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1 Introduction

The constant-maturity zero-coupon Treasury yield curve is one of the most studied datasets.

Researchers use it to study the term structure of interest rates (e.g., Ang and Piazzesi (2003),

Duffee (2002), Hamilton and Wu (2012), Diebold and Rudebusch (2013), Wu and Xia (2016)),

run return forecasting regressions (e.g., Fama (1984) and Cochrane and Piazzesi (2005)),

analyze monetary policy (e.g., Rudebusch (2002) and Bernanke and Reinhart (2004)), and

price other assets and derivatives (e.g., Hull and White (1990) and Jarrow and Yildirim

(2003)). We construct a new dataset that represents the information in the raw data, and

make it available to researchers.

The most popular zero-coupon Treasury yield curve datasets are Fama and Bliss (1987)

and Gürkaynak et al. (2007) (GSW hereafter). However, both of them have their own limits.

Fama and Bliss (1987) only have maturities of 1, 2, · · · , 5 years. For researchers who are

interested in return forecasting regressions with holding periods in months or who need

maturities longer than five years, the only option is Gürkaynak et al. (2007).

GSW use a parametric method to interpolate a smooth yield curve. However, to obtain

a smooth yield curve that resembles the intermediate range, they discard all securities with

less than three months to maturity and all Treasury bills. Therefore, by construction, the

short end of their yield curve has large pricing errors, which the authors acknowledge in their

original paper.

However, the problematic short end of the yield curve propagates to other maturities

because some coupons of longer-term bonds are discounted with short-term discount rates.

On the other hand, the long end of their yield curve (e.g., maturities longer than five years)

are also subject to extrapolation due to the nature of their parametric smoothing method.

In spite of these shortcomings of the GSW dataset, researchers still rely on its short and

long end, because GSW is the only option with a wide range of maturities.

To address these issues, we construct a new zero-coupon yield curve dataset with a

kernel-smoothing method. This non-parametric method allows us to generate a globally
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smooth yield curve while still capturing important local variation. In contrast to parametric

methods that have a fixed degree of freedom throughout maturities, our non-parametric

method adaptively chooses the local degree of freedom based on the amount of information

available at a given maturity. As a result, we do not need to discard securities at the

short end or Treasury bills, which we find contain important information in disciplining the

overall behavior of the yield curve. Consequently, our dataset represents information in the

raw data, not only for the medium run, but more importantly, for the short run and the long

run.

We propose a novel approach to selecting kernel weights, which characterize the local

degrees of freedom for the kernel-smoothing method, and determine how much local versus

global information we pool to estimate the yield curve at a given maturity. We choose

weights adaptively, and they are maturity specific and data driven. Specifically, we define

the weight around a maturity as a normal distribution with the standard deviation given by

the bandwidth. The bandwidth is inversely related to the amount of local information. For

a region with abundant observations, the bandwidth is smaller. Consequently, weights are

more concentrated locally.

We present our zero-coupon yield curve with monthly maturities from 1 month to 360

months. As a complement, we also provide how much information is in the raw data by

calculating the bandwidth for each maturity at each time period. In general, the short term

is associated with the smallest bandwidth, implying ample observations. By contrast, the

bandwidth at maturities longer than 10 years is often large, due to intermittent issuance.

Albeit a popular choice in the literature, the 30-year yield sometimes pools information

from bonds with maturities that are 10 years away, even for the post-1990 sample. We

recommend researchers use the bandwidth as additional information to assess the quality of

the zero-coupon yield curve and the availability of the raw data.

We construct our dataset by applying our method to the CRSP Treasuries Time Series

from June 1961 to December 2018. We compare our dataset with GSW in terms of how they
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fit the raw data. First, we find that for maturities less than one year, GSW generate large

and sometimes extreme pricing errors (e.g., in the magnitude of 10% in annual percentage

points). Our method is able to reduce the average pricing error by as much as 53%. GSW

have large pricing errors in the short end because they ignore the raw data in that section,

and subsequently extrapolate the short end from longer-term bonds.

Second, although our dataset performs similarly to GSW over the medium term (i.e.,

maturities between one year and five years), it significantly outperforms GSW for maturities

longer than five years, with a reduction of 45% in the average pricing error. This result

highlights the constraint the parametric model used in GSW faces in fitting the long end of

the yield curve. Overall, our model consistently outperforms GSW, both across the entire

maturity spectrum and across time.

Our paper is organized as follows. In Section 2, we describe the non-parametric kernel-

smoothing method. In Section 3, we discuss bandwidth selection. In Section 4, we apply the

method to the US Treasuries data and illustrate the performance of our method. We offer

concluding remarks in the final section.

2 Kernel-Smoothing Method

The goal is to extract a zero-coupon yield curve y(n) for any maturity n ∈ N from observed

Treasury bills, notes, and bonds, many of which have coupon payments. For theory, this

section uses the support N = (−∞,+∞). In our application, we make it N = {1, 2, ..., 360}

months.2

Estimation of the yield curve amounts to minimizing a weighted average of the distance

between the fitted price and the observed price across all available bonds. To obtain the

entire yield curve, the number of yields of interest often exceeds the number of observations,

which creates non-uniqueness. As a result, existing methods impose additional constraints

2For earlier years when relatively long-maturity bonds are not available, the support is N = {1, 2, ..., n},
where n < 360 is the maturity limit that we will specify later on.
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on the minimization problem to obtain a unique and smooth solution. For example, Nelson

and Siegel (1987), Svensson (1994), and GSW assume a parametric functional form of the

yield curve and extract it from the data.

As an alternative to parametric approaches, we rely on a non-parametric method. The

main advantage of a non-parametric framework is that, in contrast to parametric methods,

the yield curve does not need to assume the same functional form across all maturities. For

example, the short end of the yield curve typically has more local patterns, whereas longer

term yields are smoother. A typical parametric method would struggle in capturing both

features and need to compromise, whereas non-parametric methods can be designed to adapt

to both features.

Our framework builds on the work of Linton et al. (2001), who introduced the non-

parametric kernel-smoothing approach in estimating the yield curve. In particular, Linton

et al. (2001) provide a theoretical justification for non-parametric methods by establishing

the asymptotic distribution of the yield curve estimates when the yield function is assumed

to be locally linear.

