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Abstract

A new framework for the joint estimation and forecasting of dynamic Value-at-Risk
(VaR) and Expected Shortfall (ES) is proposed by incorporating intraday information
into a generalized autoregressive score (GAS) model, introduced by Patton, Ziegel and
Chen (2019) to estimate risk measures in a quantile regression setup. We consider four
intraday measures: the realized volatility at 5-min and 10-min sampling frequencies,
and the overnight return incorporated into these two realized volatilities. In a forecast-
ing study, the set of newly proposed semiparametric models is applied to 4 international
stock market indices: the S&P 500, the Dow Jones Industrial Average, the NIKKEI
225 and the FTSE 100, and is compared with a range of parametric, nonparametric
and semiparametric models including historical simulations, GARCH and the original
GAS models. VaR and ES forecasts are backtested individually, and the joint loss
function is used for comparisons. Our results show that GAS models, enhanced with
the realized volatility measures, outperform the benchmark models consistently across
all indices and various probability levels.
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1. Introduction

From the perspective of financial risk managers, a risk measure can be considered a map
from the space of probability distributions to real numbers. Risk measures can provide banks
and financial institutions with specific values of potential losses so that risk managers can
adjust their capital reserves against the downside risk. Value-at-Risk (VaR) and Expected
Shortfall (ES) are two prevailing measures of financial risk that dominate contemporary
financial regulation. VaR provides banks and investment institutions with a loss level that

occurs in the worst situation at a given confidence level, and it can be defined as:
VaRi=inf{y, € R|Fy(y:|Fi-1) > a},

where Fy(:|%,_1) is the cumulative distribution function of asset returns y, over a horizon
given the information set .%; 1, and a € (0,1) is a given significance level. As a quantile,
VaR can be expressed directly in terms of the inverse cumulative distribution function:
VaR® = Fy''(a|%;_1), and as a risk measure, it has the advantage of being intuitive and
easily understood.

However, VaR has inherent deficiencies as it ignores the shape and structure of the tail and
is not a coherent risk measure in the sense of Artzner et al. (1999). Thus, after the financial
crisis of 2007-08, the Basel Committee on Banking Supervision has proposed a transition
from VaR with a confidence level of 99% to ES with a confidence level of 97.5% (Basel
Committee on Banking Supervision, 2013). ES is the expectation of returns, conditional on

its realization lying below VaR, and it can be defined as:
ES?EE[yt’yt S VCLRta, rg.t_l]:

ES is a coherent risk measure (Roccioletti, 2015), and it has been suggested as an alternative
to VaR in risk management applications due to its superior mathematical properties.

Normally, ES is estimated via a two-stage approach based on VaR estimation. Whilst
ES is itself not elicitable, Fissler, Ziegel and Gneiting (2016) have shown that the pair
(VaRy, ESY) is elicitable (see also Acerbi and Székely, 2014). This means that ES can be
estimated jointly with VaR by minimizing a loss function (Ziegel, 2016; and Fissler and
Ziegel, 2016).

Following the classification of Engle and Manganelli (2004), models in the current litera-
ture on estimating and forecasting risk measures can be divided into three main categories:
parametric, nonparametric and semiparametric models. Previous studies using parametric

models to predict VaR and ES assume that financial returns follow a certain distribution,



such as the standard normal (Gaussian) distribution. In reality, however, it is hardly rea-
sonable to make such strong assumptions. Nonparametric models do not make assumptions
about the distribution of financial returns, and have the advantage of being model free. While
it is not necessary for such models to make a distributional assumption, an inherent problem
is the difficulty in finding the optimal size of the estimation window (Engle and Manganelli,
2004). Semiparametric models impose a parametric structure on the dynamics of VaR and
ES through their relationship with lagged information, but require no assumptions on the
conditional distribution of financial returns (Patton, Ziegel and Chen, 2019).

Quantile regression, as an approach for estimating risk measures, has only recently been
considered: Engle and Manganelli (2004) extend the basic quantile regression model to con-
ditional autoregressive value at risk (CAViaR) models; these models focus solely on the
estimation of VaR, and it is not obvious how they can be used for ES estimation. In order
to estimate ES jointly with VaR in a semiparametric framework, Taylor (2008) proposes
conditional autoregressive expectile (CARE) models, based on a simple function of expec-
tiles.! Following this, Taylor (2019) synthesizes the quantile regression with the maximum
likelihood estimation based on an Asymmetric Laplace density proposed by Koenker and
Machado (1999), and estimates VaR and ES jointly. A growing literature documents a sig-
nificant improvement in VaR and ES estimation in a quantile regression framework (Halbleib
and Pohlmeier, 2012; Zikes and Barunik, 2014; Wang and Zhao, 2016; and Bayer, 2018).

Following the results of Fissler and Ziegel (2016), Patton, Ziegel and Chen (2019) present
several novel dynamic models for the joint estimation of VaR and ES. Specifically, they pro-
pose four dynamic semiparametric models for VaR and ES, based on the generalized au-
toregressive score (GAS) framework introduced by Creal, Koopman and Lucas (2013). This
model has been successfully applied in risk measures estimation (Patton, Ziegel and Chen,
2019); CDS spread modelling (Lange et al., n.d.; and Oh and Patton, 2018); systemic risk
modelling (Cerrato et al., 2017; Eckernkemper, 2017; and Bernardi and Catania, 2019); and
high-frequency data modelling (Gorgi et al., 2018; and Lucas and Opschoor, 2018).? How-
ever, no studies on risk measures incorporating realized volatilities into the GAS framework
have been considered so far.® This prompted the research question of this paper, namely
whether adding intraday measures of volatility into the GAS framework improves the accu-
racy of joint VaR and ES forecasts.

The question whether intraday data can improve the predictive accuracy of risk mea-

!The connection between quantiles, expectiles and ES is originally found in Aigner, Amemiya and Poirier
(1976), and considered further by Newey and Powell (1987).

2More studies related to the GAS model can be found on: http://www.gasmodel.com/.

3Salvatierra and Patton (2015) use measures of realized covariance to build forecasts for copula models.



sures has already been addressed by academics.” Several studies extend quantile regression
methods and other semiparametric models by using information variables generated from
high-frequency data.” Many realized volatility measures have been confirmed to perform
efficiently. The realized volatility proposed by Andersen and Bollerslev (1998) and Alizadeh
et al. (2002) is one of the most widely used intraday volatility measures. Inspired by Engle
and Manganelli (2004), Fuertes and Olmo (2013) propose a conditional quantile forecast
method combining an effective device to deal with the inter-daily/intra-daily information.
Meng and Taylor (2018) extend the CAViaR model and the Quantile Regression HAR model
with realized volatility, overnight return and intraday range. In terms of ES estimation, the
CARE models of Taylor (2008) have been extended to allow intraday measures as explana-
tory variables (Gerlach and Chen, 2014; Gerlach and Wang, 2016a; Gerlach and Chen, 2017;
and Wang et al., 2018).

