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1 Introduction

We study experimentally reactions to information of ambiguous reliability. Agents receive

one of two messages that are truthful or misleading depending on the draw from an Ells-

berg bag. We study this for three reasons.

First, this tests a key implication of common updating models under ambiguity: that

information may increase the amount of relevant ambiguity—the so-called ‘dilation’ of

sets of priors. It is known that with the two widespread updating rules for MaxMin Ex-

pected Utility—Full-Bayesian and Maximum Likelihood—the set of relevant priors may

become larger (dilate) after information. This makes ambiguity averse agents strictly worse
off after some information; they should be willing to pay to avoid it. Whether this is em-

pirically true, and to the extent predicted by theory, received little attention. Our experi-

ment tests a crisp case: in our experiment dilation should occur after any message—a case

termed ‘all news is bad news’ by Gul and Pesendorfer (2018).

Second, the information we study is related to applications of ambiguity to strategic

settings, where many results depend on the dilation property. Bose and Renou (2014)

study a mechanism design problem where an unambiguous allocation stage is preceded

by an ambiguous mediated communication stage; Beauchêne, Li, and Li (2019) study

Bayesian persuasion with ambiguity averse receiver and a sender who can commit to am-

biguous signals. In the motivating examples of both papers, the ambiguity lies in having

messages that are either the truthful or not—like in our experiment. Both papers assume

Full Bayesian updating, and results rely crucially on its dilation property. We test it.

Third, more in general our experiment studies ambiguous information, focusing on the

case in which the ambiguity is on the reliability. While ambiguity in informativeness may

be common in real life, only a very small recent literature discussed below has studied it.

Experiment. Subjects first evaluate bets on the color drawn from an urn, which may be

risky or ambiguous. Then, they receive a message about the color drawn; but this message

is truthful or misleading depending on the draw from a standard 2-color Ellsberg bag of

chips. We ask subjects to acknowledge the message and measure how the value of bets

change after it. We also measure the value (positive or negative) of this information. In

one set of questions, the payoff-relevant draw is made from a risky, 50/50 urn. In another,

it is from an ambiguous urn. We also measure subjects’ ambiguity aversion.

Relation to Theories. Common models of updating under ambiguity make clear predic-

tions. Consider the MaxMin Expected Utility model (MMEU) of Gilboa and Schmeidler

(1989) with set of priors Π. Two updating rules are widespread: Full-Bayesian (FB), where

the set of priors after information is the Bayesian Update of all priors in Π (Wasserman
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and Kadane, 1990); and Maximum-Likelihood (ML), where the updated set includes only

priors in Π that satisfy a maximum-likelihood criterion (Gilboa and Schmeidler, 1993).

When the payoff-relevant state is risky, before information the relevant set of priors is a

singleton. But after ambiguous information like in our experiment, with Full-Bayesian

(FB) or Maximum-Likelihood (ML) the relevant set of priors dilates and is no longer a sin-

gleton: because of the ambiguity in information, bets on the risky urn become ambiguous.
Ambiguity averse agents should then decrease the value of bets after information; and pay

to avoid information. The opposite is true for ambiguity seeking. Note that these predic-

tions hold for any message. Appealing or not, this is a feature of both updating rules.

Results. When the payoff-relevant state is risky, we find that ambiguity averse or neutral

subjects (the majority) typically do not change their value of bets after information. The

median change is zero, and the majority has exactly zero change. For ambiguity averse

subjects there is also no robust relation between how averse they are and either the size of

the change or the probability it is non-zero. These subjects also typically give zero value

to information.

Ambiguity seeking subjects instead typically increase substantially their valuation after

information. The change in value is strongly related to their degree of ambiguity affinity.

Yet, many still value the information close to zero.

When the payoff-relevant state is ambiguous, ambiguity averse subjects slightly in-
crease their valuation, ambiguity seeking subjects decrease it.

Implications. We conclude the paper discussing implications of our results. The finding

that ambiguity averse subjects do not react to information when the payoff-relevant state is

risky contradicts the dilation property of both FB or ML updating, crucial in applications.

There are two natural implications. First, subjects may be following other updating

rules. Proxy updating (Gul and Pesendorfer, 2018) was designed precisely to rule out the

cases of ‘all news is bad news.’ While the exact functional form cannot be applied to our

setup—it is defined for totally monotone capacities which is not the case here—our results

are strongly supportive of this approach. Subjects could also be following the Dynamically

Consistent updating of Hanany and Klibanoff (2007, 2009), where agents form an ex-ante

optimal plan contingent on information and implement it after. This rule is compatible

with our findings and satisfies dynamic consistency; however, it violates consequentialism,

in the sense that agents will take into account what acts return in unrealized events.

Alternatively, subjects may use FB or ML but complement it by strategically choosing if

and when to process the information. While with Subjective Expected Utility information

is always weakly valuable—ignoring it gives no benefit—under ambiguity we have seen it

is no longer the case. Incorporating the possibility of strategically choosing not to process
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information in updating would substantially change predictions and implications of these

models; to our knowledge, this has not been studied.

Literature. The theoretical literature discusses different updating rules (Gilboa and Mari-

nacci, 2013, Sec. 5). An experimental literature tested some implications like dynamic con-

sistency and consequentialism (Cohen, Gilboa, Jaffray, and Schmeidler, 2000; Dominiak,

Duersch, and Lefort, 2012; Bleichrodt, Eichberger, Grant, Kelsey, and Li, 2018; Esponda

and Vespa, 2019), how sampling from ambiguous sources affects ambiguity preferences

(Ert and Trautmann, 2014), learning from sequences of observations (Moreno and Rosokha,

2016), in groups (De Filippis, Guarino, Jehiel, and Kitagawa, 2016), or from stock prices

(Baillon, Bleichrodt, Keskin, l’Haridon, and Li, 2017).

Three very recent papers study ambiguous information: Epstein and Halevy (2019);

Liang (2019); Kellner, Le Quement, and Riener (2019).1 A common different with our

work is that they do not study the dilation property, which is instead our primary focus.

Building on Epstein and Schneider (2007, 2008), Epstein and Halevy (2019) define attitude

to signal ambiguity, the ambiguity on the informativeness of a signal. After a careful

theoretical analysis, the paper tests it experimentally. Focusing on a setup with ambiguity,

they find that signal ambiguity significantly increase deviations from Bayesian updating.

While related to our work in the interest on ambiguous signals, in Epstein and Halevy

(2019) the payoff-relevant state is ambiguous and signals are always informative, but the

agent does not know how much; instead, in our experiment the payoff-relevant state can be

risky and the ambiguity is on whether the signal is informative or misleading. The papers

are thus complementary: our focus is less extensive on ambiguous information, but allows

us to test the dilation of the set of priors and the form of ambiguous information used in

the theoretical literature.

A contemporaneous paper by Liang (2019) studies updating with both risky and am-

biguous state under both simple and uncertain (compound and ambiguous) signals. It

compares updating under different types of signals that correspond to the same average

simple signal and finds that subjects under-react to uncertain information, which is more

pronounced for good news rather than bad news. Also contemporaneous, Kellner et al.

