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Abstract

The average time on market (TOM) of sold properties is frequently used by practitioners and pol-
icymakers as a market liquidity indicator. This figure might be misleading as the average TOM
only considers properties that have been sold. Furthermore, traded properties are heterogeneous.
Since these features differ over the cycle, the average TOM could provide wrong signals about
market liquidity. These problems are more severe in markets where properties trade infrequently.
In this paper, a methodology is provided that allows for the construction of constant-quality hous-
ing market liquidity indices in thin markets that can be estimated up to the end of the sample.
The latter is particularly important since market watchers are generally interested in the most re-
cent information regarding market liquidity and less in historical information. Using individual
transactions data on three different types of Dutch municipalities (small, medium, and large) it
is shown that the average TOM overestimates market liquidity in bad times and underestimates
market liquidity in good times. The option to withdraw is the most important reason why the
average TOM is misleading. Furthermore, constant-quality liquidity leads the average TOM and
price changes. The indices not only show that illiquidity is higher during busts, but also that
liquidity risk is higher. Additional results suggest that setting a high list price relative to the esti-
mated value results in a higher TOM, but this effect differs over time. Both the list price premium
and the effect on sale probability are higher during busts. Differences in housing quality over the
cycle, however, also play a significant role. Finally, the method allows for the construction of
indices that are more robust to revisions, especially in thinner markets.
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1. Introduction and motivation

Market liquidity is frequently used by researchers, policymakers, and practitioners to assess
current market conditions. In research, for example, there is ample evidence that developments
of market liquidity foreshadow price developments (De Wit et al., 2013; Carrillo et al., 2015;
Van Dijk and Francke, 2018). Policymakers look at market liquidity to identify hot markets
(DNB, 2016; Hekwolter of Hekhuis et al., 2017) and brokers use liquidity to assess the market
situation (NVM, 2016).

The definition of market liquidity stems from the financial economics literature and refers to
the ease at which assets can be traded (Brunnermeier and Pedersen, 2009). Frequently, the aver-
age time on market (TOM) of sold houses is used as market liquidity indicator of the probability
of sale. The TOM is very much related to market liquidity since a longer TOM is more costly
to the holder of the asset. A quicker sale would imply that it is easier to trade the asset, at least
from a holders’ perspective. There are many examples of TOM analyses in the housing market
literature, including Belkin et al. (1976); Haurin (1988), and more recently Genesove and Han
(2012) who examine both the seller and buyer TOM. The average (seller) TOM of sold houses,
however, might provide a misleading view regarding market liquidity.

To illustrate, consider two houses with equal listing prices. House (1) is put on the market in
January and sold in March, while house (2) enters the market in June and is sold in July. Hence,
the TOM for house (1) is 2 months and the TOM for house (2) is 1 month. What can we infer
from this? Did market liquidity improve between the sales of the two houses? It might as well
be the case that house (1) was a very well-maintained property traded in a homogeneous market,
whereas house (2) was a very badly maintained property traded in a heterogeneous market. Fur-
thermore, the listing prices of one of the properties might be set “strategically” to ensure either a
higher selling price or lower TOM.

This example is a drastically simplified view of reality and in calculating the mean some of
these problems might cancel out. However, some of these problems may still exist when consid-
ering multiple properties in determining the market situation, especially in thin markets (markets
with few transactions). But perhaps even more importantly, there is a censoring problem as only
actually sold listings are included when using the mean TOM of sold properties as measure for
the probability of sale. There could be a third house that is withdrawn and is not considered in
the mean TOM of sold properties. Disregarding withdrawn properties is problematic, since not
all information regarding the ease at which assets can be traded is used. Additionally, the time
that a house was listed before it is withdrawn, i.e. the TOM of withdrawn properties, can provide
useful information.

If these features differ over the cycle, these problems will be amplified. The number of
withdrawals with respect to the number of listings in the Amsterdam region between 2005 and
2016 is presented in Figure 1. Before the bust, starting in 2007, the percentage of houses that are
withdrawn was about 10 – 15 %. During the the bust (the through of the Dutch housing market
was between 2011 and 2013) the percentage of properties that are withdrawn was much higher,
about 30%. In recent years, starting in the second half of 2013, the market started recovering.
This was accompanied by a significant decrease in the number of withdrawals. The fact that the
probability of withdrawal is not constant over the cycle, has implications for estimating liquidity
indices based on the probability of sale. Another feature that might differ over the cycle is
quality. This is examined in earlier work by Clapp et al. (2017). These issues, among others, will
be discussed in this paper.

Analogous to existing regional constant-quality house price indices, this paper proposes to
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Figure 1: Fraction of houses withdrawn over the cycle in the Amsterdam region, 2005-2016.
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create regional constant-quality liquidity indices. The method creates a measure for the proba-
bility of sale that takes withdrawals and quality differences into account. There are other papers
that propose such corrections (Carrillo and Pope, 2012; De Wit and Van der Klaauw, 2013). I
propose a method that allows for the construction of regional constant-quality market liquidity
indices and add to the literature in three ways. Firstly, the indices can be constructed reliably up
to the end of the sample (i.e. until the most recent data comes in). This is quite an important
aspect since policymakers and other market watchers are interested in current market liquidity
(and not only in the historical situation). Secondly, a novel feature of the method is that it al-
lows to construct indices for markets in which transactions and withdrawals occur infrequently.
Previous papers that create constant-quality liquidity indices do not attempt to tackle the data
sparsity issue explicitly. By replacing fixed effects with a stochastic trend, it is possible to gen-
erate liquidity indices for small markets. This innovation has a positive side effect, namely that
the indices become more robust to revisions (i.e. the change of the index in the past due to the
addition of new data). Thirdly, the method allows for the examination of calendar time-varying
effects of housing characteristics on sale probability. Examining these time-varying effects is
interesting, as these could also give an indication about the market situation (besides the indices
themselves).1

The article closest to the current research is Carrillo and Pope (2012), in which for a large
suburb of Washington D.C. annual and quality-adjusted TOM distributions and hazard functions
are created and analyzed. This has been subsequently extended by Carrillo (2013) with other
heat measures for the housing market. Although the methodology of Carrillo and Pope (2012)
theoretically allows for the creation of quarterly or monthly indices at a local scale, it is not
possible to create indices at the end of the sample. The main reason is that Carrillo and Pope
(2012) look at the ex ante distribution of the TOM, hence at the expected market time when the
house is listed. Close to the end of the sample, only houses that are sold quickly are included
in the sample and this will result in biased index estimates. Therefore, the proposition here is
to create an index based on the realized TOM of sold and withdrawn houses, rather than on the

1This should not be confused with time-varying effects related to the duration of market time (i.e. duration dependence).
This is examined for the Dutch housing market in De Wit and Van der Klaauw (2013).
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expected TOM.
The downside is that the presented method is not able to correct for right-censoring (i.e.

correct for the number of properties that are still on the market at the end of the sample). In
stable times, right-censoring is exogenous and should not bias the indices. In some periods,
however, this could result in a loss of information.2

Another issue that is tackled in this paper is related to the sparsity of data. Issues regarding
data sparsity arise when creating quarterly indices for somewhat larger markets or when creating
annual indices for the smallest markets. Another paper close to the current research is that of
Carrillo and Williams (2019), who create quarterly “Repeat-Time-On-The-Market” indices for
15 MSAs in the US. The “smallest” region in this paper (Medford, OR) still includes around
707 listings per quarter on average. The smallest market in the current research contains 37
listings per quarter on average. As the repeat listings method discards single sales, this also poses
difficulties for estimating the indices for small markets, as there is less information available to
estimate the indices.

This paper also looks briefly at the determinants of the TOM (Haurin, 1988), the relationship
between liquidity and list prices (Knight, 2002), and the relationship between liquidity and trans-
action prices (Fisher et al., 2003; Krainer, 2001; Goetzmann and Peng, 2006; Dubé and Legros,
2016; Van Dijk et al., 2018).

The results show that the mean TOM of sold properties overestimates market liquidity in
bad times and underestimates market liquidity in good times with respect to the constant-quality
indices. Perhaps even more importantly, the mean TOM lags behind the constant-quality indices.
This indicates that it is better to use constant-quality market liquidity as leading indicator com-
pared to the mean of the TOM of sold properties. While it is not the main subject of study of this
paper, market liquidity is also shown to have a large commonality with transaction prices. When
liquidity increases, prices increase as well and vice versa. Consistent with existing literature,
changes in market liquidity Granger cause price changes. Furthermore, it is shown that not only
illiquidity increases in down markets, but that the uncertainty regarding liquidity, i.e. liquidity
risk as measured by the standard deviation, increases as well. This notion is consistent with the
evidence from other markets such as the bond and stock markets.