Different from their paper, we focus on the empirical performance based on a finite sample

of bonds. Specifically, our goal is to construct a smooth zero-coupon yield curve that best

describes the raw data. We make the following methodological contributions. First, we

propose a new method for bandwidth selection in Section 3 targeting the unique features of

the Treasuries. Second, we provide yield estimates over a denser set of maturities compared

to the literature, namely, N = {1, 2, ..., 360}. Third, we derive analytical derivatives for

the first-order conditions of the objective function to facilitate computation. Fourth, our

objective function is weighted by durations of bonds, which follows the literature on fitting

the yield curve parametrically and is new to the non-parametric literature.
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2.1 Pricing Error for a Security

At a given point in time, suppose we focus on a generic bond.3 It is characterized by its

observed price p, its sequence of cash flows {cj}Jj=1 including its principal, and the corre-

sponding maturities {νj}Jj=1. Note that we use n ∈ N to denote a generic maturity of the

zero-coupon yield curve, and ν denotes known maturities of cash flows. Note, ν across all

cash flows and bonds do not cover the entire support N .

Given y(νj), the implied bond price p̂ is

p̂ =
J∑
j=1

cj exp
(
− y(νj)νj

)
. (2.1)

The goal is to extract the entire zero-coupon yield curve y(n) for all maturities n ∈ N

from observed bond prices. However, ν across all cash flows does not cover the entire support

N . Therefore, we cannot obtain y(n) by simply inverting (2.1).

We instead connect a given νj with an arbitrary nj ∈ N by approximating y(νj) with

y(nj) using a first-order Taylor expansion:

y(νj) ≈ y(nj) + (νj − nj)y′(nj), (2.2)

where y′(nj) is the first derivative of the yield curve evaluated at nj. Now, we can approxi-

mate the bond price in (2.1) using (2.2)

p̂(n1, n2, ....nJ) ≈
J∑
j=1

cj exp
[
−
(
y(nj) + (νj − nj)y′(nj)

)
νj

]
, (2.3)

where each y(νj) for the cash flow νj is approximated by an arbitrary point on the zero

coupon yield curve y(nj). Note, n1, n2, ..., nJ could be different.

In general, nj could be any maturity in N . However, the closer nj is from νj, the more

3For brevity, we omit indicators for both time and bond for now.

5



information the j-th coupon payment provides on y(nj). To capture this idea, we use a

normal kernel-weighting function:

K(nj, νj) = Kh(νj)(nj − νj),

=
1√

2πh(νj)2
exp

[
− (nj − νj)2

2h(νj)2

]
, (2.4)

where h(νj) is the bandwidth parameter or the standard deviation of the normal distribution.

The weighting function has two features. First, given the bandwidth, the weight is higher

when nj is closer to νj. Second, the bandwidth h(νj) is a function of νj. This is essential

for our application and allows us to pool information more locally around one maturity and

more globally around another.

When h(νj) goes to zero, the cash flow cj only provides information for y(νj), but does not

provide any information for y(nj) when nj 6= νj. Therefore, a narrow bandwidth overweights

information locally and tends to generate a non-smooth yield curve. On the other hand, when

h(νj) approaches infinity, all maturities are weighted equally. Hence, a wide bandwidth pools

information more globally, but may generate yield curves that are overly smooth and lack

local variation. Details of how we select the bandwidth are in Section 3.

Given the kernel weights, the kernel-weighted squared pricing error is

E =

∫
. . .

∫
(p− p̂(n1, n2, ....nJ))2

J∏
j=1

K(nj, νj)dnj, (2.5)

where p̂(n1, n2, ....nJ) is defined in (2.3). Note we have

∫
. . .

∫ J∏
j=1

K(nj, νj)dnj = 1, which

makes it an appropriate weight function.4

4The other condition for being a weight function is that it is positive everywhere. This is trivially satisfied
for the normal kernel function.
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2.2 Summarizing Information across Bonds

We have thus far constructed the kernel-weighted squared pricing error for a generic bond. To

combine information from all available bonds at a given point in time, we need to add up the

squared pricing errors across bonds. Suppose I bonds are available. Let the kernel-weighted

squared pricing error for bond i be E i for i = 1, . . . , I, where E i is defined in (2.5).

The same discrepancy between the actual price and the fitted price has different implica-

tions for two bonds that have different maturity structures. For example, a $1 pricing error

is more pronounced for a short-term Treasury bill as opposed to a 10-year Treasury note.

This difference can be captured by weighting E i with 1/D2
i , where Di is bond i’ duration,

defined as

D =
J∑
j=1

νjcj exp(−νj ȳ)

p
,

and the yield to maturity (YTM) ȳ is the constant discount rate that equates the present

value of the bond’s cash flows with its price:

p =
J∑
j=1

cj exp(−νj ȳ). (2.6)

The duration-weighted pricing error can be interpreted as the equally weighted error in

the yield space. Therefore, our objective function is

S(y(·), y′(·)) =
I∑
i=1

1

D2
i

· E i, (2.7)

where y(·) is the yield function and y′(·) is its first derivative. Our goal is to minimize this

objective function to obtain y(n) and y′(n) for all n ∈ N .

To our knowledge, we are the first to use this weighting scheme in a non-parametric

framework. We consider using durations to weight bond prices to be important, because
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doing so allows us to put more weight on fitting the shorter end of the yield curve, which

affects coupon payments of bonds at all maturities. The same weighting scheme has been

applied by several papers that estimate the yield curve parametrically (e.g., Nelson and

Siegel (1987); GSW).

Minimizing the objective function (2.7) with respect to y(·) and y′(·) is a non-trivial

optimization problem. The main issue is that the integral in (2.5) does not have a closed-

form expression and needs to be approximated. Therefore, we need to choose a discrete

support to facilitate computation. We choose N = {1, 2, ..., 360} months, which is denser

than Jeffrey et al. (2006), for example. Our choice of a dense support in N requires the

estimation of a large number of parameters. We derive analytical derivatives of the first-

order conditions for (2.7) to alleviate the numerical burden, and provide efficient and accurate

estimates of the yield curve; see Appendix A. Once we have estimates of the yield curve

over this discrete support, our framework permits a kernel-weighted interpolation scheme to

provide estimates for maturities that are not in the support. Our choice of a dense support

ensures the estimated yield curve is smooth over the entire maturity range.5 We detail the

steps to minimize the objective function as well as the interpolation scheme in Appendix A.