(2019) studies messages with ambiguous reliability, but asymmetric and with three mes-

sages, one of which is informative. They find a relation between reactions and ambiguity

attitude; and a similar reaction to ambiguous and compound-risk signals. Their design

does not allow tests of dilation.

Lastly, as noted above, the ambiguous information we study is used in applications of

models of ambiguity to strategic environments (Bose and Renou, 2014; Beauchêne et al.,

1We learned about Epstein and Halevy (2019) before finalizing our design. We thank Yoram Halevy for
very useful discussions.
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2019). Assuming FB, a key driving force of their results is the dilation property. We test it

and find little support.

2 Theories of Updating and Ambiguous Information

For a state space S and set of prizes X preferences are represented by the MMEU: agents

have linear utility u : X → R, a closed, convex set of priors Π ⊆ ∆(S), and evaluate act

f : S → X by min
π∈Π

Eπ[u ◦ f ] if ambiguity averse; or by max
π∈Π

Eπ[u ◦ f ] if ambiguity seeking.

In line with our experiment, we posit S = Ω×M where2

• Ω = {R,B}: the payoff-relevant state, the color of the ball that determines payment;

• M = {r,b}: the message received.

ΠΩ denotes the marginal sets over Ω. In line with our experimental design, we as-

sume that, for all priors, the likelihood that a message is truthful or not is independent

of the payoff-relevant state, i.e., with a common abuse of notation, π(r |R) = π(b|B) and

π(b|R) = π(r |B). Moreover, if π̄ is the prior for which messages are not informative—

π̄(r |R) = π̄(b|R) = 0.5—we assume π̄ ∈Π and, if |Π| , 1, that it is in the relative interior.

Updating Rules. For event B ⊆ S, ΠB denotes the set of beliefs after message B. We

consider the following updating rules.3

Full Bayesian (FB) updating, also known as prior-by-prior updating, was studied by

Wasserman and Kadane (1990) and Jaffray (1992) and axiomatized by Pires (2002) and

Ghirardato, Maccheroni, and Marinacci (2008). The most common updating rule in appli-

cations, it is defined by
FBΠB := {π(·|B)|π ∈Π}.

The Maximum Likelihood (ML) rule, introduced by Dempster (1967) and Shafer (1976),

and axiomatized by Gilboa and Schmeidler (1993), coincides with the Dempster-Shafer

updating rule when Π is the core of a convex capacity. It is defined by

MLΠB := {π(·|B)|π ∈ argmax
π′∈Π

π′(B)}.

Variables of Interest. Consider certainty equivalents of $x bets placed on the chosen

color being drawn from the urn (i.e., in Ω) before and after a message. Abusing notation,

2Following standard practice, we use the most parsimonious description of the state space.
3Epstein and Schneider (2007) and Kovach (2015) discuss combinations of the rules below. When the

payoff-relevant state is risky, our main case of interest, predictions coincide with the rules below.
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m ∈ {r,b,∅} denotes either message m ∈M or no information. Then:

cm :=


max
ω∈{R,B}

min
π∈ΠΩ

m

π(ω)u(x), if amb. averse,

max
ω∈{R,B}

max
π∈ΠΩ

m

π(ω)u(x), if amb. seeking.

The Information Premium is the difference between certainty equivalents with and with-

out information,

Pm := cm − c∅.

The Value of Information is the MaxMin (or MaxMax) expected difference between these

certainty equivalents:

V :=


min
π∈Π

∫
Pm dπ, if amb. averse,

max
π∈Π

∫
Pm dπ, if amb. seeking.

Risky Payoff State. Suppose that the payoff-relevant state is risky.

Proposition 1. Consider an agent whose preferences follow the MMEU with set of priors Π
such that ∀π ∈Π, π(R) = π(B) = 0.5. Then:

1. If |Π| > 1 and the agent is ambiguity averse, with FB and ML: ∀m, Pm < 0, V < 0;

2. If |Π| > 1 and the agent is ambiguity seeking, with FB and ML: ∀m, Pm > 0, V > 0;

3. If the agent is ambiguity neutral, i.e., |Π| = 1, with FB, ML: ∀m, Pm = V = 0.

For intuition, suppose Π = co({π1,π2,π3}) where π1 is such that messages point to the

right direction: π1(r |R) = 0.8; π2 = πI is such that messages are uninformative: π2(r |R) =

0.5; π3 is such that messages point to the wrong direction: π3(r |R) = 0.2.

Then, FBΠΩ
r = FBΠΩ

b = [0.2,0.8] ⊃ ΠΩ = {π}. Before information, the set of marginals

over Ω was a singleton—we have a risky state. But it becomes full-dimensional after infor-

mation. This is because the information is ambiguous and the multiplicity of priors about

the truthfulness of the message generates multiple priors about payoff-relevant states. This

set not only includes the original prior, but do so in the interior. Seidenfeld and Wasser-

man (1993) call this property of FB dilation. Proposition 1 shows that this holds whenever

|Π| > 1. In fact, it is a particularly stark example: the dilation occurs for any message.

The implications about FB follow: because the set of priors dilates, ambiguity averse

agents have strictly lower certainty equivalents; because this holds for any message, the

value of information is negative. The opposite holds for ambiguity seeking.

With ML, agents focus only on priors that maximize the likelihood of the message.

When π(R) = 0.5 for all π ∈Π, the likelihood of both messages is 0.5: thus, all priors in Π

are considered and ML coincides with FB.
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Ambiguous Payoff State. When the payoff-relevant state is ambiguous predictions de-

pend on the shape of Π.

Proposition 2. Consider an agent with a set of priors Π. Then:

1. If Π > 1, with FB and ML: both P and V can be zero, negative, or positive for both ambi-
guity averse and seeking agents;

2. If |Π| = 1, with FB and ML: ∀m,Pm = V = 0.

When the payoff-relevant state is ambiguous, updating rules make no general predic-

tions. Intuitively, this depends on the set of priors across Ω and informativeness. Below

is an example in which the set of priors shrinks to a singleton. The proof of Proposition 2

shows the other cases.

Example 1 (Contraction). Fix any a ∈ (0,0.5), and let Π = co(π1,π1), where

πΩ
1 (R) = a, π1(r |R) = π1(b|B) = 1− a,

πΩ
2 (R) = 1− a, π2(r |R) = π2(b|B) = a.

Here the shape of Π induces a ‘negative correlation:’ for each π ∈Π, the Bayesian posterior

about R after message r is 0.5. There is no more ambiguity. Under both FB or ML FBΠΩ
r =

MLΠΩ
r = {π̂} ⊂ [a,1 − a] = ΠΩ, where π̂(R) = 0.5. Under either FB or ML ambiguity averse

agents have dr > 0; dr < 0 for ambiguity seeking.

