
The Global Credit Spread Puzzle∗

Jing-Zhi Huang†

Penn State

Yoshio Nozawa‡

HKUST

Zhan Shi§

Tsinghua University

December 19, 2019

Abstract

Using security-level credit spread data in eight developed economies, we document a large cross-

country difference in credit spreads conditional on credit ratings and other default risk measures.

The standard benchmark structural models not only have difficulty matching credit spreads but

also fail to explain the cross-country variation in spreads as well as the dynamic behavior of

credit spreads. Since this cross-country variation is positively related to illiquidity measures, we

implement an extended structural model that incorporates endogenous liquidity in the secondary

market, and find that this model largely explains credit spreads in cross sections and over time.

Therefore, default risk itself unlikely explains corporate credit spreads.
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1 Introduction

How are corporate bonds outside the U.S. priced? Despite the rapid growth in the corporate bond

markets in developed economies (see Figure 1), we know little about the pricing of these bonds.

Among the numerous factors that potentially affect credit spreads, default risk is a natural starting

point, and structural models of risky debt stemming from Merton (1974) provide a sensible estimate

of default risk based on observed proxies for risk. Thus, in this paper, we study the performance

of structural models to explore how they may explain non-U.S. corporate credit spreads.

We focus on the standard Black and Cox (1976) model as well as its extension with endogenous

(corporate bond) illiquidity in this analysis.1 We empirically test these two models using security-

level bond price data on domestic corporate bonds in eight developed countries—Australia, Canada,

France, Germany, Italy, Japan, U.K., and the U.S.—from 1997 to 2017.

There are three main empirical findings from our analysis of the standard Black-Cox model.

First, we find strong evidence that the Black-Cox model has difficulty matching individual corporate

bond spreads. For example, the average pricing error of the model is all below -40 basis points

(bps) for AA+ bonds except for Japan. The average percentage pricing error of the model for BBB

bonds is mostly negative, and below -31% except for Japan and France. For Australia, the average

percentage pricing error ranges from -74% for BBB bonds to -97% for A bonds, depending on how

default boundary is determined. In other words, the Black-Cox model clearly has an accuracy

problem in predicting spreads, regardless of the countries considered in our sample.

Second, we also observe that there is significant heterogeneity in credit spreads across the eight

countries controlling for credit ratings. For example, on average, credit spreads for BBB-rated

bonds are 41 bps in Japan, while they are 121 bps in Germany, 166 bps in the U.S., and 231 bps

in Australia. On the other hand, inputs to the Black-Cox model that measure issuer’s default risk

(e.g., leverage, asset volatility and payout ratio) are similar across countries.

Importantly, we find that the Black-Cox model fails to explain the cross-section of investment-

grade (IG) credit spreads, regardless of the methods used to determine default boundary. For

instance, if we implement one method that can generate large enough credit spreads to match the

data in the U.S., then the BC model overpredicts corporate spreads in Japan, but underpredicts

those in Australia. The key reason for this failure is that, conditional on credit ratings, firms in

each country have relatively similar fundamentals to each other, despite the difference in credit

spreads.

Third, we find that the model has difficulty capturing the time series dynamics of corporate

bond spreads. For instance, correlations between the model and observed median bond spreads at

the country level vary considerably across the countries, ranging from 0.06 for Canada to around

1The Black-Cox model is examined in several recent studies that use the U.S. data, including Bao (2009), Bao
and Hou (2017), Feldhütter and Schaefer (2018), Bai, Goldstein, and Yang (2019), and Huang, Shi, and Zhou (2019).
We also consider the Merton (1974) model in the Internet Appendix.
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0.86 for UK and the U.S. in the baseline case.

Overall, we find robust evidence that the standard Black-Cox model not only has substantial

pricing errors in predicting individual corporate bond spreads but also has difficulty explaining

the differences in these spreads across countries. These findings imply that default risk alone is

unlikely to sufficiently explain credit spreads at least in our sample of global corporate bonds—and

collectively are referred to as the “global credit spread puzzle.”

To ensure that our results are not driven by our specific bond data, we repeat our empirical

evaluation of the Black-Cox model using 5-year CDS spreads outside the U.S. Despite this smaller

sample, we confirm that qualitatively similar results hold for CDS spreads, although quantitatively,

the cross-country difference in CDS spreads is smaller than that in corporate credit spreads.

To determine what else might explain cross-country differences in credit spreads aside from

default risk, we test several alternative explanations. We rule out across country heterogeneity in

loss given default, the probability of default, or investors’ risk aversion as potential explanations. We

also do not find evidence that prominent factors in international finance can explain the difference

in credit spreads in our sample.

However, we find evidence that differences in corporate bond illiquidity explain some of the cross-

country difference in credit spreads. Specifically, using the country-specific illiquidity measures of

bid-ask spreads, TED spreads and yield-curve fitting errors, we find that the difference between

observed credit spreads and the Black-Cox model’s prediction is positively correlated with these

three illiquidity measures.

Given the empirical evidence for the importance of secondary market liquidity, we propose

an extended Black-Cox model that incorporates illiquidity in bond pricing. Specifically, we aim

to capture the over-the-counter (OTC) structure of corporate bond markets by using the search

and bargaining mechanism of Duffie, Gârleanu, and Pedersen (2005) and He and Milbradt (2014).

The resultant endogenous liquidity is incorporated into the baseline Black-Cox model with a novel

approach, such that the model-implied default probability is not altered. As such, we can quantify

the incremental contribution of search friction under the notion of the credit spread puzzle.

We then conduct an empirical analysis of this extended Black-Cox model with endogenous

illiquidity using the same sample of corporate bonds as in the analysis of the standard Black-Cox

model. We find that incorporating endogenous illiquidity in the standard model improves the model

performance significantly. Specifically, we find that the model-implied liquidity component in yield

spreads performs remarkably well in filling the gap between the observed corporate bond spreads

and the Black-Cox model-implied spreads in terms of both overall levels and time-series. Thus, our

results suggest that incorporating search frictions into standard structural models can help explain

the global credit spread puzzle.

To summarize, this paper contributes to the literature in at least three aspects. First, we

conduct among the first an empirical analysis of structural credit risk models using a sample of
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individual corporate bonds from eight developed countries. Second, we provide evidence that credit

risk alone unlikely can explain individual corporate bond spreads. Third, we incorporate search

into the standard Block-Cox model within the framework of He and Milbradt (2014) and present

the first empirical analysis of this type of models in the literature. Importantly, we find that

incorporating search improves the model performance significantly and helps resolve the global

credit spread puzzle.

The rest of the paper is organized as follows. In the next section we review the related literature.

In Section 3, we describe the data sets for our empirical analysis. In Section 4, we introduce the

Black-Cox model and its extension allowing for endogenous illiquidity. In Section 5 we discuss the

implementation of these two structural models as well as the estimation of model parameters. We

compare the predicted credit spreads with observed spreads, and evaluate the model’s performance

in Section 6. Section 7 concludes.

2 Related Literature

This paper relates to the literature that explains corporate credit spreads using structural models

of risky debt in the U.S. market. One stream of this literature, going back to Jones, Mason, and

Rosenfeld (1984), focuses on implications of structural models under the risk-neutral measure using

alternative empirical methodologies. See, e.g., Jones, Mason, and Rosenfeld (1984); Eom, Helwege,

and Huang (2004); Ericsson and Reneby (2005); Schaefer and Strebulaev (2008); Bao and Pan

(2013); Bao and Hou (2017); Culp, Nozawa, and Veronesi (2018); Huang, Shi, and Zhou (2019).

Another stream of research explores model implications under both the risk-neutral and phys-

ical measures, such as studying the pricing performance of structural models by calibrating them

to historical default losses. To resolve the credit spread puzzle documented in Huang and Huang

(2012), many studies propose various economic channels to account for the credit component of

yield spreads by incorporating additional sources of default premium. Examples include Bao (2009);

Chen, Collin-Dufresne, and Goldstein (2009); Chen (2010); Bhamra, Kuehn, and Strebulaev (2010);

Christoffersen, Du, and Elkamhi (2017); Du, Elkamhi, and Ericsson (2019); McQuade (2018); Shi

(2019).2 On the other hand, He and Milbradt (2014) and Chen, Cui, He, and Milbradt (2018) in-

corporate OTC market search frictions into structural models to capture the non-credit component

of yield spreads.

We contribute to the above two streams of literature in at least two aspects. First, we examine

both corporate bond and CDS markets (in seven developed economies) outside the U.S. Second,

we consider not only standard structural models but also the type of models developed by He

and Milbradt (2014) and Chen, Cui, He, and Milbradt (2018), the latter of which have not been

2Gourio (2012), Boyarchenko (2012), and Albagli, Hellwig, and Tsyvinski (2013) consider alternative economic
mechanisms to generate credit spread levels consistent with historical data. They do not adopt the contingent-claim
approach to modeling credit risk and thus carry limited implications for the credit spread puzzle.
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empirically examined in the literature. Among other things, doing so allows us to obtain a model-

based illiquidity measure across different credit markets globally.

One recent, notable development in the credit spread puzzle literature is the debate on the

performance of the Black-Cox model in the U.S. credit market. Interestingly, while Bao (2009) finds

that the Black-Cox model underestimates the U.S. corporate credit spreads, in a recent intriguing

study Feldhütter and Schaefer (2018) report that the model performs well in matching spreads

on investment-grade (IG) bonds in the U.S. However, Bai, Goldstein, and Yang (2019) argue that

Feldhütter and Schaefer (2018)’s main findings are sensitive to changes in the model’s calibration

method. Specifically, they argue that the Feldhütter-Schaefer calibration method overestimates the

market leverage ratio for firms in the CCC-C rating category and, as a result, also overestimates

default boundary. Feldhütter and Schaefer (2019) address this issue by excluding C-rated bonds

from their estimation sample.

We contribute to this debate by providing evidence based on seven different credit markets

outside the U.S. Furthermore, in addition to the methods of Feldhütter and Schaefer (2018) and

Bai et al. (2019), we propose and implement an alternative method for determined default boundary.

Importantly, we show that the main conclusions of this study hold regardless of which one of these

three methods is used.

Several studies empirically decompose observed corporate yield spreads into default-premium

and liquidity-premium components using a reduced-form approach (Longstaff et al. 2005) or linear

regressions (Dick-Nielsen et al. 2012).3 Our decomposition is based on the structural model and

differs from the prior studies in at least two aspects. First, these studies take observed yield spreads

as inputs to the model, so the resulting estimates of liquidity components incorporate the bond

pricing information. The structural approach adopted here generates these estimates without using

such information and thus is not biased in favor of the liquidity-based explanation of the credit

spread puzzle. Second, this approach can accommodate the interdependence between liquidity and

default components (Friewald et al. 2012) in a unified manner.

There are fewer papers that examine corporate bond markets outside the U.S. Liu (2016) uses

international corporate bond data to study the diversification benefit across countries. Valenzuela

(2016) examines the role of rollover risk in international bonds using regression models, while Kang

and Pflueger (2015) provide evidence for the link between inflation risk and corporate bond prices

using data on international bond indexes. None of these papers, however, test structural credit risk

models for domestic issuers outside the U.S., which is the focus of this paper.

Liao (2019) studies the relationship in corporate bond yields of the same issuer in different

currencies, and finds that the cross-currency variation in spreads is related to transaction costs

measured by the violation of the covered interest parity. Though our finding on the cross-country

variation in credit spreads is consistent with Liao (2019), our explanation for the variation is

3Beber et al. (2009) and Schwarz (2018) perform similar decompositions of sovereign yield spreads.
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different. Instead of relying on limits to arbitrage, we calibrate an extended structural model based

on no-arbitrage condition, and show that our model with the domestic bond market search friction

works well in explaining the observed credit spreads. Therefore, from our perspective, corporate

bonds in both Australia (that have high spreads) and Japan (that have low spreads) are fairly

priced once the pricing model is correctly specified, and the observed difference in credit spreads

does not imply an arbitrage opportunity.

3 Data

We use month-end prices for corporate bonds in the ICE Bank of America Merrill Lynch Global

Corporate Index and High Yield Index (“Merrill Lynch data”) from Mercury, the client portal

of Bank of America Merrill Lynch (ML). The sample period is from January 1997 to December

2017 except for Italy and Australia whose samples start from 2003 and 2007, respectively. Merrill

Lynch data covers corporate bonds denominated in six international currencies: Australian dollars,

British pounds, Canadian dollars, Euro (and former Euro-area currencies such as Deutsche Mark),

Japanese yen and U.S. dollars. We focus on domestic issues in domestic currencies, which yields

seven advanced, non-U.S. economies for our analysis: Australia, Canada, France, Germany, Italy,

Japan, and the U.K. As of December 2017, these seven countries account for 30% and 19% of the

market values of corporate bonds in the ML Global Corporate Index and ML High Yield Index,

respectively; the U.S. accounts for about 50% and 51%, respectively. Note that we focus on domestic

issues in each country to provide out-of-sample evidence for the credit spread puzzle; if we include

foreign currency-denominated bonds issued by U.S. firms, then our empirical results will resemble

the ones in the U.S. mechanically.

The ML database imposes the minimum maturity of one year and minimum face values, which

varies across currencies.4 For bond characteristics, Merrill Lynch data provides the credit rating,

maturity date, and coupon of each issue.

We then merge the bond data with firm and stock data from Compustat Global or Compustat

NA for Canada, which provides balance sheet information and stock return volatility. We link

the bond-level observations and firm-level observations based on each issuer’s name. We then use

Compustat name history data to track the history of names for each identifier (gvkey), then use

the Levenshtein Algorithm to find a candidate match, and manually verify each match. For firms

with multiple stock issues, we remove duplicate observations for shares listed in multiple stock

exchanges. If a firm has multiple share classes, we add them up to compute the market value of

firm equity, but we take the value-weighted average across shares in computing stock returns (which

we use in computing volatility). To reduce the effect of outliers, we drop the observation if the

4For the investment-grade index, the minimum face values are AUD 100 million, CAD 100 million, EUR 250
million, JPY 20 billion, GBP 100 million, and USD 250 million. For the high-yield index, the minimum are USD 250
million, EUR 250 million, GBP 100 million, or CAD 100 million. The high-yield index does not include Australia
and Japan, given the lack of the market activity.
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book-to-market ratio of the stock is more than 8 (the 99 percentile of the distribution) or less than

0.05 (the 1 percentile).

Next, we use Bloomberg to identify callability, seniority, and security of the bonds. We choose

senior, unsecured, noncallable bonds issued by nonfinancial issuers. Bloomberg also provides in-

formation on large shareholders of the bond issuers, which allows us to screen out state-owned

firms. Specifically, we drop firms for which government equity ownership is more than 50%. We

also decrease a firm’s credit rating by one notch (e.g., change from AA to AA-) if the ownership

ratio is between 20% and 50%, following Moody’s (2014).5

To compare our results with those in the U.S., we merge the Lehman Brothers Fixed Income

database and Merrill Lynch U.S. Corporate Bond database to obtain month-end prices of U.S.

corporate bonds from 1987 to 2015. The choice of the beginning of the sample period follows

Feldhütter and Schaefer (2018). We use CRSP for stock price and Compustat NA for accounting

information for U.S. bonds.

In Table A1 in Appendix IV, we describe our sample selection process. In the original data,

there are 8,610 bonds that are offered in seven (non-U.S.) countries of our interest, and that have

at least 24 monthly observations. Among those, 3,983 bonds are issued by public firms appearing

in Compustat. Of those bonds, we focus on noncallable, senior unsecured bonds in the nonfinancial

sector, which yields our final sample of 2,173 bonds issued by 364 firms with 133,993 bond-month

observations. It is noteworthy that C-rated issues become rather rare as the focus is shifted from

the US to international bond markets. Outside of US, there are merely 36 issues and totally 579

monthly observations in our sample falling into the CCC-C rating category. Therefore, the debate

about the market-to-book ratios for C-rated bonds does not cause a serious issue in our estimation,

which is confirmed in Section 5.3.

We use government bond yields (0.25, 1, 5, 10, and 20 years to maturity) as risk-free rates,

which are retrieved from Mercury as well. Following Eom et al. (2004), for each corporate bond

we compute the (continuously compounded) yield of a (hypothetical) Treasury bond with exactly

the same coupon rate and time to maturity, which constitutes out estimate of r in Eq. (8).6 An

alternative risk-free benchmark would be constructed from swap rates: from borrowers’ perspective,

it makes sense to compute credit spreads against swap rates, so they can compare the borrowing

cost of corporate bonds with bank loans. However, as researchers, we are primarily interested in

measuring the compensation for bearing default (and potentially liquidity) risk. Thus, in our main

analysis, we use government bond yield as a risk-free benchmark, but reproduce the key results

using swap rates listed in Internet Appendix V.

We use stock market index7 data from each country obtained from Global Financial Data. We

5This adjustment leads to our removing one firm (Areva S.A.) and downgrading for five firms (Engie S.A., ENBW
Energie Baden, Deutsche Telekom, Thales, and Deutsche Post A.G.).

6We use German Bund yields for risk-free rates in all Euro-area countries.
7We use TOPIX for Japan, FTSE100 Index for UK, DAX for Germany, Paris CAC40 Index for France, FTSE

MIB Index for Italy, Toronto Stock Exchange Composite Index for Canada, and S&P/ASX200 index for Australia.
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obtain macroeconomic data from the OECD website and FRED. We also use month-end single-name

CDS spreads from 2002 to 2015 obtained from Markit. Finally, we obtain historical probability

of default and recovery rates (including those of U.S. and non-U.S. issuers) from Moody’s Default

and Recovery Database.

