.09) (−0.16) (−0.15) (0.11)

βHML
Post −0.00 0.01 0.00 −0.00 −0.01 −0.01 −0.02 −0.01 −0.01

(−0.33) (1.49) (0.73) (−0.17) (−0.60) (−0.40) (−1.64) (−0.84) (−0.51)
βMOM
Post 0.01 −0.00 0.00 0.00 −0.01 −0.01 −0.00 −0.01 −0.01

(2.25) (−0.33) (1.31) (0.88) (−0.70) (−1.47) (−0.54) (−1.12) (−1.28)
βLIQPost −0.01 0.01 −0.00 0.01 0.02 0.03 0.01 0.02 0.02

(−2.09) (1.89) (−0.19) (1.04) (2.18) (2.70) (1.14) (2.25) (1.58)
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Table 5: Performance of Portfolios Sorted on βCBMKT - 1993-2014

This table presents the results of analyses examining the performance of portfolios formed by sorting
on βCBMKT . For the unconditional portfolio analysis, at the end of each month t, all bonds are
sorted into decile portfolios based on an ascending ordering of βCBMKT . We then calculate the
market value-weighted month t + 1 excess return of each portfolio, as well as that of a zero-cost
long-short portfolio that is long the decile 10 portfolio and short the decile 1 portfolio (βCBMKT

10 − 1). For the conditional portfolio analysis, at the end of each month t, all bonds are sorted
into two groups, NAIC designation 1 (NAIC 1) and NAIC designation 2 (NAIC 2). All bonds
in each group are then sorted into decile portfolios based on an ascending ordering of βCBMKT .
We then calculate the market value-weighted month t + 1 excess return of each portfolio, as well
as that of a zero-cost long-short portfolio that is long the decile 10 portfolio and short the decile
1 portfolio (βCBMKT 10 − 1) in each NAIC designation group. Finally, for each βCBMKT decile
portfolio as well as the βCBMKT 10 − 1 portfolio, we calculate the average excess return across
the two NAIC designation groups, and refer to this as the NAIC Avg. group. The rows labeled
βCBMKT
Post present the slope coe�cient from a regression of excess portfolio returns on CBMKT .

The rows labeled Excess Return present the time-series average of the monthly excess returns. The
rows labeled α present portfolio alphas, calculated by regressing excess portfolio returns on TERM ,
DEF , STOCKMKT , SMB, HML, MOM , and LIQ. t-statistics, adjusted following Newey and
West (1987) using three lags and testing the null hypothesis of a zero post-formation exposure to
bond market risk, a zero mean excess return, and a zero alpha, are shown in parentheses. Excess
returns and alphas are in percent per month. The analysis covers portfolio formation (return)
months t (t+ 1) from December 1992 (January 1993) to November (December) 2014, inclusive.

Value β
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β
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β
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β
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β
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T
8

β
C
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T
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β
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β
C
B
M
K
T
1
0
−

1

Unconditional βCBMKT
Post 0.36 0.54 0.64 0.75 0.79 0.96 1.06 1.18 1.39 1.65 1.29

(17.74) (22.55) (20.75) (32.84) (30.30) (39.28) (43.98) (46.65) (49.84) (46.45) (27.34)

Excess Return 0.34 0.22 0.27 0.28 0.25 0.36 0.39 0.41 0.47 0.48 0.14
(8.97) (4.27) (4.23) (4.28) (3.51) (4.39) (4.41) (4.21) (4.06) (3.52) (1.19)

α 0.23 0.04 0.04 0.02 −0.02 0.02 0.03 −0.00 −0.03 −0.13 −0.36
(8.57) (1.13) (0.88) (0.56) (−0.51) (0.49) (0.92) (−0.11) (−0.77) (−3.00) (−6.14)

NAIC 1 βCBMKT
Post 0.36 0.53 0.63 0.75 0.81 0.99 1.10 1.19 1.43 1.64 1.28

(18.12) (22.99) (23.40) (29.36) (24.38) (34.69) (42.19) (40.65) (42.18) (40.59) (25.71)