3 Experiment

3.1 Design

After an instruction phase and a comprehension questionnaire, the experiment includes

two parts for a total of 6 questions. In each, subjects were asked to compare fixed amounts

of money with a bet on their chosen color drawn from an urn. With two exceptions men-

tioned below, all bets paid $20 if the ball was of the chosen color, zero otherwise; subjects

were asked to compare each bet with a list of amounts of money increasing from $0 to

$20, in a Multiple Price List (MPL; Holt and Laury, 2002). To simplify the task, subjects

had to click only once in each list, indicating the point where to switch from the bet to the

amount of money.4

4By monotonicity, subjects should prefer the bet against low amounts (e.g., $0), and ‘switch’ as the amount
grows (e.g., close to $20). The software (oTree; Chen, Schonger, and Wickens, 2016) asked to indicate the point
where to switch. Subjects were also allowed to indicate no switch, i.e., only the bet or the amounts of money.
This procedure simplified the choice, but forced a monotonicity. Subjects received extensive instruction and
training.
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Different questions involved urns of two types. Risky urns had a known composition:

100 balls, 50 of each color. Ambiguous urns had 100 balls of two colors with an unknown

composition.

Questions were of three kinds. For each kind, the subject answered one question where

the payoff-relevant urn was risky, and one in which it was ambiguous.

1. Basic Questions. Q1 and Q4 asked subjects to pick a color to bet on and then the cer-

tainty equivalent of a $20 bet using the MPL procedure. In Q1, the urn was risky. In

Q4, it was ambiguous. Comparing the answers, we obtain a measure of ambiguity

aversion.

2. Information Questions. Q2 and Q5 again measured the certainty equivalent of a bet,

but after information. At the beginning of the question, the computer drew a ball

from the payoff-relevant urn—determining the color that pays the bet—and a chip

from a bag with 100 chips of 2 colors and unknown composition. The computer

then displayed a message for the subject indicating the color of the ball drawn from

the urn. Whether this message was truthful or misleading, however, depended on

the chip drawn: if the chip was of one color, the computer told the truth; otherwise,

it reported the opposite. In these questions, subjects are first shown the urn, then

shown how is the message determined, then given the information. They then had to

acknowledge the information, clicking on the corresponding color. With the message

remaining on the screen, they had to pick a color to bet on, and evaluate the bet using

an MPL. In Q2, the payoff-relevant urn was risky; in Q5, it was ambiguous.

3. Information-Value Questions. Q3 and Q6 were similar to the questions above, but

measured also the value of information. First, subjects faced a MPL in which they

chose between no information and information plus an increase or decrease of their

potential winning for the question (from a base of $20), ranging from -$5 to $5. After

their choice, the computer randomly picked a line from this MPL and implemented

their selection: if in that line the subject chose no information, they proceeded with

the evaluation of the bet without it; if they chose the information and a change of

payoffs, they received both before evaluating the bet. In Q3, the underlying urn was

risky; in Q6, it was ambiguous.

All questions used different urns and different colors, reducing the possibility of hedg-

ing across questions. This was clearly explained. Similarly, the bags that determined the

information were all different and involved different colors. For symmetry, all colors for

urns and bags were randomly selected in each instance from a unique set.5

5Colors were selected randomly for each subject and each question. The set of colors was identical for urns
and bags, except that for each subject we avoided repetitions and the pairing of too similar colors.
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Table 1: Questions

Payoff Urn Info

Part I
Q1 Risky No

Q2 Risky Yes

Q3 Risky Evaluate

Part II
Q4 Ambiguous No

Q5 Ambiguous Yes

Q6 Ambiguous Evaluate

Order and Incentives. The 6 questions were grouped into two parts. Part I included the

3 questions involving bets on risky urns, in the following order: Q1, the evaluation of a

bet of a risky urn; Q2, the evaluation of a bet on a risky urn after information; Q3, the

evaluation of a bet on a risky urn after deciding whether to receive or not the information.

Part II was identical, but with ambiguous urns. Questions are summarized in Table 1.

Subjects received the parts in two possible orders: in Order A, Part I then Part II; the

opposite in Order B.

Subjects received a participation fee of $10 and a completion fee of $15. In addition,

one of the 6 questions were randomly selected for payment with equal probability; then,

one of the lines of the MPL with the comparison between bets and sure amounts of money

were randomly selected, again with equal probability.6

3.2 Predictions and Construction of Variables

We now map the theoretical predictions derived in Section 2 to our experiment. From

the answers in the MPLs comparing bets and amounts of money, we can approximate the

value of the certainty equivalent of each bet. From the MPLs comparing information vs.

no information (in Q3 and Q6), we can approximate the value of information.

Because in our experiment choices involve different urns, we have to make two as-

sumptions. First, that Π before information is the same in questions of the same type.

This is justified by the fact they used identical urns with colors randomly drawn. Second,

we assume that subjects’ ambiguity attitude is the same across questions and with respect

to information- and payoff-relevant states, as we have implicitly done in the theoretical

6Paying randomly selected questions is incentive compatible under Expected Utility but in general; no
general incentive compatible mechanism exists (Karni and Safra, 1987; Azrieli, Chambers, and Healy, 2018).
A few studies indicate that this may not be a concern (Beattie and Loomes, 1997; Cubitt, Starmer, and Sug-
den, 1998; Hey and Lee, 2005; Kurata, Izawa, and Okamura, 2009), but recent contributions suggest caution
(Freeman, Halevy, and Kneeland, 2019).
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Table 2: Predictions for Information Premium P and Value of Information V

Risky payoff state Ambiguous payoff state

amb. att. averse neutral seeking averse neutral seeking

FB − 0 + +/0/− 0 +/0/−
ML − 0 + +/0/− 0 +/0/−

discussion in Section 2. In particular, we assume that if ΠΩ is not a singleton when the

payoff-state is ambiguous, then the set of beliefs about messages is also not a singleton.

We identify ambiguity attitude comparing the answer to Q1 (risky urn, no info) and

Q4 (ambiguous urn, no info): a higher/equal/lower certainty equivalent in Q1 than in Q4

indicates ambiguity aversion/neutrality/seeking. The Ambiguity Premium is the difference

between the value in Q1 and the value in Q4.

The Information Premium P is defined as: for risky urns, the value in Q2 minus the

value in Q1; for ambiguous urns, the value in Q5 minus the value in Q6. The Value of
Information V is elicited directly: in the first part of Q3 for risky urns, in the first part of

Q6 for ambiguous ones.

Table 2 summarizes the theoretical predictions. Because predictions coincide for the

Information Premium and the Value of Information, they are shown together.