In Table 1, we present the summary statistics for our sample of corporate bonds. We take

(simple) average across bonds for each portfolio formed on credit ratings and maturity. For credit

ratings, we form four portfolios: AA+ (which include AAA and AA), A, BBB, and HY (high-yield

bonds rated BB and below).

We find that, conditional on credit ratings, credit spreads vary substantially across countries.

For AA+ bonds, average credit spreads range from 17 bps in Japan to 146 bps in Australia, while

BBB credit spreads range from 41 bps in Japan to 231 bps in Australia. When we compare BBB

spreads across countries, Japan has the lowest credit spreads, followed by Germany and France.

Italy, Canada, and the U.S. sit in the middle, while the U.K. has slightly higher credit spreads.

Australia has the highest credit spreads in our sample.

Years to maturity vary across countries as well. The U.K. and Canada have long maturity

bonds, ranging from 8.9 years (Canadian BBB bonds) to 16.6 years (Canadian A bonds) for IG

bonds. In contrast, Australia and Germany have shorter maturity on average, with 3.8 years for

German AA+ bonds and 6.3 years for Australian AA+ bonds.

Regarding the issue size (face value of bonds), Canada has the smallest average issue size,

ranging from 100 to 220 million U.S. dollars, while the European countries have a large average

issue size.

In Table 1, we also show the average number of bond issues per month as well as the average

number of bonds per issuer. Regarding the number of bonds, Japan is the largest country in our

international bond sample, even though the data include no Japanese HY bonds. France has the

second-largest number of issues per month, followed by Canada and the U.K.

Regarding the concentration of issuers, IG bonds in Japan and Canada are dominated by large

issuers: the average number of bonds per issuer ranges from 5.4 to 13.5 in Japan, and from 4.4

to 12.9 issues in Canada. The average number of bonds per issuer is lower in other countries,

with Australia being the lowest (1.0, 3.2 and 2.2 bonds per issuer for AA+, A, and BBB firms,

respectively).

There might be a concern that our Merrill Lynch data are based on quotes from a single dealer.

However, such data for the U.S. sample have been used in several studies. For example, Goldberg

and Nozawa (2018) find that transaction price in TRACE and Merrill Lynch quotes are similar to

each other. Though we do not have transaction prices for international corporate bonds, we can

compare them against other variables, such as stock prices. In Section I of the Internet Appendix,

we follow Collin-Dufresne, Goldstein and Martin (2001) and run regressions of monthly changes

in credit spreads on issuers’ stock returns, changes in volatility, the level and slope in risk free
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rates, stock market indices, and skewness. Our estimation results are similar to those when we

use the U.S. data. For example, monthly stock returns both at the security and index level are

significantly negatively related to credit spread changes, while stock volatility is positively related to

credit spreads; the regression R-squared ranges from 0.09 in Japan to 0.31 in Italy. These findings

underscore the reliability of our corporate bond data. Lastly, we use CDS spreads and find that

our main empirical results are robust.

4 Structural Credit Risk Models

In this study, we focus on two structural models of corporate debt pricing, the Black and Cox

(1976) model and an extension of this model. We use the former as the benchmark, given the recent

literature on the credit spread puzzle (see, e.g., Bao 2009; Huang and Huang 2012; Feldhütter and

Schaefer 2018; Bai, Goldstein, and Yang 2019). Another reason for doing so is that as shown below,

the Black-Cox model can be nested in a reduced form of the He and Milbradt (2014) model. In

this section we describe the latter first and then review the Black-Cox model.

4.1 Structural Models with Search Frictions

To quantify the contribution of market illiquidity to the credit spread puzzle, we must estimate the

liquidity component without referring to bond pricing information or altering the measured credit

component in yield spreads (as captured by the Black-Cox model). To this end, we incorporate an

OTC search friction into the Black-Cox model, based on the insights of He and Milbradt (2014).

They endogenously derive how secondary market illiquidity is priced in yield spreads and how

it interacts with an issuer’s credit worthiness. More importantly, their model-based expression

for proportional bid-ask spreads offers non-pricing metrics for our calibration of search-related

parameters. Meanwhile, by retaining our baseline estimates of firm fundamental parameters, we

ensure that the extended model is still consistent with the notion of the credit spread puzzle, as

model-implied P-measure default probabilities remain unchanged.

Consider a corporate bond of fixed maturity T and face value K which pays continuous coupon

at a constant rate c. Default occurs due to covenant violation. The idea is, if the firm value falls

enough relative to the face value of debt, firm may default even before the maturity of the debt.

The firm value threshold at which firms choose to or are forced to default is called default boundary.

As initially proposed by Duffie, Gârleanu, and Pedersen (2005), the endogenous bond liquidity

can be derived from the valuation wedge between L-type investors, who have been hit by liquidity

shocks and thus face costs for holding bonds, and H-type investors who have not. Also, the
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corresponding bond valuation functions follow Proposition 1 in He and Milbradt (2014):[
DH(t, T )

DL(t, T )

]
= Z−1

[
c

c− χ

]
+ e−Z(T−t)

([
K

K

]
− Z−1

[
c

c− χ

])
(1− π̃Q(T − t))

+UG̃(t, T )U−1

([
RHK

RLK

]
− Z−1

[
c

c− χ

])
, (1)

where χ is the holding cost, {RH , RL} are state-dependent recovery rates, Z a 2-by-2 matrix of

the liquidity-adjusted discount factors, U the matrix that diagonalizes Z, π̃Q(t, T ) the risk-neutral

default probability over (t, T ], and G̃ = diag[G̃1, G̃2] the state-dependent time-t price of the Arrow-

Debreu default claim. As will be shown in Section 4.2, the bond valuation formula under search

friction essentially maps that under the Black-Cox modeling of corporate bond prices, with the

discount rate adjusted by transition intensity and the bond cash flows adjusted by holding costs.

Specifically, Z, πQ(t, T ), and G̃ are

Z =

[
r + ξ −ξ
−λβ r + λβ

]
= U ·

[
r̃1 0

0 r̃2

]
· U−1 (2)

πQ(t, T ) = N [x−(ν)] +

(
dK

At

) 2ν

(σA)2

N [x+(ν)], (3)

G̃j(t, T ) =

(
dK

At

) ν+ζj

(σA)2

N
[
x+(ζj)

]
+

(
dK

At

) ν−ζj
(σA)2

N
[
x−(ζj)

]
, j = 1, 2, (4)

x±(z) ≡ ln(dK/At)± z · (T − t)
σA
√
T − t

, (5)

where r denotes the risk-free rate, r̃1 = r+ξ+λβ > r̃2 = r, ξ represents the intensity of transforming

a H-type investor to a L-type one, and λβ represents the intensity of “backward” transition from

the L state to the H state. Additionally, d is the default boundary, K/At the time-t leverage,

σA asset volatility, δ the payout rate, ν = r − δ − 0.5(σA)2, ζj =
√
ν2 + 2r̃j(σA)2, and N [·] the

cumulative standard normal density function.

Given that the Merrill Lynch data consists of bid quotes instead of mid prices, we focus on the

bid price in our empirical analysis of the model in Eq. (1). Under this model the bid price is

DB(t, T ) = βDH(t, T ) + (1− β)DL(t, T ). (6)

The model-implied yield to maturity yS(t, T ) solves the following equation:

DB(t, T ) =
1

yS
cK
(

1− e−yS(T−t)
)

+Ke−yS(T−t). (7)
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4.2 The Black-Cox Model

If we shut down the search component in Eq. (1), the model degenerates to the Black-Cox model.

Equivalently, once the H-type investors are assumed to be immune to liquidity shocks (ξ ≡ 0), their

valuation for the bond converges to the following pricing formula under the Black-Cox model:

DBC(t, T ) =
cK

r
+ e−rtK

(
1− c

r

)
(1− πQ(t, T )) +K

(
R− c

r

)
G(t, T )

=
cK

r
(1− e−rt)(1− πQ(t, T )) + e−rtK(1− πQ(t, T )) +K

(
R− c

r

)
G(t, T ), (8)

where R denotes the recovery rate. The three terms in Eq. (8) captures different components

in corporate bond pricing: the present value of expected coupon payments, the present value of

expected principal repayment, and the expected recovery value upon default. The model-implied

yield to maturity y(t, T ) solves the following equation:

DBC(t, T ) =
cK

y

(
1− e−y(T−t)

)
+Ke−y(T−t). (9)

The Black-Cox credit spread is given sBC(t, T ) = y(t, T )− r.

Note that Eq. (8) coincides with Eq. (3) of Leland and Toft (1996). Compared with the Black-

Cox price of zero-coupon bonds as considered by Feldhütter and Schaefer (2018), it takes into

account the coupon rates and serves as a special case of Eq. (1). Internet Appendix II considers

three alternative specifications of the Black-Cox model, including the ones with zero-coupon bonds

and bonds with discrete coupon payments (see, e.g., Bao 2009). We find that they lead to fairly

similar model-implied credit spreads with the same set of parameter values.

5 Implementation

In this section, we describe the methodology we use to estimate the parameters of the models

introduced in Section 4. We consider the parameters of the Black-Cox model first and then those

of the search model.

Let θQBC and θPBC denote the vectors of Q and P parameters under the BC model, respectively.

It follows that θQBC = (K/At, δ, σ
A, R, d) and θPBC = (SR). We obtain all parameters except d from

the data, and then set d to match the model-implied probability of default under the P-measure

to historical default frequency. We estimate asset volatility (σA), leverage (K/At) and the payout

rate (δ) at the firm level. For the Sharpe ratio, recovery rate, and the probability of default for a

given rating category, we use the fixed values across firms.
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5.1 Firm-Level Inputs

We compute leverage as the ratio of book value of debt to the value of asset, defined as the sum

of book value of debt and market value of equity. Payout ratio is the ratio of payment to outside

stakeholders (dividend payment, share repurchases, and net interest payment) over the past one

year divided by the asset value. For firms with extremely high payout ratio (more than three times

the median payout ratio in each country), we set the payout ratio to be three times the median

payout ratio.

Following Schaefer and Strebulaev (2008), we estimate asset volatility as:

σAi,t =
√

(1− Li,t)2(σEi,t)
2 + L2

i,t(σ
D
i,t)

2 + (1− Li,t)Li,tσEi,tσ
D
i,tρ

ED, (10)

where Li,t is leverage, σEi,t is equity volatility, σDi,t is debt volatility, and ρED is correlation across

debt and stock returns. We estimate σEi,t using daily stock returns with a 1-year rolling window.

Estimating debt volatility and correlation is more challenging. To strike a balance between accuracy

and transparency, we take the following steps. First, we compute the constant volatility for each

bond using monthly returns. Second, we take the simple average across bonds within each rating

category for each country to compute the average debt volatility. Third, we assign the same debt

volatility for bonds in each rating/country bin. For correlation, we repeat the similar steps by

computing correlation using monthly stock and bond returns for each bond, then take the average

for each rating and in each country. After computing asset volatility for all firms for every month,

we take the average over time to obtain the constant asset volatility.

Table 2 reports summary statistics of the firm-level inputs to the model. To compare across

countries, we focus upon BBB firms, for which we have the largest number of observations. The

average leverage is 0.52 for Japan, 0.33 for the U.K., 0.37 for Germany, 0.39 for France, 0.53 for

Italy, 0.33 for Canada, 0.24 for Australia, and 0.31 for the U.S. Aside from Japan and Italy, the

leverage of average BBB firms is similar across countries. Median firms have similar leverage to

average firms.

The average payout ratio is the lowest in Japan, followed by the U.K., France, and Germany.

Australia, Canada, and the U.S. have higher payout ratios. All else equal, a higher payout ratio

pushes down the growth of asset value, and thus increases the probability of default of the issuer

under both the P- and Q-measures.

Asset volatility for average BBB-rated firms is 0.18 in Japan, 0.19 in the U.K., 0.18 in Germany

and France, 0.13 in Italy, 0.15 in Canada, 0.20 in Australia, and 0.26 in the U.S. Overall, asset

volatility is quite similar across countries.

In summary, the main takeaway from Table 2 is that, conditional on credit ratings, there is

no clear pattern in fundamental riskiness of firms across countries. We use a structural model to

formally evaluate whether the variation in fundamentals aligns with the variation in credit spreads
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across countries in Section 6.

5.2 Country-Level Inputs

The Sharpe ratio of asset is needed to match a model-implied P-measure default probability to

historical default frequency. As we evaluate a structural model using bond-level data, ideally we

need Sharpe ratios of individual firms. Following Chen, Collin-Dufresne, and Goldstein (2009) and

Feldhütter and Schaefer (2018) who use one single Sharpe ratio for U.S. firms, however, we use

one Sharpe ratio estimated separately for each country. Specifically, we compute average annual

returns and average volatility for each stock using all Compustat firms from 1987 to 2017. We

then compute the Sharpe ratio for each stock and take the median value in each country for the

country-level Sharpe ratio.

In Panal A1 of Table 3, the estimated median Sharpe ratios are 0.20 for Japan, 0.29 for the

U.K., 0.23 for Germany, 0.29 for France, 0.18 for Italy, and 0.23 for Canada and Australia. In the

U.S., the commonly used value in the literature is 0.22 (e.g., Chen, Collin-Dufresne, and Goldstein

2009; Feldhütter and Schaefer 2018), and thus we use this number. The Sharpe ratios across

countries are reasonably similar to each other. If high credit spreads in Australia reflect the high

risk aversion for Australian investors, then the Sharpe ratio in Australia must be much higher than

in other countries, which we do not see in the data. We check the robustness of these estimates

by examining a subsample of firms that are matched to our bond data sets. As shown in Panel

A2, the median values are generally similar to the estimates using all firms. Therefore, we use the

latter estimates for the rest of the analysis.

Given the estimated Sharpe ratio SR, we compute the drift of a firm’s asset value by:

µi,t = rt + SR · σAi .

By replacing the risk-free rate in Eq. (3) with µi,t, we compute the model-implied probability of

default under the P-measure.

The recovery rate, the fraction of a firm’s asset that investors recover upon default, is often

assumed to be constant across countries, and the previous literature relies on Moody’s estimate

for recovery rate at the global level (including both U.S. and non-U.S. bonds) in analyzing U.S.

corporate bond prices (e.g., Chen et al. 2009; Huang and Huang 2012; Feldhütter and Schaefer

2018). This assumption is justified as long as bankruptcy laws and the definition of seniority and

collateral security are common across countries.

In practice, bankruptcy laws and covenants may differ across countries, leading to a potential

difference in recovery rates across countries. We investigate this possibility using the recovery data

for each default case since 1983 when Moody’s recovery data start. However, we find that, though

Moody’s data cover default events across countries, the recovery rate is mostly missing in countries
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outside the U.S., Canada, and the U.K., possibly reflecting the lack of active distress debt markets

outside these three countries. Thus, we aggregate all seven countries (Japan, the U.K., Germany,

France, Italy, Canada, and Australia) compute average international recovery rates, and compare

them against the values in the U.S.

The average recovery rate for senior unsecured debt is estimated at 37.3% for the seven countries,

which is very close to the U.S. average of 38.0% in the sample period. The difference across countries

is negligible compared with the relatively large countercyclical variation in recovery over time (Chen,

2010). Thus, we use the five-year moving average recovery rate (shown in Figure 2) at the global

level to price corporate bonds in non-U.S. markets. In section 6.3.1, we use alternative measures

of heterogeneous recovery rates to show that the potential difference in recovery does not drive our

main findings.

To estimate the structural model of debt, we match the probability of default under the P-

measure to historical default frequency. The previous research in the literature (e.g., Huang and

Huang 2012; Feldhütter and Schaefer 2018) uses Moody’s probability of default estimated at the

global level. If Moody’s credit rating standard is consistent across countries, this choice is justified

as we measure the probability of default for a given credit rating.

To verify the consistency, we compute cumulative default probabilities using Moody’s event-

level default data separately for U.S. firms and non-U.S. firms in the seven countries that we study.

In Table A2, we show that the cumulative default frequency given credit ratings are similar between

the U.S. and other countries. Thus, we use the historical default probability at the global level.

Since credit spreads in Japan are lower than those in other countries, we also compute the default

probabilities for Japanese firms alone. For AAA- and AA-rated Japanese firms, there is no default

in the data, reflecting the smaller sample. For A- and BBB-rated firms, the 10-year cumulative

default probability in Japan is 0.89% and 2.75%, not statistically significantly different from the

estimates in other countries (2.66% and 2.38%, respectively).

Regarding the sample period, Feldhütter and Schaefer (2018) emphasize the importance of using

the longer history of default data. We follow their approach and use the global default frequency

from 1920 to 2017.8

5.3 Default Boundary

As we do not observe default boundary parameter, d, in the data (except at the bond maturity), we

need to estimate it. Given that the credit spread puzzle is about the structural model’s inability to

match credit spreads and the historical default frequency at the same time, it seems reasonable to

choose d to match the model-implied P-measure default probability to the historical data. However,

there is no consensus in the literature so far on how to “best” estimate d. We implement four

8The micro-level data is available after 1970, but Moody’s publishes the historical default frequencies at the
aggregate global level averaged since 1920.
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different estimation methods in this study—and show later that the main conclusion of our study

is robust to the use of different estimates of d provided that they are empirically reasonable. Below

we briefly describe these four methods, which are detailed in Appendix B.