2.3 Model-Implied Bond Price

The model-implied bond price is

p̂ =

∫
. . .

∫
p̂(n1, n2, ....nJ)

J∏
j=1

K(nj, νj)dnj. (2.8)

5Note that interpolation guarantees the estimated yield curve is always continuous. However, a less dense
support may lead to kinks in the estimated yield curve, which make the yield curve less smooth.
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Once we have the estimated y(·) and y′(·) over N = {1, 2, ..., 360}, we approximate this

object with

p̂ =
J∑
j=1

cj

∑360
n=1K(n, νj) exp

[
−
(
y(n) + (νj − n)y′(n)

)
νj

]
∑360

n=1K(n, νj)

 . (2.9)

In Section 4, we use p̂ as well as the associated yield to maturity for model comparison.

3 Bandwidth

One main methodological contribution of our paper is to propose a bandwidth selection

method for the yield curve. The choice of bandwidth determines the smoothness of the

estimated yield curve, which is crucial to generate a globally smooth yield curve while not

missing important local variation. Section 3.1 proposes our adaptive bandwidth selection

procedure for the yield curve, and section 3.2 leverages the notion of bandwidth to summarize

information content in the raw data.

3.1 Adaptive Bandwidth Selection Procedure

We propose a data-driven approach for choosing bandwidths. We follow the basic idea of

adaptive bandwidth selection proposed in the literature on non-parametric estimators (see,

e.g., Park and Marron (1990), Fan and Gijbels (1995), and Ruppert et al. (1995)). Our

specific choices are new to the literature, making us the first to apply adaptive bandwidth

selection to the estimation of the yield curve.

For each ν that corresponds to a cash flow, we choose h(ν) such that N0 bonds mature

within the two-bandwidth interval around ν (i.e., [ν−2h(ν), ν+2h(ν)]). In our main analysis,

we set N0 at 10. For a maturity region with lots of observations, the bandwidth h(ν) is small,

and vice versa. To price this cash flow at ν, the relevant region in the zero-coupon yield

curve is n ∈ [ν − 2h(ν), ν + 2h(ν)], which covers 95% of probability.

9



If observations were equally spaced in a region of the yield curve, our choice of the

bandwidth is equivalent to any maturity n on the zero-coupon yield curve in this region

falling within the two-bandwidth intervals around these N0 observations, which allows us to

have a sample of N0 bonds to estimate the yield curve at maturity n. For this reason, we

call N0 the effective number of local observations. Note these N0 bonds are not weighted

equally in estimating the yield curve at maturity n, because our kernel function assigns

higher weights to bonds whose maturities are closer to n.

In practice, observations are not equally spaced, and they are asymmetric around ν.

For these reasons, we adapt our bandwidth selection procedure as follows. Let N([νa, νb])

denote the number of bonds whose maturities fall into the interval [νa, νb]. We first define

the left-hand-side bandwidth at maturity ν (i.e., hl(ν)) as

hl(ν) =
1

2
min b

s.t. N([ν − b, ν)) ≥ N0/2. (3.1)

If no value of b satisfies N([ν − b, ν)) ≥ N0/2, we set hl(ν) at ν/2.

Similarly, define the right-hand-side bandwidth at maturity ν (i.e., hr(ν)) as

hr(ν) =
1

2
min b

s.t. N((ν, ν + b]) ≥ N0/2, (3.2)

with hr(ν) = 1
2
(nmax − ν) if N((ν, ν + b]) ≥ N0/2 cannot be satisfied for any b, where

nmax = 360 months.

Because the normal kernel is symmetric around ν, we consolidate hl(ν) and hr(ν) into

one bandwidth:

h(ν) = min{max{3, hl(ν), hr(ν)}, 60}, (3.3)
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Figure 1: Outstanding Treasury Securities

Maturity distribution of outstanding securities, 1961–2018.

where three months is the minimum and 60 (i.e., five years) is the maximum bandwidth we

set for any maturity. We next discuss the procedure.

Discussion Calculating hl(ν) and hr(ν) separately guarantees that we take information

from both the left side and the right side of ν. This is important because the maturity

distribution of outstanding Treasury securities on a given day often contains gaps, leading

to asymmetry between hl(ν) and hr(ν); see Figure 1. For example, suppose a 10-year gap

is present in the maturity space: no bonds exist with maturities between νa = 120 (i.e.,

10 years) and νb = 240 (i.e., 20 years). Also suppose a large number of bonds exist with

maturities that fall just below νa = 120, implying hl(νa) is small (in particular, hl(νa) �

60 = 1
2
× (240 − 120)). Now consider the bandwidth choice at νa. If we set the bandwidth

h(νa) at hl(νa), the bond price at maturity νa only provides information for the yield curve
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up to maturity νa + 2hl(νa),
6 leaving the majority of the yield curve between νa and νb

undetermined. Moreover, the implied curve between νa and νb is likely to be non-smooth.

Our solution is to set the bandwidth at hr(νa), which is the larger one between hl(νa) and

hr(νa).

For shorter maturities, many observations contain potential micro structure noise and

liquidity issues. For a fixed N0 = 10, the bandwidth of max{hl(ν), hr(ν)} tends to be

small. For example, max{hl(ν), hr(ν)} is on average around 0.5 months at the maturity of

three months. Such a small bandwidth tends to generate substantial local variation in the

estimated yield curve, which may not reflect the underlying true yield curve. Therefore,

our choice of a minimum bandwidth of three months allows us to pool information from

maturities that are within half a year of ν to smooth out the estimated yield curve.

On the other hand, too large a bandwidth may bias the yield curve estimate because the

Taylor expansion in (2.2) can be inaccurate. We therefore set the maximum bandwidth at 60

months, allowing us to pull information within a 10-year radius. This maximum bandwidth

only applies to long maturities where the data are sparse and have gaps in the maturity

distribution.

Fixing the number of local observations at N0 allows us to pool roughly the same amount

of local information to estimate the yield curve at each maturity. Another benefit is that

it automatically adjusts for the total number of Treasury securities available at each date.

When more bonds exist (as in the later part of our sample), bandwidths in general shrink,

which allows us to better capture the local variation in the yield curve.