While the improvement from adding intraday variables into a semiparametric framework
has been widely documented, evidence on using the score-driven model as the framework
to estimate risk measures still remains hard to come by. Therefore, in our study, the first
contribution is that we extend the set of semiparametric GAS models of Patton, Ziegel
and Chen (2019): the two-factor GAS model, the one-factor GAS model, the GARCH-FZ
model, and the hybrid GAS/GARCH model, to investigate whether realized measures can
improve the predictive accuracy of GAS models. This study is the first one to estimate
and forecast VaR and ES jointly by using intraday data in a GAS framework. We shed
light on the potential improvement in risk forecasting from adding intraday information in
the GAS framework for four stock indices using a long forecasting period (that includes the
financial crisis period). Then we perform a thorough analysis to compare our forecasts with
those generated from prevailing benchmarks in the current literature. Our results show that
incorporating intraday data into the GAS framework outperform other (VaR, ES) forecasts
in most cases.

Thus, our second contribution to the literature is that we provide empirical evidence
that semiparametric models enhanced with realized volatility measures outperform other
benchmark models via various backtesting methods. Our proposed models, especially the
GAS-2F model, extended with realized volatilities dominate other benchmarks consistently.
Thirdly, we compare four different types of realized measures with regard to their forecasting

ability for risk measures, when added to GAS models.

4Both parametric - see Giot and Laurent (2004), Hansen, Huang and Shek (2012), and Louzis,
Xanthopoulos-Sisinis and Refenes (2014) - and semiparametric models - see Clements, Galvao and Kim
(2008), Fuertes and Olmo (2013), Zikes and Barunik (2014), and Gerlach and Wang (20165).

5See Clements, Galviao and Kim (2008); Fuertes and Olmo (2013); Zikes and Barunik (2014); Gerlach
and Chen (2014); Gerlach and Wang (2016a), and Gerlach and Chen (2017).



The paper is structured as follows: Section 2 briefly introduces the new GAS models that
incorporate intraday information; the data used in our empirical study and the in-sample
estimation results are presented in Section 3; Section 4 presents the forecasting study and

backtesting results; and finally, Section 5 concludes the paper.

2. Models

2.1. GAS models for VaR and ES

Several extensions of the GAS models introduced by Creal, Koopman and Lucas (2013)
are proposed in Patton, Ziegel and Chen (2019), which can be estimated by minimizing the
loss function of Fissler and Ziegel (2016) called FZO0:

1
Lez(Y,v,e:0) = =—1{Y < v}(v =) + = +log(—e) — L, (1)

where Y denotes the daily return, v and e represent the values of VaR and ES, respectively,
and 1 is an indicator function which returns 1 when Y < v (i.e., the VaR is exceeded), other-
wise it returns zero. Patton, Ziegel and Chen (2019) propose four models: the two-factor GAS
model, the one-factor GAS model, the GARCH-FZ model, and the hybrid GAS/GARCH
model, to estimate VaR and ES jointly by minimizing the loss function FZ0. The key novelty
in their framework is the use of the scaled score (that can be computed as the first order
derivative of the objective function®) to drive the time variation in the target parameter.
Patton, Ziegel and Chen (2019) present a “news impact curve” to show the impact of past
observations on current forecasts of VaR and ES through the score variable. When Y > v,
the realized returns do not affect the estimation. But when Y < v, forecasts of ES and VaR
react to realized returns through the score variable. The GAS-FZ models are specified as

below:
(1.A) One-factor GAS model (GAS-1F):

vy = aexp{k},
e; = bexp{r}, b<a<0, (2)
Ko = w+ Bkt + vH, 81,

SNormally, the objective function is a probability density function, but here the loss function FZ0 acts as
the objective.



where the score variable s, is defined as:

- 5LFZO<Y““expéit}vbe@{“t}%“) _ ! ( Ly <uy - et>, (3)

et \

St

and the Hessian factor H; is set to one for simplicity;
(1.B) Two-factor GAS model (GAS-2F):

Ut
€¢

where w is a (2x1) vector, A is a (2x2) matrix, and B is defined as a diagonal matrix for

Vg—1 LA

€t—1

)\v,tfl (4)
>\e,t—1 ’

parsimony, and
Aot = =0 (H{Y; < v} — a), (5)
1
)\e,t = al{yl < 'Ut}Y;f — € (6)
(1.C) GARCH-FZ model (GARCH-FZ):
Vy = Q * O¢,
et:b'at, b<CL<0, (7)
of = w+ ot +Y2,

where o7 is the conditional variance and is assumed to follow a GARCH(1,1) process. The

parameters of this model are estimated by minimizing the loss function FZ0 in (1), instead
of using (Q)MLE.
(1.D) A hybrid GAS/GARCH model (Hybrid):

vy = aexp{k},
er =bexp{r}, b<a<0, (8)
1 /1
Kt = w + Bri1 + 7( T (al{yt <Y - €t—1)) +dlog |Yi-1,
t—1
where the variable k; is the log-volatility, described by the one-day lagged log-volatility, score

factor and the logarithm of absolute return.



2.2.  Realized measures

This section provides a brief introduction to various intraday realized measures (RM)

used in this study. The most popular measure is the realized volatility (RV), defined as:

M

RVA, = | Y (Pria — Prgiz1ya)?, o)
=1

A=
M’

where RV A; denotes the realized volatility calculated from the sum of M intraday squared
returns, at frequency A, within day t. Here, the intraday frequency A divides the whole
span of market opening hours S into M equal intervals, and P, ;. A denotes the log price at
time 7 - A of day ¢t. However, the realized volatility ignores the information from the market

overnight return, which is defined as:
overnight, = log(P.o) — log(Pi-15), (10)

where P,y and P;_; g denote the opening price on day ¢ and the closing price on the previous
day, respectively. Several studies have proven that incorporating the overnight return can
lead to a more accurate realized measure. In this paper, we consider the approach of in-
corporating the overnight return in the realized volatility of Blair, Poon and Taylor (2001),
Hua and Manzan (2013) and Meng and Taylor (2018) as follows:

RNA; = \/RVAf + (overnight;)?.(11)

In the following, we will use frequencies of A = bmin and A = 10min. As such, in the
next section, RM can signify any of the following four realized measures of volatility: RV 5,
RV10;, RN5;, and RN10;, and we extend the models with these measures.

2.3.  GAS models for VaR and ES with realized measures

Salvatierra and Patton (2015) propose a GAS model enhanced with high frequency mea-
sures to obtain a GRAS model, which has the equation for the dependence parameter, similar

to the last row of (2), replaced with:

ke =w + Bri_1 + vH, ' si-1 + clog(RM;_1). (12)



They use the realized covariance as RM;, computed from the intraday prices P, ;A of a set
of assets. The authors find that the inclusion of 5-minute realized covariance significantly
improves the in-sample fit and out-of-sample forecasts of the copula models.