The first method is to follow Feldhütter and Schaefer (2018) and back out d by minimizing the

distance between Moody’s default frequencies and the Black-Cox default probabilities at the rating

and maturity bin level. The second method we use is the one proposed by Bai, Goldstein, and

Yang (2019), who show that Feldhütter and Schaefer (2018)’s estimates of d for the U.S. firms are

sensitive to proxies of firms’ asset market values used. Bai et al. (2019) propose to add an estimated

market value of debt rather than its book value to the market value of equity to obtain the asset

value. The third method is a model-based one that need not approximate the asset value with some

observable proxies. Instead, we determine the asset (market) value as well as asset volatility via the

Black-Cox model based on equity value and equity volatility in the spirit of Jones et al. (1984); Bao

(2009). In these three methods the default boundary is assumed to be the same for all firms over

time in each country. The fourth method we implement is to use firm-specified default boundaries.

Specifically, we vary d such that each firm exactly matches the historical default frequency every

month.

In Panel B of Table 3, we present the estimated default boundaries based on the above four

different methods for each country, which are denoted dFS , dBGY , dHNS , and dfirm, respectively.

We see that dFS is 0.82 for Japan, 0.85 for Italy, 0.99 for Germany and Australia, and is greater

than 1.0 for UK (1.05), Canada (1.07), and France (1.10). As expected, dBGY ≤ dFS regardless

of the countries considered, although they are close to each other except for Italy whose dBGY is

0.63.9 Interestingly, dHNS ≤ dBGY except for Italy. Note also that dHNS < 1.0 except for France

(1.03). Lastly, we report the average and median values of heterogeneous dfirm in each country.

The firm-level estimates are much higher than dFS , dBGY or dHNS . In particular, the average dfirm

is above 1.0 for all countries, and as high as 2.34 for Australia. The median values of dfirm are

lower than their averages, indicating that the distribution of dfirm is skewed to the right.

The fact that the default boundary is above 1.0 for some countries implies that our measure

of market leverage is only a proxy for true leverage. If a true measure of leverage is available in

the data, then d < 1.0 as there is no reason for a firm to default when its equity value is positive.

However, there may be debt-like obligations that are missing in the book value of debt in balance

sheets. For example, firms with higher operating leverage are more likely to default than firms with

low operating leverage, even if the financial leverage is the same.10 Thus, we focus only on dFS ,

dBGY or dHNS and keep even those estimates greater than 1.0 in the analysis that follows—and we

do not consider dfirm as it is too high.

9For the U.S. Feldhütter and Schaefer (2018) report that dFS = 0.89 and Bai et al. (2019) report that dBGY = 0.62.
10We thank Bob Goldstein for pointing this out.
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5.4 Search Related Parameters

The parameters of the BC model with search friction in Eq. (1) include type-dependent recovery

rates {RH , RL} and four parameters on the secondary market search {ξ, λ, β, χ}.

To determine {RH , RL}, we adopt the assumption in He and Milbradt (2014) that the historical

discovery rate corresponds to the bid in the post-default market. It follows that {RH , RL} can be

obtained by solving the following system of two equations for each country:

R = (1− β)RL + βRH ;

φd =
2(1− β)(RH −RL)

(1 + β)RH + (1− β)RL
.

We set the historical average recovery rate R as similar to the one specified in Section 5.2, and

set the bid-ask spread of defaulted bonds φd to 2.8% as reported by Jankowitsch, Nagler, and

Subrahmanyam (2014). As a result, {RH , RL} depend on β only.

We use χ = χcc + χFF , following the parameterization of He and Milbradt (2014).11 Let

θS = {ξ, λ, β, χc, χF }. We determine θS based on percentage bid-ask spreads

φ(t, T ; θS) =
Ask(t, T )−Bid(t, T )

(Ask(t, T ) +Bid(t, T ))/2
=

(1− β)(DH(t, T )−DL(t, T ))

[(1 + β)DH(t, T ) + (1− β)DL(t, T )]/2
.

Specifically, for each country, θS is estimated by minimizing the summed square of fitting errors

over the entire sample:

θS = arg min
∑
t

∑
i

(
φ(t, Ti; θ

S)− φobsi,t

)2
, (11)

where Ti is the maturity of bond i, and φi,t ≡ φ(t, Ti; θ
S) and φobsi,t denote the model-implied and

observed bid-ask spreads, respectively.12

Given that the bond-level measures of bid-ask spreads are inevitably rather noisy, we obtain

φobsi,t in two steps. First, in each month, we assign the bid-ask spreads of individual bonds to one of

12 credit rating-and-maturity bins constructed from four credit ratings, (AA+, A, BBB, HY), and

three maturity groups, (< 5 years, 5–10 years, 10+ years). Next, we calculate the median bid-ask

spread with bonds in the same category and then use this smoothed bid-ask spread as our measure

of φobsi,t in Eq. (11).13

11Chen et al. (2018) present an alternative way to parameterize χ.
12One might be concerned with the downward bias of BGN quoted bid-ask spreads as a measure of transaction

costs, as documented in Bao et al. (2011) and Schestag et al. (2016). However, in Appendix A, we show that this
finding is confined to the U.S. corporate bond market. Indeed, in the international setting, quoted bid-ask spreads are
more closely correlated with benchmark liquidity measures, and overall their magnitude is even slightly greater than
benchmarks. Given that BGN quoted bid-ask spreads have the best coverage among monthly measures of bond-level
transaction costs, we focus on this measure in our model estimation.

13This cross-sectional smoothing within each rating-maturity group is motivated by the key implication of He and
Milbradt (2014): the endogenous bid-ask spread depends not only on the issuer’s default risk but also on the bond’s
time-to-maturity. Untabulated results show that, compared to unsmoothed bid-ask spreads, smoothed ones have
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We report the estimates of θS in the Appendix. Consistent with search model implications,

L-type investors in countries with large pricing errors from the Black-Cox model have either high

holding costs (Australia) or low intensity to meet dealers (Italy).

6 Empirical Results

In this section, we examine the empirical performance of the structural models described in Section 4

in matching corporate bond and CDS spreads. We consider the Black-Cox model first and present

the evidence that calls for models with illiquidity. We then show that the reduced He-Milbradt

model improves the model performance significantly.

6.1 Performance of the Black-Cox Model in Matching Bond Spreads

Let’s examine the ability of the Black-Cox model to match individual corporate bond spreads

first. We implement the Black-Cox model in Eq. (8) with three different default boundaries, (dFS ,

dBGY ,dHNS), and compare the model-implied corporate bond spreads with observed spreads for

each country in our sample.

6.1.1 Can the Model Match Individual Bond Spreads?

Given that the analysis is based on a sample of individual bonds, one standard way to evaluate

the model is to examine its pricing errors. Table 4 reports the average pricing errors on corporate

bond spreads by credit ratings under each of (dFS , dBGY , dHNS) for each country.

Consider the baseline case (dFS) first. The mean pricing error on the spread level (panel A)

for IG bonds is all negative except for A and BBB bonds in Japan and France. That is, the model

underestimates the IG credit spreads for Italy, UK, Canada, Germany, Australia, and the U.S.,

as well as for AA+ bonds in Japan and France. The magnitude of the underestimation is also

substantial. For HY bonds, the model underestimates (overestimates) the spreads for UK, Canada,

and German (for Italy, France, and the U.S.). The results on the mean percentage pricing errors

(panel B) display similar patterns to those in panel A. The only exception is that the model now

also underestimates the spread for A bonds in Japan. Note that the average percentage pricing

error for IG bonds is mostly very negative. For example, for AA+ bonds, it is lower than -70% for

all countries except Canada (-27%). For A bonds, the mean percentage pricing error is 58% for

France, -9% for Germany, and below -35% for the other six countries. For BBB bonds, it is 33%

for Japan, 21% for France, and below -35% for the other six countries. For HY bonds, it is below

-55% for UK, Canada, and Germany; about zero for the U.S., and above 15% for Italy and France.

stronger explanatory power for individual bonds’ pricing errors in panel regressions.
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Consider dHGY next. Replacing dFS with dHGY tends to lower the model spread. Indeed the

pricing errors generally become more negative are largely similar to those based on dFS . Nonethe-

less, the results based on dHGY are qualitatively similar to the baseline case, except for HY bonds

in Italy and the U.S. For these bonds, while the average percentage pricing error under dFS is 16%

and about 0% for Italy and the U.S., respectively, its counterpart under dHGY is -77% and -45%,

respectively. The reason for such a big difference between these two sets of the results is the big

gap between dFS and dHGY . Recall from Section 5.3 that dFS = 0.85 and dBGY = 0.63 for Italy

(Table 3) and dFS = 0.89 and dBGY = 0.67 for the U.S. Note, however, that in spite of the big

differences between dFS and dBGY for Italy and the U.S., the average percentage pricing errors for

these two countries show similar pattern; namely, the model performance improves as the credit

rating is lower.

Lastly, consider dHNS . The results are qualitatively similar to the baseline case.

To summarize, we make three observations from Table 4 . First, the results for the U.S. bonds

are consistent with Huang and Huang (2012). Second, the other 7 countries, the BC model underes-

timates the IG bond spreads except for A and BBB bonds in France (whose average model spreads

are very high mainly due to a few SOEs in the sample); however, the model overestimates the HY

bond spreads for Italy and France. Lastly, the Black-Cox model has difficulty matching individual

bond spreads, regardless of the default boundary estimates used and the countries considered in

our sample. This finding is consistent with the evidence in the U.S. based on individual bonds

(e.g., Eom, Helwege, and Huang 2004).

6.1.2 Can the Model Match the Average or Median Spreads?

Let’s first look at the distributions of both observed and predicted spreads. Table 5 presents their

means, the 10-, 25-, 50-, 75-, and 90-percentiles based on a variety of default boundary parameter,

d, by four different rating groups. Consider AA+ bonds (panel A) for example. While the mean

observed spreads are only slightly greater than their median counterparts, the model with the FS-

and BGY-methods of d generates positively skewed distributions of model-implied credit spreads—

and, as a result, the average model spreads with fixed d are much greater than the medians.14 This

finding indicates that comparing average model spreads with average observed spreads may lead to

a wrong conclusion about the performance of the model: the model can overpredict credit spreads

for a few firms with very high leverage or volatility to compensate for the underprediction of the

credit spreads for the remaining firms. That said, comparing the median credit spreads in the data

and the model helps detect such problems.

With the left four panels of Figure 3, we compare the model mean or median spreads with dFS

(the x-axis) and the data (the y-axis). These plots summarize the key takeaway from Table 5. If

the model explains the credit spreads in the data well, then we should see observations plot along

14Feldhütter and Schaefer (2019) confirm this finding in the US data.
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the 45-degree line. If the model underpredicts credit spreads, then observations plot in the upper

left triangular region.

In most countries and credit ratings, the mean credit spreads lie north and east to the median,

reflecting the positive skewness in each country. However, the horizontal distance between mean

and median is much greater than the vertical distance, showing that average model-based credit

spreads are more affected by outliers than are actual credit spreads.

Figure 3 shows that the model matches the average spread better than the median spread. Since

the model-based IG credit spreads are much lower for the median than for the mean, all countries

plot above the 45-degree line, showing that the model underpredicts the IG spreads in the data.

It is striking that in Figure 3, the median IG firms across countries have quite different credit

spreads, conditional on the credit rating. However, the model-implied credit spreads are quite

similar to each other, reflecting the fact that these median firms share similar fundamentals in

terms of leverage, volatility, and payout ratio. Therefore, we see median observations distributed

widely across the vertical axis, but not across the horizontal axis. When we use dFS , the Black-Cox

model does not explain the cross-sectional variation in credit spreads well.

Using the right four panels of Figure 3, we compare the model-implied median credit spreads

(the x-axis) and the data (the y-axis) with different specifications of default boundary, d. The

diamond dots present the BGY-method of d. Comparing the results from dFS , we see a large

decline in model-implied credit spreads for the U.S. For example, the median BBB credit spreads

decrease from 51 bps (with dFS) to 14 bps (with dBGY ), reflecting the lower values of default

boundary under the BGY-method. However, the difference between two methods is not large for

other countries. Comparing the median in the left panels (with dFS) and the diamond dots in the

right panels (dBGY ), the non-U.S. credit spreads remain largely unchanged.

We emphasize that the global credit spread puzzle is not entirely driven by Japan, which always

has the lowest credit spreads. For example, the median of BBB bonds in Canada has credit spreads

of 154 bps, and the model (with dFS) predicts 3 bps. In Germany, the median BBB spreads are

105 bps, and the model predicts 14 bps. Thus, of the 49 bps differences in credit spreads between

Canada and Germany, the model explains -11 bps, generating the opposite prediction. When we

use d estimated at the individual level, the model generates 89 bps for Canada and 83 bps for

Germany, which still explains only 6 bps of the difference. Thus, the variation in credit spreads

excluding Japan is quite substantial, relative to the variation in firm fundamentals.

For HY bonds, the figures are less conclusive about the performance of the Black-Cox model.

Both dFS and dBGY underpredict HY median credit spreads for all countries except France. How-

ever, unlike IG bonds, the median U.S. firm, which has the highest HY credit spreads in the

data, has the second highest model-implied credit spreads (behind France). In contrast, HY credit

spreads are lowest in Germany, both in the data and in the model with fixed d. Therefore, the

model qualitatively generates the right prediction for the cross-section of HY credit spreads.
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The fact that credit spreads are different across countries, but the leverage, volatility, and

payout ratio are similar to each other, poses a challenge not only on the Black-Cox model, but also

on any structural models of debt based only on these inputs. However elaborate the calibration

method for d is, the target is to match the historical default frequency that is fixed for each credit

rating. Therefore, our results suggest that we require a model that includes additional inputs that

vary substantially across countries.

6.2 Performance of the Black-Cox Model in Matching CDS Spreads

In this section, we examine the performance of the Black-Cox model using CDS spreads. It is known

that CDS spreads may be less affected by illiquidity and better reflect the underlying name’s credit

risk than corporate bonds do. If the Black-Cox model is unable to explain bond credit spreads

primarily due to missing liquidity premium, then the model should perform better in pricing CDS

spreads.

Following Bai, Goldstein, and Yang (2019), the model-implied CDS spread is:

CDS(T ) =
4(1−R)

∑4T
i=1DF ( ti−1+ti

2 )[πQ(ti)− πQ(ti−1)]∑4T
i=1DF (ti)(1− πQ(ti)) + 1

2

∑4T
i=1DF ( ti−1+ti

2 )[πQ(ti)− πQ(ti−1)]
(12)

where DF (t) = e−rtt, πQ(·) is the Black-Cox model-based Q-measure default probability in Eq.(3),

and it is assumed that if a credit event occurs between two payment dates, then the CDS buyer

always pays half of the periodic premium.15

In our implementation of Eq. (12), we use swap spreads for {rt}. Also, we use the same values

of d as we do for corporate bonds, as they are calibrated to the P-measure default probabilities

and do not depend on asset prices. Since dFS and dBGY yield very similar results, we focus on the

former and individual default boundary, which varies across firms and over time.

We begin our analysis by studying the 5-year CDS contract, the most liquid one. Note that the

CDS samples are mostly less than one third of their corporate bond counterparts in most countries

(see Table 1). For instance, in the CDS samples, there are only a few AA+ firms in Italy and

Australia, and a few HY-rated firms in Italy and Canada, while there are no AA+ firms in Canada

and no HY firms in Australia. Table 6 reports the pricing error of the BC model in the CDS

market. Similar to the bond case, the pricing error is mostly negative.

In Figure 4, we plot for each credit rating the median model-implied CDS spreads on the x-axis

and the observed ones on the y-axis. When compared with corporate bonds, the cross-country

difference in median CDS spreads is relatively small. For example, the range for the median CDS

spreads is 10, 31, and 86 bps for AA+, A, and BBB-rated names, respectively. Thus, part of the

large cross-country difference in corporate credit spreads likely reflects the difference in liquidity

15Numerically, ignoring the final accrual payment makes little difference in the model CDS spread.
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premium across countries. Still, the performance of the Black-Cox model for CDS is qualitatively

similar to that of corporate bonds: the model generates a smaller variation in CDS spreads than

in the data. As a result, the median spreads in Figure 4 lie on top of each other rather than along

the 45-degree line. Moreover, the choice of default boundary shifts the observations horizontally,

but does not affect the model’s ability to explain the difference in CDS spreads across countries.

We also examine the term structures of CDS spreads for IG firms in each country (see the

Internet Appendix for the details of the analysis). We find that while both the observed and Black-

Cox (with dFS) implied CDS curves (of median spreads) are upward sloping, the latter tends to be

steeper than the former. As a result, the model underestimates the short-term CDS spreads more

than long-term ones for IG names. The underprediction of the short-term IG credit spreads is not

surprising, however, given that the Black-Cox model does not include a jump in a firm’s asset value

process.

Overall, our analysis of CDS spreads confirms findings with respect to the corporate bond

market that the Black-Cox model does not explain the cross-country difference in credit spreads,

aside from the smaller cross-sectional variation in CDS spreads.

6.3 Dissecting Pricing Errors

Sections 6.1–6.2 have shown the evidence that the Black-Cox model has difficulty matching both

corporate bond and CDS spreads, as well as explaining their cross-sectional variations across eight

countries. In this subsection we analyze the fitting errors and determine whether time-series pat-

terns in the errors exist.