Excess Return 0.29 0.23 0.26 0.26 0.25 0.34 0.37 0.38 0.46 0.46 0.18
(7.60) (4.54) (4.24) (3.86) (3.29) (3.90) (3.96) (3.77) (3.78) (3.34) (1.49)

α 0.17 0.05 0.05 0.00 −0.01 −0.01 0.00 −0.04 −0.04 −0.14 −0.31
(6.70) (1.79) (1.39) (0.13) (−0.30) (−0.18) (0.12) (−0.98) (−0.91) (−2.79) (−5.04)

NAIC 2 βCBMKT
Post 0.37 0.55 0.64 0.74 0.75 0.92 0.97 1.19 1.36 1.67 1.30

(13.65) (14.13) (19.41) (18.99) (20.92) (34.35) (21.66) (29.85) (32.87) (40.19) (24.31)

Excess Return 0.40 0.27 0.31 0.30 0.26 0.38 0.45 0.46 0.48 0.55 0.15
(8.83) (4.19) (4.61) (3.92) (3.45) (4.67) (4.74) (4.30) (4.03) (3.84) (1.20)

α 0.28 0.07 0.07 0.02 −0.02 0.03 0.09 0.03 −0.02 −0.10 −0.38
(7.84) (1.41) (1.52) (0.29) (−0.39) (0.78) (1.42) (0.47) (−0.34) (−1.83) (−5.57)

NAIC Avg. βCBMKT
Post 0.36 0.54 0.64 0.74 0.78 0.96 1.03 1.19 1.39 1.66 1.29

(19.17) (20.89) (26.68) (30.45) (32.40) (43.97) (37.84) (47.69) (47.59) (48.87) (28.79)

Excess Return 0.34 0.25 0.28 0.28 0.25 0.36 0.41 0.42 0.47 0.51 0.16
(9.15) (4.72) (4.78) (4.22) (3.71) (4.43) (4.62) (4.24) (4.04) (3.67) (1.39)

α 0.23 0.06 0.06 0.01 −0.02 0.01 0.05 −0.01 −0.03 −0.12 −0.35
(9.26) (1.86) (1.83) (0.30) (−0.50) (0.38) (1.21) (−0.17) (−0.75) (−2.85) (−6.30)
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Table 6: Performance of Portfolios Sorted on βTERM - 1993-2014

This table presents the results of analyses examining the performance of portfolios formed by sorting
on βTERM . For the unconditional portfolio analysis, at the end of each month t, all bonds are sorted
into decile portfolios based on an ascending ordering of βTERM . We then calculate the market
value-weighted month t+ 1 excess return of each portfolio, as well as that of a zero-cost long-short
portfolio that is long the decile 10 portfolio and short the decile 1 portfolio (βTERM 10 − 1). For
the conditional portfolio analysis, at the end of each month t, all bonds are sorted into two groups,
NAIC designation 1 (NAIC 1) and NAIC designation 2 (NAIC 2). All bonds in each group are
then sorted into decile portfolios based on an ascending ordering of βTERM . We then calculate the
market value-weighted month t+1 excess return of each portfolio, as well as that of a zero-cost long-
short portfolio that is long the decile 10 portfolio and short the decile 1 portfolio (βTERM 10−1) in
each NAIC designation group. Finally, for each βTERM decile portfolio as well as the βTERM 10−1
portfolio, we calculate the average excess return across the two NAIC designation groups, and refer
to this as the NAIC Avg. group. The rows labeled βTERMPost and α present the intercept coe�cient and
slope coe�cient on TERM , respectively, from a regression of excess portfolio returns on TERM ,
DEF , STOCKMKT , SMB, HML, MOM , and LIQ. We orthogonalize STOCKMKT , SMB,
HML, MOM , and LIQ to TERM and DEF prior to running the regression. The rows labeled
Excess Return present the time-series average of the monthly excess returns. t-statistics, adjusted
following Newey and West (1987) using three lags and testing the null hypothesis of a zero post-
formation exposure to term factor risk, a zero mean excess return, and a zero alpha, are shown in
parentheses. Excess returns and alphas are in percent per month. The analysis covers portfolio
formation (return) months t (t+ 1) from December 1992 (January 1993) to November (December)
2014, inclusive.