The examination of the determinants of the probability of sale suggests that setting a rel-
atively high list price compared to the estimated value results in a higher TOM. However, the
effect is not constant over time. Not only is the list price premium higher during busts, but the
total effect is also larger. In very hot markets, the average list price premium becomes a list
price discount and the effect becomes positive. Most likely, the reason is that sellers change
their behavior in this market, a phenomenon documented for the markets that are examined in
this study. The most important factor explaining the difference between the average TOM and
constant-quality liquidity indices is the possibility to withdraw. Quality differences, however,
also play a significant role. Finally, the results show that the magnitude of revisions substantially
decreases when replacing fixed effects with a stochastic trend. The added value of the stochastic
trend becomes larger as the market becomes thinner.

The remainder of the paper is structured as follows. The next section presents the model
and the data discussion. Section 3 presents the indices and a discussion on the commonality
with transaction prices and liquidity risk. Section 4 offers additional analyses regarding the

2For example, in a crisis the market time of properties still on the market might also increase, and this could also give a
useful indication regarding liquidity.
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determinants of the TOM, a decomposition analysis, and the robustness with respect to revisions
and correlated unobserved heterogeneity. Finally, section 5 concludes.

2. Model and data

When a house is on the market, it can either be sold or withdrawn. The decision to sell
or withdraw can therefore be characterized as competing risks. The hazard function is then
defined as the probability of a sale or withdrawal, conditional on survival up to that moment.
The dependent variable is the time it takes for a house to be sold or withdrawn (TOM). The TOM
is modeled in a hazard framework.

Besides conditioning on survival time, it is also desirable to condition on other covariates,
in this case housing characteristics. This is usually done in a proportional hazard framework.
Part of these covariates are, for example, calendar-time dummy variables that indicate in which
period (i.e. annual, quarterly, or monthly dummies) a sale or withdrawal took place. These
dummy-variables account for (time) fixed effects.

Intuitively, the coefficient on the dummy variable indicates the shift in the hazard rate. The
size of the shift in the hazard rate indicates the magnitude of change in the probability of sale
in this period. The dummy coefficients subsequently form an index of how the probability of
sale has evolved of time. Note that these coefficients are conditioned on housing characteristics.
By modeling the TOM in a competing risks hazard framework, the hazard rate of sale and the
dummy coefficients also take withdrawals and the time that the house has already been on the
market into account.

2.1. Model

The conditional (on current TOM and property characteristics) probability of sale or with-
drawal are given by their respective hazard functions. Let t be the time the house is on the market,
the proportional hazards of sales ( j = s) and withdrawals ( j = w) are given by:

λ j(ti, xi, zi, ν j) = λ0, j(ti) exp(µi, j), (1)
µi, j = exp(xiβ j + ziα j + ν j). (2)

Here, subscript i for i = 1, ...,N denotes the property and subscript j for j = s,w denote the
competing risks, sales and withdrawals. Further, λ0,(ti) are the baseline hazard functions, xi is a
row vector of size K of observed housing and other characteristics including a constant, and β is
a vector of corresponding coefficients of size K. Next, zi is a (T − 1) row vector of calendar time
dummy variables in which the house was sold or withdrawn, and α is the corresponding (T − 1)
coefficient vector. Note that the coefficient vectors of the time dummy variables and covariates
are risk-specific. Finally, ν j denotes the hazard-specific unobserved heterogeneity term that is
allowed to be correlated across hazards.

Theoretically, besides a sale or withdrawal, a third option option is possible: The house can
still be on the market at the end of the sample (i.e. right-censoring). Practically, however, it is not
feasible to include these observations as right-censored observations (see the discussion at the
end of this section). For now, however, assume that right-censoring is also a possibility. In this
case, the likelihood contribution of the competing risk model consists of three types (Jenkins,
2005):
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Ls = fsS w : exit the market through a sale,
Lw = fwS s : exit the market through a withdrawal,
Lc = S sS w : still on the market at the end of the sample,

where f and S are the density and survivor functions, respectively. Next, let δ be a variable that
indicates whether the observed property is sold (δs = 1), withdrawn (δw = 1) or right-censored
(δs = δw = 0). The individual likelihood contribution can in this case be written as:

L = (Ls)δs (Lw)δw (Lc)1−δs−δw , (3)

which can be written as (see Jenkins, 2005):

lnL = ` = [δs ln λs + ln S s] + [δw ln λw + ln S w], (4)
= `A + `B. (5)

Assuming that the correlation between the unobserved heterogeneity of the two competing risks
is zero (i.e. Cov(νs, νw) = 0), the likelihood factorizes into two parts (A and B) and can be maxi-
mized separately. This is done by maximizing the partial likelihood of each competing risk and
treating the other risk as censored (Cameron and Trivedi, 2005). Note that part A only depends
on parameters from the sale hazard rate and survivor function and part B only on parameters from
the withdrawal functions. Assuming the relatively flexible (2-parameter) Weibull distribution as
baseline hazard function with shape parameters ρ j ∈ (0,∞), scale parameters µ j ∈ (0,∞), the log
of the hazard function is given by:

ln[λ j(ti, xi, zi, ν j)] = ln[µi, jρ jt
ρ j−1
i ]. (6)

The log of the survivor function is given by:

ln[S j(ti, xi, zi, ν j)] = ln[exp(−µi, jtρ j )] = −µi, jt
ρ j

i . (7)

The loglikelihood is given by:

`(ti, xi, zi, νs, νw) =

N∑
i

{
δs ln(µi,sρst

ρs−1
i ) + ln(−µi,st

ρs
i )
}

+

N∑
i

{
δw ln(µi,wρwtρw−1

i ) + ln(−µi,wtρw
i )
}

= `A + `B.

(8)

In the case of uncorrelated unobserved heterogeneity, the heterogeneity gets absorbed in the risk-
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specific constants, which are included in βs and βw (part of µi,s and µi,w). The assumption of no
correlated unobserved heterogeneity is made since the focus in the present study is on smaller
markets and the problem of correlated unobserved heterogeneity is expected not to play a ma-
jor role. Also, with correlated unobserved heterogeneity, convergence is much more difficult to
achieve and the estimation takes substantially longer. Section 4.6 includes a robustness check
and provides indices corrected for correlated unobserved heterogeneity. The unobserved hetero-
geneity is assumed to be normally distributed.

Note that even though `A and `B are maximized separately, the sale (withdraw) likelihood
does take withdrawals (sales) into account. For example, when withdrawals would not be taken
into account in `A, the last part of the likelihood, ln(−µi,st

ρs
i ) would be different as this does not

only depend on observations where δs = 1. This impacts the estimated coefficients which are
included in µi,s.

In order for the methodology to work in thin markets, the calendar time-fixed effects are
replaced by a stochastic structure. More specifically, these are modeled as a random walk. The
latter is similar to real estate price applications in Francke and De Vos (2000), Francke (2010),
and Geltner et al. (2018) who allow for a local linear trend, which also includes the random walk
specification. The random walk specification is given by:

ατ, j = ατ−1, j + ετ, j, (9)

where ετ, j ∼ N(0, σ2
ε, j) for τ = 1, ...,T for j = s,w, and with α1 = 0. Note that t represents the

duration to sale/withdraw and τ represents the calendar time period. At this point, it might be
useful to point out that when the random walk structure on α is left out (equivalent to setting σ2

ε, j
to a very large number), the model is a regular survival model with calendar time fixed effects.

The coefficients that need to be estimated in this procedure are α j (calendar time effects), β j
(coefficients on property characteristics), ρ j (shape parameters), and σε, j (signals of α j).

Taking into account withdrawals partly corrects for a censoring problem that occurs. How-
ever, right-censored observations (houses that are still for sale at the end of the sample period)
are removed in the current setup. The reason is that the period in which the sale of withdrawal
will take place is not known yet. An alternative would be to include dummy variables for the pe-
riod the house has been listed (a setup more similar to Carrillo and Pope, 2012). This, however,
causes a downward bias in the coefficients on the dummy variables of the final time periods.
The reason is that only houses that are sold or withdrawn quickly are included in the sample
which drives the estimated TOM for that period down (see Appendix A). Another alternative is
to follow De Wit and Van der Klaauw (2013) and assume that the time of exit is equal to the time
the house was at the market at the end of the sample. The downside of this alternative is that
the “observed” TOMs of these observations will be artificially low, so that this will result in an
upward bias in the calendar-time effects of sold properties at the end of the sample.3

If the problem at hand is to merely control for these fixed effects, this will not pose an issue.
However, in the present study, the interest is on the estimated values of these coefficients (αt,s) as
these form the liquidity index. The downside, however, is that some information is disregarded.
For example, in periods of crisis, an increasing number of houses that remain on the market
also might give a useful indication regarding the market situation. In stable markets, however,
right-censoring should be largely exogenous and therefore should not play a large role.

3The average TOM of the withdrawn observations will be lower at the end of the sample, resulting in a higher index
value of sold observations.
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2.2. Estimation

In order to estimate the model, the parametric Bayesian Proportional Hazard Model of Del-
laportas and Smith (1993) is extended with a stochastic calendar time trend.4 In the estimation
procedure uninformative priors are used: β j ∼ N(0, 10), ρ j ∼ Log-Normal(0, 1), and σε, j ∼ In-
verse Gamma (3, 1).