6.3.1 Loss Given Default

The same recovery rate is used across different countries in the baseline analysis, based on the

evidence in the Moody’s default database (see Section 5.2). However, recovery rates may vary

at the country level, due to potential differences in legal environments across countries. In this

subsection we consider two alternative estimates for loss given default (LGD).

The first one is the forward-looking LGD implied from HY CDS spreads.16 For distressed names,

Markit backs out the implied recovery rate from the observed CDS spreads under an assumed term

structure of default intensities. We use the average of the Markit implied LGD values from all HY

single-name CDS contracts in each country as its country-specific LGD except for Australia.17 The

second alternative measure is based on the country-specific bankruptcy efficiency scores (equivalent

to the recovery rates times 100) estimated by Djankov, Hart, McLiesh, and Shleifer (2008), who

16Implied recovery rates from IG CDS spreads are not used here because these recoveries from Markit have very
low cross-sectional variations.

17There are no HY Australian CDS contracts denominated in Australian dollars available in our sample.
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utilize a survey that they conduct among lawyers on typical bankruptcy proceedings in each country

using a case study of a distressed firm.

We redo the analysis in Section 6.1 using the Black-Cox model with dFS and each of the above

two alternative measures of LGD, and plot the median pricing errors (the difference between the

observed and model median credit spreads) for IG bonds in each country in Figure 5. If LGD

is the driver of the cross-country difference in corporate bond spreads, we should see a positive

relationship between the pricing errors and LGD. The results based on the CDS-implied LGD

estimates, however, display a negative relationship between the pricing errors and LGD (panel A

of Figure 5). Specifically, corporate bond spreads in Japan are lower than in other countries but its

LGD is in fact slightly higher than those in other countries, which are very similar to each other. The

results using the survey-based LGD estimates also display a slightly negative relationship between

the pricing errors and LGD (panel B). Note from the figure that Australia, Canada, Japan, the

U.K. and the U.S. have relatively high bankruptcy efficiency scores (and thus low LGD estimates)

while France, Germany, and Italy have low efficiency scores.

In sum, our results indicate that neither measure of the heterogeneous LGD estimates can likely

explain the large gap in corporate bond spreads.

6.3.2 Country-Level Pricing Errors

In this subsection we consider other potential drivers of the country-level pricing errors, such as

financial market conditions and liquidity factors. For the former, we use the level and slope of

the risk-free rates and option-based uncertainty measures in each country. Specifically, we use

each country’s stock index options and construct the country-specific option-implied volatility and

skewness measure following Collin-Dufresne, Goldstein, and Martin (2001).18

For liquidity factors we explore proxies for corporate bond illiquidity, which is not captured

by structural models of debt such as the Black-Cox model. Given that we have no transaction

data for non-U.S. corporate bonds available, we consider three alternative liquidity measures of

international corporate bonds instead of those transaction-based illiquidity measures devised for

the U.S. market. The first one is yield curve fitting errors (the “noise”) of corporate bonds (a

measure of illiquidity arising from dealers’ inventory frictions) proposed by Goldberg and Nozawa

(2018) in the spirit of Hu, Pan, and Wang (2013) (see the Internet Appendix for the details on the

construction of this measure). The second measure of illiquidity is TED spreads for each country

given that they capture the information about the funding market conditions for dealers. We use

German TED spreads for all Euro-area countries. The third measure is the average bid-ask spread

for each country, computed using bid and ask prices from the Bloomberg Generic Quote (BGN)

18We fit a quadratic function on option implied volatility for one month options:

σIV (mk) = b0 + b1mk + b2m
2
k + uk,

where mk is the moneyness of option k, and compute the skew by σ̂IV (0.9)− σ̂IV (1.0).
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pricing source for the non-U.S. corporate bonds in our sample.

Next, we examine the explanatory power of the aforementioned four indicators of financial

market conditions and three illiquidity measures for the pricing errors. First, we run monthly

cross-sectional univariate regressions of pricing errors on each of these seven variables in the spirit

of Fama and MacBeth (1973), given that there are only eight observations in each month. Panel

A of Table 7 reports the average slope coefficients, associated t-statistics, and R-squared. The

estimated coefficients suggest that the level of the government yield curve and illiquidity measures

are positively related with pricing errors. The positive correlation between the illiquidity measures

and pricing errors suggests that liquidity premiums partly explain the variation in credit spreads

that is missed by the Black-Cox model.19 On the other hand, the high R-squared for the level of yield

curve (Rf
t (1)) needs to be treated with caution, since much of the cross-sectional variation reflects

the difference in risk-free rates between Australia and Japan. Aside from these two countries, little

cross-sectional variation in risk-free rates exists among other countries. Furthermore, we find little

evidence that option-based uncertainty measures explain the cross-section of the pricing errors.

6.3.3 Security-Level Analysis

To further explore the sources of pricing errors, we estimate a panel regression of security-level

pricing errors and report the results in Table 8. First, if the Black-Cox model does not accurately

characterize the functional form of credit spreads, pricing errors should be correlated with the model

inputs. Column (1) examines three key inputs: the risk-free rate, leverage, and equity volatility.20

We find that leverage is strongly and negatively associated with pricing errors, reflecting the fact

that firms with low leverage and better credit quality have a more pronounced gap between data

and the model. Column (2) considers time to maturity and issue size, showing that the latter is

significantly negative. Larger issues tend to be more liquid and thus have lower pricing errors than

smaller issues.

Next, we focus on various explanations for the credit spread puzzle (CSP) in the U.S. market

as proposed in previous studies. One is macroeconomic risk (Chen et al. 2009; Bhamra et al. 2010;

Chen 2010). Column (3) reports the results from two proxies for macro conditions, the real GDP

growth rate (seasonally adjusted) and the slope of yield curve. Note that the pricing error widens in

economic downturns, which is consistent with the prediction of macro-based theories. On the other

hand, Du et al. (2019) reconcile the CSP (in the U.S. single-name CDS market) by incorporating

both stochastic asset volatility and jumps, and emphasize the important role played by the asset

variance risk premium (VRP) in doing so. As such, we include equity VRP estimator of Bollerslev

et al. (2009), skewt (a proxy for jump magnitudes/probabilities), and IVt (a proxy for time-varying

19In Figure IA3 in the Internet Appendix, we show that shares of various types of corporate bond investors are
quite different across countries, corroborating our argument that corporate bond liquidity varies across countries.

20Asset volatility is not used here because it is assumed to be constant and thus does not reflect time variations in
volatility.
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volatility) in Columns (4), (5), and (6), respectively. The results indicate that all three variables

are significant and that although the first two have a counter intuitive, negative sign, IVt has a

positive sign and nontrivial explanatory power for pricing errors. Another often cited driver of the

CSP is bond illiquidity. Consistent with results from country-level regressions, liquidity measures

capture a sizable portion of variations in pricing errors, as shown in Column (7).

We then consider four standard equity market factors, {MKTt, SMBt, HMLt, UMDt}, given

the evidence that these factors hold some explanatory capacity for credit spreads in the U.S. (e.g.,

Collin-Dufresne et al. 2001; Avramov et al. 2007). Results reported in Column (8) indicate that

the four equity market factors are all insignificant, thereby exhibiting very limited correlations with

pricing errors in our sample of international corporate bonds.

Lastly, we run a “kitchen-sink” regression that pools all the aforementioned explanatory vari-

ables, with (Column (10)) and without (Column (9)) country fixed effects to account for other

country-specific factors yet considered (e.g., debt enforcement and account transparency). Taking

the results shown in Columns (1)–(10) together, we find that the firm leverage, implied volatility,

and market liquidity display the most robust statistical significance in explaining the pricing errors,

consistent with their unconditional explanatory power as measured by the R2 values.

6.3.4 International Finance

In this subsection, we consider some factors documented in the international finance literature.

We examine first whether the currency risk factors of Lustig, Roussanov, and Verdelhan (2011)

explain the difference in credit spreads across countries. Their currency risk factors are based on

the difference in currency returns between high risk-free rate countries and low risk-free rate ones.

Since credit spreads are differences in yields between corporate and government bonds, there is no

mechanical link between credit spreads and asset pricing factors based on risk-free rates. Indeed,

we find little evidence empirically that the difference in exposure to currency factors explains

the difference in corporate credit spreads across those countries in our sample (see the Internet

Appendix for the details of this analysis).

Next, we consider the potential role played by the violation of covered interest parity (CIP).

Liao (2019) argues that the difference in credit spreads across currencies is due to the violation of

CIP, which prohibits arbitragers from correcting mispricing. One main objective of our study is to

understand the source of this “mispricing.” To this end, we can directly test this mispricing-based

explanation for credit spreads by comparing credit spreads before and after the 2008 financial crisis.

Under this explanation, we would not see much cross-country variation in credit spreads before the

financial crisis, as the CIP holds quite well before the crisis. In the data, the standard deviations of

median A- and BBB-rated firms across eight countries are respectively 25 and 31 bps in the first half

of the sample (before December 2007), but are 43 and 51 bps in the second half, respectively. As

the difference in credit spreads before the crisis is substantial, the violation of the covered interest
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parity does not fully explain the credit spreads in our sample of non-U.S. domestic issuers. We

provide evidence in Section 6.5 that illiquidity can largely explain the difference in spreads in our

sample.

6.4 Time-Series Credit Spread Puzzle

Having examined the variation in credit spreads across countries, we now focus on their variation

in time given that both credit spreads and pricing errors vary substantially over time. To this end,

we focus on monthly median credit spreads for each country.

Figure 6 plots the observed median spreads (in blue) as well as their counterparts implied from

the Black-Cox model with dFS (in red). Note that the four European countries share a common

variation in credit spreads, peaking either during the 2008 financial crisis or the 2012 sovereign

debt crisis. The U.S., Canada, and Australia all have a huge spike during the 2008 crisis. On the

other hand, the credit spreads in Japan are relatively stable after the 1998 Asian financial crisis.

For all countries except Japan, the gap between the observed and model spreads seems to spike

around the 2008 crisis. This time series pattern is consistent with the liquidity component in yield

spreads as estimated by Chen, Cui, He, and Milbradt (2018) using the U.S. data.

To evaluate the model’s ability to explain time-varying credit spreads, we report correlation

coefficients between the model and observed median spreads in each of the eight panels of Figure 6.

While the correlations are high in the U.K. (0.87), the U.S. (0.86), and Italy (0.74), they are much

lower in other countries: the correlation is around 0.5 in Japan, Germany, France, and Australia,

and essentially zero in Canada.21 Thus, the global credit spread puzzle exists not only in the

cross-section, but also over time. Using different estimates of default boundary does not resolve the

time-series puzzle: as reported in Figure 6, if we use dfirm (a time-varying default boundary), the

correlation coefficients between the model and observed median spreads, Corr(Indiv), are generally

lower Corr(FS).

To explain the time-variation in pricing errors, we run a panel regression of median mispricing

in each country on the explanatory variables and country fixed effects:

sc,t − sBC
c,t = b0 + b1Xc,t +Dc + ηc,t (13)

where sc,t and sBC
c,t denote the observed and model-implied median spreads for country c, respec-

tively, Xc,t denotes the set of country-level explanatory variables used, and Dc is the dummy

variable for country c.

In Panel B of Table 7, we present the estimated slope coefficients and adjusted R-squared.

The estimated slope coefficients show that higher noise, TED spreads and bid-ask spreads, and

higher option-implied uncertainty are all associated with a greater gap between observed credit

21The estimated correlation in the U.S. is consistent with Feldhütter and Schaefer (2018).
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spreads and the model. The R2
adj is 0.69 for the three illiquidity measures and is 0.67 for the two

option-implied uncertainty measures. The link between the uncertainty measure and global credit

spreads is consistent with the finding of Culp, Nozawa, and Veronesi (2018), who document a strong

link between option prices in the U.S. and credit spreads. The R2
adj of the kitchen-sink regression

that includes the level and slope of the risk-free yield curve, three illiquidity measures, and two

option-implied uncertainty measures is as high as 0.79. Thus, this set of explanatory variables

seems to capture the time-variation in country-level fitting errors well. In particular, illiquidity

most significantly explains both cross-section and time-series variations in credit spreads.

6.5 Performance of the Model with Endogenous Liquidity

Our empirical results so far have provided strong evidence on the inability of the baseline model

(based only on default risk) in matching credit spreads and the cross-country variation in credit

spreads, as well as in explaining the dynamic behavior of credit spreads. In this section, we

quantitatively assess the validity of market illiquidity as a potential solution to these issues.

6.5.1 Pricing Errors and Endogenous Liquidity

To ensure that the model-implied default probability is identical to that in Section 5.3, we implement

Eq. (1) with the same set of firm-specific parameters (as well as dFS) as summarized in Section 5.4.

We then calculate the model-implied yield, yS , based on the bid price, using Eq. (7).22 The model-

implied liquidity component is defined as yS − yBC .

To what extent the incorporated search friction can fill the gap between observed and Black-Cox

credit spreads? Let’s examine the pricing errors first. Rows labeled “dFS+search” in Table 4 report

the pricing errors of the baseline model (the Black-Cox model with dFS) with search. The results

on the mean pricing error, reported in panel A, indicate that incorporating search significantly

improves the pricing performance of the model for IG bonds, except for Japan and A and BBB

bonds in France. For example, for Italy the pricing error reduces from -92 bps (AA+), -116 bps (A),

and -48 bps (BBB) to -38, -41, and -10 bps, respectively. For the U.S., the pricing error changes

from (-53, -42, -63) bps to (-26, 17, 16) bps for (AA+, A, BBB). The most striking improvement

occurs for Australian bonds: the pricing error drops from (-127, -163, -186) to (-12, -13, -11). For

Japan and A and BBB bonds in France, the baseline model already overestimate spreads—and

incorporating search worsens the problem. For HY bonds, the evidence is mixed. While the search

component dramatically reduces the pricing error for UK, Germany, and especially Canada, it has

little effect for France and substantially increases the pricing error for Italy and the U.S.

The results on the mean percentage pricing errors (panel B) show similar patterns except for

22Feldhütter and Schaefer (2018) examine the bid bias in U.S. dealer quotes from Merrill Lynch. We extend the
evidence to the global setting by comparing Merrill Lynch data with alternative pricing sources. Merrill Lynch quotes
are very close to BGN bid prices and are, on average, 0.14% lower than Markit composite prices.
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AA+ and A bonds in Japan. For these two groups of bonds, the baseline model has low mean

pricing errors (-4 bps and 3 bps, respectively) but very high mean percentage pricing errors (-94%

and -71%, respectively). Incorporating search improves the latter to 21% and 37%, respectively.

Overall, the search component generally improves the model performance for UK, Canada,

Germany, and Australia. The component also improves the performance for IG bonds for Italy, the

U.S. and Japan except for BBB bonds, but it lowers the performance for the most risky bonds for

these three countries. For France, the search component helps for AA+ bonds only.

6.5.2 Evidence Based on Median Pricing Errors

Figure 7 illustrates the search model’s performance in explaining median credit spreads across coun-

tries. Incorporating search and bargaining shows remarkable improvement for high-quality (AAA-

A) bonds. Also, the model-implied liquidity component is largest in countries with extreme es-

timates of liquidity related parameters (e.g., Australia and Italy). In terms of fractional yield

spreads, the liquidity component plays a less important role among HY bonds, as the Black-Cox

model already shows a good fit of the U.S. spreads and even overshoots the Italian spreads. Overall,

Figure 7 is consistent with the calibration results of He and Milbradt (2014): (1) the model with

endogenous liquidity delivers a satisfactory fit for the overall level of credit spreads; (2) the liquidity

component takes up a larger fraction of IG spreads, compared to HY ones (it is 44% versus 31%

in He and Milbradt 2014); and (3) its pattern across rating classes is reversed if we focus on its

absolute magnitude (e.g., in UK the median liquidity component is 21 bps, 70 bps, 72 bps and 147

bps, which correspond to the four rating categories).

However, a few caveats need to be raised when we collectively interpret these three strands

of findings. First, the He-Milbradt model is built and examined in the risk-neutral setting. We

complement their quantitative analysis by calibrating the model to historical default rates, such

that its implications for the credit spread puzzle can be derived.23

Second, in the He-Milbradt decomposition of credit spreads, one out of four components—the

liquidity-driven default component—is missing in the search model that we examine in our study.

In other words, illiquidity of the secondary market would not feed back to the distance-to-default

of corporate bonds, as the default boundary is exogenously set by matching the historical default

experiences. Nevertheless, this feature does not necessarily lead to lower credit spreads than the

He-Milbradt model’s prediction: if the He-Milbradt model exactly holds and the FS calibration

method perfectly identifies the average default boundary in the history, then the boundary estimates

obtained through Eq. (15) should generally reflect endogenous corporate default decisions with the

search friction taken into account.24

23Chen et al. (2018) introduce macroeconomic risk into the He-Milbradt model and shed light on the credit spread
puzzle using the Monte-Carlo method.

24To test this hypothesis, we use dFS in He and Milbradt (2014)’s optimal boundary formula to back out the tax
benefits of debt. As we show in Table A3 in Appendix A, the model-implied magnitude of tax benefits is too low, or
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Finally, we implement the search model firm by firm in our study, which allows us to exam-

ine model implications not only about the aggregate level of credit spreads but also about their

cross-sectional and time-series variations. The “LiqComp” column in Table 7 shows that the

model-implied liquidity component delivers a close matching of both cross-sectional and time-series

patterns in Black-Cox pricing errors. Specifically, its slope coefficients are close to one for differ-

ent regression specifications, and the univariate R2 is 0.86 and 0.92 in Fama-MacBeth and panel

regressions.