3.2 Information Content in the Raw Data

In this section, we leverage the notion of bandwidth to summarize the information content

in the raw data. Different from (3.3), which is the bandwidth for each cash flow ν, we are

6This is only approximately true, because the normal kernel assigns a non-zero weight to any maturity.
However, it assigns relatively large weights to observations that are within two bandwidths.
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now interested in the information contained at each maturity n on the zero-coupon yield

curve. We propose to use

h(n) = min{hl(n), hr(n)},

where hl(n) and hr(n) are calculated by (3.1) and (3.2). Note, if b does not exist for (3.1),

we set hl(n) at ∞. The same applies to hr(n).

Why do we take the minimum instead of the maximum? We use the previous example

with a 10-year gap in the maturity space between 10 years and 20 years to illustrate. For

the bond with ν = 120, hl(ν) � hr(ν). But it needs to provide information to maturities

within the gap n ∈ (180, 240). This explains the maximum in (3.3). For n = 120 on the

estimated zero-coupon yield curve, we still have hl(n) � hr(n). However, the information

we use to estimate the yield at n = 120 primarily comes from bonds on the left side, and

hl(n) is small. Hence, we need to take the minimum instead.

Figure 2 provides two examples. The left panel is May 1990, and the right panel is May

2005. We plot bandwidths at the top. Yield to maturity is at the bottom and each dot

corresponds to one outstanding security.

For both dates, the bandwidth increases with maturity in general, indicating observations

are more concentrated on the short end. For May 1990, no outstanding securities have

maturities between 180 and 296 months, which results in the spike in bandwidth. In May

2005, the longest maturity is 300 months, and we see the bandwidth increases sharply after

that.

Figure 3 shows the time series of bandwidth for various maturities, with the red ver-

tical bar indicating the beginning of 1990. Data on the short end are abundant, and the

bandwidths for one, three, and six months are generally below 0.5 months.

The Treasury does not always issue notes and bonds with longer maturities. For example,

it started issuing the 10-year notes in September 1971, 15-year bonds in December 1971, 20-
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Figure 2: Bandwidth on Selected Dates
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Bandwidth on two selected dates. We plot the cross section of bandwidth for May 1990 and May
2005. The top panels plot the bandwidth. The bottom panels plot the yield to maturity.

year bonds in July 1981, and 30-year bonds in November 1985. Even after these starting

dates, they still issue them intermittently. This is consistent with Figure 1.

In general, the bandwidths become smaller after 1990 for maturities longer than one

year. But they remain large for maturities longer than 10 years. The 30-year maturity is

popular for the study of the behavior of long-term yields in the literature. However, due

to the intermittent issuance, even the post-1990 sample’s bandwidth can get as large as 60

months, implying a lack of observations and hence pulling information from maturities that

are 10 years away.
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Figure 3: Time Series of Bandwidth
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Time series of bandwidth for different maturities. We plot the time series of bandwidth over the
entire sample for 1961 to 2018, and the red vertical bar marks the beginning of 1990.

4 The Performance of the New Yield Curve

Section 4.1 describes the data and the filtering procedures. Sections 4.2 - 4.4 illustrate the

performance of our new yield curve. Section 4.2 focuses on selected dates to provide intuition.

Sections 4.3 and 4.4 take a more systematic approach to evaluate the goodness of fit, with

the former examining summary statistics and the latter assessing the time series of pricing

errors.

4.1 Data

The raw CUSIP-level data come from the CRSP Treasuries Time Series. For each bond, we

observe the end-of-day bid and ask (and average) prices, maturities, coupon payments, and

schedules as well as other characteristics. The sample is from June 1961 to December 2018
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in monthly frequency.

To construct the zero-coupon yield curve, we focus on a set of securities whose prices are

only determined by their coupon payments and maturities, and not by other bond charac-

teristics. To do so, we apply several filters to the raw CRSP Treasury data, similar to the

literature. In particular,

1. Only include fully taxable, non-callable, and non-flower bond issues (i.e., CRSP ITYPE

equals 1, 2, 3, or 4).

This step ensures bonds with tax benefits and option-like features are not included in

our sample. The same filter is applied by Fama and Bliss (1987).

2. Exclude the two most recently issued securities with maturities of 2, 3, 4, 5, 7, 10, 20,

and 30 years for securities issued in 1980 or later.

This procedure follows GSW and aims to delete on-the-run (or “first off-the-run”)

issues that often trade at a premium compared to other issues due to their liquidity

and specialness.

3. Apply an outlier-detection algorithm detailed in Appendix B.

Our approach is algorithmic in nature as opposed to the ad-hoc procedures in the

literature.

Our procedures are similar to Fama and Bliss (1987) and GSW. The main difference

between our filtering procedures and GSW is that we do not discard securities with shorter

maturities or Treasury bills. We argued in Subsection 3.2 that these securities contain

important information in the raw data for estimating the zero-coupon yield curve, and we

subsequently show the benefit of keeping them subsequently.

Figure 1 summarizes the maturity structure for all outstanding Treasury securities over

the entire sample period. The Treasury started issuing the 10-year notes in September 1971,
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15-year bonds in December 1971, 20-year bonds in July 1981, and 30-year bonds in November

1985. We set the maximum maturity nmax accordingly, which is marked in red in Figure 1.

4.2 Yield Curves on Selected Dates

To gain some insights into the performance of our method, we use the yield to maturity

(YTM) to compare our newly constructed yield curve with the raw data as well as the yield

curve implied by GSW. For the raw data, the YTM is computed by (2.6). The model-implied

YTM is the solution to (2.6), except the left-hand side is replaced with the model-implied

price p̂, which is defined in (2.9) for our model.

Figure 4 illustrates the comparison for four dates: February 1968 (first column), July

2014 (second column), January 1990 (third column), and January 2010 (last column). The

top row shows the zero-coupon yield curve, the next two rows are the YTM. Red indicates

observations, blue uses our method, and green is GSW. We reestimate GSW’s parameters

based on our raw data; see details in Appendix C. The results are similar if we use the

published parameters for GSW.

For February 1968, the main difference between our curve and GSW’s is the short end.

Whereas our zero-coupon yield approaches around 5% at a maturity of zero, it reaches a

level of 15% for GSW’s estimate. Importantly, as shown in panel (2,1) and more clearly in

panel (3,1), the data do not support GSW’s large estimate of the yield at the short end,

leading to pricing errors that are in the magnitude of 20%.