Motivated by the set of GAS models and the GRAS model, our new models are proposed
as:
(2.A) One-factor GAS model with realized measures (GAS-1F-Re):

vy = aexp{ri} (13)
e =bexp{ki}, b<a<0,
where k; is defined in (12), and the score variable s; is defined in (3). Here, the Hessian
factor H, is set to one for simplicity; log(RM;) is the logarithm of a realized measure which
can be: the realized volatility at 5-min and 10-min sampling frequencies (RV'5 and RV'10),
and these two realized volatilities with the overnight return incorporated into them (RN5
and RN10), as defined in Section 2.2.

(2.B) Two-factor GAS model with realized measures (GAS-2F-Re):

[w]:w+B
€¢

where w and C are (2x1) vectors, A, and B are both (2x2) matrices, B is defined as a

Vg—1 >\v,t—1

+A +CRM,_,, (14)

€i—1 et—1

diagonal matrix to simplify computation. Following Patton, Ziegel and Chen (2019), we also
define the forcing variables \,; and A.; as the partial derivatives of the given loss function
Lpzo with respect to vy and e, as in (5) and (6).

Hansen, Huang and Shek (2012) and Hansen, Lunde and Voev (2014) introduce a new
framework, Realized (Beta) GARCH, where the variance follows a GARCH(1,1) process, with
the squared returns replaced with a realized measure of volatility. Following this model, we
propose a GARCH-FZ-Realized model:

(2.C) GARCH-FZ model with realized measures (GARCH-FZ-Re):

vy = a- oy,
eg=b-oy, b<a<0, (15)
o =w+ Bop_; + cRM} 4,

where the daily return Y;_; in the GARCH(1,1) variance equation in (7) is replaced with the

realized measure RM;_;. This model is estimated by minimizing the FZ0 loss function.

(2.D) A hybrid GAS/GARCH model with realized measures (Hybrid-Re):



vy = aexp{k},
e; =bexp{ri}, b<a<0, (16)
1 1
ke = w+ Bk + ’Y(—e—(al{n <Y1 —e1)) + dlog Y| + clog(RM; ),
t—1
where the log-volatility x; follows the hybrid GARCH model with one-day lagged log-

volatility, score factor, realized measures and absolute daily return.

3. Data and empirical study

3.1. Data description

To evaluate the forecasting performance of the new models and to compare them with
benchmark models, we collected daily opening and closing prices of four international stock
market indices: the S&P 500 (US); Dow Jones Industrial Average; NIKKEI 225 (Japan)
and FTSE 100 (UK), from January 2000 to June 2019, from DataStream. To ensure the
applicability of every model, we remove market-specific non-trading days and exactly zero
returns from each index series. Panel A in Table 1 presents the summary statistics on the
four daily equity return series over the full sample period. From the top panel, average
annualized returns range from 0.544% for the NIKKEI 225 to 4.377% for the DJIA, and the
annualized standard deviation ranges from 18% for the DJIA to about 24% for the NIKKEI
225. All daily return series exhibit substantial kurtosis at around 10. The second and third
panels of this table show the sample VaR and ES for four different « levels: 1%, 2.5%, 5%
and 10%. The NIKKEI 225 index proves to be different from the rest since its quantile and
ES are lower than the sample risk measures of the other three indices.

Panel B presents the estimated parameters of the ARMA(p,q) models where the lags (p,q)
are optimally selected via the BIC method. The ARMA models for the indices only include
a constant except for the S&P 500, which contains an MA term with one lag. Panel C shows
the estimated parameters of the GARCH(1,1) model, where the residuals are assumed to
follow the skew-t distribution. Panel D presents the parameters of the degree of freedom
and skewness in the skew-t distribution.

The percentage log overnight returns are generated as in (10). For the realized volatility,
the data is obtained at 5-min and 10-min sampling frequencies from the Oxford-Man Insti-
tute’s realized library’(see Heber, Lunde and Shephard, 2009). To generate the new realized

measure incorporating the overnight return in realized volatility, we use (11).

"This realized library can be accessed by: https://realized.oxford-man.ox.ac.uk/



[ INSERT TABLE 1 ABOUT HERE |

The entire sample is divided into an in-sample for estimation and an out-of-sample to
backtest the estimated results. We employ a rolling window approach, where each model is
re-estimated every five trading days using a rolling window of 2000 observations. Then the
rest of the period until June 2019 of approximately 2900 days, is the out-of-sample period

to evaluate one-day ahead VaR and ES estimates.

3.2.  Forecasting models

VaR and ES are predicted via the score forecast for one trading day ahead in the out-of-
sample period for each series, using the proposed GAS-Realized models and the FZ-GARCH-
Realized model, as well as nonparametric models and parametric models as benchmarks. For
nonparametric models, historical simulations are widely used because of their advantages of
being model free and easy to implement. In our study, we select three commonly used rolling
window sizes to forecast VaR and ES: 125, 250 and 500 days. Two popular GARCH models
are employed in this study, including the Gaussian (GARCH-G) and Skew-t (GARCH-Skt)
models as parametric model benchmarks. We also consider other established models that
use high-frequency data, considered to be well-suited to forecast VaR and ES: the HAR
model of Corsi, Mittnik, Pigorsch and Pigorsch (2008), and the HEAVY model of Shephard
and Sheppard (2010). In each model, we estimate VaR and ES with Gaussian and Skew-t
distributions of the errors in the second step, after the conditional volatility estimation. We
also take the semiparametric approach of Taylor (2019) based on the asymmetric Laplace
distribution, into our benchmark set.

To evaluate the performance of the GAS models enhanced with realized measures, we
also implement the four models proposed by Patton, Ziegel and Chen (2019) as benchmarks.
Differently from Patton, Ziegel and Chen (2019) who used certain parameters estimated from
a fixed in-sample period, we use a rolling window approach, where each model is re-estimated
every five trading days using a window of size 2000 trading days. In this study, we consider
four sets of GAS models extended with different realized measures: RV5, RV10, RN5 and
RN10 as in Section 2.2. In the following section, we will show estimation results in these

proposed models.

3.3.  In-sample estimation

The parameters of the GAS models and the proposed four sets of GAS-Realized models
are estimated by minimizing the loss function in (1). It is hard to estimate these models

using a non-smooth objective function, and this algorithm is sensitive to the starting values



used in the search. We optimize the proposed models using the following procedure: for each
model, we first generate 10° vectors of parameters from predetermined intervals randomly
for the parameters of the GAS models. For example, for the parameters (a and b) used to
generate VaR and ES in GAS-1F, GARCH-FZ, and Hybrid models, we set the intervals as
-2, -3] and [-3, -4], respectively, to ensure that ES is always less than VaR.® We compute
the average loss value for each vector, then select the 10 vectors that generate the lowest
average loss as initial values for the optimization routine. The vectors are selected as the
initial values of the search algorithm for all windows in order to shorten computational time.
We compute the optimal parameters by using a quasi-Newton method and the function
fminunc as optimization algorithms, which are similar routines to the one used by Engle and
Manganelli (2004).