How variables are constructed. Because MPLs have a finite grid, our elicitation of cer-

tainty equivalents and of the value of information is bound to be approximate. Following

standard practice, we use as value the middle-point between the two elements of the grid

where the switch occurred.7 But the true certainty equivalent may lay anywhere in that

range. This approximation may matter in computing if their difference is equal, smaller,

or bigger than zero. We take the following conservative approach. Recall that the Infor-

mation Premium is the difference between two certainty equivalents, each obtained via a

MPL. When computing whether it is above, at, or below zero, we report it in two ways:

first, using the procedure above, and denote results by > 0,< 0,= 0. Second, we report the

percentage of answers that are are compatible with zero value, and denote them by ≈ 0.8

For Value of information, the grid is $0.1 around 0, and 0 is an option on the grid. This

7For example, if the agent chose the bet again $10 but the next item on the grid, say $10.2, against the bet,
then we set the certainty equivalent at $10.1.

8For example, suppose in Q1 the agent chooses the bet against $10, and the next item in the grid, say, $10.2,
against the bet; in Q2, the agent switches one step below, and picks the bet against $10.2 but the the next item,
say $10.5, against it. With our procedure, the values are 10.1 for Q1 and 10.35 for Q2, indicating a positive
difference. But this behavior is also compatible with an agent who has zero difference: if the true certainty
equivalent is $10.2 in both question, the behavior above may be due to breaking the indifference in different
ways. This behavior is marked > 0 but also ≈ 0.
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means that no subject can, by construction, have a value of 0: they must have either 0.05

and -0.05. Both are compatible with the agent having a certainty equivalent of exactly

zero.9 In calculations we use these numbers; but in reporting >0, =0, or <0, we put 0.05

and -0.05 in =0 category. Thus, zero values may be overestimated.

Finally, to compute ambiguity attitude, we take a conservative approach: we classify as

ambiguity averse or seeking only subjects whose behavior is not compatible with ambigu-

ity neutrality: thus, subjects who switch in two adjacent lines in Q1 and Q4 are classified

as ambiguity neutral.10 We may thus overestimate ambiguity neutral agents. (Given the

results below, our main conclusions would not change with a different classification.)

3.3 Results

A total of 91 subjects participated in 4 sessions run in the PeXL laboratory in Princeton

University in February 2019, recruited from volunteer undergraduate students at that in-

stitution. Sessions lasted approximately 30 minutes; average earnings were $35.2.

We begin with broad features of the data. First, while MPLs forced a single switch, they

allowed extreme answers. We eliminated from our analysis 2 subjects who reported dom-

inated answers (e.g., chose a bet with payment of $20 against $20) in multiple questions.

Including them changes almost nothing (Appendix C.2 shows results including them).

Second, the distribution of ambiguity averse, neutral, seeking is 35 (39.3%), 37 (41.6%),

and 17 (19.1%).11 Median ambiguity premia are relatively high for both averse ($2.5) and

seeking subjects (-$2). (Table 5 in Appendix C.1 contains all details.)

Third, order effects. We used two different orders: risky states first (Order A) and am-

biguous states first (Order B). This had some effect: for example, the fraction of ambiguity

averse subjects was higher in Order A. However, our patterns hold throughout. Tables and

Figures in the main body use both orders, but in the text we discuss also the order in which

specific question types appeared first, with less contamination (Order A for risky state, B

for the ambiguous one). Table 6 in Appendix C.1 contains all data by order.

Risky Payoff State. We begin with the case in which payments depend on the draw from

a risky urn. The results are reported on the left part of Table 3 and represented graphically

on Figure 1: the top panel depicts, on the left, a scatter plot of the Information Premium

9If the value of information is zero, agents should be indifferent between No information and Information
with $0 changes. If No Information is chosen, the switch occurs between $0 and $0.1 and the value is coded
0.05; if Information is chosen, the switch occurs between $-0.1 and $0 and the value is coded -0.05.

10Like above, agents may have the same certainty equivalent but break the indifference in opposite ways
and give answers that are different but adjacent.

11The fraction of ambiguity averse is a bit lower than general population results (Camerer, Chapaman,
Ortoleva, and Snowberg, 2018) but not dissimilar from other highly selective universities. Recall also that our
procedure may overestimate ambiguity neutral agents.
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Table 3: Results

Risky payoff state Ambiguous payoff state

amb. att. All averse neutral seeking All averse neutral seeking

Information Premium P

median 0 0 0 1 0 0 0 -1
mean 0.46 -0.56 0.6 2.2 0.13 0.57 0.08 -0.68
≈ 0 65% 69% 78% 29% 58% 54% 76% 29%
= 0 56% 57% 68% 29% 52% 49% 70% 18%
> 0 28% 11% 30% 59% 24% 34% 14% 24%
< 0 16% 31% 3% 12% 25% 17% 16% 59%

Value of Information V

median -0.05 -0.05 -0.05 0.05 -0.05 -0.05 -0.05 -0.05
mean -0.41 -0.23 -0.73 -0.09 -0.43 -0.11 -0.64 -0.61

= 0 54% 51% 51% 65% 57% 57% 60% 53%
> 0 10% 11% 5% 18% 10% 14% 5% 12%
< 0 36% 37% 43% 18% 33% 29% 35% 35%

# of obs. 89 35 37 17 89 35 37 17

and the Ambiguity Premium. Colors represent ambiguity attitude: red for averse, blue for

neutral, green for seeking. On the right is a stacked bar plot depicting the proportions of

values that are >,< and = 0. The bottom panel repeats this for the Value of Information.

Considering all subjects, the mean Information Premium is positive, but the median

is zero: 56% of subjects have exactly zero; and 65% have behavior compatible with it.

The mean value of information is slightly negative, while the median is compatible with

zero. To test the theoretical predictions, however, we have to separate our analysis by the

ambiguity attitude.

For ambiguity averse subjects, we find that the median Information Premium is zero:

in fact, a majority of 57% (52% focusing on Order A) have a value of exactly zero; an even

larger one 69% (61% in Order A) has values compatible with zero, denoted ≈ 0. Of the

remaining subjects, negative values are more common, but only for 31% of subjects (39%

in Order A).

A coherent picture emerges if we look at the Value of Information: it is zero for most

ambiguity averse subjects. (Recall that -0.05 is compatible with indifference with zero). Of

the minority with non-zero values, the larger group (37%) has negative values.

We can also test the relation between the degree of ambiguity aversion and the chances

of having non-zero, or stronger reaction to information. Note that such relation is pre-
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Figure 1: Results, Risky Payoff-Relevant State, Graphically
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dicted by FB or ML if we assume that the size of the sets of priors about information- and

payoff-relevant states are correlated.

The plots in Figure 1 already suggest that, aside from the outliers in the bottom right,

we do not have this relation for ambiguity averse subjects. This is confirmed by statistical

analysis.

First, for ambiguity averse subjects, the likelihood of having a non-zero Information

Premium is not related to the Ambiguity Premium (Probit, z = 0.69,p = 0.491).

Second, we can test if Information Premium and Ambiguity Premium are negatively

related for ambiguity averse subjects. Note that, all else equal, our design is biased to gen-

erate this (negative) correlation spuriously: because both variables are constructed using

the answer to Q1—the certainty equivalent of the bet on a risky urn without information—

noise in this measure would generate a negative spurious relation. (See 3.4 for more dis-

cussion.)