The main difference between our model and GSW’s in July 2014 is again the short end,

which can be better seen in the (3,1) panel. This date is associated with the historical

zero lower bound (ZLB) period for the United States, when the nominal interest rate is

constrained by its lower bound at zero. Our curve captures the pattern in the raw data,

and in consistent with the ZLB: The short end converges to zero when maturity approaches

zero. By contrast, GSW has a U shape at the short end, and the difference in YTM between

GSW and the raw data is about 0.3%.

17



F
ig

u
re

4:
Y

ie
ld

C
u
rv

e
s

o
n

S
e
le

ct
e
d

D
a
te

s

0
50

10
0

M
at

ur
ity

 (
m

on
th

s)

051015

Zero coupon yield

F
eb

ru
ar

y 
19

68

LW G
S

W

0
50

10
0

M
at

ur
ity

 (
m

on
th

s)

0102030

Yield to maturity

0
5

10

M
at

ur
ity

 (
m

on
th

s)

0102030

Yield to maturity

D
at

a
LW G

S
W

0
10

0
20

0
30

0
40

0

M
at

ur
ity

 (
m

on
th

s)

01234

Zero coupon yield

Ju
ly

 2
01

4

0
10

0
20

0
30

0
40

0

M
at

ur
ity

 (
m

on
th

s)

-101234

Yield to maturity

0
5

10

M
at

ur
ity

 (
m

on
th

s)

-0
.20

0.
2

0.
4

Yield to maturity

0
10

0
20

0
30

0
40

0

M
at

ur
ity

 (
m

on
th

s)

7.
58

8.
5

Zero coupon yield

Ja
n

u
ar

y 
19

90

0
10

0
20

0
30

0
40

0

M
at

ur
ity

 (
m

on
th

s)

7.
58

8.
5

Yield to maturity

10
0

20
0

30
0

40
0

M
at

ur
ity

 (
m

on
th

s)

8.
3

8.
4

8.
5

8.
6

Yield to maturity

0
10

0
20

0
30

0
40

0

M
at

ur
ity

 (
m

on
th

s)

0246

Zero coupon yield

Ja
n

u
ar

y 
20

10

0
10

0
20

0
30

0
40

0

M
at

ur
ity

 (
m

on
th

s)

024

Yield to maturity

Y
ie

ld
cu

rv
e

es
ti

m
at

es
on

se
le

ct
ed

d
a
te

s.
W

e
p

lo
t

th
e

y
ie

ld
cu

rv
e

es
ti

m
at

es
,

as
w

el
l

as
th

e
im

p
li

ed
y
ie

ld
to

m
at

u
ri

ty
(Y

T
M

)’
s

fo
r

fo
u

r
p

ar
ti

cu
la

r
d

at
es

:
F

eb
ru

ar
y

19
6
8,

J
u

ly
2
01

4,
J
an

u
ar

y
19

90
,

an
d

J
an

u
ar

y
20

10
.

F
or

ea
ch

d
at

e,
th

e
to

p
p

a
n

el
s

p
lo

t
th

e
tw

o
ze

ro
-c

o
u

p
o
n

y
ie

ld
cu

rv
e

es
ti

m
at

es
,

on
e

fo
r

ou
r

m
et

h
o
d

(‘
L
W

’)
an

d
on

e
fo

r
G

S
W

(‘
G

S
W

’)
.

T
h

e
m

id
d

le
p

a
n

el
s

p
lo

t
th

e
Y

T
M

of
th

e
d

a
ta

(‘
D

a
ta

’)
a
s

w
el

l
a
s

th
e

im
p

li
ed

Y
T

M
fo

r
ou

r
m

et
h

o
d

(‘
L
W

’)
an

d
G

S
W

(‘
G

S
W

’)
ac

ro
ss

al
l

m
at

u
ri

ti
es

.
T

h
e

b
ot

to
m

p
a
n

el
s

zo
om

in
to

a
ce

rt
a
in

m
a
tu

ri
ty

ra
n

g
e

to
h

ig
h

li
g
h
t

th
e

d
iff

er
en

ce
in

Y
T

M
.

18



The above examples on the short end are driven by two reasons. First, GSW drop

observations in the short end, including all observations with less than three months to

maturity and all Treasury bills. Second, the shape of their yield curve is dictated by their

parametric model. The former may exacerbate the latter, because parametric models fitted

only to securities on the relatively long end may generate unstable and poorly identified

estimates on the short end that are inconsistent with the data.7 By contrast, our non-

parametric method allows us to include all the raw observations in our estimation, and can

fit the short end without sacrificing the fit in other maturity segments.

For January 1990, the main difference is for longer maturities; see the (3,3) panel. The

raw data contain a humped shape, whereas GSW’s estimate is monotonically increasing

in maturity. Therefore, GSW generate pricing errors that are systematically positive or

negative: They are positive for maturities between 100 and 120 months and between 300 and

350 months, and negative for maturities between 120 and 200 months. Note that although

the difference in YTM of 0.1% might seem small, it translates into a 0.5% difference in the

zero-coupon yield. By contrast, our estimate fits the raw data well across all maturities.

What drives the performance of GSW is a large gap in the maturity distribution combined

with limited observations in the long end, which accounts for a large fraction of our data

based on Figure 1. This feature, combined with parametric methods with a limited degree

of freedom, tends to underfit the yield curve around the gap, leading to systematic pricing

errors for bonds on both sides of the gap. By contrast, our framework allows us to flexibly

capture the local variation of the yield curve for this maturity range, resulting in a substantial

reduction in pricing errors.

Finally, the last date (January 2010) presents a time when our yield curve estimate agrees

with GSW’s. In the meantime, the implied YTMs from both methods also closely match the

data, showing that when a simple parametric function is sufficient to explain the variations

in the raw data, our non-parametric method also produces a smooth yield curve and does

7See Section 5 of GSW for a related discussion on the instability of their estimates.
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not overfit.

4.3 Summary Statistics

Section 4.2 illustrates that our method can capture various shapes of the yield curve and per-

forms better than GSW on selected dates. We next systematically evaluate the performance

of our dataset.

Let the actual bond price and the model-implied bond price be pi and p̂i for i = 1, 2, ..., I.

We first define two measures of pricing error that are directly related to our objective

function. The first is the root-mean-squared pricing error (RMSPE) that calculates the

square root of the mean-squared distance between pi and p̂i, that is,
√

1
I

∑I
i=1(pi − p̂i)2.