Markov Chain Monte Carlo (MCMC) techniques are used to evaluate the posterior density.
More specifically, the RStan package is employed that uses the No-U-Turn-Sampler (NUTS)
(Hoffman and Gelman, 2014; Carpenter et al., 2016).5 To determine the mixing and convergence
of the models the R̂ and Neff statistics are used (Van de Minne et al., 2019). Additionally, the
Monte Carlo error, the Heidelberger-Welch stationarity and half-width statistics are examined.
To compare the model fit, the Watanabe Akaike information criterion (WAIC; Watanabe 2010)
and leave-one-out cross-validation statistic (LOO; Vehtari et al. 2017) are considered.

The variables are non-centered reparameterized for estimation purposes (i.e. Matts’ trick;
Betancourt and Girolami, 2015). This implies that instead of sampling α j directly, the innova-
tions in α j are sampled with the prior N(0, 1), these innovations are then multiplied with σε, j
to obtain α j. This drastically improves the computational time and convergence is more easily
achieved. The estimation time depends on the number of observations. On a modern computer
with 4 cores and 32 GB RAM-memory, the estimation time (without correlated unobserved het-
erogeneity) ranges from 2 hours (small market, 2,175 observations) to 24 hours (large market,
113,005 observations).

2.3. Data

The main source of data originates from the Dutch Association of Real Estate Brokers and
Real Estate Experts (NVM). The data contain a large share of housing transactions within the
Netherlands from 2005–2016 including many property characteristics. However, not all houses
transacted or withdrawn are included in this database. Earlier articles that use the NVM database
report a market share of around 75%, (De Wit et al., 2013; Van Dijk and Francke, 2018).

The focus in this paper is on three different types of markets: small, medium and large
markets. The small market is Aalsmeer, representing a situation in which the problem of data
sparsity is large. The medium market is Amstelveen, in which there might be data sparsity prob-
lems during some periods (e.g. in busts). The large market is Amsterdam, in which there are
no data sparsity problems. Although these markets are relatively close in terms of geographical
distance, they can be characterized as different markets. Amsterdam is the largest city in the
Netherlands. Amstelveen is a medium-sized suburban municipality at the southern border of
Amsterdam, whereas Aalsmeer is a small suburban municipality at the southern border of Am-
sterdam. Table 1 includes descriptive statistics of the markets. The small market contains, on

4Although there are non-parametric methods to estimate the hazard function corrected for covariates, it is not clear how
to apply a random walk structure on the coefficients in this case. Moreover, the thinness of the market poses additional
difficulties to estimate the model non-parametrically. Therefore, in this paper parametric methods are applied. Carrillo
and Pope (2012) have looked at the ex ante distribution of the sale probability, conditional on housing characteristics,
in a non-parametric fashion. The analogy in this case would be to include calendar-time dummies that indicate in
which period the house was listed. A more detailed empirical comparison between the presented methodology and the
methodology by Carrillo and Pope (2012) is offered in Appendix A.

5Four parallel chains with different initial values and 2,000 (including 1000 warm-up) iterations per chain are used.
Therefore, the maximum effective sample size is 4,000. In the small market, convergence was more difficult to achieve,
therefore the total number of samples per chain is set to 5,000 (including 2,500 warm-up). The chains are not thinned.
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average per quarter, around 37 sales, the medium market around 187 sales, and the large market
around 1,883 sales. The small market contains approximately 13,000 houses in 2016, of which
around 8,100 (62%) are owner-occupied. The medium market contains 43,000 houses, of which
19,500 (45%) are owner-occupied. Finally, the large market contains 425,000 houses of which
126,000 (30%) are owner-occupied (Statistics Netherlands, 2017).

The data base includes the date the house was put on the market and the date the house was
sold or withdrawn, hence it is possible to infer the TOM. Some houses are withdrawn and almost
immediately relisted. These observations can cause a bias in the indices as the TOM seems
shorter than the true one. Therefore, if a house is relisted within 90 days, the original date of
when the house was put on the market is used to calculate the TOM. When a house is still on
the market at the end of the sample, the property is removed. As mentioned before, this throws
away some information and could give some problems at the end of the sample. For example,
in the beginning of the bust the amount of not yet sold or withdrawn properties might increase.
However, at the end of the sample there are only 16 (small market), 57 (medium market) and 534
(large market) properties not yet sold or withdrawn in the three markets. This is less than 1% of
the total sample size in each market and therefore should not pose a big problem.

The property characteristics for which the liquidity indices are controlled for are log size,
squared log size, dummies for gardens, parking places, landleases, maintenance (bad, normal and
well-maintained), construction period (before 1905, 1906-1944, 1945-1990, 1991-2000, after
2001), and property type (terraced, back-to-back, corner, semi-detached, detached, ground floor
split level apartment, upper floor split level, other apartment).6

Besides these property characteristics, the list price premium is expected to influence the
TOM. Following Genesove and Mayer (2001), Bokhari and Geltner (2011), and Clapp et al.
(2017), the list price premium is defined as the difference between the list price and the estimated
market value of the property at the time of entry.7 The estimated value at the time of entry is
determined by a hedonic price model, which is included in Appendix B. In case a house is
relisted and the list price has been revised, the first known list price is used.8

The average percentage of houses that are withdrawn from the market is fairly similar in the
three markets, around 18%. Over time, however, there are substantial differences in the fraction
of houses withdrawn, ranging from 32% in 2012 to 10% in 2016. The average TOM of both sold
and withdrawn houses is shorter in larger markets. This also holds for the standard deviation.
Interestingly, the standard deviation is also lower when the TOM is shorter for both sold and
withdrawn properties. This indicates that the observed TOMs are more dispersed and possibly
less informative in times of crisis.

Finally, the liquidity indices will be compared to transaction price indices. The transaction
price indices are constructed by estimating a Hierarchical Trend Model (Francke and De Vos,
2000; Francke and Vos, 2004). This method allows to construct price indices in thin markets.
Appendix C includes a more elaborate discussion on the price index estimation procedure.

6Some properties are freehold whereas others and leasehold, this is corrected for by including a dummy-variable in case
the property is leasehold.

7Clapp et al. (2017) actually use the residual of list price on estimated transaction value, controlling for anchoring.
However, this requires a repeat sales framework, which is problematic in the context of thin markets. Furthermore, the
residual would get rid of cyclical variation in the list price premium, which is also a topic of interest in the case of this
study.

8List price reductions might also influence the TOM. See, for example, Merlo and Ortalo-Magne (2004); De Wit and
Van der Klaauw (2013). This issue is outside the scope of this paper and will not be pursued here.
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3. Market liquidity and risk

3.1. Liquidity indices
Three different quarterly liquidity indices are presented for these markets between 2005 and

2016: (i) an index based on the mean TOM of sold properties, (ii) a constant-quality index that
does not contain the random walk structure (i.e. a regular parametric survival model), and (iii) a
constant-quality index that contains the random walk structure. The indices for the three markets
are shown in Figure 2. Notice that a higher index indicates a higher TOM/lower probability of
sale and thus a more illiquid market.

First of all, note the large differences between the indices based on the mean of sold prop-
erties and the two constant-quality indices. Generally, in times when the TOM is increasing,
the constant-quality indices are above the mean indices. This indicates that the mean of sold
properties underestimates market illiquidity during crises. Conversely, when market liquidity is
increasing, the constant-quality indices are below the mean of sold properties. In other words,
not only does it take longer for houses to be sold, the quality of the houses that are sold is dif-
ferent and/or the withdrawal probability is different. This shows the importance to correct for
property characteristics and withdrawals.

Moreover, the mean TOM indices lag behind the constant-quality indices. The start of the
bust is visible earlier in the constant-quality indices than in the mean TOM of sold properties.
Furthermore, the recovery is earlier visible. This phenomenon is most clear in the medium
and large market, but it also holds for the small market. More formally, a Granger causality
analysis shows that the constant-quality random walk index Granger causes the mean TOM of
sold properties at the 1% level.9 This suggests that the leading indicator role that the TOM
generally has for policymakers and brokers may even be stronger if the TOM is corrected for
quality and withdrawals.

There are differences between the index without and with random walk structure. Especially
in the small market, the random walk index contains significantly less noise. Comparing between
the different markets, the results suggest that the difference between the indices becomes smaller
as the markets become larger. Also, when the data contain less noise and are more informative
about market liquidity (i.e. during calm times and in larger markets) the presented methodology
offers similar results to more conventional methods. However, when there is more noise and the
data are less informative (i.e. during crises and in smaller markets), the differences are much
smaller. However, when there is more noise and the data are less informative (i.e. during crises
and in smaller markets), the random walk structure adds substantial value.