Table 2 presents the estimated parameters together with their standard errors of the
GAS models for the S&P 500, estimated using an estimation period of 2000 days from the
beginning of January 2000 for o = 5%. The parameters of the three two-factor GAS models
(GAS-2F, GAS-2F-RV5, and GAS-2F-RN5) are presented in the first panel of Table 2; we
separate the parameters of VaR and ES. The b parameters are statistically significantly
different from zero at both 1% and 5% significance levels for both VaR and ES,? which can
be explained by the volatility clustering effect. The four columns on the right side of this
panel show the parameters of GAS-2F extended with the 5-minute realized measures. Due
to adding 5-min realized measures, the degree of clustering decreases for VaR and ES. Also,
the parameters of score a, and a. experience a significant decrease after adding the realized
measures. The parameters of the one-day lagged realized measures RM, 1, ¢, are statistically
significantly negative at the 5% significance level for both VaR and ES, indicating that larger
values of these realized variables will result in a lower estimated quantile or ES, which is
intuitive. The average loss generated by the GAS-2F model is 0.756, which is larger than
the loss of the GAS-2F models extended with realized measures (0.735 and 0.734).

The second panel in Table 2 shows the estimated parameters of the other GAS models
extended with the 5-minute realized measures using an estimation period of 2000 days from
the beginning of January 2000 for the S&P 500, for o = 5%. Similarly to the b parameters of
the GAS-2F models, the § parameters of the other models are also statistically significantly
different from zero at both 1% and 5% significance levels, which means that the current

estimated risk measures rely heavily on the previous estimation. Also, we find that the

8For parameters in the GAS-2F models, the predetermined intervals for w, b, a,, a., and c are [-0.1, 0.1],
[0.8, 1], [-0.1, 0.1], [-0.1, 0.1], and [-1, 0], respectively. For parameters in the GAS-1F, GARCH-FZ, and
Hybrid models, the predetermined intervals for S, v, d, ¢, a, and b are [0.8, 1], [0, 0.1], [0, 0.1], [0, 0.5], [-2,
-3], and [-3, -4], respectively.

9We use the Student’s t-test for significance testing.
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parameters of realized measures (¢ for the GAS-1F model, the GARCH-FZ model, and the
Hybrid model) are all statistically significantly positive at both 1% and 5% significance levels.
Intuitively, a large realized volatility will lead to a low quantile through the score variable
in these models. We obtain that the inclusion of realized measures in the updating models
results in smaller coefficients of the GAS shocks (7), which is intuitive. Later, we will see
the role that the score variable plays in forecasting VaR and ES. In the following sections
we compare the forecasting performance of these four sets of extended models, which gives

a total of 16 models, with the 13 benchmark models enlisted above.

[ INSERT TABLE 2 ABOUT HERE |

4. OQOut-of sample forecasting and backtesting

We evaluate one day-ahead VaR and ES forecasts for the four international stock indices,
and for the following four probability levels: 1%, 2.5%, 5% and 10%. One-day ahead VaR
and ES forecasts are made with parameter values estimated every 5 days, for each model
and probability level, using rolling windows of size 2000 (except for historical simulations).
The forecasting sample period for each index is approximately 2900 days. In this section, we
backtest the VaR and ES forecasts of the proposed models and compare their performance
with that of benchmark models. Firstly, we backtest VaR and ES individually via the
Dynamic Quantile (DQ) regression and the Dynamic Expected Shortfall (DES). Following
these tests, we employ a method based on the FZ0 loss function to backtest VaR and ES
jointly.

4.1.  Backtesting VaR

The most popular procedures evaluating the performance of VaR forecasts are mainly
based on VaR failures, i.e.,
I, = 1{Y, < VaR}}.

The commonly used VaR backtesting method, known as the unconditional coverage (UC)
test, is proposed by Kupiec (1995), and uses the proportion of failures as its main tool. In this
test, the hit percentage is defined as the proportion of the returns below the estimated VaR,
then the difference between the hit percentage and its theoretical value of o is examined.
Thus, the VaR model is rejected or not according to the null hypothesis of the UC test below,
based on which the Likelihood Ratio (LR) test is performed:

HYER By L] = .

11



Table 3 presents the number of model rejections of the above null hypothesis for four daily
equity return series, over the out-of-sample period, for the 29 different forecasting models,
at 1% and 5% significance levels, respectively, and for different probability levels. To obtain
these columns, we perform the unconditional backtest above for all indices, and count the
number of rejections for each model.

The third and fourth columns of Table 3 show that the proposed new GAS models
extended with realized measures generally tend to have a lower number of UC test rejections
as compared to the number of rejections of the GAS-FZ models of Patton, Ziegel and Chen
(2019), for a = 1%. The GARCH model and HEAVY model with a skew-t distribution also
tend to have a lower number of rejections at 1% significance level. At 5% significance level,
several GAS-FZ models with overnight returns incorporated in the realized volatility have
zero rejections of the UC test. In general, adding realized measures into GAS models for
predicting VaR achieves a lower number of test rejections, based on our results on the hit

percentage test.
[ INSERT TABLE 3 ABOUT HERE |

However, the UC test is statistically weak for small sample size, and is criticized by several
studies (see Nieto and Ruiz, 2016) that it ignores the clustering of failures. To address these

drawbacks, the conditional coverage (CC) test is considered, in which the null hypothesis is:
HEER By [L) 1) = a.

We employ the dynamic quantile (DQ) test proposed by Engle and Manganelli (2004)
to implement the CC test. The DQ test has power against the misspecification of ignoring
conditionally correlated probabilities and can be extended to examine other explanatory
variables. The DQ test examines whether the hit variable defined as Hit,; = 1{Y¥; <
VaR;} — «, follows an i.i.d. Bernoulli distribution with probability level a@ and whether
it is independent of the VaR estimator; the expected value of Hit,, is 0. Furthermore,
from the definition of the quantile function, the conditional expectation of VaR; given any
information known at ¢ — 1 must also be 0, which means that the hit function cannot be
correlated with other lagged variables. Also, the H4t,; must not be autocorrelated. If Hit,;
satisfies the conditions stated above, then there will be no autocorrelation in the hits, and
no measurement error. We include one lag of Hit,; in the regression of the test. Consider

the following DQ regression:

H’L.tyvt = Qo —f- alﬂitv,t_l —f- aQVaRt_l —|— vat, (17)

12



where a = [ag, a1, as] is the set of parameters of the regression. Based on the null hypothesis,
we test whether all parameters in the set a are zero. Performing this DQ test gives a test
statistic, which is distributed X?(3) asymptotically.

The middle panel of Table 4 shows the p-values of the DQ test of VaR forecasts for
a = 1%, for the four stock indices. P-values that are greater than 5% indicate no evidence
against the optimality at 5% significance level (in bold), and values between 1% and 5%
are in italics. For the S&P 500, all of our newly proposed models pass the DQ test at
1% significance level. When we consider the NIKKEI 225 and FTSE 100 index, we see
significant improvements after adding realized measures in the GAS models. For the DJIA
index, using realized measures we obtain that fewer models fail the DQ test, while the
historical simulations pass the test and the GARCH model with the skew-t distribution
performs well. But for this index, all of the GAS-1F models extended with realized measures
are able to pass the DQ test for all four indices. Overall, adding realized measures enables
GAS-FZ models to reduce the number of rejections of the DQ test for a = 1%.