The second is the duration-weighted root-mean-squared pricing error (WRMSPE) defined

as
√

1
I

∑I
i=1w

2
i (pi − p̂i)2, where wi =

D−1
i∑I

i=1D
−1
i

is the weight for bond i. Note WRMSPE is

equivalent to our objective function that also weights pricing errors by bond durations.

We next define two metrics related to absolute pricing errors. They are the mean absolute

pricing error, MAPE = 1
I

∑I
i=1 |pi − p̂i|, and the duration-weighted mean absolute pricing

error, WMAPE =
∑I

i=1wi|pi − p̂i|.

Bliss (1996) argues the bid-ask spread needs to be taken into account when calculating

the pricing error. We follow Bliss (1996) to define the bid-ask-spread-adjusted pricing error

as:

εi =


p̂i − pai if p̂i > pai ,

pbi − p̂i if p̂i < pbi ,

0 otherwise,

where pai and pbi are the ask and bid quotes for the bond. The corresponding mean abso-

lute pricing error (denoted as MAPE (Bliss)) and duration-weighted absolute pricing error

(denoted as WMAPE (Bliss)) are defined as 1
I

∑I
i=1 εi and

∑I
i=1wiεi.

Next, rather than calculating the error between the actual and the fitted price, we define

the mean absolute yield error (MAYE) as the average absolute error between the observed
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and the fitted yield to maturity.

Lastly, we follow Bliss (1996) to define the hit rate (HR (Bliss)) as 1
I

∑I
i=1 1{pbi≤p̂i≤pai },

where 1{pbi≤p̂i≤pai } is the indicator function that equals 1 if p̂i falls within [pbi , p
a
i ]. The hit

rate calculates the frequency of times the fitted price falls within the bid-ask spread.

To summarize, the eight metrics we consider are RMSPE, WRMSPE, MAPE, WMAPE,

MAPE (Bliss), WMAPE (Bliss), MAYE, and HR (Bliss). For the first seven, a smaller error

indicates a better model, whereas a larger hit rate is associated with better performance.

Table 1 reports the performance comparison between our method and GSW for nine

maturity buckets together with an overall comparison. Bold highlights the better performer.

Panel A evaluates our method. In Panel B, we estimate GSW’s curve with our raw data.8

Our method performs better than GSW across all metrics and maturity buckets. The

improvement is substantial, and the reduction in pricing errors across all bonds (last column)

ranges between 33% and 63%, with the largest reduction occurs in WMAPE (Bliss).

Across maturity buckets, our model performs significantly better at the short end and the

longer end. For maturities less than three months, the percentage reduction in the pricing

error of our model relative to GSW ranges from 65% to 84%, with WMAPE (Bliss) implying

the largest reduction.

For maturities above five years, our model again presents a substantial improvement over

GSW. The percentage reduction in pricing error ranges from 24% to 33% over the maturity

range between 5 years and 10 years, from 45% to 54% between 10 years and 20 years, and

74% to 84% between 20 years and 30 years.

As a robustness check, we also report in Panel C using GSW’s published parameters.

Overall, Panels B and C have a similar performance, with Panel B being slightly better

because it reoptimizes based on our raw data.

8Note that we follow GSW and drop all securities with maturities less than three months, as well as
Treasury bills.

21



Table 1: In-Sample Performance Summary

Maturity Bucket All

[0,3mth) [3mth, 1yr) [1yr, 2yr) [2yr,5r) [5yr, 7yr) [7yr, 10yr) [10yr, 15yr) [15yr, 20yr) [20yr, 30yr]

Panel A: LW

RMSPE 0.014 0.039 0.078 0.151 0.264 0.489 0.451 0.197 0.117 0.185
WRMSPE 0.012 0.034 0.076 0.141 0.262 0.479 0.448 0.198 0.118 0.060
MAPE 0.011 0.030 0.060 0.111 0.213 0.402 0.391 0.162 0.092 0.092
WMAPE 0.009 0.026 0.059 0.103 0.211 0.392 0.387 0.163 0.092 0.023
MAPE (Bliss) 0.005 0.014 0.030 0.065 0.152 0.318 0.289 0.115 0.059 0.059
WMAPE (Bliss) 0.004 0.012 0.029 0.059 0.151 0.308 0.286 0.116 0.059 0.012
MAYE 0.086 0.057 0.044 0.037 0.044 0.064 0.049 0.013 0.006 0.050

HR (Bliss) 0.419 0.427 0.518 0.384 0.291 0.202 0.271 0.310 0.353 0.411

Panel B: GSW, Re-estimated

RMSPE 0.040 0.053 0.090 0.189 0.350 0.648 0.696 0.449 0.464 0.277
WRMSPE 0.035 0.049 0.088 0.177 0.347 0.634 0.688 0.451 0.461 0.094
MAPE 0.036 0.042 0.071 0.141 0.295 0.554 0.603 0.405 0.405 0.145
WMAPE 0.031 0.040 0.070 0.131 0.293 0.540 0.595 0.407 0.403 0.045
MAPE (Bliss) 0.029 0.026 0.039 0.092 0.230 0.463 0.495 0.350 0.367 0.109
WMAPE (Bliss) 0.025 0.025 0.038 0.084 0.228 0.449 0.487 0.352 0.364 0.032
MAYE 0.315 0.089 0.052 0.046 0.060 0.087 0.075 0.032 0.028 0.107

HR (Bliss) 0.236 0.349 0.407 0.290 0.174 0.114 0.135 0.104 0.128 0.284

Panel C: GSW, Original Model Parameterization

RMSPE 0.056 0.068 0.103 0.209 0.347 0.715 0.747 0.458 0.513 0.305
WRMSPE 0.047 0.065 0.101 0.197 0.344 0.699 0.739 0.460 0.508 0.107
MAPE 0.052 0.056 0.083 0.156 0.282 0.609 0.646 0.411 0.451 0.160
WMAPE 0.042 0.055 0.081 0.147 0.279 0.592 0.637 0.412 0.448 0.057
MAPE (Bliss) 0.043 0.038 0.048 0.106 0.217 0.516 0.535 0.356 0.412 0.123
WMAPE (Bliss) 0.035 0.039 0.047 0.098 0.215 0.500 0.527 0.358 0.408 0.043
MAYE 0.425 0.123 0.061 0.052 0.058 0.096 0.081 0.033 0.031 0.138