Note that since the indices are indexed at 100 in the first time period, this makes it difficult
to compare between the municipalities. By indexing the indices at the unconditional mean (i.e.
the average TOM of sold properties over the whole sample, see Table 1) in the first time period,
the comparison becomes easier. In every quarter, liquidity was highest in the large market, and,
for most of the time, liquidity was lowest in the small market. In all markets, there is an upward
trend in the TOM during the bust, starting in 2008 and lasting until 2013 (Figure 3). The Dutch
housing market started recovering in late 2013, resulting in a higher sale probability and lower
TOM. At the end of the sample, market liquidity surpassed pre-crisis levels. The decrease in
the sale probability during the crisis (2007Q4–2013Q1) was the largest in the large market: the

9The Granger causality analysis is based on a Panel VAR with 2 lags, but the results are robust for lag lengths of 1 to
4 quarters. The Panel VAR is estimated by OLS with heteroscedastic robust standard errors. As the time-dimension is
sufficiently large (48 quarters), the Nickel bias is expected to be negligible and a GMM approach is not necessary.
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sale probability was roughly 5 times smaller 2013Q1 than in 2007Q4. The recovery (2013Q1–
2016Q4), however, was also strongest: the sale probability was more than 6 times larger in
2016Q4 than in 2013Q1.

Figure 2: Two constant-quality illiquidity indices and an index of the mean TOM of sold properties, 2005-2016.

(A) Small market (Aalsmeer)
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(B) Medium market (Amstelveen)
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(C) Large market (Amsterdam)
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Note: a higher index indicates a higher TOM/lower probability of sale and a more illiquid market.
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Figure 3: Comparison of market illiquidity (random walk indices) between the three markets, 2005-2016.
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3.2. Commonality with transaction prices

The link between transaction prices and market liquidity is omnipresent in the literature. For
example, Fisher et al. (2003, 2007) provide a methodology for controlling for varying liquidity
in price indices and it is generally accepted that market liquidity leads transaction price changes
(De Wit et al., 2013; Carrillo et al., 2015; Van Dijk and Francke, 2018). Whereas it is outside
the scope of this paper to create constant-liquidity price indices, this section explores the com-
monality of liquidity and transaction prices (see Van Dijk et al., 2018, for a method to create
constant-liquidity price indices). First, quarterly constant-quality transaction price indices for
the three markets are estimated using a Hierarchical Trend Model (Francke and De Vos, 2000;
Francke and Vos, 2004). These price indices are also constant-quality and are controlled for
by the same property characteristics as the liquidity indices. A more detailed discussion on the
transaction price index estimation is included in Appendix C.

Figure 4 presents the estimated transaction price and liquidity indices for the three markets.
Note the similarity between the development of transaction prices and liquidity. As expected,
illiquidity is higher when prices are low. The contemporaneous correlation between the level
of illiquidity and prices is -0.41. The contemporaneous correlation between the first differences
is -0.55. Furthermore, developments in liquidity foreshadow price developments. The turning
point from boom to bust is around 3 quarters earlier in the liquidity indices compared to the
price indices.10 Moreover, a Granger causality analysis shows that changes in market liquidity
Granger cause changes in prices at the 5% level.11

10The turning point from boom to bust is defined as the first quarter with negative price growth in all three municipalities
(2008Q3) and the turning point from bust to boom is defined as the first quarter with positive price growth the three
municipalities (2013Q2).

11The Granger causality analysis is based on a Panel VAR with 3 lags, but the results are robust for lag lengths 2 to 4
quarters. The Panel VAR is estimated by OLS with heteroscedastic robust standard errors. As the time-dimension is
sufficiently large (48 quarters), the Nickel bias is expected to be negligible and a GMM approach is not necessary.
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Figure 4: Illiquidity (constant-quality and random walk, left axis) and transaction price (right axis) indices, 2005-2017.
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(B) Medium market (Amstelveen)
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(C) Large market (Amsterdam)
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Note: a higher index indicates a higher TOM/lower probability of sale and a more illiquid market.
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3.3. Liquidity risk

Another salient feature of the indices is that there is more variability in market liquidity in
times of crisis. This is also visible in the summary statistics as the standard deviation of the
TOM of all properties is higher during the bust (Table 1). Figure 5 shows indices based on the
9-quarters centered (-4 and +4 quarters) rolling standard deviations of the returns of the constant-
quality random walk indices. These are indexed at the unconditional standard deviation of the
TOM of sold properties over the whole sample (Table 1). The figure indicates that the standard
deviation of the liquidity indices becomes higher in times of crisis as markets become thinner.
In the small market, the increase in risk is visible somewhat earlier than in the other two markets
and seems to recover somewhat more slowly after the crisis. The main picture, however, is that
liquidty risk increases up to the through of 2013Q1 in all three markets. In other words, not only
illiquidity is higher in bad times, but liquidity risk is also higher. These findings are consistent
with the general asset pricing literature in which it is well documented that illiquid stocks and
bonds also entail more liquidity risk (Acharya and Pedersen, 2005; Acharya et al., 2013).

Figure 5: Comparison of market illiquidity risk between the three markets, 2005-2016.
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Note: illiquidity risk indices are based on 9-quarters centered rolling window standard deviation of growth rates of the
random walk indices.

4. Determinants, decomposition, and robustness

This section looks at the (time-varying) determinants of the TOM. The effect on the indices
of withdrawals and quality is disentangled to examine which is most important. Finally, the mag-
nitude of revisions is examined. To what extent do the indices change when new data comes in?
And are there differences in revisions between models that correct for quality and/or withdrawals
and models that do not correct for these? Finally, some robustness checks are performed with
respect to correlated unobserved heterogeneity between withdrawals and sales.

4.1. Determinants of the time on market

The estimated coefficients for the control variables βs and shape parameter ρs are presented in
Table 2. The coefficient estimates are almost equivalent across the estimations (with and without
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random walk). There is a substantial decrease in the WAIC and LOO statistics of the random
walk models in the small and medium market, which indicates that the fit of the random walk
models is better than that of the models without the random walk structure. In the large market,
the index without the structure has a slightly better fit, but the difference is very small. Note
that the coefficients contain the effects on the sale probability, so a positive (negative) coefficient
indicates a positive (negative) effect on sale probability and market liquidity, and a negative
(positive) effect on the TOM. There are substantial differences in the estimates across markets.
It is difficult to attach a causal interpretation to the coefficients. Also, the credible intervals
are quite large, especially in the smaller markets. For example, in the small market almost all
credible intervals for the coefficients include 0. This, however, does not imply that controlling
quality is not important for index construction (see later in section 4.3). In other words, even
though that the individual effects are insignificant in the classical econometric sense, the joint
effect is important for index construction.

Some general patterns on the effect of individual characteristics, consistent with the literature,
seem to arise. For example, apartments, which are usually more homogeneous than other house
types, sell quicker in the medium and large market. Therefore, this notion is consistent with the
finding that the TOM of homogeneous houses is generally shorter than that of heterogeneous
house types that are more atypical (Haurin, 1988).12

A higher list price premium (i.e. the list price is relatively high compared to the estimated
market value at the time of listing), results in a lower probability of sale, hence a higher TOM.
The effect of list price premia will be discussed in more detail in section 4.4.

The estimates of the shape parameter ρ are very similar across the models. For the small
market, the estimate is not significantly different from 1, indicating that the TOM follows a
(negative) exponential distribution in this market. In the medium and large markets, the estimated
shape parameters are 0.96 and 0.90, respectively. This indicates that the probability of sale
decreases as the property remains longer on the market. This finding is consistent with the
results of from De Wit and Van der Klaauw (2013).

The model statistics indicate that the mixing went satisfactorily, the MCMC-error is close to
0 and the the R̂ (not to be confused with the R2) is close to 1. The effective sample size relative
to the number of total samples (4000 in the medium and large market) is close to 1 in the two
largest markets. It is smaller for the small market, but by setting a larger sample size (of 10,000)
the remaining number of samples is large enough to produce reliable results. Both Heidelberger
tests are passed in almost all cases, the value in Table 2 indicates the mean of all tests on all
parameters and every tests gets the value 1 if the test is passed.

12Although atypicality is not explicitly controlled for, controlling for the separate characteristics per submarket has a
similar effect.

16



Table 2: Estimates of the control variables for three different markets in two different models.