Even despite this, in our data Information Premium and Ambiguity Premium are not

robustly related. While an OLS regression does give a relation (t=3.65, p=0.001), this is

driven by the two outliers in the bottom right.12 Eliminating the outliers eliminates the

relation (t = 0.99,p = 0.331). A Quantile regression with all subjects finds no relation

(t = 0.00,p = 1).

There is also no relation between the Value of Information and the Ambiguity Premium

(t = 0.91,p = 0.369).

Patterns are very different for ambiguity seeking subjects: 59% (86% in Order A), have

positive Information Premium. Both median and mean are also remarkably high ($1 or

$3.5; $2.2 or $5.2 in Order A). The Value of Information, however, remains zero for the

majority. (Recall, however, that this may be an overestimation.)

For ambiguity seeking subjects the plots in Figure 1 suggest a positive relation between

Ambiguity Premium and Information Premium. This is confirmed by statistical analysis:

regressing the two we find a significant, positive relationship (t = 3.91,p = 0.001). Note,

however, that this relation could be spuriously strengthened by our design, as discussed

above. There is no relation with the Value of Information (t = 1.09,p = 0.292).

Ambiguity neutral subjects also exhibit a large majority of zero values; non-zero ones

tend to be more often positive (albeit small). About half of them also have zero Value of

Information; of the others, almost all give a negative value.

Ambiguous Payoff State. Results appear on the right part of Table 3 and in Figure 2.

Clear, but different patterns emerge.

12In turns, this is due to their very unusual response in Q1, where both give 18.5 as the certainty equivalent
of a 50/50 bet $20/$0. This gives huge values for both measures and generates the strong relation.
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Figure 2: Results, Ambiguous Payoff-Relevant State, Graphically

(a) Information Premium P
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Considering all subjects, the median Information Premium is again zero, but the mean

is slightly positive. The majority still reports zero. Similar results hold for the Value of

Information, albeit with a small, negative mean.

Ambiguity averse subjects have again a median Information Premium close to zero; a

sizable fraction has Value of Information either zero or compatible with it. But these are

smaller fractions than above: many (34%, and up to 50% in Order B) has strictly positive
Information Premium.

The opposite pattern holds for ambiguity seeking subjects: now a large majority (59%,

and 70% in Order B) has negative Information Premium. The Value of Information, how-

ever, remain predominantly zero in both cases.

Ambiguity neutral subjects, unsurprisingly, exhibit patterns similar to those found

with risky urns.

Overall, we have a positive relationship between the Information Premium and the

Ambiguity Premium (t = 2.73,p = 0.008), but this does not hold separately for ambiguity

averse (t = 0.95,p = 0.349) or seeking (t = 1.80,p = 0.091) subjects. There is also no relation

with the Value of Information (t = 0.97 overall; t = 1.44 for averse; t = −1.15 for seeking).

Comparison with Theory. We have seen that common theoretical models predict that

with risky state, ambiguity averse agents should have negative Information Premium and

Value of Information. Instead, we find that the majority has zero for both. Only a minority

(31%) has negative Information Premium. For ambiguity seeking subjects, a large majority

has a positive Information Premium, as predicted by the models. However, this is not

reflected in the Value of Information: while these theories predict it should be strictly

positive, it is too often zero.

3.4 Concerns

We now discuss possible concerns. (A separate one, that agents may ignore messages, is

discussed in the next section.)

Noise in Q1. As mentioned above, the answer to Q1 is used to compute both the Ambi-

guity Premium and the Information Premium. If measured with noise, this may have two

effects.

First, it may induce a spurious correlation. We have seen that for ambiguity averse

subjects, we do not have such correlation, and thus do not have this concern. For ambiguity

seeking, we do—and this concerns suggest caution in interpreting it.
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Second, it may lead to a misclassification of subjects’ ambiguity attitude. Suppose

cobserved
∅

= ctrue
∅

+ ε. If ε < 0, this biases P upwards and increases ambiguity seeking. This

suggests that we may be misclassifying some agents as ambiguity seeking and also overes-

timate their P . Again, this suggests caution in interpreting positive values of P for ambi-

guity seeking subjects.

If ε > 0, this biases downwards the Information Premium and increases Ambiguity

Aversion: this leads to overestimate ambiguity aversion and have values of P that are too

low. But this is not our concern—compared to the theory, we find values of P that are too

high for ambiguity averse agents.

In general, even if our subjects are incorrectly classified, theoretical predictions is that

we should observe negative Information premia P for a sizable fraction of the population;

we do not. Thus, our results that find no negative reactions to information predicted by

theory are not subject to these concerns.

Other forms of noise. Noise in the answers to other questions, if independent across

question and with zero mean, would wash away and not bias our results. In fact, compared

to theory, we find values with and without information to be too often identical—pointing

to consistency rather than noise.

Complexity. Questions with information are more complex, which may be adding a con-

found, especially since reactions to complexity are known to relate to ambiguity attitude

(Halevy, 2007; Dean and Ortoleva, 2019). But following this literature, complexity should

lower the Information Premium for ambiguity averse agents. Our key finding, instead, is

that it is too high, and thus does not seem to be caused by the confound.

3.5 Discussion and Implications

We study ambiguity of information of one particular form: whether the message is truthful

or misleading. While only a very special case of ambiguous information, it allows us to

test the dilation property of updating models, a property crucial to many applications

to strategic settings. Common models predict that ambiguity averse agents should lower

their value of bets after information, for any message—‘all news is bad news.’ We test this

and reject it. The large majority of ambiguity averse agents do not react to this information.

Two possibilities appear natural. Either subjects follow a different updating rule; or,

they follow FB or ML but complement them by strategically choosing not to process some

information.

Other Updating rules? Proxy and DC Updating. Subjects may be following other up-

dating rules. Proxy (P) updating was introduced in Gul and Pesendorfer (2018) precisely
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with the goal of avoiding the case of dilation after every message; indeed, the motivation

includes examples reminiscent of our experiment. Unfortunately, their exact functional

form cannot be applied to our exact case, as it is defined for totally monotone capacities,

which cannot be the case for our experiment with risky states (see Appendix A for more).

However, our results are very strongly supportive of the approach they suggest.

A second possibility is that subjects follow the Dynamically Consistent (DC) updating

rule introduce in Hanany and Klibanoff (2007, 2009). According to it, before information

agents consider available acts and messages and make a choice contingent on each mes-

sage that maximizes the ex-ante overall utility; after information, these choices are imple-

mented. In the context of our experiment, DC updating implies that an ambiguity averse

agent would not react to information, while an ambiguity seeking one would increase the

certainty equivalent—as these are their ex-ante optimal choices, because the former wants

to reduce exposure to ambiguity while the latter wants to increase it. This is in line with

our findings. However, as opposed to FB, ML, and P, this updating rule is dynamically

consistent but violates consequentialism: agents’ choices after information will take into

account what acts return also in unrealized events.13

Choosing if to process information. The main empirical patterns we document—that

with risky payoff-relevant states ambiguity averse agents do not react to information while

ambiguity seeking agents do—could also be explained by another, simple approach, that

is however outside current models.