Value β
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β
T
E
R
M

7

β
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M

8

β
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M
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β
T
E
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β
T
E
R
M
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−

1

Unconditional βTERMPost 0.08 0.14 0.18 0.21 0.25 0.31 0.35 0.43 0.52 0.67 0.59
(4.09) (7.90) (10.43) (9.74) (12.35) (13.11) (14.81) (16.27) (17.92) (21.59) (25.30)

Excess Return 0.38 0.32 0.29 0.30 0.32 0.36 0.37 0.41 0.45 0.47 0.09
(6.54) (5.88) (4.88) (4.24) (4.33) (4.18) (4.08) (3.93) (3.62) (3.19) (0.71)

α 0.21 0.12 0.05 0.03 0.02 −0.01 −0.03 −0.04 −0.09 −0.16 −0.37
(5.91) (4.42) (1.65) (0.91) (0.72) (−0.18) (−0.87) (−1.00) (−2.55) (−3.30) (−5.99)

NAIC 1 βTERMPost 0.08 0.15 0.18 0.22 0.26 0.33 0.37 0.45 0.55 0.69 0.61
(4.24) (9.07) (10.27) (9.51) (11.39) (13.70) (14.31) (16.32) (18.14) (22.61) (25.03)

Excess Return 0.32 0.29 0.27 0.27 0.31 0.35 0.35 0.42 0.43 0.42 0.10
(5.63) (5.34) (4.60) (3.59) (3.97) (3.92) (3.58) (3.82) (3.31) (2.84) (0.81)

α 0.17 0.10 0.05 0.03 0.01 −0.03 −0.06 −0.04 −0.13 −0.19 −0.37
(4.62) (3.30) (1.66) (0.53) (0.28) (−0.80) (−1.53) (−0.92) (−3.28) (−3.66) (−5.75)

NAIC 2 βTERMPost 0.07 0.14 0.18 0.19 0.24 0.27 0.33 0.39 0.50 0.63 0.56
(3.04) (6.23) (8.22) (8.79) (11.00) (9.80) (13.59) (13.09) (15.72) (18.71) (20.54)

Excess Return 0.43 0.38 0.32 0.33 0.33 0.41 0.36 0.43 0.48 0.55 0.12
(6.39) (5.70) (4.58) (4.59) (4.50) (4.43) (3.96) (4.01) (3.81) (3.78) (0.98)

α 0.25 0.14 0.05 0.05 0.03 0.05 −0.02 0.01 −0.07 −0.06 −0.32
(5.71) (3.02) (1.02) (1.14) (0.82) (0.85) (−0.41) (0.13) (−1.24) (−1.07) (−4.16)

NAIC Avg. βTERMPost 0.08 0.14 0.18 0.20 0.25 0.30 0.35 0.42 0.52 0.66 0.58
(3.85) (8.21) (9.94) (10.18) (12.05) (12.55) (14.71) (15.79) (17.68) (21.82) (25.78)

Excess Return 0.37 0.33 0.29 0.30 0.32 0.38 0.35 0.43 0.45 0.49 0.11
(6.47) (6.00) (4.90) (4.41) (4.44) (4.41) (3.88) (4.08) (3.63) (3.38) (0.93)

α 0.21 0.12 0.05 0.04 0.02 0.01 −0.04 −0.02 −0.10 −0.13 −0.34
(6.26) (4.02) (1.63) (1.05) (0.75) (0.25) (−1.13) (−0.42) (−2.51) (−2.79) (−5.77)
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Table 7: Performance of Portfolios Sorted on βDEF - 1993-2014