Variable βcq p2.5,cq p97.5,cq βrwcq p2.5,rwcq p97.5,rwcq

Small Market
Constant 0.755 -9.262 10.364 0.727 -9.898 10.430
Bad Maint. (Omitted) (Omitted)
Normal Maint. -0.359 -0.545 -0.168 -0.358 -0.544 -0.166
Good Maint. -0.420 -0.661 -0.185 -0.419 -0.644 -0.171
< 1905 (Omitted) (Omitted)
1906 − 1944 -0.442 -1.096 0.228 -0.448 -1.102 0.284
1945 − 1990 -0.550 -1.201 0.117 -0.555 -1.186 0.150
1991 − 2000 -0.669 -1.340 -0.004 -0.678 -1.333 0.025
> 2001 -0.665 -1.304 0.019 -0.652 -1.341 0.016
HT Terraced (Omitted) (Omitted)
HT Back-to-Back -0.457 -0.844 -0.079 -0.450 -0.838 -0.082
HT Corner 0.064 -0.070 0.202 0.062 -0.073 0.201
HT Semi-Detached -0.184 -0.356 -0.019 -0.191 -0.362 -0.030
HT Detached -0.387 -0.605 -0.178 -0.401 -0.608 -0.187
AT Split-Level (Ground or multiple) 0.000 -0.283 0.297 0.015 -0.265 0.305
AT Split-Level (Upper floor) -0.180 -0.472 0.113 -0.191 -0.469 0.093
AT Other -0.049 -0.303 0.191 -0.039 -0.274 0.207
log(size) -1.144 -4.579 2.151 -1.061 -4.353 2.624
log(size)2 0.040 -0.237 0.341 0.030 -0.279 0.317
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Estimates of the control variables for three different markets in two different models (continued)

Variable βcq p2.5,cq p97.5,cq βrwcq p2.5,rwcq p97.5,rwcq

Garden 0.205 0.006 0.415 0.218 0.021 0.406
Parking -0.103 -0.223 0.016 -0.094 -0.211 0.020
Landlease 0.857 -0.137 1.837 0.982 0.000 1.927
List Price Premium -1.875 -2.217 -1.534 -1.850 -2.195 -1.523
ρ 1.001 0.963 1.036 1.005 0.968 1.041
Loglike -11446.8 -11440.8
MCMC-error 0.0027 0.0020
Neff 3310.2 4094.2
Heid. stationarity 1.0000 1.0000
Heid. Halfwidth 0.9886 0.9864
LOO 22952.8 22920.1
WAIC 22952.2 22919.8
R̂ 1.0008 1.0005

Medium Market
Constant -11.601 -13.237 -10.076 -11.310 -12.929 -9.904
Bad Maint. (Omitted) (Omitted)
Normal Maint. -0.352 -0.414 -0.289 -0.352 -0.413 -0.291
Good Maint. -0.352 -0.434 -0.273 -0.355 -0.440 -0.276
< 1905 (Omitted) (Omitted)
1906 − 1944 0.404 -0.022 0.817 0.384 -0.036 0.828
1945 − 1990 0.370 -0.052 0.790 0.348 -0.073 0.793
1991 − 2000 -0.081 -0.497 0.351 -0.102 -0.508 0.364
> 2001 -0.152 -0.580 0.300 -0.174 -0.609 0.279
HT Terraced (Omitted) (Omitted)
HT Back-to-Back -0.739 -0.942 -0.542 -0.741 -0.943 -0.544
HT Corner -0.025 -0.091 0.045 -0.026 -0.096 0.036
HT Semi-Detached -0.565 -0.680 -0.453 -0.560 -0.682 -0.450
HT Detached -1.016 -1.183 -0.829 -1.006 -1.180 -0.828
AT Split-Level (Ground or multiple) 0.137 -0.003 0.282 0.126 -0.016 0.268
AT Split-Level (Upper floor) 0.134 -0.017 0.283 0.126 -0.014 0.279
AT Other 0.222 0.080 0.360 0.217 0.075 0.351
log(size) 1.811 1.387 2.277 1.779 1.366 2.216
log(size)2 -0.108 -0.141 -0.077 -0.106 -0.138 -0.076
Garden 0.112 -0.015 0.233 0.111 -0.010 0.238
Parking -0.273 -0.332 -0.210 -0.270 -0.330 -0.210
Landlease 1.397 0.813 2.074 1.377 0.729 1.962
List Price Premium -1.793 -1.915 -1.656 -1.785 -1.911 -1.650
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Estimates of the control variables for three different markets in two different models (continued)

Variable βcq p2.5,cq p97.5,cq βrwcq p2.5,rwcq p97.5,rwcq

ρ 0.960 0.944 0.975 0.960 0.945 0.975
Loglike -54903.0 -54902.2
MCMC-error 0.0012 0.0010
Neff 3829.4 3956.4
Heid. stationarity 1.0000 1.0000
Heid. Halfwidth 0.9999 0.9985
LOO 109891.0 109875.3
WAIC 109890.3 109874.4
R̂ 1.0001 0.9999

Large Market
Constant -1.953 -2.167 -1.744 -1.971 -2.193 -1.750
Bad Maint. (Omitted) (Omitted)
Normal Maint. -0.302 -0.326 -0.278 -0.302 -0.325 -0.278
Good Maint. -0.284 -0.311 -0.258 -0.284 -0.310 -0.258
< 1905 (Omitted) (Omitted)
1906 − 1944 0.102 0.083 0.122 0.102 0.082 0.123
1945 − 1990 -0.163 -0.187 -0.141 -0.163 -0.186 -0.137
1991 − 2000 -0.213 -0.242 -0.185 -0.212 -0.242 -0.183
> 2001 -0.320 -0.355 -0.288 -0.320 -0.355 -0.285
HT Terraced (Omitted) (Omitted)
HT Back-to-Back -0.105 -0.241 0.038 -0.106 -0.242 0.025
HT Corner -0.038 -0.091 0.013 -0.040 -0.090 0.012
HT Semi-Detached -0.117 -0.206 -0.030 -0.118 -0.203 -0.030
HT Detached -0.382 -0.473 -0.293 -0.383 -0.477 -0.292
AT Split-Level (Ground or multiple) 0.154 0.124 0.185 0.154 0.124 0.186
AT Split-Level (Upper floor) 0.199 0.167 0.232 0.198 0.165 0.232
AT Other 0.138 0.101 0.171 0.137 0.102 0.172
log(size) -0.656 -0.714 -0.595 -0.656 -0.719 -0.596
log(size)2 0.035 0.031 0.040 0.035 0.031 0.040
Garden 0.126 0.102 0.148 0.126 0.104 0.151
Parking -0.277 -0.303 -0.251 -0.277 -0.301 -0.252
Landlease 0.100 0.084 0.115 0.100 0.084 0.115
List Price Premium -1.571 -1.611 -1.531 -1.571 -1.610 -1.532
ρ 0.901 0.897 0.906 0.901 0.897 0.906
Loglike -537074.8 -537074.8
MCMC-error 0.0003 0.0003
Neff 3899.0 3980.7
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Estimates of the control variables for three different markets in two different models (continued)

Variable βcq p2.5,cq p97.5,cq βrwcq p2.5,rwcq p97.5,rwcq

Heid. stationarity 0.9989 0.9934
Heid. Halfwidth 1.0000 1.0000
LOO 1074227.8 1074237.5
WAIC 107228.4 1074238.0
R̂ 0.9999 0.9999

Dependent variable is the probability of sale, a positive coefficient indicates a positive effect on this probability. βcq
and βcq,rw are the coefficient estimates of the constant-quality model and constant-quality model with random walk,
respectively. The 95% HPD intervals are given by P2.5 and P97.5. HT = House type, AT = Apartment type. Loglike
is the log-likelihood, MC-error the mean of Monte Carlo standard error for all parameters, Neff the mean effective
sample size (total number of samples = 4000 and 4000 warm-up) of all parameters, Heidelberger-Welch station-
arity/Halfwidth is the mean of the test of all parameters (a parameter gets the value 1 (0) when the test is passed
(failed) at the 5% level). The WAIC is the Watanabe Akaike information criterion and the LOO is leave-one-out
cross-validation statistic. Finally, R̂ is the mean Rhat statistic for all parameters.
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4.2. Time-varying effect of list price premium

Theoretically, every coefficient on property characteristics can be made (calendar) time-
varying. Practically, model identification becomes much more complicated and simulation and
sampling becomes more time-consuming. Additionally, having more observations makes it eas-
ier to identify a time-varying effect. For illustration purposes, the coefficient on the list price
premium, i.e. the premium of the original list price over the predicted list price (based on a hedo-
nic regression), has been made time-varying in the large market (Amsterdam). A more detailed
description of the definition of this variable is included in Appendix B. Similar to the time-fixed
effects, the time-varying coefficient on the list price premium is structured to follow a random
walk.

Figure 6: Time-varying effect of list price premium and 95% HPD intervals (top panel) and the marginal effect (bottom
panel) in the large market (Amsterdam), 2005-2016.
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The likelihood takes a similar form as that of Equation 8. The main difference is that the
location parameters are now equal to: µi, j = exp(xiβ j + ziα j + liγ j + ν j) ∈ (0,∞), for j = s,w.
Besides the parameters as discussed in section 2.1, li is a (T − 1) row-vector containing the list
price premium (scalar) multiplied with a (T − 1) selection row-vector (which is 1 at the quarter
of withdrawal / sale and 0 otherwise). Next, γ is a (T − 1) vector containing the time-varying
effects of the list price premium. The effect of the list price premium is also assumed to follow a
random walk:

γτ, j = γτ−1, j + ητ, η ∼ N(0, σ2
η, j). (10)

The additional coefficients that need to be estimated are the signals of γ j (ση, j) and the innova-
tions in γ j. For the signal and innovations uninformative priors are used: ση, j ∼ Inv Gamma(3, 1)
and N(0, 1), respectively. The initial value (γ1, j) is equal to the estimated effect of the model
without time-variation in the parameters (i.e. the unconditional mean of the effect).