6.5.3 Time Series Correlations

In Figure 8, we map the search model’s predictions on the time series of median spreads to their

counterparts in the data. Compared to our results in Figure 6, incorporating market friction

significantly improves the model’s performance in tracking the historical variations in credit spreads.

Indeed, the correlation coefficient ranges from 0.72 (France) to 0.95 (U.K.). The country-specific

liquidity component mirrors our previous findings on the aggregate spread level: in Japan, it is

kept at a reasonably low level throughout the sample period, even if the observed and modeled

total yield spreads spike during the Asian financial crisis; in Australia, meanwhile, the temporal

variation in modeled yield spreads seems exclusively driven by market liquidity.

Figure 8 also sheds light on the role of liquidity crunch in crisis episodes. For the four European

countries in our sample, the response of their liquidity component to the 2008–2009 global financial

crisis seemed of the same order of magnitude, roughly around 100 basis points. However, U.K.,

Germany, and France witnessed a rather modest increase in their respective liquidity components

during the European debt crisis, suggesting the importance of credit risk and risk premium in the

latter episode. In contrast, the liquidity component in Italy spiked during the 2010–2013 period

and dominated the total reaction of yield spreads to the eurozone crisis. This pattern distinguishes

Italy, the country more directly affected by the eurozone crisis, from the other three.

7 Conclusion

While the widely used structural approach to credit risk modeling has been studied extensively

using the U.S. data, very few studies have examined its performance in credit markets outside

the U.S. In this paper, we empirically examine two well-known structural models, those of Merton

(1974) and Black and Cox (1976), using a sample of individual corporate bonds issued in seven

developed economies: Japan, U.K., Germany, France, Italy, Canada, and Australia. In addition,

we test the Black-Cox model (the benchmark model in this study) using a sample of single-name

CDS spreads from these countries.

We find that both models have substantial credit spread prediction errors, although the average

equivalently, dFS is too high, compared to the empirically measured effective tax rates.
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percentage pricing errors of CDS tend to be lower than those of corporate bonds in magnitude.

Bond spread prediction errors mostly have the same sign for investment-grade (IG) names: the

models underpredict IG spreads except for BBB names in Japan and A and BBB names in France.

While Japan is a unique case worth further inquiry, positive spread prediction errors for those names

in France are mainly driven by a few SOEs with high leverage and volatility yet low (observed)

spreads. For high-yield bonds, the evidence is mixed. The models overpredict spreads for Italy

and France but underpredicts spreads for UK, Canada, and Germany. For the U.S. HY bonds, the

sign of the prediction errors depends on the method used for determining default boundary. CDS

spread prediction errors display similar patterns.

We also document a large heterogeneity in credit spreads across countries given the observed

proxies for default risk, including credit rating, leverage, and volatility. In particular, we observe

that the median firm in each country has very different credit spreads yet has similar leverage

and volatility. As a result, the models have difficulty explaining the cross-section of credit spreads

across countries.

We further document that correlations between the Black-Cox model-implied credit spreads

and the observed bond spreads vary substantially across countries. The correlations for median

firms range from around 0.86 in UK and the U.S. to 0.06 in Canada. This finding is striking, as we

use the same bond data base for the international corporate bonds as we do for the U.S. bonds.

In other words, we find that the standard benchmark model clearly has difficulty in accurately

predicting credit spreads, that it tends to underpredict spreads on IG names, and that the model

has difficulty capturing the dynamic behavior of spreads.

Our analysis of pricing errors indicates that in order to better explain the cross-country dif-

ference in credit spreads, we need to incorporate illiquidity in the corporate bond market into

the model. We consider and implement an extended Black-Cox model that incorporates search

frictions, and find that the new model significantly improves the model performance in predicting

credit spreads.

To summarize, this paper contributes to the literature in at least three aspects. First, we

conduct an empirical analysis of structural credit risk models using data on both corporate bond

and CDS spreads from eight developed countries. Second, we provide evidence that credit risk

alone unlikely can explain credit spreads. Third, we incorporate search into the standard Black-

Cox model within the framework of He and Milbradt (2014) and find that doing so improves the

model performance significantly and helps resolve the global credit spread puzzle.
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Table 1: Summary Statistics for Corporate Bond Data

Bond characteristics by credit ratings

AA+ A BBB HY AA+ A BBB HY

Japan Italy
Credit Spreads (bps) 17 27 41 - 86 114 161 246
Years to Maurity 6.5 5.1 4.2 - 10 7.7 6.9 6.4
Issue Size (USDmil) 344 311 278 - 1340 1216 1075 751
Average NObs 94.6 56.8 61.8 - 2.0 11.4 24.2 4.4
NBonds/Issuer 13.5 7.6 5.4 - 3.6 5.3 5.6 5.9

U.K. Canada
Credit Spreads (bps) 77 129 176 418 82 99 160 344
Years to Maurity 10.6 12.1 9.3 8.3 16.4 16.6 8.9 4.7
Issue Size (USDmil) 609 439 408 401 100 153 220 181
Average NObs 4.0 28.7 20.8 4.2 1.5 26.0 47.9 1.6
NBonds/Issuer 2.5 5.3 2.7 2.3 5.7 12.6 4.6 1.5

Germany Australia
Credit Spreads (bps) 52 89 121 278 146 185 231 -
Years to Maurity 3.8 5.6 6.2 4.3 6.3 4.3 3.8 -
Issue Size (USDmil) 726 1077 870 745 222 250 176 -
Average NObs 2.1 17.6 24.0 6.8 0.7 16.0 9.2 -
NBonds/Issuer 1.8 4.5 4.7 3.7 1.0 3.2 2.2 -

France U.S.
Credit Spreads (bps) 59 87 136 295 71 99 166 415
Years to Maurity 5.1 6 5.6 4 6.6 6.9 6.9 6.8
Issue Size (USDmil) 896 853 715 689 565 409 358 300
Average NObs 7.8 35.9 39.6 10.5 56.5 212.2 276.0 200.3
NBonds/Issuer 4.0 5.5 3.8 3.8 4.6 4.8 4.1 2.9

Note: We sort bonds into portfolios based on credit rating and time to maturity every month, and compute

simple averages of characteristics across bonds every month. We then take averages over time for each

portfolio and report the results in this table. Average N refers to how many bonds (per month) we have

in each portfolio. The sample is monthly from 1997 to 2017 for the non-U.S. sample except for Australia

(starting in 2007) and Italy (starting in 2003), and from 1987 to 2015 for the U.S. bonds.
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Table 2: Firm-Level Inputs to the Black-Cox Model

Rating NObs Mean 10% 50% 90% NObs Mean 10% 50% 90%

Japan Germany
K/A AA+ 31 0.44 0.21 0.42 0.73 9 0.35 0.11 0.21 0.75

A 64 0.46 0.22 0.46 0.72 28 0.41 0.16 0.43 0.64
BBB 63 0.52 0.33 0.52 0.71 39 0.37 0.12 0.36 0.60
HY 0 - - - - 12 0.38 0.23 0.36 0.57

σE AA+ 31 0.26 0.16 0.24 0.38 9 0.27 0.17 0.24 0.42
A 64 0.31 0.19 0.29 0.46 28 0.31 0.18 0.28 0.48
BBB 63 0.37 0.23 0.36 0.51 39 0.28 0.18 0.26 0.43
HY 0 - - - - 12 0.32 0.20 0.28 0.45

σA AA+ 31 0.15 0.05 0.15 0.22 9 0.19 0.05 0.20 0.29
A 64 0.17 0.08 0.17 0.24 28 0.18 0.11 0.17 0.28
BBB 63 0.18 0.10 0.17 0.23 39 0.18 0.11 0.16 0.25
HY 0 - - - - 12 0.20 0.16 0.20 0.24

δ AA+ 31 0.009 0.004 0.008 0.016 9 0.015 0.000 0.007 0.040
A 64 0.008 0.000 0.007 0.016 28 0.024 0.006 0.018 0.053
BBB 63 0.005 0.000 0.004 0.012 39 0.036 0.011 0.035 0.063
HY 0 - - - - 12 0.030 0.020 0.027 0.045

UK France
K/A AA+ 15 0.19 0.07 0.16 0.34 9 0.24 0.07 0.21 0.48

A 42 0.36 0.15 0.34 0.57 24 0.36 0.08 0.35 0.65
BBB 40 0.33 0.16 0.32 0.57 39 0.39 0.16 0.39 0.59
HY 13 0.39 0.18 0.40 0.61 18 0.54 0.27 0.54 0.78

σE AA+ 15 0.26 0.17 0.26 0.37 9 0.30 0.19 0.27 0.48
A 42 0.24 0.14 0.22 0.40 24 0.27 0.17 0.25 0.43
BBB 40 0.27 0.17 0.24 0.44 39 0.29 0.18 0.26 0.45
HY 13 0.37 0.22 0.33 0.63 18 0.38 0.23 0.36 0.57

σA AA+ 15 0.21 0.16 0.20 0.28 9 0.21 0.15 0.22 0.29
A 42 0.16 0.12 0.15 0.22 24 0.18 0.11 0.16 0.26
BBB 40 0.19 0.14 0.18 0.25 39 0.18 0.11 0.18 0.25
HY 13 0.22 0.17 0.20 0.31 18 0.19 0.11 0.17 0.26

δ AA+ 15 0.011 0.000 0.003 0.037 9 0.024 0.008 0.022 0.045
A 42 0.021 0.000 0.004 0.050 24 0.026 0.000 0.022 0.055
BBB 40 0.025 0.000 0.030 0.051 39 0.025 0.003 0.021 0.049
HY 13 0.034 0.000 0.036 0.060 18 0.020 0.005 0.016 0.044

This table presents summary statistics for firm-level inputs to the Black-Cox model for each country and
for each credit rating. The statistics are computed using the panel data of bond issuers, and NObs is the
number of firms that are in each category. The sample is from 1997 to 2017 ...
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Table 2 – Continued

Rating NObs Mean 10% 50% 90% NObs Mean 10% 50% 90%

Italy Australia
K/A AA+ 3 0.26 0.17 0.27 0.33 1 0.78 0.68 0.78 0.88

A 11 0.40 0.22 0.41 0.58 10 0.26 0.12 0.22 0.55
BBB 18 0.53 0.40 0.53 0.70 17 0.24 0.11 0.24 0.36
HY 6 0.61 0.41 0.66 0.70 0 - - - -

σE AA+ 3 0.24 0.12 0.21 0.48 1 0.25 0.18 0.25 0.34
A 11 0.24 0.16 0.22 0.34 10 0.21 0.14 0.19 0.28
BBB 18 0.26 0.18 0.25 0.33 17 0.27 0.19 0.24 0.37
HY 6 0.34 0.28 0.33 0.44 0 - - - -

σA AA+ 3 0.17 0.11 0.19 0.22 1 0.06 0.06 0.06 0.06
A 11 0.15 0.12 0.14 0.19 10 0.15 0.09 0.15 0.22
BBB 18 0.13 0.11 0.13 0.15 17 0.20 0.15 0.20 0.26
HY 6 0.15 0.12 0.13 0.20 0 - - - -

δ AA+ 3 0.052 0.042 0.054 0.064 1 0.000 0.000 0.000 0.000
A 11 0.045 0.020 0.050 0.060 10 0.033 0.000 0.040 0.071
BBB 18 0.048 0.024 0.046 0.073 17 0.034 0.000 0.037 0.057
HY 6 0.065 0.016 0.089 0.101 0 - - - -

Canada U.S.
K/A AA+ 3 0.37 0.19 0.41 0.48 79 0.16 0.06 0.15 0.25

A 18 0.36 0.19 0.36 0.46 312 0.23 0.09 0.19 0.42
BBB 51 0.33 0.14 0.32 0.50 544 0.31 0.13 0.29 0.50
HY 5 0.39 0.22 0.36 0.60 661 0.48 0.22 0.46 0.77

σE AA+ 3 0.24 0.11 0.27 0.34 79 0.24 0.15 0.23 0.34
A 18 0.19 0.13 0.17 0.29 312 0.29 0.18 0.27 0.41
BBB 51 0.22 0.13 0.19 0.33 544 0.33 0.21 0.31 0.49
HY 5 0.33 0.19 0.30 0.49 661 0.49 0.28 0.44 0.78

σA AA+ 3 0.14 0.12 0.13 0.18 79 0.23 0.19 0.22 0.26
A 18 0.13 0.10 0.12 0.15 312 0.25 0.19 0.23 0.35
BBB 51 0.15 0.08 0.14 0.23 544 0.26 0.19 0.25 0.35
HY 5 0.20 0.15 0.20 0.25 661 0.30 0.21 0.28 0.41

δ AA+ 3 0.048 0.025 0.046 0.079 79 0.040 0.010 0.041 0.074
A 18 0.038 0.017 0.039 0.055 312 0.046 0.015 0.041 0.082
BBB 51 0.034 0.000 0.035 0.061 544 0.047 0.014 0.041 0.091
HY 5 0.045 0.022 0.044 0.066 661 0.043 0.012 0.037 0.079

for non-U.S. firms, and from 1987 to 2015 for the U.S. firms. K/A is leverage defined by the ratio of the
book value of debt to the sum of the book value of debt and the market value of equity. σE is annualized
equity volatility, σA is annualized asset volatility, and δ is the payout ratio.
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Table 3: Estimates for the Sharpe Ratio and Default Boundary

Country

Japan UK Germany France Italy Canada Australia

Panel A: Sharpe Ratios

A1. Security Level Averages: All firms
Number of Firms 4829 3037 1108 1077 565 3664 1388
Mean 0.24 0.36 0.28 0.29 0.20 0.28 0.30
Median 0.20 0.29 0.23 0.29 0.18 0.23 0.23
Sample begins 1987 1987 1987 1987 1987 1984 1987

A2. Security Level Averages: Bond Issuers Only
Number of Firms 174 240 130 150 69 417 64
Mean 0.22 0.59 0.35 0.32 0.22 0.34 0.37
Median 0.22 0.34 0.31 0.29 0.20 0.32 0.34
Sample begins 1987 1987 1987 1987 1987 1984 1987

Panel B: Default Boundary Estimates
dFS 0.82 1.05 0.99 1.10 0.85 1.07 0.99
dBGY 0.81 0.98 0.95 1.10 0.63 1.03 0.99
dHNS 0.80 0.98 0.92 1.03 0.78 0.90 0.92
dfirm Mean 1.14 1.81 1.57 1.78 1.06 1.68 2.34

Median 1.02 1.55 1.24 1.28 0.96 1.49 2.01

Panel A presents the estimate for the Sharpe ratio on individual stocks in each country. We compute average
annual returns and average volatility for each stock using the full sample of stock returns until 2017. We then
compute the Sharpe ratio for each stock and compute the mean and median across firms for each country.
Panel A1 shows the results using all Compustat firms. Panel A2 shows the results using a subset of firms
that are matched to our corporate bond sample.