This table presents the results of analyses examining the performance of portfolios formed by sorting
on βDEF . For the unconditional portfolio analysis, at the end of each month t, all bonds are sorted
into decile portfolios based on an ascending ordering of βDEF . We then calculate the market
value-weighted month t+ 1 excess return of each portfolio, as well as that of a zero-cost long-short
portfolio that is long the decile 10 portfolio and short the decile 1 portfolio (βDEF 10 − 1). For
the conditional portfolio analysis, at the end of each month t, all bonds are sorted into two groups,
NAIC designation 1 (NAIC 1) and NAIC designation 2 (NAIC 2). All bonds in each group are
then sorted into decile portfolios based on an ascending ordering of βDEF . We then calculate the
market value-weighted month t + 1 excess return of each portfolio, as well as that of a zero-cost
long-short portfolio that is long the decile 10 portfolio and short the decile 1 portfolio (βDEF 10−1)
in each NAIC designation group. Finally, for each βDEF decile portfolio as well as the βDEF 10− 1
portfolio, we calculate the average excess return across the two NAIC designation groups, and refer
to this as the NAIC Avg. group. The rows labeled βDEFPost and α present the intercept coe�cient
and slope coe�cient on DEF , respectively, from a regression of excess portfolio returns on TERM ,
DEF , STOCKMKT , SMB, HML, MOM , and LIQ. We orthogonalize STOCKMKT , SMB,
HML, MOM , and LIQ to TERM and DEF prior to running the regression. The rows labeled
Excess Return present the time-series average of the monthly excess returns. t-statistics, adjusted
following Newey and West (1987) using three lags and testing the null hypothesis of a zero post-
formation exposure to default factor risk, a zero mean excess return, and a zero alpha, are shown
in parentheses. Excess returns and alphas are in percent per month. The analysis covers portfolio
formation (return) months t (t+ 1) from December 1992 (January 1993) to November (December)
2014, inclusive.

Value β
D
E
F
1

β
D
E
F
2

β
D
E
F
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β
D
E
F
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β
D
E
F
5

β
D
E
F
6

β
D
E
F
7

β
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E
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β
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F
9

β
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F
10

β
D
E
F
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−
1

Unconditional βDEFPost 0.68 0.65 0.72 0.72 0.74 0.83 0.82 0.94 1.07 1.34 0.67
(17.39) (17.12) (20.51) (22.84) (25.99) (29.62) (25.06) (27.97) (34.89) (31.95) (9.79)

Excess Return 0.38 0.32 0.29 0.27 0.27 0.30 0.34 0.35 0.42 0.48 0.10
(5.19) (4.54) (4.00) (3.87) (4.01) (4.01) (4.46) (4.32) (4.65) (4.42) (1.31)

α 0.08 0.03 0.00 −0.02 −0.01 −0.00 0.03 0.04 0.04 0.02 −0.06
(2.10) (0.88) (0.01) (−0.50) (−0.39) (−0.16) (1.08) (1.21) (1.25) (0.53) (−0.85)

NAIC 1 βDEFPost 0.68 0.69 0.74 0.68 0.75 0.78 0.81 0.91 1.04 1.25 0.57
(16.60) (17.18) (20.18) (18.74) (25.77) (23.49) (25.12) (19.53) (24.73) (24.04) (7.57)

Excess Return 0.36 0.28 0.28 0.26 0.26 0.29 0.31 0.31 0.40 0.43 0.07
(4.78) (3.68) (3.76) (3.71) (3.69) (3.84) (4.11) (3.48) (4.36) (3.86) (0.82)

α 0.07 −0.03 −0.02 −0.01 −0.03 −0.01 0.02 0.00 0.04 −0.01 −0.08
(1.65) (−0.71) (−0.51) (−0.14) (−0.99) (−0.22) (0.74) (0.09) (1.05) (−0.14) (−0.97)

NAIC 2 βDEFPost 0.66 0.60 0.72 0.71 0.77 0.80 0.89 1.02 1.15 1.48 0.82
(12.24) (13.04) (17.39) (16.51) (20.04) (21.60) (22.68) (23.47) (26.75) (30.78) (10.23)

Excess Return 0.41 0.35 0.36 0.30 0.34 0.30 0.38 0.43 0.48 0.54 0.12
(5.24) (4.78) (4.90) (4.09) (4.68) (4.16) (4.80) (4.77) (5.01) (4.67) (1.36)

α 0.12 0.07 0.08 0.01 0.05 0.01 0.05 0.08 0.07 0.04 −0.08
(2.12) (1.40) (1.78) (0.26) (1.38) (0.39) (1.35) (1.81) (1.56) (0.77) (−0.99)