HR (Bliss) 0.166 0.268 0.356 0.259 0.198 0.103 0.127 0.113 0.096 0.240

We report the summary statistics of pricing error for different models across different maturity buckets. We
present results for three models: LW (our model), GSW re-estimated (GSW estimated based on our data),
and GSW, original parameterization (using the original parameter values in GSW). For each maturity bucket
(or across all bonds) and for each date, we calculate eight measures of pricing error: root-mean-squared
pricing error (RMSPE), duration-weighted root-mean-squared pricing error (WRMSPE), mean absolute
pricing error (MAPE), duration-weighted absolute pricing error (WMAPE), mean absolute pricing error
adjusted for bid-ask spread (MAPE (Bliss)), duration-weighted absolute pricing error adjusted for bid-
ask spread (WMAPE (Bliss)), mean absolute yield error (MAYE), and the hit rate (HR (Bliss)). RMSPE,
WRMSPE, MAPE, WMAPE, MAPE (Bliss), and WMAPE (Bliss) are based on a face value of $100. MAYE
is based on annualized percentage yield. We report the averaged pricing errors over the full sample from
June 1961 to December 2018.
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Figure 5: Time Series of Mean Absolute Error in YTM: The Short End
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Time series of pricing errors for maturities less than one year. We plot the mean absolute pricing
errors in YTM (i.e., MAYE) for our method and GSW over the entire sample period (i.e., 1961–
2018). The top panel examines bonds with maturities less than three months; the bottom panel
examines bonds with maturities between three months and one year.

4.4 Time Series Evidence

This section examines the time series of pricing errors to provide more insights into the

performance of our method.

The short term We first examine the short end of the yield curve, that is, maturities

that are less than one year. Figure 5 shows our model performs consistently better than

GSW across different time periods and maturities. The top panel examines maturities less
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than three months, and the bottom panel examines maturities between three months and

one year. We split the full sample into the 1961–1989 (left panels) and the 1990–2018 (right

panels) sub samples given the general decline in pricing error over time.9

For maturities less than three months (top panel), we observe that GSW occasionally

generate large pricing errors of around 7%. The left panel of Figure 4 illustrates one such

example in February 1968. Our method is able to reduce these pricing errors significantly.

For maturities between three months and one year (bottom panel), our model continues

to outperform GSW. In particular, our model does better than GSW for the 1961-1975

period and the more recent post-2009 period. The post-2009 period is associated with the

zero lower bound and subsequent low interest rate environment in the United States. As

in Figure 4 (July 2014), we have illustrated that our method fits the short end of the yield

curve better for this special period in history.

The large pricing errors of GSW at the short end come from the fact that they exclude all

securities with less than three months to maturity as well as all Treasury bills. Consequently,

GSW extrapolate the short end of the yield curve from securities with longer maturities,

which leads to imprecise and sometimes extreme estimates of the short end of the yield

curve.

Moreover, the issue of the short end of the yield curve of GSW is unlikely to be solved by

simply including securities with short maturities in their estimation. The challenge is that the

parametric model used in GSW has a limited degree of freedom and cannot simultaneously

capture short-term, medium-term, and long-term yields.

By contrast, our non-parametric framework with adaptive bandwidth presents a natural

solution to this challenge, because it adjusts the amount of local information to construct

the yield curve.

9To ensure the reoptimization of GSW’s model based on our data does not cause the large pricing errors
on the short end for their model, we plot the minimum pricing error between their original parameterization
and our re-estimated version in Figure 5.
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Figure 6: Time Series of Mean Absolute Error in YTM: The Medium End
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Time series of pricing errors for maturities between one year and five years. We plot the mean
absolute pricing errors in YTM (i.e., MAYE) for our method and GSW over 1961–1989 (left panels)
and 1990–2018 (right panels). We group bonds into two maturity buckets: 1–2 year (top row) and
2–5 year (bottom row).

The Medium Term Figure 6 focuses on maturities between one and five years. Our model

performs similarly to GSW, with the exception of the post-2009 sample. The zero lower

bound lasts from 2009 to 2015, and interest rates remain low after that time. During this

period, our model significantly outperforms GSW’s. The first column of Figure 4 illustrates

the intuition. This similarity in performance is consistent with the observation that abundant

data are available over this maturity range, causing parametric models such as GSW’s to

use most of its degree of freedom to fit this part of the data.
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Figure 7: Time Series of Mean Absolute Error in YTM: The Long End
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Time series of pricing errors for maturities between five years and 30 years. We plot the mean
absolute pricing errors in YTM (i.e., MAYE) for our method and GSW over 1961–1989 (left panels)
and 1990–2018 (right panels). We group bonds into four maturity buckets: 5–10 year (top row),
10–15 year (second row), 15–20 year (third row), and 20–30 year (bottom row).

The Long Term For maturities above five years (Figure 7), we see substantial improve-

ment of our model compared to GSW. Between five years and 10 years, we start to see the

improvement of our method. For example, between 2000 and 2006, we are able to reduce

the MAYE from 0.08% in GSW to around 0.02%.

Maturities longer than 10 years contain large spikes in pricing error generated by GSW.
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For example, between 1986 and 1990, GSW’s pricing error for maturities between 20 years

and 30 years reaches 0.3%. By contrast, the pricing error from our method always stays

under 0.05%. Moreover, our improvement applies not only to the pre-1990 sample for which

a limited number of long-term securities are outstanding, but also to the post-1990 sample,

including the most recent sample when abundant data on the long end are available.

5 Conclusion

The zero-coupon yield curve provides important information about financial markets and

the macroeconomy. It is widely used by researchers and practitioners. Our paper develops

a new dataset by a non-parametric kernel-smoothing method. Our dataset is available upon

request. Our proposed non-parametric method allows us to generate a smoothed yield curve

while preserving the information in the raw data. We show our yield curve estimate provides

a more accurate description of the data than estimates in the existing literature.
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A Details on Estimation

The first-order conditions for the minimization problem in (2.7) are

I∑
i=1

Ji∑
j=1

Φi
j(n; y, y′) · 1/D2

i = 0, (A.1)

I∑
i=1

Ji∑
j=1

Φi
j(n; y, y′)(n− νij) · 1/D2

i = 0, (A.2)

where Φi
j(n; y, y′) is given by

Φi
j(n; y, y′) =

(
Kh(νij)

(n− νij)cijνijdij(n)
)

×

pi − cijdij(n)−
Ji∑
k=1
k 6=j

(∫
Kh(νik)

(n− νik)cikdik(n)dn
) , (A.3)

dik(n) = exp
[
−
(
y(n) + (νik − n)y′(n)

)
νik

]
. (A.4)

Note that equation (A.3) (and therefore equations (A.1) and (A.2)) contains integrals.