Panel B reports the estimated default boundaries based on four different methods for each country, using
the sample of firms that have at least one bond in the Merrill Lynch data (including callable bonds). The
four boundaries include dFS (the Feldhütter and Schaefer 2018 approach), dBGY (the Bai, Goldstein, and
Yang 2019 approach), dHNS (the JMR approach), and dfirm (the individual firm-level default boundary by
matching P-measure default probability exactly every month to the historical default frequency). The table
reports the mean and median using the panel data of dfirm.
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Table 5: Performance of the Black-Cox Model, AA+ Rating

Mean 10% 25% 50% 75% 90%

Japan Credit Spreads (bps) 15 4 8 13 20 26
dFS 10 0 0 1 11 38
dBGY 9 0 0 1 9 34
dHNS 17 0 0 1 6 48

UK Credit Spreads (bps) 74 36 49 72 92 113
dFS 6 0 0 0 2 9
dBGY 4 0 0 0 1 6
dHNS 18 12 14 17 23 30

Germany Credit Spreads (bps) 57 28 41 53 68 79
dFS 5 0 0 0 3 10
dBGY 3 0 0 0 2 8
dHNS 15 6 8 11 14 17

France Credit Spreads (bps) 81 34 48 73 100 137
dFS 24 0 0 1 20 72
dBGY 19 0 0 2 19 55
dHNS 33 1 3 10 26 102

Italy Credit Spreads (bps) 98 53 72 95 120 141
dFS 6 0 0 3 8 16
dBGY 1 0 0 0 1 3
dHNS 30 3 6 10 13 120

Canada Credit Spreads (bps) 78 39 44 61 79 133
dFS 52 3 6 19 97 137
dBGY 24 1 3 5 39 69
dHNS 31 8 10 18 38 87

Australia Credit Spreads (bps) 146 74 85 123 220 241
dFS 19 0 2 6 24 63
dBGY 16 0 1 4 30 54
dHNS 5 2 2 4 7 9

US Credit Spreads (bps) 65 24 37 54 78 117
dFS 12 0 0 1 5 24
dBGY 4 0 0 0 1 7
dHNS 14 0 3 8 13 23
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Table 5 – Continued, A Rating

Mean 10% 25% 50% 75% 90%

Japan Credit Spreads (bps) 22 8 12 18 27 40
dFS 24 0 0 5 29 72
dBGY 22 0 0 5 27 67
dHNS 42 0 0 1 24 120

UK Credit Spreads (bps) 135 64 84 117 155 225
dFS 51 0 0 9 46 136
dBGY 36 0 0 4 27 83
dHNS 76 3 12 22 65 237

Germany Credit Spreads (bps) 98 45 59 85 114 157
dFS 92 0 1 23 120 264
dBGY 76 0 0 14 82 214
dHNS 59 0 2 8 32 137

France Credit Spreads (bps) 100 49 64 90 119 162
dFS 154 0 0 15 242 508
dBGY 125 0 0 13 186 400
dHNS 122 0 3 34 176 360

Italy Credit Spreads (bps) 155 63 86 131 190 300
dFS 39 0 1 10 54 116
dBGY 10 0 0 1 7 29
dHNS 54 1 3 11 55 183

Canada Credit Spreads (bps) 102 49 65 89 127 165
dFS 25 0 1 9 28 60
dBGY 14 0 0 4 15 33
dHNS 12 1 2 5 11 31

Australia Credit Spreads (bps) 170 89 111 150 209 265
dFS 8 0 0 0 1 19
dBGY 6 0 0 0 1 16
dHNS 13 1 2 3 8 14

US Credit Spreads (bps) 99 39 56 79 116 179
dFS 57 0 1 8 49 169
dBGY 21 0 0 2 15 58
dHNS 39 1 6 12 32 104
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Table 5 – Continued, BBB Rating

Mean 10% 25% 50% 75% 90%

Japan Credit Spreads (bps) 35 14 20 29 42 64
dFS 49 0 1 12 55 129
dBGY 44 0 1 11 49 117
dHNS 38 0 0 4 34 118

UK Credit Spreads (bps) 188 95 121 155 210 295
dFS 57 0 3 20 62 163
dBGY 45 0 1 12 40 113
dHNS 100 3 13 28 124 303

Germany Credit Spreads (bps) 122 57 74 105 145 207
dFS 85 0 0 14 84 244
dBGY 72 0 0 9 57 172
dHNS 92 0 2 9 45 215

France Credit Spreads (bps) 147 61 80 117 178 267
dFS 159 0 2 35 185 457
dBGY 142 0 2 30 156 389
dHNS 163 1 7 56 191 480

Italy Credit Spreads (bps) 152 63 80 112 190 304
dFS 105 0 3 37 137 339
dBGY 26 0 0 1 16 79
dHNS 101 1 6 32 120 309

Canada Credit Spreads (bps) 172 83 111 154 207 269
dFS 43 0 0 3 28 78
dBGY 34 0 0 2 18 59
dHNS 26 0 1 2 6 39

Australia Credit Spreads (bps) 195 103 130 176 233 312
dFS 15 0 0 0 3 19
dBGY 18 0 0 0 3 18
dHNS 86 2 3 11 47 151

US Credit Spreads (bps) 183 66 93 140 221 344
dFS 120 1 8 46 148 335
dBGY 53 0 1 12 57 148
dHNS 113 4 10 32 136 314
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Table 5 – Continued, HY Rating

Mean 10% 25% 50% 75% 90%

UK Credit Spreads (bps) 406 225 288 363 468 681
dFS 217 1 37 128 283 524
dBGY 225 1 21 92 245 557
dHNS 273 5 25 124 287 789

Germany Credit Spreads (bps) 244 120 151 205 298 449
dFS 110 0 2 40 149 288
dBGY 109 0 1 24 104 234
dHNS 142 0 1 10 102 311

France Credit Spreads (bps) 287 114 167 257 375 519
dFS 642 5 84 369 787 1425
dBGY 668 3 61 314 809 1555
dHNS 759 34 151 488 874 1545

Italy Credit Spreads (bps) 217 100 139 205 273 361
dFS 251 3 23 181 424 659
dBGY 60 0 1 9 83 219
dHNS 289 3 22 115 470 834

Canada Credit Spreads (bps) 315 174 221 287 405 491
dFS 214 0 2 38 314 766
dBGY 173 0 1 24 228 631
dHNS 68 2 4 13 46 186

US Credit Spreads (bps) 480 159 266 424 604 867
dFS 496 33 114 324 707 1231
dBGY 343 7 39 145 382 803
dHNS 457 19 70 266 673 1165

These tables report the summary statistics of the distribution of credit spreads in the data and the Black-Cox

model. The statistics are computed using the panel data from 1997 to 2017 outside of the U.S., while using

the data from 1987 to 2015 for the U.S. dFS refers to the Black-Cox model-based estimates in which the

default boundary is estimated following Feldhütter and Schaefer (2018). dBGY is estimated following Bai,

Goldstein, and Yang (2019). dHNS is based on JMR-type estimates of asset value and volatility.
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Table 7: Panel Regressions of Country-Level Pricing Errors on Aggregate Variables

Rf
t (1) Rf

t (10)−Rf
t (1) Noiset TEDt BidAskt IVt SKEWt LiqCompt R̄2

Panel

Panel A: Fama-MacBeth cross-sectional regressions (univariate)

b 0.25 0.01 3.00 0.50 0.68 2.77 -0.26 0.91
t(b) (7.84) (0.10) (5.36) (1.40) (3.59) (1.58) (-0.09) (8.95)
R2

CX 0.92 0.22 0.16 0.01 0.04 0.19 0.03 0.86

Panel B: Multivariate pooled OLS regressions with country fixed effects

-0.03 0.03 0.47
(-0.96) (0.40)

0.48 0.79 0.49 0.69
(1.21) (10.63) (5.11)

3.14 -1.40 0.67
(4.51) (-2.59)

0.02 0.10 1.05 0.56 0.42 1.48 -1.97 0.79
(0.65) (3.92) (2.77) (6.69) (4.30) (3.08) (-2.57)

1.11 0.84
(13.49)

0.01 0.06 1.23 0.33 0.17 0.40 -0.45 0.89 0.92
(1.02) (3.04) (1.24) (5.45) (4.00) (2.46) (-1.32) 23.22

The table reports the regression of country-level (median) pricing errors on explanatory variables. The first
line in Panel A shows the average slope coefficients (b) from univariate monthly cross-sectional regressions
of pricing errors on an explanatory variable. The second line shows t-statistics adjusted for serial correlation
up to Newey-West 12 lags, and the third line shows the R-squared (R2

CX) of the cross-sectional regression

of (time-series) average pricing errors on average explanatory variables. Rf
t (1) is the one-year yield on

government bonds, Rf
t (10)−Rf

t (1) is the difference in yields between ten- and one-year government bonds,
Noiset is the average fitting errors of corporate bond yields, TEDt is the TED spreads in each country,
BidAskt is the average bid-ask spreads, IVt is the option-implied volatility, SKEWt is the difference in option
implied volatility between out-of-the-money put options and at-the-money put options on the country’s stock
index, and LiqCompt is the model-based estimates for the liquidity premium described in Section 6.5.
Panel B shows the slope coefficients b1 in the multivariate panel regressions with country fixed effects:

sc,t − sBC
c,t = b0 + b1Xc,t +Dc + ηc,t

and R̄2
Panel is the adjusted R-squared for this panel regression. t-statistics in parentheses are adjusted for

cross-sectional correlation and serial correlation up to Newey-West 12 lags.
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Table 8: Panel Regressions of Security-Level Pricing Errors

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12

rft 0.02 0.15 0.12 0.17
(0.47) (4.43) (3.69) (6.59)

levi,t −4.88 −5.83 −5.97 −5.44
(−10.30) (−12.97) (−12.44) (−10.18)

σEi,t −0.66 −1.15 −1.21 −2.07
(−1.17) (−2.92) (−3.18) (−5.72)

logMati,t 0.03 −0.03 −0.07 0.22
(0.96) (−0.97) (−2.56) (5.72)

log sizei −0.03 −0.13 −0.41 −0.12
(−2.33) (−13.11) (−6.27) (−2.59)

GDPt −0.20 −0.06 −0.05 0.02
(−2.44) (−1.19) (−1.12) (0.91)

slopet 0.03 0.29 0.31 0.27
(0.54) (8.11) (4.79) (4.91)

V RPt −0.52 0.26 0.20 0.17
(−2.81) (3.19) (2.31) (2.91)

skewt −0.04 −0.00 −0.00 −0.02
(−1.90) (−0.07) (−0.05) (−1.11)

IVt 3.91 4.98 3.88 2.63
(4.39) (8.14) (7.97) (5.16)

BidAski,t 0.21 0.30 0.35 −0.13
(1.91) (2.43) (3.16) (−2.36)

Noiset 1.18 0.15 0.93 −0.14
(1.88) (0.21) (1.24) (−0.21)

TEDt 0.78 0.62 0.82 0.13
(4.69) (3.44) (4.56) (1.36)

MKTt −2.44 0.83 0.82 0.67
(−1.55) (1.55) (1.58) (3.97)

SMBt 0.04 0.74 0.90 0.76
(0.05) (1.10) (1.71) (2.05)

HMLt −1.03 0.57 −0.05 0.39
(−0.75) (0.67) (−0.05) (0.56)

UMDt −1.77 −0.79 −1.01 −0.33
(−1.19) (−1.33) (−1.94) (−1.10)

LiquidCompi,t 1.42 1.67
(13.23) (37.66)

FEs X X

R̄2 0.17 0.00 0.00 0.00 0.00 0.02 0.03 0.00 0.27 0.29 0.14 0.44

Obs 336926 340156 340156 303456 280619 275007 300013 340156 257516 257516 302055 257516

The table presents the estimated panel regression of pricing errors on explanatory variables and (potentially) country-
fixed effects:

si,t − sBCi,t = b0 + b1Xi,t +Dc + ξi,t.

rft is the risk-free rate used in model estimation; lev and σE denote the issuers’ leverage and equity volatility; logMat
the log of years to maturity; log size the log face value of the bond; GDP real GDP growth rate in local currency;
slope is the difference between 10-year and 1-year risk-free rate; skew is the difference in option-implied volatility
between out-of-the-money put options and at-the-money put options on the country’s stock index; V RP is measured
by the spread between implied and realized volatility for index options; IV is the volatility index constructed from
index options; BidAsk is the percentage bid-ask spread; Noise is country-level noise measure based on individual
issuers’ yield curve fitting errors; TEDt is the TED spread; MKT , SMB, HML and UMD are equity market risk
factors; L̂iqk,t is the liquidity component in the yield spread as implied by the search model. Standard errors in
parentheses are adjusted for cross-sectional correlation and serial correlation up to Newey-West 12 lags.
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Figure 1: Outstanding Debt Securities Issued by Non-Financial Corporations as a
Fraction of GDP

This figure shows outstanding debt securities issued by non-financial corporations as a fraction of GDP

in 1997 (in black) and 2017 (in purple) for eight countries. The data is from the Bank of International

Settlements. The debt securities are debt instruments designed to be traded in financial markets, including

commercial paper, bonds, debentures, and asset-backed securities.
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Figure 2: 5-Year Moving Average Recovery Rates

This figure plots the 5-year moving average (solid line) and one-year recovery rate (dotted line) of Moody’s

recovery rate for senior unsecured bonds at the global level.
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Figure 3: Black-Cox Model and Corporate Credit Spreads (bps)

The figures on the left column show the mean (dot) and median (star) credit spreads in the data and in the

Black-Cox model, in which default boundary is estimated using the Feldhütter and Schaefer (2018) approach.

The figures on the right compare the median credit spreads using two approaches to estimate d: i) Bai, Gold-

stein, and Yang (2019) (diamond) and ii) using JMR-type estimates of asset value and asset volatility (circle).
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Figure 4: Black-Cox Model and CDS Spreads (bps)

The figures compare the median CDS spreads using three approaches to estimate d: i)

Feldhütter and Schaefer (2018)’s approach (star), ii) Bai et al. (2019)’s approach (circle), and

iii) an approach based on JMR-type estimates of asset value and asset volatility (diamond).
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Figure 5: Loss Given Default and Pricing Errors

The figure on the left column plots the median pricing errors (the difference in credit spreads between the

data and the Black-Cox model with the FS-method of d) against the average loss given default implied

from the HY CDS contracts in each country. The figure on the right plots the pricing errors against the

survey-based measure of loss given default in Djankov et al. (2008).
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Figure 6: Time Series of Observed and Black-Cox Yield Spreads

These figures plot the monthly observed (blue solid line) and Black-Cox model-implied (orange line with

crosses, with the FS-method of d) median credit spreads. Corr(FS) shows the correlation between the two

series, while Corr(Indiv.) shows the correlation between the observed credit spreads and the Black-Cox

model with individual d.
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Figure 7: Median Credit Spreads from the Search Friction Model

This figure plots the median credit spreads (1) in the data, (2) produced by the Black-Cox model, and (3) produced
by a search friction model with firm fundamental parameters identical to the benchmark Black-Cox model. The
medians are computed using the panel data from 1997 to 2017 outside of the U.S., while using the data from 1987 to
2015 for the U.S. The default boundary in structural models is estimated following Feldhütter and Schaefer (2018).
In each panel, countries are displayed in order of the median of observed credit spreads.
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Figure 8: Time Series of Observed and Search Model Yield Spreads

This figure plots the monthly observed and search-model-implied median credit spreads over time. The blue line shows

the median corporate yield spreads of senior unsecured bonds in each country, the red line shows the prediction of

the model incorporating search frictions, and the yellow line shows the model-implied liquidity component in yield

spreads.
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Appendix A The Black-Cox Model with Liquidity Frictions

A.1 Bond Valuation and Endogenous Default Boundary

In Section 6.5, we introduce secondary market search costs into the Black-Cox model, and the

resultant liquidity discount in bond prices is reflected in Eq. (1).

The bond valuation formula as presented by Eq. (1) is for a given default boundary d. He and

Milbradt (2014) derive the endogenous default boundary d∗ that maximizes the equity value:

d∗ =
−ηvE0 + ι′1

(
exp(−Z(T − t))vD1 hF − UhGU−1 · vD2

)
/(T − t)

K(η − 1)
(14)

where

ι1 =[1, 0]′,

η =− ν +
√
ν2 + 2r(σA)2

(σA)2
,

vD1 =

[
K

K

]
− Z−1

[
cT

(c− χ)T

]
,

vD2 =

[
RHK

RDK

]
− Z−1

[
cT

(c− χ)T

]
,

vE0 =
1

r

[
ι′1

(
Z−1

[
c

c− χ

]
+

1

T
exp(−Z(T − t))vD1

)
−K/T − (1− τ)cT

]
.

Similar to Leland and Toft (1996), the tax benefit of debt, as represented by parameter τ , is

an important determinant of optimal default boundary. To examine how the Feldhütter-Schaefer

boundary estimation is aligned with the endogenous default model, we take into Eq. (14) the

boundary values estimated from Eq. (15) to back out the marginal tax rate. As we show in

Table A3, the model-implied tax rate is substantially lower than the empirical measure for all

countries. For issuers in the U.K., their median of model-implied τ is even negative, which is not

surprising given that the estimate of the U.K. default boundary is above one. When we replace the

FS boundary estimates with the ones obtained when we use the BGY approach, the model-implied

tax rates move closer to their empirical counterparts for all but two countries, but the overall gap

is still large. On the positive side, the cross-country variation in both FS and BGY boundary

estimates is generally in line with empirical effective tax rates, with correlations of 46% and 42%,

respectively.

Why does the calibration methodology to minimize the P-measure fitting errors lead to boundary

values that are much higher than, but reasonably correlated with, what is implied by the endogenous

default assumption? One reason to explain this observation is suggested by Bai et al. (2019), who
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find that a homogenous location of the default boundary does not fit the data well if the asset

value is assumed to follow geometric Brownian motion. Another possibility is that the search

model examined in this paper does not consider macroeconomic dynamics: as illustrated by Chen

(2010) and Chen et al. (2018), firms tend to increase their optimal default boundary in response

to regressions. Overall, both interpretations suggest that once we allow for heterogenous and

time-varying default boundaries, the model implications might become more consistent with the

endogenous default assumption.

A.2 Inference of Search-Based Liquidity

To ensure the search model is qualitatively in line with the notion of the credit spread puzzle,

we adopt the same firm-level inputs and specific-level parameters (default boundary and Sharpe

ratio) as presented in Section 5. It follows that the model-implied default intensity is identical to

the baseline Black-Cox case, regardless of the search parameter values that we use. On the other

hand, search parameters θ are identified by minimizing the fitting errors with respect to percentage

bid-ask spreads, such that no bond pricing information is involved in the model estimation.

Schestag et al. (2016) empirically compare various approaches to measuring bond liquidity and

find that BGN quoted bid-ask spreads are downward biased and relatively inaccurate in the U,S.

Since our measure of bid-ask spreads is based on the same data source, we examine this measure’s

performance in a global setting in the Internet Appendix, Section ??.

We find that overall individual bonds enjoy better liquidity and that the performance of

Spread BGN is significantly improved. Given that the BGN database offers much wider coverage

for international bonds than Markit, we stick to Spread BGN in our estimation of liquidity-related

parameters. Meanwhile, we keep in mind the directions and magnitude of its potential bias when

discussing the model’s pricing performance.

The estimation results are summarized in Table A4. Among countries with large overall pricing

errors and bid-ask spreads, Italy has a fairly low estimate of meeting intensity, with λ̂ = 0.1.76, and

Australia has an extremely high estimate of holding cost parameters. In contrast, the corresponding

estimates for Japan are all on the “high liquidity” side, which is consistent with its relatively small

pricing errors. In summary, estimates of search parameters suggest that liquidity frictions in the

secondary markets have great promise in explaining the cross-country variation in credit spreads

above and beyond conventional structural models.