Messages do not seem to be generally ignored in our data. First, during the experiment

subjects are forced to acknowledge them by clicking on the corresponding color. Sec-

ond, many subjects do react to the information: most ambiguity seeking agents with risky

payoff-relevant urns, and many ambiguity averse agents with ambiguous payoff-relevant

urn. Overall, the pattern seems to be that messages are ignored when harmful—by am-

biguity averse agents with risky payoff-relevant states—and not ignored when possibly

beneficial.

We may thus consider the possibility that agents choose strategically when and if to

process the information: before applying any updating rule, subjects may first evaluate the

information structure at hand and choose whether they will or not react to the messages it

generates. If they choose not to react, they simply ignore it; if they do react, they may apply

FB or ML. Note that disregarding information is never useful under Expected-Utility—

there, information has weakly positive value and there is no reason to ignore it. But we

13Instead, FB, ML, and P satisfy consequentialism but violate dynamic consistency. In general, the two
properties are incompatible under ambiguity (see the discussion in Siniscalchi, 2009). Dominiak et al. (2012)
and Bleichrodt et al. (2018) test dynamic consistency and consequentialism, and find more support for the
latter.
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have seen that this is no longer the case under ambiguity. It may thus be reasonable for

subjects to disregard information when harmful—when ‘all news is bad news.’

While potentially a sensible strategy, the approach above is crucially outside the FB or

ML models: accounting for it would change model predictions substantially, including con-

troversial implications that have major impacts on applications like the ones mentioned

above. If subjects are strategically disregarding information, widespread models are miss-

ing a crucial aspect of behavior. To our knowledge, this has not yet been studied.
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Appendices

A On Proxy Updating

Gul and Pesendorfer (2018) introduce the Proxy updating rule with the goal of addressing

the possibility of ‘all news is bad news.’ However, this is currently defined only for totally

monotone capacities; unfortunately, we cannot express our preferences this way, at least

when the state space is risky. To see why, consider the framework introduction in Section

2 for the case in which the payoff-relevant state is risky. Our assumptions for this case are

that we have a set of priors Π ⊆ ∆(Ω×M) such that for each π ∈Π:

π(R) = π(B) = 0.5

π(r |R) = π(b|B)

π(b|R) = π(r |B).

Any set of priors with these characteristics does not induce a totally monotone capacity.

Note that the conditions above imply π(R,r) = π(B,b) and π(B,r) = π(R,b). Note also that

π(R) = π(R,r) +π(R,b) = π(R,r) +π(B,r) = π(r) = 0.5. Similarly we obtain π(b) = 0.5. Let ρ

denote the capacity induced by Π. We know

ρ(R) + ρ(B) = ρ(r) + ρ(b) = 1.

Suppose that ρ is totally monotone. Then its mobius transformation µ must satisfy

µ({(R,r)}) +µ({(R,b)}) +µ({(B,r)}) +µ({(B,b)}) +µ({R}) +µ({B}) = 1 (1)

µ({(R,r)}) +µ({(R,b)}) +µ({(B,r)}) +µ({(B,b)}) +µ({r}) +µ({b}) = 1. (2)

However, (1) implies that µ({r}) +µ({b}) = 0. Combining with (2), it implies

µ({(R,r)}) +µ({(R,b)}) +µ({(B,r)}) +µ({(B,b)}) = 1,

i.e., there is no ambiguity, and this only happens when |Π| = 1, contradiction.

B Examples and Proofs

B.1 Examples of Dilation and Contraction with Ambiguous States

In the main body of the paper we have seen an example in which the set of priors can

contracts with ambiguous information when the payoff-relevant state is ambiguous. We

now give examples of how it can dilate or remain unchanged.
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Example 2 (Dilation). Fix any ε ∈ (0,0.5), let Π = co(π00,π01,π10,π11), where

πΩ
00(R) = ε, π00(r |R) = π00(b|B) = ε,

πΩ
01(R) = ε, π01(r |R) = π01(b|B) = 1− ε,

πΩ
10(R) = 1− ε, π10(r |R) = π10(b|B) = ε,

πΩ
11(R) = 1− ε, π11(r |R) = π11(b|B) = 1− ε.

Intuitively, Π includes all combinations of marginals over Ω and over whether the message

is informative or misleading, as if obtained as the ‘product’ of the two sets. In this case,

we have

FBΠΩ
m =MLΠΩ

r =
[

ε2

ε2 + (1− ε)2 ,
(1− ε)2

ε2 + (1− ε)2

]
) [ε,1− ε] = ΠΩ.

Thus, under FB and ML, Pm < 0 and V < 0 if the agent is ambiguity averse; Pm > 0 and V > 0

if ambiguity seeking.

Example 3 (Unchanged). Let Π = co(π00,π01,π10,π11) where πij are defined as in the

previous example, but with ε = 0. Then we have

FBΠΩ
m =MLΠΩ

r = [0,1] = [0,1] = ΠΩ.

Thus, independently of the ambiguity attitude we have Pm = 0 and V = 0.

B.2 Proofs

Proof of Proposition 1. Consider first the case of ambiguity neutrality. Recall that we have

assumed π(r |R) = π(b|B) and π(b|R) = π(r |B) and that, if π̄ is the prior for which messages

are not informative—π̄(r |R) = π̄(b|R) = 0.5—we have π̄ ∈Π. When Π = {π}, we must then

have π(R,r) = π(R,b) = π(B,b) = π(B,r) = 0.25. In turns, this implies that the decision

maker’s belief over R and B will not change after receiving message r or b. Item (3) of the

Proposition thus holds.

Consider now a set of priors Π with |Π| > 1. Because π(R) = 0.5 for all π ∈Π, then there

must exist π1,π2 ∈Π such that π1 , π2 and π1(R,r) +π1(B,b) , π2(R,r) +π2(B,b). Denote

x := maxπ∈Ππ(R,r)+π(B,b) and y := minπ∈Ππ(R,r)+π(B,b). Our assumptions on Π imply

x > 0.5 > y.

Assume now the agent is ambiguity averse and that the updating rule is FB. After

message r, the Bayesian update of π ∈ Π is π(R|r) = 2π(R,r) = π(R,r) + π(B,b). Thus,

min
π∈Π

π(R|r) = y < 0.5 and min
π∈Π

π(B|r) = 1− x < 0.5. No matter what color the agent chooses,

she is worse off compared to before the message. Then: Pm < 0 for each m, and v < 0. The

case of message b is identical; the case of ambiguity seeking follows.
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Finally, Assume that the agent is updating is ML. Note that under any prior π, π(r) =

π(b) = 0.5. Therefore, ML updating is exactly the same as the ML updating, and the result

maintains. ‖

Proof of Proposition 2. The case for ambiguity neutrality is the same as Proposition 1.