[ INSERT TABLES 4-6 ABOUT HERE |

For a = 2.5% (see Table 5), we obtain similar results, namely that adding realized
measures generally reduces the number of rejections of the DQ test. For the DJIA index,
the two-factor GAS model can pass the test after adding realized measures RN5 and RN10.
For a = 5%, in Table 6, we can see that all original GAS-FZ models can pass the DQ test
across the four indices except the Hybrid model for the S&P 500 index. After adding realized
measures in the GAS models, it can be seen that the p-values increase and the DQ test is
generally passed. Table 7 presents the number of model rejections at 1% and 5% significance
levels for quantile regression VaR backtests across the four markets, for different probability
levels. It can be concluded that the set of GAS models extended with realized measures
tend to have a lower number of rejections than the original GAS models and several other
benchmarks. It should be noted that the four GAS-1F model extended with different realized

measures have the least number of rejections of the D(Q test, especially for low values of a.

[ INSERT TABLE 7 ABOUT HERE |

4.2.  Backtesting ES

All models that we consider produce both VaR and ES forecasts. From an economic
point of view, for example, when we compare the 2.5% ES forecasts of the GAS-1F-RV5 and
the 2.5% ES forecasts of the GAS-1F, the first one has, on average, an ES forecast lower
with 13.29% (S&P 500), 17.49% (DJIA), 8.40% (NIKKEI), and 5.31% (FTSE 100). The

results indicates that ignoring realized measures overestimates risk on average. Looking at
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the significance of these values, we follow the backtesting method of Patton, Ziegel and Chen

(2019) to evaluate the ES estimates individually, using a dynamic ES (DES) regression test:

/\2715 =bo + bl/\i,t—l + b ESi 1 + ey, (18)

where A ; is the standardized version of . defined in (6) (A, = ’\e"‘t’t =11{y, < VaRt}eXtt _
1), and b = [bg, by, bo] is the set of parameters of the regression. Based on the null hypothesis,
we test whether all parameters in set b are zero.

The right panel of Table 4 shows the p-values from the DES test of the ES forecasts for
a = 1%, for the four stock indices. Similarly to the result of the DQ test, incorporating the
realized measure RN10 in GAS models seems to reduce the number of backtest rejections
for the NIKKEI 225 and the FTSE 100 indices. GAS-1F models with realized measures can
pass the DES test at 5% significance level for all indices, which is consistent with the result
of the DQ test. The two-factor GAS model, after adding the risk measure RN10, passes the
DES test for all indices. Almost all of our new models pass the DES test across the four
indices for a = 2.5%, except the GAS-2F for the NIKKEI 225, as can be seen in the right
panel of Table 5. Table 6 presents similar results across four indices using an « of 5%, whilst
some benchmarks also have p-values higher than 5%, for example, the HEAVY model with
a skew-t distribution. Table 7 summarizes the total number of model rejections at 1% and
5% significance levels for the Dynamic ES regression backtests, across the four markets, for
different probability levels. The GAS-1F models enhanced with realized measures have the

smallest number of backtest rejections.

4.8.  Joint backtesting of the (VaR, ES) risk measures

In order to compare jointly the VaR and ES forecasts generated by different models, in
this section, a loss function proposed in Fissler and Ziegel (2016) is employed. The authors
discuss how VaR and ES are jointly elicitable and present a group of loss functions for risk
measure estimation and backtesting. We follow the choice of Patton, Ziegel and Chen (2019)
for the loss function FZ0, as defined in (1). To compare the performance of each model using
the FZ0 loss function, we calculate the average loss value Lpzo = % Zthl Lz, for different
a values across the four indices.

The left panel of Table 4 presents the average losses for the four equity return series,
over the out-of-sample period, for 13 different benchmark forecasting models and 16 newly
proposed models that use the 5-min and 10-min realized measures. The lowest average loss
in each column is highlighted in bold, whilst the second lowest is highlighted in italics. For
a = 1%, the GAS-FZ models enhanced with the realized volatility using overnight returns
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and the HEAVY-Skt model perform well, overall.

For a = 2.5% (see Table 5), the GAS-2F model employing the 10-min realized volatility
and overnight returns (GAS-2F-RN10) outperforms the other models, with lower loss than
most other models for most series and being consistently ranked well, being the best model
for the DJIA and FTSE 100 index. In Table 6 (o« = 5%), the GAS-2F-RN5 and GAS-2F-
RN10 models outperform the other models with the lowest loss for the DJIA and the FTSE
100 index, respectively. The HEAVY-Skt model has the lowest loss value for the S&P 500.

Table 8 presents the rankings (with the best performing model ranked 1 and the worst
ranked 29) based on average losses using the FZ0 loss function, for the four index return
series, over the out-of-sample period, for the 29 different forecasting models. The last two
columns in each panel represent the average rank across the four series and the rank of the
average, respectively. For a = 1%, the best-performing model is the GAS-1F model with
the 5-min realized volatility and overnight returns, followed by the GAS-1F models extended
with the other two realized measures. Considering o = 2.5%, the GAS-2F-RN10, GARCH-
FZ-RV5, and GAS-1F-RN10 are the three models having the lowest average loss values.
For a = 5% and a = 10%, our proposed models have a relatively higher rank than the
benchmarks, except the HEAVY model with a skew-t distribution, which is ranked second
for a = 5%.

Another observation here is that the losses generated from the GAS-FZ models with real-
ized measures are generally lower than the loss generated from most benchmark approaches.
However, the HEAVY-Skt is always one of best 5 models considered in the overall ranking
for all four probability levels. This suggests that the variables extracted from intraday data

provide useful information for risk measure forecasting.
[ INSERT TABLE 8 ABOUT HERE |

In order to analyse the relative performance of each model, we employ the Diebold-
Mariano (DM) test to compare any two models using differences in average losses. In this
study, t-statistics from the DM test compare the average losses, using the FZ0 loss function,
for four indices, and for different probability levels, over the out-of-sample period. A negative
t-statistic indicates that the row model outperforms the column model with a significant loss
difference. The absolute values greater than 1.96 (2.575 or 1.64) indicate that the average
loss difference is significantly different from zero at 95% (99% or 90%) confidence level. In
Figure 1, we present the results for the S&P 500 with the null hypothesis that the row model
and the column model have equal values for the loss function. The numbering of the models
used in the figure is given in the first column of Table 3. Positive test statistics corresponding
to darker colors mean that the row model has larger losses than the column model. The

white blocks mean that the row model dominates the column model in loss comparison at
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95% significance level; the light green (below white in the color bar) blocks mean that the
row model has lower average loss than the column model, but not significantly so; and the
dark red blocks mean that the row model has higher loss than the column model at 95%
significance level. In Figure 1, at 1% level, the rows for Model 8 (HEAVY-Skt-RV5), Model
23 (GAS-1F-RNb5), and Model 27 (GAS-1F-RN10) have lighter blocks compared to the other
rows, therefore, these are the three best performing models for the S&P 500 index at 1%
level. For 2.5% level, Model 8, Model 24 (GARCH-FZ-RN5), and Model 27 outperform the
others. At 5% and 10% levels, Model 3, Model 24, and Model 28 (GARCH-FZ-RN10) are
the three best performing models for the S&P 500 index.