NAIC Avg. βDEFPost 0.67 0.64 0.73 0.70 0.76 0.79 0.85 0.96 1.10 1.37 0.70
(16.41) (16.85) (21.52) (20.56) (26.98) (27.93) (34.29) (30.67) (35.78) (34.49) (10.13)

Excess Return 0.39 0.31 0.32 0.28 0.30 0.30 0.35 0.37 0.44 0.48 0.09
(5.28) (4.37) (4.47) (4.07) (4.34) (4.15) (4.71) (4.40) (4.92) (4.44) (1.21)

α 0.09 0.02 0.03 0.00 0.01 0.00 0.04 0.04 0.06 0.01 −0.08
(2.24) (0.47) (0.83) (0.09) (0.48) (0.13) (1.56) (1.33) (1.83) (0.36) (−1.11)
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Table 8: Persistence of Portfolio Performance - 1993-2014

This table presents portfolio alphas calculated from returns in months two through 12 after
portfolio formation. At the end of each month t, we form portfolios as described in Tables
4-7. For the portfolios formed by sorting on βCBMKT , βTERM , and βDEF , we examine the
unconditional portfolios. We then calculate the excess returns of the portfolios in months t+ k, for
k ∈ {2, 3, . . . , 12}. For each portfolio and each value of k, the table presents the intercept coe�cient
(alpha) from a regression of excess portfolio returns on TERM , DEF , STOCKMKT , SMB,
HML, MOM , and LIQ. t-statistics, adjusted following Newey and West (1987) using three lags
and testing the null hypothesis of a zero alpha, are shown in parentheses. Alphas are in percent
per month. The analysis covers portfolio formation (return) months t (t+ k) from k months prior
to January 1993 (January 1993) to k months prior to December 2014 (December 2014), inclusive.
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β
T
E
R
M

1

β
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10

β
T
E
R
M

10
−
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β
D
E
F
1

β
D
E
F
10

β
D
E
F
10
−
1

2 0.15 0.16 0.13 0.15 0.11 0.21 −0.15 −0.36 0.21 −0.15 −0.35 0.05 −0.00 −0.05
(3.40) (3.29) (3.12) (3.46) (2.43) (8.23) (−3.35) (−6.35) (5.81) (−3.04) (−5.68) (1.28) (−0.03) (−0.75)

3 0.14 0.16 0.12 0.15 0.09 0.20 −0.13 −0.33 0.20 −0.15 −0.35 0.04 −0.00 −0.04
(3.22) (3.15) (2.84) (3.25) (2.02) (8.24) (−2.99) (−5.86) (5.77) (−3.08) (−5.63) (1.05) (−0.10) (−0.66)

4 0.16 0.18 0.14 0.17 0.12 0.19 −0.14 −0.34 0.21 −0.16 −0.37 0.05 −0.00 −0.05
(4.03) (3.85) (3.52) (4.08) (2.98) (8.20) (−3.25) (−5.85) (5.98) (−3.38) (−5.86) (1.44) (−0.13) (−0.89)

5 0.15 0.16 0.13 0.16 0.10 0.21 −0.16 −0.37 0.21 −0.15 −0.36 0.06 −0.01 −0.07
(4.17) (3.77) (3.55) (4.19) (3.00) (9.33) (−3.52) (−6.57) (6.40) (−3.24) (−5.98) (1.58) (−0.28) (−1.06)

6 0.14 0.14 0.11 0.14 0.08 0.20 −0.13 −0.34 0.20 −0.15 −0.35 0.07 0.01 −0.06
(3.89) (3.61) (2.95) (3.88) (2.23) (8.92) (−2.98) (−6.18) (6.14) (−3.27) (−5.79) (1.94) (0.20) (−1.03)

7 0.13 0.14 0.10 0.13 0.06 0.19 −0.14 −0.33 0.20 −0.15 −0.35 0.06 −0.01 −0.07
(3.84) (3.56) (2.75) (3.78) (1.78) (7.83) (−3.06) (−5.82) (6.15) (−3.31) (−5.80) (1.70) (−0.38) (−1.23)