If Π > 1, by Example 1 in the main body, Pm can be positive for ambiguous averse

agents and negative for ambiguous seeking agents when the updating is FB and ML. By

Example 2 in Section B.1, Pm and V can be negative for ambiguous averse agents and

positive for ambiguous seeking agents when the updating is FB and ML. By Example 3 in

Section B.1, Pm and V can be zero for ambiguous seeking and ambiguous averse agents

when the updating is FB and ML. We are left to show that under both FB and ML it is

possible to have V > 0 for ambiguous averse agents; or V < 0 for ambiguous seeking ones.

We show both with the following example. Consider Π = co(π1,π2) such that

πΩ
1 (R) = ε, π1(r |R) = π1(b|B) = 1− δ,

πΩ
2 (B) = ε, π2(b|R) = π2(r |B) = 1− δ,

where ε,δ < 0.5. It is easy to check that in this case, ML and FB coincide. When the agent

is ambiguous averse, dr = 0.5 − ε and db = εδ
εδ+(1−ε)(1−δ) − ε. Thus, that V = 0.5δ − 0.5ε.

Therefore, V > 0 if ε < δ. When the agent is ambiguous seeking, dr = ε − 0.5 and db =

ε − εδ
εδ+(1−ε)(1−δ) . Thus V < 0 if ε < δ. ‖

C Additional Experimental Analysis

C.1 Additional Tables

Table 4 summarizes ambiguity attitude in the sample; Table 5 summarizes ambiguity pre-

mia in the sample; Table 6 is similar to Table 3, but with statistics grouped by order.

Table 4: Ambiguity attitude in the sample

averse neutral seeking Total

A 23 22 7 52

B 12 15 10 37

Total 35 37 17 89

21



Table 5: Ambiguity premia in the sample

amb. att. averse neutral seeking

order A B All A B All A B All

median 2.8 2 2.5 0 0 0 -4 -1.5 -2

mean 3.3 2.8 3.1 -0.05 -0.02 -0.03 -3.9 -1.8 -2.7

# of obs. 23 12 35 22 15 37 7 10 17

Table 6: Results (by order)

Risky payoff state Ambiguous payoff state

amb. att. All averse neutral seeking All averse neutral seeking

order A B A B A B A B A B A B A B A B

Information Premium P

median 0 0 0 0 0 0 3.5 0 0 0 0 0.25 0 0 0 -1.1
mean 0.57 0.29 -0.76 -0.17 0.5 0.75 5.2 0.16 -0.17 0.54 0.25 1.2 -0.23 0.53 -1.3 -0.21
≈ 0 62% 70% 61% 83% 77% 80% 14% 40% 67% 46% 61% 42% 86% 60% 29% 30%
= 0 50% 65% 52% 67% 59% 80% 14% 40% 60% 40% 52% 42% 82% 53% 14% 20%
> 0 31% 24% 9% 17% 36% 20% 86% 40% 19% 30% 26% 50% 4% 27% 43% 10%
< 0 19% 11% 39% 17% 4% 0% 0% 20% 21% 30% 22% 8% 14% 20% 43% 70%

Value of Information V

median -0.05 -0.05 -0.05 -0.05 -0.05 -0.55 0.05 0 -0.05 -0.05 -0.05 -0.05 -0.05 -0.55 0.05 -0.05
mean -0.34 -0.52 -0.44 0.17 -0.48 -1.1 0.46 -0.48 -0.28 -0.63 -0.19 0.04 -0.46 -0.9 -0.01 -1

= 0 58% 49% 56% 42% 59% 40% 57% 70% 60% 54% 52% 67% 73% 40% 43% 60%
> 0 8% 14% 4% 25% 4% 7% 29% 10% 12% 8% 17% 8% 4% 7% 14% 10%
< 0 35% 38% 39% 33% 36% 53% 14% 20% 29% 38% 30% 25% 23% 53% 43% 30%

# of obs. 52 37 23 12 22 15 7 10 52 37 23 12 22 15 7 10
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C.2 Analysis with all subjects

The analysis in the main body of the paper does not include the behavior of two subjects

who reported extreme answers in a number of questions-—in particular, they chose a bet

on the urn with a payment of $20 against any amount of money, including $20 for sure.

Below we replicate Table 4 and Table 3, but include these two subjects. As is clear, almost

nothing changes: both subjects were ambiguity seeking, and both faced Order B, thus

these are the only changes.

Table 7: Ambiguity attitude in the sample (all observations)

averse neutral seeking Total

A 24 20 8 52

B 12 15 12 39

Total 36 35 20 91

Table 8: Results (all observations)

Risky payoff state Ambiguous payoff state

amb. att. All averse neutral seeking All averse neutral seeking

Information Premium P

median 0 0 0 0.88 0 0 0 -0.62
mean 0.42 -0.56 0.59 2 0.11 0.57 0.04 -0.64
≈ 0 65% 69% 79% 28% 59% 54% 76% 33%
= 0 56% 57% 68% 28% 52% 49% 68% 22%
> 0 28% 11% 29% 56% 23% 34% 13% 22%
< 0 16% 31% 3% 17% 25% 17% 18% 56%

Value of Information V

median -0.05 -0.05 -0.05 0.05 -0.05 -0.05 -0.05 -0.05
mean -0.41 -0.23 -0.71 -0.09 -0.42 -0.11 -0.63 -0.57

= 0 55% 51% 53% 67% 58% 57% 60% 56%
> 0 10% 11% 5% 17% 10% 14% 5% 11%
< 0 35% 37% 42% 17% 32% 29% 34% 33%

# of obs. 91 35 38 18 91 35 38 18
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D Instructions and Screenshots

Subjects received instructions in a presentation; they also received a condensed version

printed out. The slides of the presentation are available at:

http://denisshishkin.com/papers/ambiguous_information/instructions.pdf.

The print-out is available at:

http://denisshishkin.com/papers/ambiguous_information/handout.pdf.

Below are screenshots of the experiment interface of Part I of Order A. Part II and

Order B are similar. For completeness, all screenshots are available at

http://denisshishkin.com/papers/ambiguous_information/screenshots.pdf.

24

https://denisshishkin.com/papers/ambiguous_information/instructions.pdf
https://denisshishkin.com/papers/ambiguous_information/handout.pdf
https://denisshishkin.com/papers/ambiguous_information/screenshots.pdf


25



26



27



28



References

Azrieli, Y., C. P. Chambers, and P. J. Healy (2018): “Incentives in Experiments: A Theoretical Analysis,”
Journal of Political Economy, 126, 1472–1503.

Baillon, A., H. Bleichrodt, U. Keskin, O. l’Haridon, and C. Li (2017): “The effect of learning on ambiguity
attitudes,” Management Science, 64, 2181–2198.

Beattie, J. and G. Loomes (1997): “The Impact of Incentives upon Risky Choice Experiments,” Journal of Risk
and Uncertainty, 14, 155–68.