Appendix B Default Boundaries

We determine the default boundary using four different methods in this study. We describe these

methods in detail in this appendix.
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B.1 Feldhütter and Schaefer (2018)’s Approach

Following Feldhütter and Schaefer (2018), we back out the values for default boundary by mini-

mizing the distance between Moody’s default probability and the Black-Cox model prediction at

the rating and maturity bin level:

dFS = argmin
20∑

T=1

HY∑
R=AA+

1

T

∣∣∣πModel
T,R (d|σAi , Ai,t)− πMoody′s

T,R

∣∣∣ (15)

where πT,R(d) is the probability of default for T -year bonds with rating R under the P-measure,

R ={AA+,A,BBB,HY} for countries other than the U.S., and R ={AAA,AA,A, BBB,BB,B,C} for

the U.S. We estimate Eq.(15) separately for each country, allowing d to vary across countries, but

holding it constant within a country.

To maximize the sample size, we use all nonfinancial bond issuers, regardless of whether these

bonds are senior, unsecured non-callable bonds or not. We also assume that all firms have debt

maturing from 1 to 20 years, regardless of actual maturity of the bond issued by these firms.25

In order to quantify the magnitude of estimation errors in historical default boundaries, we

would need, in principle, micro-level data of default dating back to 1920. Since Moody’s Default

and Recovery Database covers the default since 1970, the micro-level data is not available to us.

Thus, we follow Feldhütter and Schaefer (2018) and use simulation-based methods to compute

confidence intervals for historical default frequency (see Internet Appendix IV..1 for details).

In Panel B of Table 3, we present the estimated default boundary for each country. The

boundary ranges from 0.85 (Italy) to 1.10 (France). The fact that some countries have the optimal

boundary above 1 implies that our measure of market leverage is only a proxy for true leverage. If

a true measure of leverage is available in the data, d should not be greater than 1 since there is no

reason for a firm to default when firms’ equity value is positive. However, there may be debt-like

obligations to firms that are missed in the book value of debt in balance sheets. For example, firms

with higher operating leverage are more likely to default than firms with low operating leverage,

even if the financial leverage is the same.26 Thus, we use the estimated optimal value of d even

when they are above 1.

By letting d vary across countries, we account for the heterogeneity in accounting, legal, and

business environments for firms in different countries. Ultimately, what matters for our test of

structural models is that we match the model-implied P-measure default probability to the historical

data.

In the top panel of Figure A1, we compare the Moody’s historical default frequency with the

25In Table IA4 in Appendix IV, we present the summary statistics of inputs of all nonfinancial firms in the bond
data that we use to evaluate the P-measure default probability. The tables show that firms’ characteristics are similar
to the smaller sample of noncallable bond issuers in Table 2.

26We thank Bob Goldstein for pointing it out.
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Black-Cox implied default probability under the P-measure with the optimal default boundary. To

construct these figures, we average all international firms in the seven countries to compute the

average probability of default. We observe that the confidence band at the long horizon is wide even

with 98 years of data, especially for IG bonds. As a result, the model-implied P-measure default

probability lies within the confidence band. However, we observe that AA+ rated firms have a

lower model-based default probability than the data. Thus, we must be cautious in interpreting

the model-based credit spreads for these bonds: rather than argue that these estimates of d are the

best estimates for matching historical default frequency, our aim instead is to follow the literature

to test a variety of d and look for a robust pattern in the data.

B.2 Bai, Goldstein, and Yang (2019)’s Approach

Bai, Goldstein, and Yang (2019) show that Feldhütter and Schaefer (2018)’s estimates for the

default boundary in the U.S. change dramatically if one uses an alternative measure of the market

value of firm assets. Instead of adding book value of debt to the market value of equity, Bai,

Goldstein, and Yang (2019) propose to add an estimated market value of debt to the market value

of equity to obtain the asset value. Since the market value of debt for HY firms is typically lower

than the book value, HY firms demonstrate higher leverage with this alternative measure than

they do with the standard measure, which uses the book value of debt in the denominator. Since

observations of HY firms influence the optimization problem in Eq.(15), Bai, Goldstein, and Yang

(2019) report that the alternative measure for market value of assets leads to significantly lower

estimates of default boundary than that of Feldhütter and Schaefer (2018).

Following the spirit of Bai, Goldstein, and Yang (2019), we multiply the book value of debt with

the average bond price of the firm to obtain the estimate for the market value of debt. By doing so,

we implicitly assume that all debts of the firm, including bank loans, have the same market price

as average corporate bonds issued by the firm. Using the alternative asset value, we reestimate

Eq.(15) and find the optimal value for d in each country.

In Panel B of Table 3, we report the estimates for d for the seven countries. When compared

with Feldhütter and Schaefer (2018)’s approach (FS-method), Bai, Goldstein, and Yang (2019)’s

approach (BGY-method) yields somewhat lower estimates of default boundaries. In the U.S., we

find that default boundary d goes down sharply to 0.67 from 0.89 in Feldhütter and Schaefer

(2018)’s estimates (not reported in the table). In contrast, the difference between the FS- and

BGY-methods is not as dramatic in international bond markets because we use only four rating

categories (AA+, A, BBB, and HY) for international bonds due to the limited sample size, while

we have seven categories (AAA, AA, A, BBB, BB, B and CCC) in the U.S. Therefore, the weight

of HY bonds is smaller for non-U.S. countries than for the U.S., which explains why both methods

yield similar estimates in non-U.S. countries.

In the bottom panel of Figure A1, we compare the model-based P-measure default probability
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with historical default frequency for the seven countries. Since default boundaries do not change

much from the FS-method, the resulting P-measure default probability is also similar to the FS-

method.

B.3 A Model-Based Approach

In response to the critics of Bai et al. (2019), Feldhütter and Schaefer (2019) point out that the

BGY adjustment for the market-to-book ratio could create bias in the opposite direction, as bank

loans tend to have higher seniority and tighter covenants compared to corporate bonds. We consider

an alternative approach that is based on the model under consideration and that, as a result, need

not approximate the unobservable asset value with some measurable proxies.

Specifically, following Jones, Mason, and Rosenfeld (1984) we note that the market value of asset

At and asset volatility σA in Eq. (3) can be expressed as implicit functions of two variables that

can be directly measured in the data—the (quasi-market) leverage ratio Lq
t and equity volatility

σE ,

Lq
t =

K

E(At, σA) +K
, (16)

σE =
At

Et
EA(At, σA)σA. (17)

With functional form of E() and EA() as directly derived from the Black-Cox model, we can ensure

that parameter estimates are internally consistent with the model and no additional assumptions

is imposed. We empirically implement Eqs. (16) and (17) and then insert the estimator of At and

σA into the Black-Cox default probability function πP ().27 Finally, the optimization in Eq. (15) is

re-performed with the new model-implied default rates to solve for the default boundary.

dJMR = argmin

20∑
T=1

HY∑
R=AA+

1

T

∣∣∣πModel
T,R

(
d|σAi (d), Ai,t(d)

)
− πMoody′s

T,R

∣∣∣ (18)

Details of this alternative approach to boundary identification are described in Internet Appendix III.

B.4 Firm-Level Heterogeneous Default Boundary

Thus far, we have been studying the case of constant default boundary, which is assumed to be

the same for all firms over time in each country. These estimates imply that at the firm level,

the probability of default deviates from the target historical default frequency. Furthermore, as we

minimize the average difference between the model and historical data, researchers have considerable

27The original Jones-Mason-Rosenfeld estimator applies to the Merton model (Also see Campbell, Hilscher, and
Szilagyi (2008), Hillegeist, Keating, Cram, and Lundstedt (2004), and Bai and Wu (2016)). Bao (2009) firstly extends
this estimation method the Black-Cox model to identify the values of At and σA for a given default boundary.
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discretion in estimating d: paying more attention to IG bonds versus HY bonds in the optimization

problem in Eq.(15) would yield rather different estimates for default boundary (and thus credit

spreads).

To address such problems, we test another estimate of heterogeneous default boundary, in which

we vary d such that each firm exactly matches the historical default frequency every month. In

addition, we allow the firm-specific d to vary over the maturity of the debt such that the model-

implied P-measure default probability for each bond matches Moody’s historical data. This way,

we obtain d such that the process involves no optimization; we can simply replace rt with µt in

Eq.(3), equate the probability to the corresponding value in Moody’s data, and then numerically

back out d. On the other hand, we are making an extreme assumption that all firms with the same

credit rating have the same probability of default; nonetheless, we use this approach to give the

model the best chance to explain the heterogeneity across countries.

Indeed, if we let d vary across firms and maturity, then the mean and median are close to each

other. In such cases, evaluating the model based on the mean or median does not matter.

In an untabulated analysis, we find that model-based credit spreads increase dramatically for

all countries, and now the model overpredicts credit spreads for Japan. However, even with the

extreme flexibility in default boundary, the model fails to generate large enough variations across

countries. When we change specification for d, the model generates large (or small) credit spreads

for all countries, but changing d does not help explain why credit spreads in Australia, Italy, and

Canada are higher than those in Germany and Japan. We also find that although using a firm-level

d does not help match HY credit spreads in the data and the model, the model at least generates

substantial cross-sectional variation in credit spreads.
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Table A3: Estimates of the Tax Benefits of Debt

Japan UK Germany France Italy Canada US Australia

π̂FS 6.15 -5.97 3.08 0.03 1.49 1.74 6.82 3.73
π̂BGY 5.97 -0.48 2.20 0.28 1.85 2.16 9.89 3.73
πeff 16.80 10.02 21.02 17.39 22.23 11.34 23.45 8.60

This table reports the marginal tax benefit of corporate debt as implied by the He-Milbradt model. The rows
labeled π̂FS and π̂BGY show the model-implied median tax rate for each country when the endogenous default
boundary is set identical to the default boundary estimated with Feldhütter and Schaefer (2018)’s and Bai
et al. (2019)’s approaches. πeff denotes the effective tax rate calculated as πeff = 1−(1−πc)(1−πd)/(1−πi),
where πc is the tax rate for corporate earnings, πd is the tax rate for dividend income, and πi is the tax
rate for personal interest income. The underlying annual tax rates are retrieved from KPMG Tax Rates
Online (https://home.kpmg/xx/en/home/services/tax/tax-tools-and-resources/tax-rates-online.html). For
each country, the reported effective tax rate is the median over its bond sample period.

Table A4: Estimates of Bond Illiquidity in Secondary Markets

χp × 102 χc ξ λ β

Japan 0.09 0.05 0.11 5.32 0.02
[0.03] [0.02] [0.01] [0.09] [0.00]

UK 0.09 0.04 0.27 4.09 0.07
[0.04] [0.03] [0.04] [0.40] [0.02]

Germany 0.61 0.11 0.14 5.94 0.02
[0.07] [0.05] [0.02] [0.13] [0.01]

France 0.26 0.08 0.25 6.09 0.05
[0.46] [0.15] [0.03] [0.11] [0.03]

Italy 0.19 0.01 0.21 1.76 0.12
[0.03] [0.03] [0.01] [0.12] [0.00]

Canada 0.23 0.13 0.11 4.44 0.02
[0.11] [0.09] [0.01] [0.48] [0.01]

US 0.03 0.03 0.18 5.03 0.03
[0.03] [0.14] [0.03] [1.40] [0.02]

Australia 1.06 0.40 0.18 4.74 0.02
[0.24] [0.09] [0.04] [0.23] [0.00]

The table presents the estimated parameters on secondary market search frictions as modeled by He and
Milbradt (2014). They include holding cost per unit of principal χp, holding cost per unit of coupon χc,
liquidity shock intensity ξ, the intensity to meet dealers λ, and the bargaining power of investors β. These
search model parameters are estimated by minimizing the mean squared fitting errors to the observed bid-ask
spreads. Standard errors are reported in parentheses.
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Figure A1: P-Measure Default Probabilities for Different Default Boundaries

These figures show the Black-Cox model-implied P-measure probability of default (star), which is computed

by taking the average across firms and time for each rating and maturity bin. The lines show the Moody’s

historical default frequency from 1920 to 2017. The 95% confidence interval (dotted line) is computed based

on the simulation method described in Section 5.3. Panel A is based on the default boundary estimate

following Feldhütter and Schaefer (2018), while Panel B corresponds to the Bai, Goldstein, and Yang (2019)

method of boundary estimation. Panel C presents the performance of an alternative estimator of default

boundary in which the asset value and volatility are literally derived from the Black-Cox model.
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Figure A1 – Continued

Panel C: HNS-Estimates of d
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I Explaining Changes in Credit Spreads

Collin-Dufresne, Goldstein and Martin (2001) attempt to explain changes in credit spreads using

the inputs to the Merton (1974) model. Rather than estimating the Merton model, they run

regressions of monthly changes in credit spreads, effectively freeing the parameters of the model

to increase the chance to fit the data. Using the sample of U.S. bonds, Collin-Dufresne, Goldstein

and Martin (2001) find that the regression R-squared is quite low, suggesting that there may be a

bond-market specific factor driving credit spreads.

Now we turn to the international evidence using the bond-level regressions of monthly credit

spread changes in the spirit of Collin-Dufresne, Goldstein and Martin (2001),

∆CSk,t = bk,0 + bk,1Rk,t + bk,2∆r
10
t + bk,3(∆r

10
t )2 + bk,4∆slopet

+ bk,5∆volk,t + bk,6RINDEX,t + bk,7∆skewk,t + νk,t (19)

where Rk is a stock return on the bond issuer, r10 is 10-year risk-free yields in each currency, slope

is the difference between 10 and 2 year yields, vol is the issuer’s stock volatility, RINDEX is the

return on the country’s major stock index, and skew is the skewness of issuer’s stock return.28 and

examine whether the regression R-squared is sufficiently large.

Table IA1 reports the estimates for Eq.(19) averaged across bonds together with t-statistics.

Following Strebulaev and Schaefer (2007), we account for cross-sectional correlation in credit spread

changes in computing standard errors for slope estimates. For each country, we reports the coef-

ficients averaged across all bonds. In addition, we report the results for bonds with below-median

leverage and above-median leverage separately.

We find that the loading on each factor is generally sensible: higher stock returns on issuer’s

stock are negatively correlated with credit spread changes as they reflect improving firm value.

Except for Japan and Canada, a rise in 10-year risk-free rate is negatively related with credit

spread changes, while a rise in yield curve slope is positively associated. Rising volatility leads

to an increase in credit spreads as they reflect increasing risk of firm values. A positive overall

stock market returns are negatively correlated with credit spread changes even after controlling for

individual stock returns.

For non-Japanese bonds, the adjusted R-squared averaged across bonds are comparable to the

levels in the U.S., ranging from 0.22 to 0.33. If the Merton model holds, these R-squared must be

close to one, and they are clearly below one. The average R-squared for bonds in Japan is unusually

low, estimated at 0.06 using all bonds.

Since we are using the same data source for all countries, low R-squared for Japanese bonds

28Collin-Dufresne, Goldstein and Martin (2001) use option-based volatility and skewness measures as right-hand
side variables. As we do not have reliable option data for those six countries, we rely on realized volatility and
skewness from daily stock returns.
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cannot be explained by the difference in data quality. One potential reason is that the level of

credit spreads in Japan is generally much lower than other countries, and that monthly changes

are small and dominated by measurement errors. In addition, the average number of issues per

issuer is much higher in Japan (nearly 10 issues per firm) than other countries, and fragmentation

of bonds makes Japanese bonds less liquid than other countries.

Although the low R-squared in regression Eq. (19) is compelling, one may be concerned about

the potential nonlinear relationship between credit spreads and their determinants, which can be

missed by regression in Eq. (19). To address this concern, we run a complimentary regression of

credit spread changes on changes in distance to default,

∆CSk,t = bk,0 + bk,1∆DDk,t + νk,t (20)

where DDk,t is distance to default of the bond’s issuer.

Table IA1 reports the average coefficients and R-squared for Eq.(20). Consistent with the

prediction of the model, an increase in distance to default are negatively correlated with credit

spread changes. However, after accounting for a potential nonlinearity, adjusted R-squared is

disappointingly low, ranging from 0.02 in Japan to 0.07 in Italy.

Based on the reduced-form analysis, we do not see convincing evidence for the performance of

structural models of debt in explaining the time-series variation in credit spreads. The analysis in

this section, however, does not answer the question as to whether structural models can match the

average level of credit spreads. We will turn to this question in the next section.

II Alternative Specifications of the Black-Cox Model

In uncovering the credit spread puzzle, Huang and Huang (2012) consider two alternative specifi-

cations of theoretical bond prices. The first adopts the the discrete-time recovery assumption of

Duffie (1998), i.e., the recovery of face value is realized on the first scheduled coupon date after

default. For a bond with N coupon payments left, its bond pricing formula is given by

DD(T − t) =
N∑
i=1

CFie
−r(Ti−t)(1− πQ(t, Ti)) +RK

N∑
i=1

e−r(Ti−t)
[
πQ(t, Ti)− πQ(t, Ti−1)

]
, (21)

where Ti denotes the ith coupon date and CFi the corresponding cash flows to bondholders.29 The

second specification follows Longstaff and Schwartz (1995) by assuming that the constant recovery

rate R is measured with respect to an otherwise equivalent Treasury security (with the same coupon

29Bao (2009) focuses on the same specification when examining the performance of Black-Cox model in explaining
cross-sectional yield spreads.
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structure as the defaultable bond). It follows that the according bond pricing formula becomes

DLS(T − t) =
N∑
i=1

CFie
−r(Ti−t)

[
1− (1−R)πQ(t, Ti)

]
. (22)

And the modeled corporate yields under these two specifications can be computed by solving the

following equation

Dj(T − t) =
cK

m

N∑
i=1

e−yj(Ti−t) +Ke−yj(T−t), j ∈ {D,LS}, (23)

where m denotes the coupon frequency.