[ INSERT FIGURE 1 ABOUT HERE ]

Following Wang, Gerlach and Chen (2018) and Taylor (2019), we use the model confidence
set (MCS) test introduced by Hansen, Lunde and Nason (2011) to compare the forecasting
models via the FZ0 loss function. This approach builds model confidence sets using one-sided
elimination based on the Diebold-Mariano test. In this study, we consider the 75% confidence

1'9 and employ two methods: the R method using sums of absolute values for calculating

leve
the test statistic for MCS; and the SQ method uses the summed squares.'! Table 9 presents
the number of models within the MCS test using the block bootstrap with the block length
of 12 and 10,000 replications, based on the losses generated from the FZ0 loss function. The
GAS-2F-RN10 is the best performing model, overall, and the GAS models extended with
realized measures perform better than most of the benchmark models. The main finding
generated from the MCS test echo the results from the other backtesting methods. The
result that some GAS models enhanced with realized measures end up more often in the
MCS than HAR and HEAVY models highlights the usefulness of the score function that the
GAS models build on, and we also show evidence that the use of realized measures enhances

the risk forecasts of GAS models.
[ INSERT TABLE 9 ABOUT HERE |

5. Conclusions

Patton, Ziegel and Chen (2019) proposed a set of semiparametric models (GAS-FZ) in
a generalized autoregressive score (GAS) framework to estimate risk measures. This study
provides an extension of this, using exogenous information from high frequency data, in

order to improve on the prediction of VaR and ES. This provides a new semiparametric

0The 95% confidence level was considered as well with similar results (results available on request).
HDetails can be found on page 465 of Hansen, Lunde and Nason (2011); and the Matlab code for MCS
testing can be downloaded from www.kevinsheppard.com/MFE Toolbox.
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framework named GAS-FZ-Realized, proposed for estimating and forecasting VaR and ES
jointly. Through incorporating four realized measures (5-min and 10-min realized volatility
with or without the overnight return) into the GAS-FZ models, we observe an improvement
in forecasting risk measures over both in-sample and out-of-sample periods.

We employ the newly proposed models to estimate the VaR and ES of four international
stock indices empirically, over the period 2000 to 2019. The parameters of the models are
estimated by minimizing the FZ loss function of Fissler and Ziegel (2016). Then VaR and ES
forecasts are built and individually backtested using the unconditional coverage test and the
dynamic quantile (and ES) regression tests, as well as the joint loss function is computed.
The main finding is that forecasts generated from the GAS-FZ-Realized models outperform
forecasts based on GARCH models or historical simulations, even those based on the original
GAS-FZ models. The only exception is the HEAVY-Skt-RV5 which is difficult to beat.

To conclude, the GAS-FZ-Realized models, especially the GAS-2F combined with the
10-min realized volatility and the overnight return, can provide more accurate risk measures
for risk management across different stock indices and probability levels when compared to
other models. This work could be potentially extended by improving the ES component, as
the dynamics of VaR may not change simultaneously with ES, for example, by modelling an
AR relationship between VaR and ES or by assuming a dynamic Omega ratio to describe the
relationship between the two measures (Taylor, 2019). Moreover, this study can be extended
by using realized volatility at different frequencies or via other proposed realized measures,

for example those found in Meng and Taylor (2018).

17



References

Acerbi, C. and Székely, B. (2014), ‘Back-testing expected shortfall’, Risk 27, 76-81.

Aigner, D. J., Amemiya, T. and Poirier, D. J. (1976), ‘On the estimation of production
frontiers: Maximum likelihood estimation of the parameters of a discontinuous density
function’, International Economic Review 17(2), 377-396.

Alizadeh, S., Brandt, M. W. and Diebold, F. X. (2002), ‘Range-based estimation of stochastic
volatility models’, The Journal of Finance 57(3), 1047-1091.

Andersen, T. G. and Bollerslev, T. (1998), ‘Answering the skeptics: Yes, standard volatility
models do provide accurate forecasts’, International Economic Review 39(4), 885-905.
Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D. (1999), ‘Coherent measures of risk’,

Mathematical Finance 9(3), 203-228.

Basel Committee on Banking Supervision (2013), ‘Fundamental review of the trading book:
A revised market risk framework’, Basel Committee on Banking Supervision, Basel .

Bayer, S. (2018), ‘Combining value-at-risk forecasts using penalized quantile regressions’,
Econometrics and statistics 8, 56-77.

Bernardi, M. and Catania, L. (2019), ‘Switching generalized autoregressive score copula
models with application to systemic risk’, Journal of Applied Econometrics 34(1), 43-65.

Blair, B. J., Poon, S.-H. and Taylor, S. J. (2001), ‘Forecasting s&p 100 volatility: the
incremental information content of implied volatilities and high-frequency index returns’,
Journal of Econometrics 105(1), 5-26.

Cerrato, M., Crosby, J., Kim, M. and Zhao, Y. (2017), ‘The joint credit risk of uk global-
systemically important banks’, Journal of Futures Markets 37(10), 964-988.

Clements, M. P., Galvao, A. B. and Kim, J. H. (2008), ‘Quantile forecasts of daily exchange
rate returns from forecasts of realized volatility’, Journal of Empirical Finance 15(4), 729~
750.

Corsi, F., Mittnik, S., Pigorsch, C. and Pigorsch, U. (2008), ‘The volatility of realized
volatility’, Econometric Reviews 27(1-3), 46-78.

Creal, D., Koopman, S. J. and Lucas, A. (2013), ‘Generalized autoregressive score models
with applications’, Journal of Applied Econometrics 28(5), 7T77-795.

Eckernkemper, T. (2017), ‘Modeling systemic risk: time-varying tail dependence when fore-
casting marginal expected shortfall’; Journal of Financial Econometrics 16(1), 63-117.
Engle, R. F. and Manganelli, S. (2004), ‘Caviar: Conditional autoregressive value at risk by

regression quantiles’, Journal of Business & Economic Statistics 22(4), 367-381.

Fissler, T. and Ziegel, J. F. (2016), ‘Higher order elicitability and osband’s principle’, The

Annals of Statistics 44(4), 1680-1707.

18



Fissler, T., Ziegel, J. F. and Gneiting, T. (2016), ‘Expected shortfall is jointly elicitable with
value at risk-implications for backtesting’, Risk 29(1), 58—61.

Fuertes, A.-M. and Olmo, J. (2013), ‘Optimally harnessing inter-day and intra-day informa-
tion for daily value-at-risk prediction’, International Journal of Forecasting 29(1), 28-42.

Gerlach, R. and Chen, C. W. (2014), ‘Bayesian expected shortfall forecasting incorporating
the intraday range’, Journal of Financial Econometrics 14(1), 128-158.