Beauchêne, D., J. Li, and M. Li (2019): “Ambiguous Persuasion,” Journal of Economic Theory, 179, 312–365.

Bleichrodt, H., J. Eichberger, S. Grant, D. Kelsey, and C. Li (2018): “A Test of Dynamic Consistency and
Consequentialism in the Presence of Ambiguity,” Mimeo, Erasmum University.

Bose, S. and L. Renou (2014): “Mechanism Design With Ambiguous Communication Devices,” Econometrica,
82, 1853–1872.

Camerer, C. F., J. Chapaman, P. Ortoleva, and E. Snowberg (2018): “Econographics,” Mimeo Princeton
University.

Chen, D. L., M. Schonger, and C.Wickens (2016): “oTree—An Open-Source Platform for Laboratory, Online,
and Field Experiments,” Journal of Behavioral and Experimental Finance, 9, 88–97.

Cohen, M., I. Gilboa, J. Jaffray, and D. Schmeidler (2000): “An Experimental Study of Updating Ambiguous
Beliefs,” Risk Decision and Policy, 5, 123–133.

Cubitt, R., C. Starmer, and R. Sugden (1998): “On the Validity of the Random Lottery Incentive System,”
Experimental Economics, 1, 115–131.

De Filippis, R., A. Guarino, P. Jehiel, and T. Kitagawa (2016): “Updating Ambiguous Beliefs in a Social
Learning Experiment,” Working Paper CWP18/16, cemmap working paper, Centre for Microdata Methods
and Practice.

Dean, M. and P. Ortoleva (2019): “The empirical relationship between nonstandard economic behaviors,”
Proceedings of the National Academy of Sciences, 116, 16262–16267.

Dempster, A. P. (1967): “Upper and Lower Probabilities Induced by a Multivalued Mapping,” The Annals of
Mathematical Statistics, 38, 325–339.

Dominiak, A., P. Duersch, and J.-P. Lefort (2012): “A Dynamic Ellsberg Urn Experiment,” Games and Eco-
nomic Behavior, 75, 625–638.

Epstein, L. and Y. Halevy (2019): “Hard-to-Interpret Signals,” Mimeo, University of Toronto.

Epstein, L. G. and M. Schneider (2007): “Learning under ambiguity,” Review of Economic Studies, 74, 1275–
1303.

——— (2008): “Ambiguity, Information Quality, and Asset Pricing,” The Journal of Finance, 63, 197–228.

Ert, E. and S. T. Trautmann (2014): “Sampling experience reverses preferences for ambiguity,” Journal of Risk
and Uncertainty, 49, 31–42.

29



Esponda, I. and E. Vespa (2019): “Contingent preferences and the sure-thing principle: Revisiting classic
anomalies in the laboratory,” Mimeo UCSB.

Freeman, D., Y. Halevy, and T. Kneeland (2019): “Eliciting risk preferences using choice lists,” Quantitative
Economics, 10, 217–237.

Ghirardato, P., F. Maccheroni, and M. Marinacci (2008): “Revealed Ambiguity and Its Consequences: Up-
dating,” in Advances in Decision Making under Risk and Uncertainty. Selected Papers from the FUR 2006 con-
ference, ed. by J. Abdellaoui, Mohammedand Hey, Berlin: Springer-Verlag.

Gilboa, I. and M. Marinacci (2013): “Ambiguity and the Bayesian paradigm,” in Advances in Economics
and Econometrics: Theory and Applications, Tenth World Congress of the Econometric Society., ed. by M. A.
D. Acemoglu and E. Dekel, Cambridge University Press, mimeo Bocconi University.

Gilboa, I. and D. Schmeidler (1989): “Maxmin expected utility with non-unique prior,” Journal of Mathemat-
ical Economics, 18, 141–153.

——— (1993): “Updating Ambiguous Beliefs,” Journal of Economic Theory, 59, 34–49.

Gul, F. and W. Pesendorfer (2018): “Evaluating Ambiguous Random Variables and Updating by Proxy,”
Mimeo Princeton University.

Halevy, Y. (2007): “Ellsberg Revisited: An Experimental Study,” Econometrica, 75, 503–536.

Hanany, E. and P. Klibanoff (2007): “Updating preferences with multiple priors,” Theoretical Economics, 2,
261–298.

——— (2009): “Updating ambiguity averse preferences,” The BE Journal of Theoretical Economics, 9, 37.

Hey, J. and J. Lee (2005): “Do Subjects Separate (or Are They Sophisticated)?” Experimental Economics, 8,
233–265.

Holt, C. and S. Laury (2002): “Risk aversion and incentive effects,” American Economic Review, 92, 1644–
1655.

Jaffray, J. (1992): “Bayesian Updating and Belief Functions,” IEEE Transactions on Systems, Man, and Cyber-
netics, 22, 1144–1152.

Karni, E. and Z. Safra (1987): ““Preference reversal” and the observability of preferences by experimental
methods,” Econometrica, 55, 675–685.

Kellner, C., M. T. Le Quement, and G. Riener (2019): “Reacting to ambiguous messages: An experimental
analysis,” Mimeo University of Southampton.

Kovach, M. (2015): “Ambiguity and Partial Bayesian Updating,” Mimeo, Virginia Tech.

Kurata, H., H. Izawa, and M. Okamura (2009): “Non-expected utility maximizers behave as if expected
utility maximizers: An experimental test,” Journal of Socio-Economics, 38, 622 – 629.

Liang, Y. (2019): “Learning from Unknown Information Sources,” Mimeo Stanford University.

Moreno, O. M. and Y. Rosokha (2016): “Learning under compound risk vs. learning under ambiguity–an
experiment,” Journal of Risk and Uncertainty, 53, 137–162.

30



Pires, C. P. (2002): “A Rule for Updating Ambigous Beliefs,” Theory and Decisions, 53, 137–152.

Ray, D. and A. Robson (2018): “Certified random: A new order for coauthorship,” American Economic Review,
108, 489–520.

Seidenfeld, T. and L. Wasserman (1993): “Dilation for Sets of Probabilities,” The Annals of Statistics, 21,
1139–1154.

Shafer, G. (1976): A Mathematical Theory of Evidence, Princeton, NJ: Princeton University Press.

Siniscalchi, M. (2009): “Two Out Of Three Ain’t Bad: A Comment On “The Ambiguity Aversion Literature:
A Critical Assessment”,” Economics and Philosophy, 25, 335–22.

Wasserman, L. A. and J. B. Kadane (1990): “Bayes’ Theorem for Choquet Capacities,” The Annals of Statistics,
18, 1328–1339.

31


	Introduction
	Theories of Updating and Ambiguous Information
	Experiment
	Design
	Predictions and Construction of Variables
	Results
	Concerns
	Discussion and Implications

	On Proxy Updating
	Examples and Proofs
	Examples of Dilation and Contraction with Ambiguous States
	Proofs

	Additional Experimental Analysis
	Additional Tables
	Analysis with all subjects

	Instructions and Screenshots