8 0.12 0.13 0.10 0.12 0.06 0.20 −0.15 −0.35 0.19 −0.15 −0.33 0.07 −0.01 −0.08
(3.59) (3.37) (2.63) (3.51) (1.63) (8.07) (−3.24) (−6.06) (5.96) (−3.23) (−5.61) (2.09) (−0.24) (−1.39)

9 0.12 0.13 0.10 0.12 0.06 0.20 −0.16 −0.36 0.19 −0.15 −0.34 0.09 −0.01 −0.10
(3.47) (3.23) (2.59) (3.39) (1.72) (8.19) (−3.58) (−6.38) (6.14) (−3.18) (−5.65) (2.67) (−0.29) (−1.81)

10 0.11 0.12 0.09 0.11 0.06 0.21 −0.14 −0.35 0.18 −0.15 −0.33 0.08 −0.02 −0.10
(3.41) (3.22) (2.53) (3.35) (1.73) (8.78) (−3.01) (−5.98) (5.94) (−3.25) (−5.59) (2.33) (−0.62) (−1.85)

11 0.11 0.12 0.09 0.12 0.06 0.20 −0.14 −0.34 0.17 −0.16 −0.33 0.06 −0.01 −0.07
(3.54) (3.30) (2.63) (3.46) (1.72) (8.45) (−3.11) (−5.92) (5.77) (−3.36) (−5.57) (1.71) (−0.28) (−1.29)

12 0.11 0.12 0.09 0.11 0.06 0.19 −0.14 −0.33 0.15 −0.14 −0.29 0.05 −0.01 −0.06
(3.46) (3.22) (2.69) (3.33) (1.72) (8.28) (−2.99) (−5.86) (5.06) (−3.05) (−5.03) (1.31) (−0.35) (−1.07)
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Table 9: Insurer Holdings Regressions - 2003-2014

This table presents the results of WLS regressions of insurer holdings on bond variables using MV
as the weight. The dependent variable is %InsHeld, calculated as the proportion of a bond's
market value held by life and property/casualty insurers. BBB− is an indicator variable equal
to 1 if the bond's rating is BBB−, and 0 otherwise. NAIC2 is an indicator variable equal to 1 if
the bond's NAIC designation is 2, and 0 otherwise. In columns (1)�(3), we report the time-series
averages of coe�cients from monthly cross-sectional regressions, t-statistics, adjusted following
Newey and West (1987) using three lags and testing the null hypothesis that the time-series
average of the estimated coe�cient is zero, in parentheses, and the average number of monthly
observations n. In columns (4)�(6), we report coe�cients from panel regressions with year �xed
e�ects, t-statistics that use standard errors clustered by letter rating and time in parentheses,
and the number of panel observations n. The analysis covers months t from December 2002 to
November 2014, inclusive.

FM FM FM Panel Panel Panel
(1) (2) (3) (4) (5) (6)

BBB− −7.06 −4.53 −7.88 −7.47 −4.54 −8.65
(−13.77) (−8.48) (−12.39) (−43.85) (−12.98) (−39.65)

βCBMKT 10.03 7.81
(13.04) (9.65)

βTERM 35.69 33.79
(25.45) (18.15)

βDEF −0.28 −0.25
(−1.18) (0.32)

NAIC2 5.47 7.16 5.94 5.83 7.32 5.80
(13.30) (17.63) (15.59) (3.15) (3.50) (2.81)

Intercept 20.04 19.00 31.89
(44.05) (34.93) (39.98)

Year FE Y Y Y
n 4539 4539 4539 653591 653591 653591
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Table 10: Alphas and Insurer Holdings of Independently Sorted Portfolios - 2003-2014