The estimated time-varying effect of the list price premium in the large market is shown in
the top panel of Figure 6. Similar to Table 2, the list price premium has a negative effect in all
time periods. This indicates that a higher list price premium leads to a lower probability of sale.
The effect is somewhat smaller during the bust and starts increasing close to the end of the bust
after which it starts increasing again. However, since the list price premium itself is also likely to
exhibit cyclical behavior (see section 4.4), it is more informative to look at the effect multiplied
with the average list price premium of sold properties per time period (bottom panel in Figure
6). This shows that the effect on sales probability becomes more negative during the bust since
the list price premia are higher during this time.

Starting in 2014, the strong recovery of the Amsterdam market is clearly visible. Especially
close to the end of the sample an interesting phenomenon is visible. The average list price
premium decreases, whereas the effect on sales probability also decreases. The average list price
premium actually turns into an average list price discount starting in 2015. The reason is the
huge demand relative to supply. This results in a different behavior of sellers than usual. Koster
and Rouwendal (2017) state that a better strategy in these times is to set a relatively low list price,
as this results in both a quicker sale and higher transaction price. This strategy, however, only
works in an extremely booming market. According to the Dutch Central Bank, the Amsterdam
market was showing signs of overheating in 2015 and 2016 (Hekwolter of Hekhuis et al., 2017).

The result is an increase in the total (multiplied) effect (i.e. a less negative or even positive
effect). Therefore, this time-varying coefficient on the list price premium, in combination with
the average list price premium, could potentially be used as an indicator to spot overheating
markets.

4.3. Decomposition of effects: the effect of quality and withdrawals

Apart from the fact that the mean TOM is noisy in thin markets, the proposed methodology
corrects the mean TOM for two features: (i) quality and (ii) withdrawals. The aim of this section
is to disentangle these effects and to determine their respective importance. To examine the effect
of quality, an index (with random walk structure) is estimated without the control variables. To
examine the effect of withdrawals, an index (with random walk structure) is estimated for sold
properties only. In this case, `A of the likelihood in Equation 8 without the last part, ln(−µi,st

ρs
i ), is

maximized. This index is subsequently compared to an index that controls for both withdrawals
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and housing quality.13

The results for the small, medium, and large market are shown in Figure 7. In all three
markets the constant-quality indices are more similar to the indices corrected for withdrawals
only than the indices corrected for quality only. Hence, withdrawals seem to be the major driver
of differences. This is in line with the findings of Carrillo and Pope (2012).

Although the effect of quality is smaller than the effect of withdrawals, the effect of quality
is still substantial. Furthermore, the influence of quality differs over the cycle. The percentage
differences between the constant-quality indices and withdrawal-only controlled indices in levels
are plotted in Figure 8. The largest difference is 17% (in 2016Q4 in the small market). The results
further indicate that the indices controlled for withdrawals and quality predict a more illiquid
market during busts than indices controlled for withdrawals only. More formally, a regression
of the dummies for the three depicted periods in Figure 8 on the difference between the indices
yields statistically significant (at 1%) coefficients on the bust dummy compared to the two other
periods. The average difference between boom (either the first or second) and bust ranges from
3.5% to 7.1%. This indicates that illiquidity according to the constant-quality indicator was
actually worse than illiquidity according to the indicator not corrected for quality. This in turn
implies that housing quality differs over the cycle: in busts different quality properties sell than
during booms. The conjecture that quality is different in busts and booms has also been put
forward in Clapp et al. (2017).

Although differences in quality play a role, a very large part of the difference between the
mean TOM and the constant-quality indices can be accounted for by only correcting for with-
drawals. A big advantage of not controlling for property characteristics is that it simplifies the
estimation and that the the computational time decreases by about 60%. For some applications
this might be an interesting alternative.

13But not for the list price premium to isolate the effect of quality.
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Figure 7: Decomposition of effects.
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(B) Medium market (Amstelveen)
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(C) Large market (Amsterdam)
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Note: a higher index indicates a higher TOM/lower probability of sale and a more illiquid market.
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Figure 8: Difference in illiquidity due to quality.

(A) Small market (Aalsmeer)
20

05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

−0.2

−0.1

0

0.1

0.2

←− Bust −→

M
or

e
ill

iq
ui

di
ty

in
in

de
x

co
rr

ec
te

d
fo

rq
ua

lit
y Difference in illiquidity due to quality Average

(B) Medium market (Amstelveen)
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(C) Large market (Amsterdam)
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Note: a bigger (positive) difference indicates a higher TOM / more illiquidity in the index corrected for quality compared
the the index not controlled for quality.
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4.4. Decomposition of effects: the effect of list price premium

Although the list price premium is based on the estimated market value at the time of entry,
there might be concerns that the list price itself is endogenous to the TOM. Therefore, this sub-
section is devoted to indices that do not contain the list price premium as independent variable.
Indices controlled for and not controlled for the list price premium are shown in Figure 9, while
the differences between the indices are depicted in Figure 10.

In the small market, the differences between the indices are not structural over the cycle
(Figure 10). A regression of the difference on the boom dummy variables and bust dummy
yields insignificant coefficients. However, in both the medium and large market the differences
are significant and follow a similar pattern over the cycle. In busts, the illiquidity is lower in the
indices that are corrected for the list price premium, than in booms. This indicates that indices
corrected for the list price premium are less cyclical than the uncorrected indices. This reflects
that list price behavior of sellers is cyclical as well (see bottom panel of Figure 6). Obviously, for
the large market, there is a strong similarity between the index differences and the time-varying
effect of the list price premium as shown in Figure 6 in section 4.2.

Setting the list price too high during busts is more likely to occur if homeowners are loss
averse (Genesove and Mayer, 2001; Clapp et al., 2017). This has also been documented for the
Dutch market (Van der Cruijsen et al., 2018). In other words, by not controlling for the list price
premium, the indices are more cyclical as these will pick up some of the cyclicality of the list
price behavior. The question of whether to control for the list price premium depends on the
problem at hand. For example, a policymaker who wants to identify boom and bust cycles might
want to use the indices not controlled for the list price premium as the identification of these
cycles becomes easier.
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Figure 9: Illiquidity indices with and without list price premium, 2005-2016.
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(B) Medium market (Amstelveen)
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(C) Large market (Amsterdam)
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Note: a higher index indicates a higher TOM/lower probability of sale and a more illiquid market.
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Figure 10: Difference in illiquidity due to list price premium, 2005-2016.

(A) Small market (Aalsmeer)
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(B) Medium market (Amstelveen)
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(C) Large market (Amsterdam)
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Note: a bigger (positive) difference indicates a higher TOM / more illiquidity in the index corrected for the list price
premium compared the the index not controlled for the list price premium.
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4.5. Revisions

Revisions are changes that occur to previous values of an index when new data comes in.
The magnitude of revisions is a useful measure for the quality of an index. This reflects both
the precision of an index as well as the practical usefulness for businesses and policy purposes
(Van de Minne et al., 2019).14 The expectation is that the magnitudes of the revisions are larger
for thinner markets, as new data will be relatively more influential in these markets. By intro-
ducing the random walk structure, the expectation is that the magnitude of the revisions will be
smaller.

I use a similar measure for the maginitude of revisions as Van de Minne et al. (2019). More
specifically, indices without data on the last year (2016) are estimated and these are compared to
the baseline indices that are estimated on all data. Next, the absolute difference between both the
levels (in percentage difference) and returns (in percentage points) are examined for the whole
sample. Statistics for the magnitude of revisions is shown in Table 3.

In general, the absolute average revisions (|Mean|) are substantially smaller for the indices
estimated with a random walk structure. In levels, the magnitude of revisions is almost 4 times
smaller for the RWCQ model compared to the model without random walk. This holds for all
three markets. In returns, the magnitude is 3 times smaller in the small market, 2 times smaller
in the medium market and roughly the same in the large market. Also, the maximum size of
the revision is much smaller in the random walk indices than in the indices without the random
walk assumption. Another feature is that the size of the revisions becomes larger as the market
becomes smaller. This holds for both levels and returns. The reason is most likely that new data
will be relatively more influential in these markets.15

Finally, in the two largest markets, there are no substantial differences in the degree of revi-
sions between the three models that contain a random walk structure. The random walk indices
not corrected for quality (but for withdrawals) seem to exhibit somewhat fewer revisions in the
small and medium markets, but the difference is very small. In other words, controlling for
quality or withdrawals does not result in extra revisions.

14Van de Minne et al. (2019) examine revisions in a repeat sales framework, in which revisions play a larger role than in
a hedonic framework. The presented liquidity indices in the current study are estimated in a hedonic-like framework,
but there still might be substantial revisions due to the thinness of some markets.