Gerlach, R. and Chen, C. W. (2017), ‘Semi-parametric expected shortfall forecasting in
financial markets’, Journal of Statistical Computation and Simulation 87(6), 1084-1106.
Gerlach, R. and Wang, C. (2016a), ‘Bayesian semi-parametric realized-care models for tail

risk forecasting incorporating realized measures’, arXiv preprint arXiv:1612.08488 .

Gerlach, R. and Wang, C. (2016b), ‘Forecasting risk via realized garch, incorporating the
realized range’, Quantitative Finance 16(4), 501-511.

Giot, P. and Laurent, S. (2004), ‘Modelling daily value-at-risk using realized volatility and
arch type models’, Journal of Empirical Finance 11(3), 379-398.

Gorgi, P., Hansen, P., Janus, P. and Koopman, S. (2018), ‘Realized wishart-garch: a score-
driven multi-asset volatility model’, Journal of Financial Econometrics 17(1), 1-32.

Halbleib, R. and Pohlmeier, W. (2012), ‘Improving the value at risk forecasts: Theory and ev-
idence from the financial crisis’, Journal of Economic Dynamics and Control 36(8), 1212—
1228.

Hansen, P. R., Huang, Z. and Shek, H. H. (2012), ‘Realized garch: a joint model for returns
and realized measures of volatility’, Journal of Applied Econometrics 27(6), 877-906.

Hansen, P. R., Lunde, A. and Nason, J. M. (2011), ‘The model confidence set’, Econometrica
79(2), 453-497.

Hansen, P. R., Lunde, A. and Voev, V. (2014), ‘Realized beta garch: A multivariate garch
model with realized measures of volatility’, Journal of Applied Econometrics 29(5), 774
799.

Heber, G., Lunde, A. and Shephard, N. (2009), ‘Oxford-mann institute’s realized library
version 0.1°.

Hua, J. and Manzan, S. (2013), ‘Forecasting the return distribution using high-frequency
volatility measures’, Journal of Banking & Finance 37(11), 4381-4403.

Koenker, R. and Machado, J. A. (1999), ‘Goodness of fit and related inference processes for
quantile regression’, Journal of the American Statistical Association 94(448), 1296-1310.

Kupiec, P. H. (1995), ‘Techniques for verifying the accuracy of risk measurement models’,
The Journal of Derivatives 3(2), 73-84.

Lange, R.-J., Lucas, A. and Siegmann, A. (n.d.), ‘Score-driven systemic risk signaling for

european sovereign bond yields and cds spreads’, Systemic Risk Tomography (2017), 129

19



150.

Louzis, D. P., Xanthopoulos-Sisinis, S. and Refenes, A. P. (2014), ‘Realized volatility models
and alternative value-at-risk prediction strategies’, Fconomic Modelling 40, 101-116.

Lucas, A. and Opschoor, A. (2018), ‘Fractional integration and fat tails for realized covariance
kernels’, Journal of Financial Econometrics 17(1), 66-90.

Meng, X. and Taylor, J. W. (2018), ‘An approximate long-memory range-based approach
for value at risk estimation’, International Journal of Forecasting 34(3), 377-388.

Newey, W. K. and Powell, J. L. (1987), ‘Asymmetric least squares estimation and testing’,
Econometrica 55(4), 819-847.

Nieto, M. R. and Ruiz, E. (2016), ‘Frontiers in var forecasting and backtesting’, International
Journal of Forecasting 32(2), 475-501.

Oh, D. H. and Patton, A. J. (2018), ‘Time-varying systemic risk: Evidence from a dynamic
copula model of cds spreads’, Journal of Business & Economic Statistics 36(2), 181-195.

Patton, A. J., Ziegel, J. F. and Chen, R. (2019), ‘Dynamic semiparametric models for ex-
pected shortfall (and value-at-risk)’, Journal of Econometrics 211(2), 388-413.

Roccioletti, S. (2015), Backtesting Value at Risk and Ezpected Shortfall, Springer.

Salvatierra, I. D. L. and Patton, A. J. (2015), ‘Dynamic copula models and high frequency
data’, Journal of Empirical Finance 30, 120-135.

Shephard, N. and Sheppard, K. (2010), ‘Realising the future: forecasting with high-
frequency-based volatility (heavy) models’, Journal of Applied Econometrics 25(2), 197
231.

Taylor, J. W. (2008), ‘Estimating value at risk and expected shortfall using expectiles’,
Journal of Financial Econometrics 6(2), 231-252.

Taylor, J. W. (2019), ‘Forecasting value at risk and expected shortfall using a semiparametric
approach based on the asymmetric laplace distribution’, Journal of Business & Economic
Statistics 37(1), 121-133.

Wang, C., Gerlach, R. and Chen, Q. (2018), ‘A semi-parametric realized joint value-at-risk
and expected shortfall regression framework’, arXiv preprint arXiv:1807.02422 .

Wang, C.-S. and Zhao, Z. (2016), ‘Conditional value-at-risk: Semiparametric estimation and
inference’, Journal of Econometrics 195(1), 86-103.

Ziegel, J. F. (2016), ‘Coherence and elicitability’, Mathematical Finance 26(4), 901-918.

Zikes, F. and Barunik, J. (2014), ‘Semi-parametric conditional quantile models for financial

returns and realized volatility’, Journal of Financial Econometrics 14(1), 185-226.

20



Table 1: Summary statistics and marginal distribution estimates
S&P 500 DJIA NIKKEI FTSE

Panel A: Summary statistics

Mean (Annualized) 3.685 4.377 0.544 0.606
Std dev (Annualized) 18.900  17.821  23.748  18.105
Skewness -0.208 -0.125 -0.429 -0.170
Kurtosis 11.176 10.980 9.341 9.487
VaR-0.01 -3.427 -3.294 -4.111 -3.264
VaR-0.025 -2.525 -2.361 -3.051 -2.409
VaR-0.05 -1.885 -1.777 -2.360 -1.788
VaR-0.10 -1.284 -1.182 -1.682 -1.233
ES-0.01 -4.849 -4.568 -6.021 -4.546
ES-0.025 -3.678 -3.453 -4.492 -3.457
ES-0.05 -2.922 -2.750 -3.576 -2.764
ES-0.10 -2.236 -2.096 -2.788 -2.120
Panel B: Conditional mean

Constant -0.001 0.007 -0.021 -0.003
AR(1) - - - -
MA(1) -0.039 - - -
Panel C: Conditional variance

Constant 0.010 0.010 0.025 0.014
ARCH 0.065 0.069 0.082 0.116
GARCH 0.926 0.922 0.910 0.874
Panel D: Skew t density

DoF 9.020 8.130 12.204 22.177
Skewness -0.092 -0.089 -0.089 -0.162

Note: This table presents the summary statistics of the four daily equity return series stud-
ied, over the full sample period from January 2000 to June 2019, and marginal distribution
estimates over the in-sample period. Panel A reports the annualized mean, standard devia-
tion of these returns in percentages, skewness, kurtosis, the sample VaR and ES estimates
for four choices of «; Panel B presents the parameter estimates for AR(m) models of the
conditional means of these returns; Panel C shows parameter estimates for GARCH-Skew
t(1,1) models of the conditional variance; Panel D presents parameter estimates for the skew
t density for the standardized residuals.