Although, in principle, solving equations (A.1) and (A.2) numerically is possible,10 we follow

Jeffrey et al. (2006) and approximate the integrals with interpolations that are functions of

y(·) and y′(·).11

In particular, suppose the support of y(·) and y′(·) isN = {1, 2, ..., 360}. We approximate

the integrals in equation (A.3) as

∫
Kh(νik)

(n− νik)dik(n)dn

≈

∑360
n=1Kh(νik)

(n− νik) exp
[
−
(
y(n) + (νik − n)y′(n)

)
νik

]
∑360

n=1Kh(νik)
(n− νik)

. (A.5)

10See Linton et al. (2001) for the iterative algorithms they propose to solve system of equations that are
similar to equations (A.1) and (A.2).

11We implemented both Linton et al. (2001) (in particular, the log-linear specification) and Jeffrey et al.
(2006) for our model. Our experience is that Jeffrey et al. (2006) indeed offer a more stable and computa-
tionally efficient solution than Linton et al. (2001).
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On the other hand, viewing dik(n) as the discount rate at νik approximated by the yield

curve at n,
∫
Kh(νik)

(n − νik)d
i
k(n)dn can be interpreted as the kernel-smoothed discount

rate at νik. Let the corresponding zero-coupon yield be ŷ(νik), which is defined through∫
Kh(νik)

(n− νik)dik(n)dn = exp[−νik × ŷ(νik)], we obtain ŷ(νik) as12

ŷ(νik) = − 1

νik
log

∑360
n=1Kh(νik)

(n− νik) exp
[
−
(
y(n) + (νik − n)y′(n)

)
νik

]
∑360

n=1Kh(νik)
(n− νik)

 . (A.6)

Replacing νik by an arbitrary maturity ν in (A.6), we arrive at the formula that we use to

interpolate the yield curve at any maturity ν.

In sum, we seek to solve equations (A.1) and (A.2) with respect to y(n) and y′(n) for

n ∈ N = {1, 2, ..., 360}, where Φi
j(n; y, y′) is given by equations (A.3) and (A.4), but with the

integrals in equation (A.3) replaced by equations (A.5) and (A.6). In essence, we are solving

a system of non-linear equations. By construction, all of these equations involve functions

that are infinitely differentiable. We provide closed-form gradients for these equations,13

which allows us to solve these non-linear equations efficiently.

B Outlier Detection

Our outlier-detection algorithm follows several steps.

First, we drop observations whose yield to maturity is higher than 40% (annualized).

In the data, sometimes bond price appears to be too low (equivalently, yield to maturity

12 The above interpolation can be interpreted as the solution to an optimization problem that is similar
to (2.7) for a pure discount bond with a maturity of νik. More specifically, for a given estimated ỹ(·)

and ỹ′(·), the solution to the minimization problem min
y(νi

k)

∫ (
exp

[
− y(νik) × νik

]
− exp

[
−
(
ỹ(n) + (νik −

n)ỹ′(n)
)
n
])2

Kh(νi
k)

(n−νik)dn is given by y(νik) = − 1

νik
log

(∫ (
exp

[
−
(
ỹ(n)+(νik−n)ỹ′(n)

)
n
])
Kh(νi

k)
(n−

νik)dn

)
. Because we only have solutions for ỹ(·) and ỹ′(·) over N = {1, 2, ..., 360}, the interpolated version

of this solution is given by equation (A.6).
13This is another benefit of replacing the integrals in equation (A.3) with interpolated yields as in equation

(A.6).
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appears to be too high). Across time, bond prices in general reach their lowest during the

early 1980s recession, approaching a level of 20% in yield to maturity. We therefore set

40% = 2 × 20% as a lenient threshold in yield to maturity to drop low-price observations.

Note potential outliers that have a high yield to maturity but still below 40%, which are not

dropped after this step, are likely to be dropped after the following steps.

After the initial step, we follow the 1.5× IQR (interquartile range) rule in statistics to drop

outliers (see, e.g., Tukey (1977)). For our application, however, one complication in applying

this rule is that spatial variation exists in bond yields across the maturity spectrum. We

therefore adapt this rule by taking into account the potential systematic variation in yields

across maturities.

In particular, we first specify two bandwidth parameters (θ1 = 10% and θ2 = 20%) that

are defined to capture a certain fraction of the data (θ is different from N0, which is the

effective number of observations for our non-parametric model). For a given bandwidth θ

and a bond observation, we apply the 1.5× IQR rule to the 100θ% of observations that are

the closest to the given bond in terms of maturity. We drop the observation if it fails the

1.5× IQR rule for yield to maturity for both θ1 and θ2. Our use of both θ2 (which is more

global) and θ1 (which is more local) ensures we do not drop observations that may appear

to be outliers locally (i.e., when evaluated with θ1) but stop being so globally (i.e., when

evaluated with θ2), and vice versa.

After establishing our outlier-detection algorithm, we examine selected dates to ensure

our algorithm strikes a reasonable balance in dropping extreme observations and keeping in-

formation. On average, around 1.5% of observations are dropped at each date after applying

our filtering procedure.
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C Details on Our Implementation of GSW

We obtain GSW’s parameters from the Federal Reserve Board’s webpage, and use them as

starting values and re-estimate their model based on our raw bond data. Besides applying

our filters described in Subsection 4.1, we also drop securities with less than three months

to maturity and all Treasury bills, following GSW. In addition, we follow GSW by using

the Nelson-Siegel four-parameter specification for the period before 1980 and GSW’s six-

parameter specification for the post 1980 period.

For most months, the re-estimated GSW curve is very similar to their original curve

computed using their published parameters. This confirms the similarity in the underlying

raw data we use. For a few months, the two versions have a substantial difference in the

short end, where observations are omitted in estimation following GSW. This instability is

consistent with what GSW find; see Section 5 of their paper. Given parameter instability

of GSW, we compare our method with both the re-estimated GSW and their reported

parameters.
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