15In fact, even if the number of new observations is small in a thin market, these new observations will affect the signal
more than the noise, so that the indices are more prone to change. See Van de Minne et al. (2019) for a more detailed
discussion and simulations of revisions with respect to the signal-to-noise ratio.
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Table 3: Summary statistics of revisions.

Small Market
CQ RWCQ RW RWCQNC

Levels
Mean -0.055 0.008 0.011 -0.080
Std. Dev. 0.045 0.027 0.021 0.057
|Mean| 0.061 0.016 0.014 0.084
|Max| 0.141 0.133 0.106 0.183
Returns
Mean -0.006 0.002 0.002 0.001
Std. Dev. 0.045 0.014 0.010 0.034
|Mean| 0.034 0.011 0.007 0.028
|Max| 0.113 0.045 0.044 0.095

Medium Market
Levels
Mean -0.038 0.010 0.005 0.004
Std. Dev. 0.009 0.008 0.005 0.007
|Mean| 0.038 0.010 0.005 0.006
|Max| 0.052 0.024 0.019 0.027
Returns
Mean -0.001 0.000 0.000 0.000
Std. Dev. 0.011 0.005 0.004 0.004
|Mean| 0.007 0.004 0.003 0.003
|Max| 0.037 0.012 0.012 0.011

Large Market
Levels
Mean -0.009 -0.001 -0.002 -0.001
Std. Dev. 0.002 0.002 0.002 0.002
|Mean| 0.009 0.002 0.002 0.002
|Max| 0.013 0.005 0.006 0.005
Returns
Mean 0.000 0.000 0.000 0.000
Std. Dev. 0.002 0.003 0.003 0.002
|Mean| 0.002 0.002 0.002 0.002
|Max| 0.008 0.009 0.011 0.005

Revisions over 2005Q1–2015Q4 w.r.t. an extra year of data (2016Q1–
2016Q4). A revision in levels is defined as the percentage difference be-
tween the two index levels, in returns it is the percentage point difference in
returns. CQ constant-quality model without random walk structure, RWCQ a
constant-quality model with random walk structure, RW is a model with ran-
dom walk structure and not controlled for quality differences, and RWCQNW
is constant-quality model with random walk structure but not controlled for
withdrawals.

4.6. Correlated unobserved heterogeneity

A parametric specification is used for the unobserved heterogeneity term (ν j, which is part of
µ j in equation 8). More specifically, a similar specification as in Cameron and Trivedi (2005) is
used:

ν1 = ε1 + ω1,2ε2, (11)
ν2 = ω2,1ε1 + ε2, (12)

ε j ∼ N(0, σ2
j ), j = s,w. (13)
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Here subscript j denotes sale ( j = 1) and withdrawal ( j = 2) . The factor loadings ω1,2 and ω2,1
and the variances σ2

1 and σ2
2 are estimated. The factor loadings are sampled with prior N(0,1)

and the standard deviations with Inverse Gamma(3, 1) priors. If the factor loadings ω1,2 and ω2,1
are non-zero, the unobserved heterogeneity terms are correlated. The posterior estimates of the
factor loadings and standard deviations are included in Table 4.

Since the credible intervals are quite large, there is little evidence of correlated unobserved
heterogeneity. Consequently, the indices estimated with correlated unobserved heterogeneity
are very similar to those estimated without correlated unobserved heterogeneity (Figure 11).
The reason is probably that the markets are relatively small and homogeneous (even the large
market is quite homogeneous), thus the unobserved heterogeneity component should be small.
Therefore, practically, it is more convenient to estimate the model without correlated unobserved
heterogeneity (i.e assume ω1,2=ω2,1=0) as only the partial likelihood has to be evaluated. As
discussed in section section 2.2, this substantially reduces computation time.

Table 4: Posterior means and 95% HPD intervals for the factor loadings and standard deviations of the unobserved
heterogeneity components.

Small market Medium market Large market
Mean p2.5 p97.5 Mean p2.5 p97.5 Mean p2.5 p97.5

ω1,2 0.013 -3.894 3.868 0.013 -3.878 4.068 0.028 -3.831 3.780
ω2,1 -0.063 -3.834 3.816 0.012 -3.863 3.804 -0.117 -3.999 3.895
σ1 0.481 0.139 1.488 0.489 0.137 1.513 0.483 0.137 1.522
σ2 0.515 0.138 1.864 0.475 0.136 1.389 0.466 0.138 1.327

Mean denotes the posterior mean. p2.5 and p97.5 denote the lower (2.5%) and upper bound (97%)
of the 95% credible intervals, respectively.
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Figure 11: Illiquidity indices with and without correlated unobserved heterogeneity, 2005-2016.
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(B) Medium market (Amstelveen)
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(C) Large market (Amsterdam)
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Note: a higher index indicates a higher TOM/lower probability of sale and a more illiquid market.
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5. Conclusion

In this paper a methodology is presented that allows for the construction of constant-quality
liquidity indices when transaction data is sparse. These indices can be useful for policymakers,
brokers, and other market participants. The presented methodology addresses the problem that
heterogeneous properties are traded in different periods. Furthermore, in some periods more
properties are withdrawn than in others. The latter issue is treated as a censoring problem and is
explicitly taken into account in the methodology.

The results show that simply taking the mean of the TOM of sold properties underestimates
(overestimates) market liquidity in good (bad) times. In other words, the quality of the properties
that are sold is higher and/or the probability of withdrawal is different. Moreover, the constant-
quality indices lead the mean TOM of sold properties. This indicates that the leading indicator
properties of constant-quality liquidity indices are better than those of indicators currently used.

One of the main advantages of the presented method is that it can also be used in thin markets
or in times of high uncertainty. In more dense markets or during “normal” times, the method is
similar to more conventional methods. In times of high uncertainty, indices produced by conven-
tional methods are unreliable. The proposed methodology induces a structure that allows to also
create reliable indices in these times. Also, the method provides indices that are less sensitive for
revisions than more conventional techniques. The magnitude of revisions is substantially smaller
when a random walk structure is introduced. Revisions are larger for thinner markets, but the
added value of the random walk structure is also larger.

It is shown that during busts the TOM is high and market liquidity is low. Furthermore, it
is shown that the constructed liquidity indices and transaction price indices move similarly over
the cycle. Consistent with the literature, liquidity changes lead price changes. A novel finding,
consistent with the general asset pricing literature, is that liquidity risk is also higher in busts. A
suggestion for future research is to delve further in this issue. Liquidity risk, for example, can
potentially be modeled in a more sophisticated way. The volatility of the dummy variables can be
modeled as a stochastic process itself (i.e. stochastic volatility). This could give more accurate
insights in liquidity risk. However, this might result in additional difficulties in the identification
of the model.

The methodology also allows for an examination of the determinants of market liquidity.
The effects of housing characteristics are in general not equal across different regions. More
homogeneous housing types like apartments generally sell quicker. A higher list price premium
(i.e. a higher list price compared to the predicted list price) is related to a lower sale probability.
The effect is shown to be varying over time; in busts both the average list price premium and the
total effect on sale probability increase. Since 2015, the list price premium turns, on average, into
a list price discount. The reason is that sellers change their behavior due to the extreme tightness
of the market.

The presented methodology corrects for both quality and withdrawals. The results suggest
that withdrawals are the main driver of the difference between the average TOM of sold proper-
ties. Quality, however, also plays a significant role. The results suggest that the quality of sold
properties is different over the cycle. Nevertheless, correcting for withdrawals is the most impor-
tant issue. By not controlling for quality, the estimation procedure is much quicker. Therefore,
for some applications correcting only for the number of withdrawals might be enough.
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Appendix A Comparison with Carillo and Pope (2012)

This appendix offers a comparison of the presented methodology with indices produced by ap-
plying the non-parametric methodology of Carrillo and Pope (2012) (henceforth CP). The CP-
method is very useful for large markets and can be estimated quickly. However, in smaller
markets the method provides somewhat noisy estimates.

The methodology takes the Kaplan-Meier estimator as basis to estimate the (empirical) cu-
mulative distribution functions and survivor functions for each time-period (Kaplan and Meier,
1958). Properties that are sold are treated as “failure” in Kaplan-Meier terminology and prop-
erties that are withdrawn from the market or those that are still on the market are treated as
“censored”.