This table presents the alphas (Panel A) and insurer holdings (Panel B) of portfolios formed by
sorting on NIG proximity and term factor exposure. At the end of each month t we sort all NAIC
designation 2 bonds into deciles based on an ascending ordering of βTERM . We also separate the
NAIC designation 2 bonds into those rated BBB− and those with any other rating. We use the
intersections of the 10 βTERM groups and the two rating-based (BBB− and NAIC 2 No BBB−)
groups to form 20 portfolios. We then calculate the market value-weighted month t + 1 excess
return of each of the 20 portfolios. Within each βTERM group, we calculate the excess return of
the portfolio that is long the BBB− portfolio and short the NAIC 2 No BBB− portfolio ([BBB−]−
NAIC 2 No BBB−). Within each NIG proximity group, we calculate the excess return of the
portfolio that is long the βTERM 10 portfolio and short the βTERM 1 portfolio (βTERM 10 − 1).
Finally, for each βTERM group we calculate the average excess return across the two rating-based
portfolios, and refer to this as the Avg. portfolio. Also, for each rating-based group, we calculate
the average excess return across the 10 βTERM portfolios, and refer to this as the βTERM Avg.
portfolio. Panel A presents the monthly alphas (in percent per month) and Panel B presents
the time-series average of the monthly portfolio-level %InsHeld (in percent) for each of these
portfolios. t-statistics, adjusted following Newey and West (1987) using three lags and testing the
null hypothesis of a zero mean alpha or di�erence in %InsHeld, are shown in parentheses. The
analysis covers portfolio formation (return) months t (t + 1) from December 2002 (January 2003)
to November (December) 2014, inclusive.
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NAIC 2 No BBB− 0.37 0.18 0.04 0.05 −0.00 −0.01 0.05 −0.06 −0.11 −0.16 0.03 −0.53 (−5.24)
BBB− 0.25 0.18 0.16 0.08 0.02 0.08 0.08 0.09 0.04 −0.08 0.09 −0.34 (−2.99)

Avg. 0.31 0.18 0.10 0.06 0.01 0.04 0.06 0.01 −0.04 −0.12 0.06 −0.44 (−5.06)

[BBB−]−NAIC 2 No BBB− −0.12 0.01 0.12 0.03 0.02 0.09 0.03 0.14 0.15 0.07 0.06
(−1.57) (0.09) (2.02) (0.61) (0.38) (1.51) (0.53) (1.87) (1.91) (0.75) (2.14)

Panel B: Percent of Portfolio Held By Insurers
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NAIC 2 No BBB− 24.50 27.76 30.64 32.69 38.44 42.10 43.72 44.68 48.35 47.97 38.09 23.47 (26.95)
BBB− 18.97 22.83 23.53 28.55 34.36 37.11 40.92 40.31 44.95 43.74 33.53 24.77 (24.60)

Avg. 21.73 25.30 27.08 30.62 36.40 39.60 42.32 42.50 46.65 45.86 35.81 24.12 (38.66)

[BBB−]−NAIC 2 No BBB− −5.54 −4.92 −7.12 −4.13 −4.08 −5.00 −2.81 −4.37 −3.40 −4.23 −4.56
(−7.78) (−9.53) (−10.41) (−8.96) (−8.57) (−11.04) (−3.52) (−6.47) (−4.63) (−4.46) (−19.20)
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Table 11: Insurer Holdings and Portfolio Alphas - 2003-2014

This table presents the results from single and Fama and MacBeth (1973, FM) regressions of
portfolio alphas on insurer holdings for the 20 βTERM and rating-based portfolios described in Table
10. The columns labeled Single present the results of a single cross-sectional regression of portfolio
alpha on the time-series average of portfolio-level insurer holdings. The columns labeled FM present
the time-series averages of the coe�cients from monthly cross-sectional regressions of monthly
portfolio alpha on monthly portfolio-level insurer holdings. Monthly portfolio alphas are calculated
by taking the portfolio's excess return and subtracting the estimated factor sensitivities times the
corresponding factor excess returns in the same month. %InsHeld is calculated as the proportion
of a bond's market value held by life and property/casualty insurers. %InsHeldConstrained and
%InsHeldUnconstrained are calculated as the proportion of a bond's market value held by constrained
and unconstrained, respectively, life and property/casualty insurers. %InsHeldConstrained,⊥ is
the component of %InsHeldConstrained that is orthogonal to %InsHeldUnconstrained, calculated
as the intercept plus the residual from a cross-sectional regression of %InsHeldConstrained on
%InsHeldUnconstrained. %InsHeldUnconstrained,⊥ is the component of %InsHeldUnconstrained
that is orthogonal to %InsHeldConstrained, calculated as the intercept plus the residual from a
cross-sectional regression of %InsHeldUnconstrained on %InsHeldConstrained. t-statistics, testing
the null hypothesis of a zero coe�cient (Single) or zero average coe�cient (FM, adjusted following
Newey and West (1987) using three lags), are shown in parentheses. The analysis covers portfolio
formation (return) months t (t+ 1) from December 2002 (January 2003) to November (December)
2014, inclusive.