21



Table 2: The estimated parameters of the GAS models for the S&P 500 for o = 5%

GAS-2F GAS-2F-RV5 GAS-2F-RN5

VaR ES VaR ES VaR ES

w -0.009  -0.012 -0.009  -0.016 -0.011  -0.023

(s.e.) (0.002) (0.003) (0.030) (0.053) (0.033) (0.045)

b 0.995  0.995 0.833  0.810 0.814  0.849

(s.e.) (0.105) (0.108) (0.084) (0.092) (0.098) (0.072)

Qy -0.129  -0.140 -0.125  -0.066 -0.114  -0.118

(s.e.) (0.070) (0.103) (0.304) (0.629) (0.416) (0.466)

Qe 0.002  0.003 0.002  0.001 0.001 0.001

(s.e.) (0.003) (0.004) (0.011) (0.024) (0.015) (0.017)

c - - -0.323  -0.477 -0.353  -0.360

(s.e.) - - (0.148) (0.208) (0.190) (0.158)

Avg loss 0.756 0.735 0.733

GAS-1F GCH-FZ Hybrid GAS-1F GCH-FZ Hybrid GAS-1F GCH-FZ Hybrid

5min RV 5min RN
I5} 0.993 0.922 0.993 0.857 0.857 0.875 0.851 0.761 0.872
(se)  (0.002)  (0.088)  (0.002)  (0.116)  (0.081)  (0.072) (0.143)  (0.077)  (0.096)
5 0.008 0.032 0.008 0.004 ; 0.004  0.004 ; 0.004
(se)  (0.001)  (0.007)  (0.001)  (0.00) - (0.007)  (0.013) - (0.011)
§ ; ; 4.393-08 - ; 0.010 - ; 0.009
(s.e.) (1.552¢-00) - - (0.016) - - (0.018)
c - 0.127 0.095 0.141 0.133 0.084 0.142
(s.e.) . . ; (0.013)  (0.012)  (0.056)  (0.016)  (0.009)  (0.051)
a -1.774 -2.269 -1.752 -1.973 -2.818 -2.150 -1.962 -2.987 -2.053
(se)  (4451)  (0.393)  (5.726)  (2.529)  (0.410)  (2.160) (3.422)  (0.430)  (2.294)
b -2.401 -3.043 -2.355 -2.599 -3.610 -2.779 -2.601 -3.822 -2.709
(s.e.) (5.987) (0.765) (7.709) (3.310) (0.670) (2.819)  (4.467) (0.672) (3.029)
Avgloss  0.761 0.780 0.761 0.737 0.727 0.753 0.734 0.722 0.749

Note: This table presents the parameter estimates and standard errors of the four GAS
models proposed in Patton et al. (2019) and eight GAS models enhanced with 5-min realized
volatility (and overnight returns), for VaR and ES, for the S&P 500 index using the first
rolling window of 2000 days starting with January 2000. The top panel presents the estimated
parameters of the two-factor GAS models. The bottom panel presents the parameters of the
one-factor GAS model, the GARCH model, and the hybrid-factor GAS model, estimated
using the FZ0 loss minimization. The bottom row of each panel presents the average (in-
sample) losses from these models.
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Table 3: The number of model rejections based on hit percentages of VaR forecasts (UC
test) for the four indices for different « levels

Number Model 1% VaR 2.5% VaR 5% VaR 10% VaR
1% 5% 1% 5% 1% 5% 1% 5%

1 RW-125 3 3 0 0 0 0 0 0
2 RW-250 1 2 0 1 0 0 0 0
3 RW-500 0 2 1 1 0 1 0 0
4 GARCH-G 4 4 3 3 1 1 0 1
5 GARCH-Skt 0 1 0 3 0 0 0 0
6 HAR-Skt-RV5 4 4 4 4 4 4 4 4
7 HEAVY-N-RV5 4 4 4 4 0 3 0 0
8 HEAVY-Skt-RV5 0 1 0 0 0 0 0 0
9 AL-CAViaR-Sym 2 3 1 3 0 0 0 0
10 GAS-2F 3 3 2 2 0 0 1 2
11 GAS-1F 0 3 0 0 0 0 1 1
12 GARCH-FZ 1 2 1 3 0 0 0 1
13 Hybrid 2 2 0 1 0 0 1 1
14 GAS-2F-RV5 0 1 1 1 1 1 1 1
15 GAS-1F-RV5 0 1 0 1 0 1 0 0
16 GARCH-FZ-RV5 0 1 0 1 0 0 0 0
17 Hybrid-RV5 2 3 0 1 0 0 0 0
18 GAS-2F-RV10 1 1 1 1 1 1 1 1
19 GAS-1F-RV10 0 2 1 1 0 1 0 0
20 GARCH-FZ-RV10 1 1 1 1 0 0 0 0
21 Hybrid-RV10 2 3 1 1 0 0 0 1
22 GAS-2F-RN5 2 3 0 1 0 0 0 0
23 GAS-1F-RN5 0 1 0 0 0 0 0 1
24 GARCH-FZ-RN5 0 0 0 0 0 0 0 0
25 Hybrid-RN5 0 0 0 0 0 0 0 1
26 GAS-2F-RN10 0 1 0 0 0 0 0 0
27 GAS-1F-RN10 0 0 0 0 0 0 0 1
28 GARCH-FZ-RN10 0 0 0 0 0 0 0 0
29 Hybrid-RN10 0 1 0 0 0 0 1 1

Note: This table presents the number of model rejections based on hit percentages of VaR forecasts
(UC test) for the four daily equity return series, over the out-of-sample period, for 29 different
forecasting models. The first three rows (Models 1-3) correspond to rolling window historical
forecasts, the next two rows (Models 4 and 5) correspond to GARCH forecasts based on different
distributions for the standardized residuals, the next four rows (Models 6-9) correspond to forecasts
using high-frequency data and the CAViaR model based on the asymmetric Laplace distribution.
The next four rows (Models 10-13) correspond to GAS models proposed by Patton et al. (2019).
The last 16 rows (Models 14-29) correspond to the GAS models extended with the 5-min and
10-min realized measures, respectively.
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Fig. 1. Color map based on the Diebold-Mariano (DM) test comparing the average losses
using the FZ0 loss function over the out-of-sample period for 29 different models, for the
S&P 500. White blocks mean that the row model has lower average loss than the column
model at 5% significance level; light green (below white in the color bar) blocks mean that
the row model has lower average loss than the column model, but not significantly different
from it, and so on. Darker color blocks mean that the row model has higher average loss
than the column model.

31



	Introduction
	Models
	GAS models for VaR and ES
	Realized measures
	GAS models for VaR and ES with realized measures

	Data and empirical study
	Data description
	Forecasting models
	In-sample estimation

	Out-of sample forecasting and backtesting
	Backtesting VaR
	Backtesting ES
	Joint backtesting of the (VaR, ES) risk measures

	Conclusions