In order to create an index, quantiles of these distributions are linked. It might be illumi-
nating to consider an example with two years. First, TOM distributions of listed properties for
both years are estimated using the Kaplan-Meier estimator. Next, the median TOM of each dis-
tribution is taken. The line between these medians represents a liquidity index. The index can in
principle be estimated for each point in the distribution. Note that the Kaplan-Meier estimate of
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the distribution does not take individual property characteristics into account. Therefore, the dis-
tributions are also estimated using a weighted Kaplan-Meier estimate. These will subsequently
result in constant-quality liquidity indices. CP propose an extenstion to the methodology of Di-
Nardo et al. (1996) (DFL), in which the DFL-decomposition is combined with the Kaplan-Meier
estimator to allow it to work with censored variables. The weights of the weighted Kaplan-Meier
estimator are based on the degree of similarity between the property in question and properties
in the reference year. Intuitively speaking, more (less) weight is attached to properties that are
more (less) similar to properties in the reference quarter. The weights are estimated by estimat-
ing a logit on the properties sold or withdrawn in the reference quarter and the properties sold or
withdrawn in the quarter in question. The dependent variable in this logit takes 1 if the property
is sold or withdrawn in the reference quarter. The independent variables are housing character-
istics.16 Therefore, the predicted probabilities of this logit provide a measure of how similar a
property in a given quarter is to properties from the reference quarter (a higher predicted value
indicates more similarity).

When the reference quarter and the comparison quarter consists of many observations, the
estimated logit will provide sensible results. However, when there are few transactions, the logit
is based on too few observations and the coefficients become unstable. Another difference with
the presented methodology is that the methodology of CP looks at the ex ante distribution of the
TOM. In other words, the average TOM of the quarter when the house was listed is calculated.
This obviously results in indices that are leading compared to indices based on the average TOM
of the quarter when the house was sold. However, this also means that close the end of the
sample, the data will only include properties that are sold or withdrawn quickly. In quarter N-1
there will only be properties that are sold or withdrawn in quarter N-1 or N. Hence, the indices
will be biased downwards if these are estimated in the final years of the sample.

A comparison between the indices based on the CP methodology and the presented method-
ology in this study with random walk structure is included in Figure A.1. Note that the CP
indices indicate the ex ante sale probability, hence the the expected TOM of a house in the period
the house was listed. The indices based on the methodology from this study are based on the
realized sale probability, or the TOM of the period in which the house was sold or withdrawn.
The obvious consequence is that the CP indices seem to lead to indices based on the presented
methodology for most of the sample, but the x-axes are not the same.

In the small market it proves to be rather problematic to estimate constant-quality liquidity
indices with the CP methodology. However, in the medium, and especially in the large market,
the results are much more comparable (Figure A.1).

16The control variables are the same as in the presented Bayesian methodology: log size, log size squared, dummies
for gardens, parking places, landleases, maintenance (bad, normal and well-maintained), construction period (before
1905, 1906-1944, 1945-1990, 1991-2000 after 2001), and property type (terraced, back-to-back, corner, semi-detached,
detached, ground floor split level apartment, upper floor split level, other apartment), and list price premium.
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Figure A.1: Comparison between constant-quality random walk illiquidity indices and Carillo and Pope (2012).
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(B) Medium market (Amstelveen)
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(C) Large market (Amsterdam)

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

50

100

150

200

250

300

Period of sale in constant-quality, RW index / Period of listing in CP index

M
ar

ke
ti

lli
qu

id
ity

(2
00

5Q
1=

10
0)

Constant-quality, RW CP

37



Appendix B Estimated transaction price at time of entry

To determine the expected transaction price at time of entry, a hedonic price model is es-
timated. Transaction prices are modeled as a function of housing characteristics that are also
included as controls in the liquidity indices. The model is estimated separately for each munici-
pality and includes dummies for the quarter of sale. The predicted values of this model (with the
dummy for quarter of sale replaced by the value it entered the market) represent the estimated
transaction price. Note that it is also possible to estimate the expected transaction price of houses
that are eventually withdrawn.

The estimated coefficients for each market are included in Table B.1. As the model is used for
the calculation of one control variable only (list price premium), the coefficients are not discussed
in detail. Most coefficients have the expected sign and are significant. Although the analysis of
this study focuses on houses sold or withdrawn between 2005 and 2016, it might be the case the
house was listed before this period. Therefore, in order to determine the market value at time of
entry, the hedonic model is estimated using all observations some of which are also sold prior
to the period of interest. Therefore the recorded number of observations per municipality in this
Appendix are somewhat different than those reported in Table 1.

Table B.1: Hedonic estimation of the coefficients on log transaction price.

Small Market Medium Market Large Market
Variable β t β t β t
Constant 4.29 21.9 9.94 114.3 3.2 110.9
Bad Maint. (Omitted) (Omitted) (Omitted)
Normal Maint. 0.10 10.0 0.11 28.2 0.1 73.4
Good Maint. 0.18 15.1 0.24 46.9 0.2 117.1
< 1905 (Omitted) (Omitted) (Omitted)
1906 − 1944 -0.07 -1.5 0.22 4.8 0.0 -27.5
1945 − 1990 -0.05 -1.2 -0.07 -1.6 -0.1 -44.0
1991 − 2000 0.07 1.4 0.26 5.5 0.0 0.0
> 2001 0.10 2.2 0.34 7.2 0.0 -7.2
HT Terraced (Omitted) (Omitted) (Omitted)
HT Back-to-Back 0.19 6.4 0.27 15.0 0.1 7.1
HT Corner 0.05 8.1 0.06 12.8 0.0 9.0
HT Semi-Detached 0.19 19.0 0.39 39.6 0.2 27.0
HT Detached 0.36 27.0 0.72 47.3 0.3 33.0
AT Split (GF) 0.05 3.4 -0.39 -41.5 -0.1 -49.1
AT Split (UF) 0.00 -0.1 -0.41 -45.2 -0.1 -39.3
AT Other -0.03 -1.8 -0.44 -57.9 -0.1 -51.6
log(size) 1.76 33.7 0.31 17.0 2.0 412.9
log(size)2 -0.10 -32.2 -0.02 -16.7 -0.1 -383.8
Garden 0.01 0.9 0.00 0.6 0.1 51.5
Parking 0.10 13.6 0.16 35.1 0.1 46.2
Landlease -0.04 -1.0 -0.58 -11.0 0.0 -9.3
Market conditions Quarter of sale dummies
Location ZIP-code dummies
Observations 3,667 21,405 143,299
R2 0.9143 0.9096 0.9243
RMSE 0.1477 0.1943 0.1816

HT = House type, AT = Apartment type, GF = Ground floor, UF, Upper floor.

Appendix C Transaction prices indices

The transaction price indices are estimated using a hedonic model. More specifically, the
indices are estimated using a Hierarchical Trend Model (HTM) (Francke and De Vos, 2000;
Francke and Vos, 2004). This model is well-suited to estimate constant-quality price indices in
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thin markets and is also used in Van Dijk and Francke (2018) to estimate quarterly transaction
price indices in the Netherlands. The hedonic regression is performed for the COROP-region
in which the three municipalities are located.17 The common COROP-trend is modeled as local
linear trend and the municipal trends are modeled as a random walk. The HTM is defined as
(Francke and Vos, 2004):

yt = iµt + Dϑ,tθt + Xtβ + εt, εt ∼ N(0, σ2
εI), (C.1)

µt+1 = µt + κt + ηt, ηt ∼ N(0, σ2
η), (C.2)

κt+1 = κt + ζt, ζt ∼ N(0, σ2
ζ ), (C.3)

θt+1 = θt +$t, $t ∼ N(0, σ2
$I). (C.4)

Here yt is a vector of log selling prices. Next, µt is the common trend of the COROP-region,
vector θt contains the municipal-specific trends, and matrix D is a selection matrix of the munic-
ipality. Finally, Xt is a vector with house characteristics with coefficients β.

Results of coefficient estimates of the housing characteristics are shown in first two columns
of Table C.1. As this estimation is only performed to calculate the price indices that are used in
one subsection, the coefficients are not discussed in detail. All coefficients, however, have the
expected signs and the fit is satisfactory. The transaction price indices for the three municipalities
are the sum of the common trend (of the COROP-region) and the municipal trend. These indices
are presented in Figure 4.

17A COROP-region is the Dutch equivalent of an MSA, it is however much smaller in geographical and population size.
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Table C.1: Hedonic (HTM) estimation of the coefficients on log transaction price.

Transaction price
Variable β t

Bad Maint. (Omitted)
Normal Maint. 0.097 45.0
Good Maint. 0.194 77.5
< 1905 (Omitted)
1906 − 1944 -0.117 52.8
1945 − 1990 -0.388 155.7
1991 − 2000 -0.235 81.2
> 2001 -0.252 79.9
HT Terraced (Omitted)
HT Back-to-Back 0.130 17.5
HT Corner 0.022 7.6
HT Semi-Detached 0.132 33.8
HT Detached 0.231 46.1
AT Split-Level (Ground or multiple) 0.113 40.7
AT Split-Level (Upper floor) 0.117 37.1
AT Other 0.025 7.9
log(size) 2.148 298.1
log(size)2 -0.120 215.2
Garden 0.067 26.4
Parking 0.067 33.4
Landlease -0.110 64.8
Market conditions Common trend (Local Linear Trend)
Location Muncipal trends (Random Walk)
Observations 132243
R2 0.7871
RMSE 0.2239

HT = House type, AT = Apartment type
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