Single FM Single FM Single FM Single FM Single FM
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

%InsHeld −0.012 −0.007
(−6.46) (−3.97)

%InsHeldConstrained −0.048 −0.041 −0.073 −0.040
(−8.05) (−4.51) (−3.37) (−4.10)

%InsHeldConstrained,⊥ −0.071 −0.040
(−3.91) (−3.86)

%InsHeldUnconstrained −0.015 −0.007 0.007 0.001
(−5.89) (−3.35) (1.22) (0.21)

%InsHeldUnconstrained,⊥ 0.009 0.002
(1.21) (0.52)

Intercept 0.476 0.301 0.478 0.284 0.468 0.262 0.708 0.362 −0.215 0.040
(7.22) (5.02) (8.97) (5.59) (6.60) (4.72) (3.57) (3.99) (−1.18) (0.41)

Adj. R2 68.22% 8.74% 77.08% 10.24% 63.92% 7.77% 77.64% 14.52% 79.88% 14.52%
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Table 12: Portfolio Alphas - 1978-1992 versus 1993-2014

This table presents the alphas of portfolios formed by sorting on NIG proximity or systematic
risk exposure for the 1978-1992 and the 1993-2014 periods. At the end of each month t, we
form portfolios as described in Tables 4-7. For the portfolios formed by sorting on βCBMKT ,
βTERM , and βDEF , we examine the unconditional portfolios. The rows labeled 1978-1992 and
1993-2014 present the intercept coe�cient (α) from a regression of excess portfolio returns on
TERM , DEF , STOCKMKT , SMB, HML, MOM , and LIQ. The rows labeled 1978-2014
present the intercept coe�cient (α), as well as the coe�cient on an indicator variable set to 1
for months January 1993 and after, and 0 otherwise (α1993), from a regression of excess portfolio
returns on the indicator variable, TERM , DEF , STOCKMKT , SMB, HML, MOM , and
LIQ, as well as the indicator variable interacted with each of TERM , DEF , STOCKMKT ,
SMB, HML, MOM , and LIQ. t-statistics, adjusted following Newey and West (1987) using
three lags and testing the null hypothesis of a zero alpha, are shown in parentheses. Tests for
each period cover portfolio formation (return) months t (t + 1) from December (January ) of
the (year prior to) the �rst year in the period to November (December) of the last year in the period.
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1978-1992 α 0.01 0.01 −0.04 −0.00 −0.05 0.05 0.00 −0.05 0.06 0.01 −0.05 −0.03 0.04 0.07
(0.15) (0.14) (−1.06) (−0.02) (−1.32) (2.01) (0.05) (−0.84) (2.17) (0.15) (−0.88) (−0.67) (1.17) (1.03)

1993-2014 α 0.13 0.14 0.12 0.14 0.09 0.23 −0.13 −0.36 0.21 −0.16 −0.37 0.08 0.02 −0.06
(3.07) (2.86) (2.92) (3.14) (2.10) (8.57) (−3.00) (−6.14) (5.91) (−3.30) (−5.99) (2.10) (0.53) (−0.85)

1978-2014 α 0.01 0.01 −0.04 −0.00 −0.05 0.05 0.00 −0.05 0.06 0.01 −0.05 −0.03 0.04 0.07
(0.14) (0.13) (−0.88) (−0.02) (−1.05) (1.76) (0.05) (−0.75) (1.54) (0.12) (−0.75) (−0.58) (0.91) (0.88)

α1993 0.13 0.14 0.16 0.14 0.14 0.17 −0.14 −0.31 0.15 −0.16 −0.31 0.11 −0.02 −0.13
(1.93) (1.82) (2.70) (2.08) (2.29) (4.46) (−2.08) (−3.55) (3.11) (−2.41) (−3.53) (1.88) (−0.33) (−1.27)
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