On the other hand, Feldhütter and Schaefer (2018) focus on the credit spread on a zero-coupon

bond that recovers a fixed fraction R of the principal at maturity if default occurs,

sz = − 1

T − t
log[1− (1−R)πQ(t, T )]. (24)

A comparison with other three specifications reveals that, if we ignore the difference in recovery

timing, Eq. (24) is a special case with the coupon rate set to zero.

Table IA2 compares the credit spreads generated by different model specifications, with the

same default boundary which is identified using the FS method. We find that switching from one

model specification to another has very limited impact on the model-implied spreads—the difference

rarely exceeds ten basis points. Also, the pricing performance of our baseline specification with

continuous coupon tends to be more in line with the zero-coupon specification, while results of the

Longstaff-Schwartz specification share a closer similarity with the case of discrete-time recovery.

This finding might be attributable to the fact that latter two specifications take into account the

actual frequency of coupon payments. Overall, our baseline results as shown in Section 6 are robust

to alternative assumptions of coupon structure and recovery upon default.
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III Default Boundary Identification Based on JMR-Type Esti-

mates of Model Parameters

In Section 5.3, the default boundary identified with the Feldhütter and Schaefer (2018) method

relies on the following model-free estimation of key parameters,30

K

At
= Lq

t =
K

Et +K
, (25)

σAi,t =
√

(1− Li,t)2(σEi,t)
2 + L2

i,t(σ
D
i,t)

2 + (1− Li,t)Li,tσEi,tσ
D
i,tρ

ED. (26)

As argued by Bai et al. (2019), the quasi-market leverage Lq
t could considerably deviate from the

true ratio of the book value of debt to the market value of assets for speculative-grade bond issuers.

To assess the robustness of the model’s pricing results to this issue, we employ a more precise

identification of model inputs within the Black-Cox framework. Specifically, we can essentially

apply the estimation method of Jones et al. (1984) to the Black-Cox model to identify the values

of At and σA for a given default boundary. Then we search for the optimal location of default

boundary which minimize the gap between the and term structure of historical default rates and

its model-implied counterpart.

By matching model-implied values of market leverage and equity volatility to observed values,

we obtain the following equation set as shown in Appendix B.3,

Lq
t =

K

E(At, σA, d) +K
, (27)

σE =
∂E

∂A

At

Et
σA. (28)

The modeled equity value E(At, σA, d) is derived as

E(At, σA, d) = At − (d−R)KG(At, σA, d)−D(At, σA, d). (29)

where the first two terms on the right-hand side capture the levered value of the firm, and the

modeled market value of debt D() follows Eq (8).

Compared with the estimation method employed by Bao (2009), we take interest payments

into account, which introduces two modifications. First, the equity cannot be treated as down-

and-out barrier call option on the unlevered asset value anymore. In other words, new equity will

30In the original Feldhütter and Schaefer (2018) method, Eq. (26) is replaced by

σA = α(1− Lqt )σA,

where the multiplier α is used to adjust for the gap between asset volatility and its lower bound. It is defined as 1
if Lqt < 0.25, 1.05 if 0.25 < Lqt ≤ 0.35, 1.10 if 0.35 < Lqt ≤ 0.45, 1.20 if 0.45 < Lqt ≤ 0.55, 1.40 if 0.55 < Lqt ≤ 0.75,
and 1.80 if Lqt > 0.75. We do not adopt this approximation to estimate asset volatility in Section 5.3, because this
multiplier is estimated with the U.S. data and its applicability to international bond issuers is unknown.
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issued if the firm’s cash flow δAt is insufficient to cover the coupon payment. Therefore, the total

value of equity must be calculated as in Eq (29). Second, a fixed recovery rate R upon default

becomes more relevant than a constant recovery rate always received at the maturity date. When

we implement Eqs. (27) and (28) at the firm level, the coupon rate c is defined as the annual net

interest payment divided by the book value of debt. This is different from its definition when we

calculate the modeled corporate yield spread at the bond level.

The identification of At and σA based on Eqs. (27) and (28) is worth noting in the context of

model specification analysis. First, it is literally derived from the implications of the Black-Cox

model and does not impose additional assumptions. Second, by relying on firm-level balance sheet

information and equity volatility, we can minimize the effect of measurement error and sampling

uncertainty and attribute the test results mostly to the model specification error. Finally, this

approach need not require the pricing information in corporate bond markets—which is involved

in the market-to-book adjustment made by Bai et al. (2019)—and thus ensures that the model

spreads are purely out-of-sample predictions.

Eq. (16) and (17) indicate that, for a given default boundary d, we can back out At and σA

from observed quasi-market leverage and equity volatility. It follows that the optimization problem

in (15) can be resolved with At and σA expressed as an implicit function of {d, Lq
t , σE}. Table IA3

illustrates the impact of this new estimation method on firm-level inputs. With the new optimal

boundary, the model-based estimates, A†t and σ†A, are fully determined. As the difference of A†t
from the approximate asset value At ≈ Et + K used in the FS method is entirely driven by the

model-implied debt value D†t , we report summary statistics of the model-implied market-to-book

ratio of corporate debts. In addition, we also compare σ†A with our baseline estimate of σA, which

is based on Eq. (10).

In each country/rating category, consider a representative firm of which the market-to-book

ratio of debt is set equal to the median of that category. Table IA3 indicates that the market value

of debt for a representative AA+ firm is substantially greater than its book value in all countries.

In contrast, the median market-to-book ratio of speculative-grade debts is lower than one for all

countries except for Canada. Both findings are consistent with the evidence for US as documented

by Bai et al. (2019) that (1) the market-to-book ratio of AA+ corporate bonds is somewhere

between 1.07 and 1.10 and, (2) high-yield corporate bonds could be valued well under par in the

market. It follows that the approximation as shown in Eq. (25) overestimates the distance-to-

default of high-rating bond issuers and underestimates that of speculative-grade ones. With that

being said, the magnitude of underestimation is not as significant as shown in Bai et al. (2019)

because corporate debts include bank loans as well, which are generally senior to corporate bonds.

The impact of the JMR-type estimator is not limited to the estimates of asset value. Table IA3

also shows that the ratio of σ†A to σA largely decreases with the credit rating in all countries. This

pattern actually complements our earlier finding that D†/K generally increases with the rating:

compared with our baseline estimator based on Eq. (25), the JMR-type estimator leads to lower
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market leverage and thus greater sensitivity of equity value to asset value if all other parameters

stay the same; as shown in Eq. (28), since the equity volatility measured from the data is fixed, the

asset volatility has to be depressed given an increase in the equity-to-asset sensitivity. Similarly, for

high yield bonds the model-based estimates of asset volatility tend to be higher than the model-free

ones. Overall, we find that the newly identified default boundaries match the empirical leverage

ratio and equity volatility with fairly reasonable parameter values.

IV Match in P-Measure Default Probability

Consider all issuers of corporate bonds. Tables IA4 present summary statistics for non-financial

firms matched to all bonds, including callable bonds. We do not use callable bonds in computing

credit spreads, but we still use these firms in estimating default boundary. Comparing Table 2

and Table IA4, we find that the characteristics of the firms are similar between these two samples,

which justifies our choice of finding default boundary using the larger sample.

IV..1 Confidence Intervals for Historical Default Frequency

For each country, we select a cohort of identical firms that start their history with values of leverage,

payout, and asset volatility in Table IA4. For this simulation, we choose d so that the simulation

mean probability of default matches the historical default frequency for each rating and maturity.

Here, the goal is to quantify the uncertainty around historical default frequency, not to evaluate

the Black-Cox model. The size of the cohort is the same as the number of firms in each rating

category.

We then simulate shocks to firms asset value for 20 years at the weekly frequency by:

dAi,t

Ai,t
= (µi − δi,t)dt+ σAi dWi,t (30)

dWi,t =
√
ρdWs,t +

√
1− ρdWi,t (31)

and record firms that touch the default threshold (d times leverage) for the first time. Following

Feldhütter and Schaefer (2018), we use a correlation coefficient of ρ = 0.20. The number of firms

that default in year y as a fraction of remaining firms in the cohort gives an estimate for a hazard

rate for the cohort in y-th year.

We repeat the exercise for cohort 1 to 78 (98 years of historical default data minus 20 years

of estimation horizon), allowing one time-series of systematic shocks to affect multiple (adjacent)

cohorts. Finally, we compute the average hazard rate across cohorts, and use it to compute the

cumulative probability of default for maturity of 1 to 20 years. We repeat this process 1,000 times

to create the 95 percent confidence interval.
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V Using Swap Rates as Risk-Free Benchmark

Figure IA2 plots the Black-Cox model-based credit spreads on the x-axis and the corporate credit

spreads on the y-axis, using swap rates as risk-free benchmark. Compared with the main results in

Figure 3, the observed credit spreads are somewhat lower, but using different risk-free benchmark

does not change the fact that the Black-Cox model does not explain the difference in credit spreads

across countries.

VI Currency Factors and Corporate Bond Returns

The fact that corporate credit spreads are higher in Australia than in Japan suggests that there may

be a link between the currency risk premiums documented in Lustig, Roussanov, and Verdelhan

(2011) and the corporate credit spreads. Specifically, Lustig, Roussanov, and Verdelhan (2011)

suggest that Ausutralian dollars load positively on the currency “slope” factor while Japanese Yen

loads negatively, which explains why borrowing in Japanese Yen and depositing the proceeds in

Australian dollars yields high returns on average.

Though we focus on credit spreads instead of excess returns, they are both driven by risk

premiums. Thus, large credit spreads in Australia may be just reflection of large currency risk

premiums on Australian-dollar denominated fixed income assets. To test this hypothesis more

formally, we compute monthly returns on corporate bonds in each country, multiply them with the

growth rate in exchange rates, and take value-weighted average to form IG- and HY-bond portfolios.

For each bond, we also compute returns on the government bonds with matching cash flows, convert

them into U.S. dollar-denominated returns using exchange rates, and form portfolios using the same

weights as the corporate bond portfolios. We then take the difference in monthly returns between

the corporate and the matching government bond portfolios to obtain excess returns. This is a U.S.

dollar-denominated return on zero-cost portfolio which does not require investors to convert U.S.

dollars into foreign currencies. As we work on excess returns, there is no mechanical link between

the excess returns and the currency risk factors. For example, if Australian dollars appreciate

against U.S. dollars in month t + 1, it will increase both U.S. dollar-denominated corporate and

government bond returns.

We run time-series regression of corporate bond excess returns on the currency risk factors,

Re
c,t = αc + β1,cFXPC1,t + β2,cFXPC2,t + uc,t

where FXPCt is the principal component of currency returns sorted on interest rates of Lustig,

Roussanov, and Verdelhan (2011). If corporate bond excess returns are a simple reflection of

currency risk premiums, we expect that αc is closer to zero than the average excess returns are.

Table IA5 reports the estimated slope coefficients α, β for each country and rating. For IG
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bonds (Panel A), the currency factors explain excess returns on corporate bonds reasonably well

in the U.S. and European countries. The estimated α in U.K., Germany, France, Italy and U.S. is

3.5, 3.3, 2.2, 1.9 and -1.6 basis points per month, respectively. These small alphas are explained by

the positive loading on the two currency risk factors. However, the loading of IG corporate bond

excess returns in Japan and Australia on these currency factors are small, and the estimated α is

close to the average returns.

Panel B of Table IA5 reports the estimates for HY bonds. Though corporate bond excess

returns load positively on the currency factors (except for the U.S. bonds on the first principal

component), the loading is not large enough, leaving substantial alphas on these investment. For

both IG- and HY-bonds, the adjusted R-squared of the regressions are low, ranging from 0.02 to

0.21.

In conclusion, the large variation in credit spreads across countries is not likely to be a simple

reflection of currency risk premiums documented in the international finance literature. To explain

price of corporate bonds, we need to account for liquidity in each market as we do in the main text.

VII Comparing Bid-Ask Spreads with Other Liquidity Measures

To build a various liquidity measures in comparison, we use daily observations of Markit composite

prices to construct two transaction cost measures which, according to Schestag et al. (2016), deliver

the best performance among low-frequency measures. One is Roll (1984)’s estimator for effective

spreads based on the return autocovariance, and the other is Hasbrouck (2009)’s Gibbs measure.

Table IA6 displays the comparative results. For completeness, we include two proxies measuring

other dimension of market liquidity: the run length measure by Das and Hanouna (2010) and the

market depth measure embedded in the Markit database. The former is shown to highly correlated

with the Amihud (2002) measure,31 and the latter is defined as the number of distinct contributors

at the composite fallback level. The summary statistics in Panel A imply substantial differences

between US and international corporate bond markets, as the latter has much lower estimates of

effective bid-ask spreads and much greater market depth. They are consistent with the finding of

Biais and Declerck (2007).32

While the BGN quoted bid-ask spreads (denoted by Spread BGN ) appear to slightly underesti-

31Bond transaction data has limited availability outside of US, which creates difficulty in implementing high-
frequency liquidity measures, like Feldhutter (2012)’s imputed round-trip cost, or other measures involving trading
volumes.

32Biais and Declerck (2007) focus on the European corporate bond market from 2003 to 2005 and find that the
effective bid-ask spreads are lower than the estimates of Edwards et al. (2007) and Goldstein et al. (2007) over the
same period. They attribute this finding to the presence of a large pool of potential buyers and sellers in the Euro
bond market. Accordingly, our comparative results are mainly driven by the four European countries in our sample,
because the Markit composite prices have limited coverage for Japan, Canada and Australia. Our average estimates
of effective spreads, 12–15 bps, are generally in line with the range (8 to 22 bps) reported by Biais and Declerck
(2007).
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mate the transaction costs in US, this measure has a marked upward bias in the international bond

markets. To assess the ability of Spread BGN to capture liquidity differences between bonds, we

follow Goyenko et al. (2009) by computing average cross-sectional correlations. Panel B shows that

Spread BGN appears to have substantially higher correlations for both transaction cost bench-

marks outside of US. Finally, results in Panel C reinforce the evidence that (1) Spread BGN is

biased in opposite direction for US and international corporate bonds, with magnitude of about -8

and 30+ bps; (2) Spread BGN performs better outside of US in tracking the variation in benchmark

measures.

VIII The “Noise” Measure of Corporate Bonds

We construct the noise measure for each country as follows: For each month, we use security-level

price data in Merrill Lynch and fit the Nelson-Siegel (Nelson-Siegel-Svensson) curve for each issuer

with more than 7 (15) bonds outstanding—and to maximize the sample size, we use all issuers

including private firms and financial firms in this exercise. Given our focus on mispricing due to

illiquidity, it is important to fit the curve issuer by issuer. We then compute issuer-level, root-mean

squared fitting errors as:

vj,t =

√
1

nj

∑
k

(ytmk,j,t − ytmNS
k,j,t)

2

and the country-level fitting errors are:

Noisec,t =
1

Nt

∑
j

vj,t

This “noise” measure of corporate bonds is analogous to the “noise” measure in the U.S. Treasury

market developed by Hu, Pan, and Wang (2013). Grishchenko and Huang (2012) construct a

similar “noise” measure for the TIPS market.
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Table IA1: Bond-by-Bond Time-Series Regression of Credit Spread Changes on Their
Determinants: Monthly 1997-2017

Japan UK Germany France Italy Canada Australia

R -0.10 -0.20 -0.40 -0.58 -0.33 -0.18 -0.01
(-3.06) (-1.49) (-2.60) (-4.06) (-1.54) (-1.49) (-0.04)

∆r10 0.01 -0.31 -0.33 -0.37 -0.48 -0.15 -0.08
(0.19) (-3.84) (-3.03) (-3.60) (-3.61) (-2.11) (-1.34)

(∆r10)2 -0.08 -0.02 0.09 0.23 0.65 0.01 0.20
(-0.21) (-0.07) (0.21) (0.20) (1.22) (0.04) (1.02)

∆slope 0.00 0.31 0.33 0.40 0.75 0.07 0.03
(0.02) (3.42) (2.76) (3.43) (4.63) (0.76) (0.34)

∆vol 0.03 0.32 0.37 0.28 0.38 0.27 0.02
(1.21) (3.50) (2.96) (2.47) (2.16) (2.80) (0.18)

StockIndex 0.01 -1.39 -0.85 -1.06 -1.34 -1.35 -0.48
(0.06) (-2.99) (-2.12) (-2.53) (-3.15) (-2.99) (-1.38)

∆skew 0.00 0.00 0.00 0.01 0.01 0.00 0.00
(0.78) (-0.11) (0.10) (1.28) (0.69) (0.50) (0.11)

R̄2 0.09 0.30 0.25 0.28 0.31 0.19 0.13
N 833 161 202 357 114 177 64

DD -5.35 -37.25 -35.81 -44.05 -40.88 -18.11 -12.77
(-2.30) (-4.55) (-3.44) (-4.91) (-3.67) (-4.43) (-3.26)

R̄2 0.03 0.05 0.08 0.07 0.08 0.04 0.04
N 821 161 202 356 114 169 64

Note: We run time-series regression of monthly changes in credit spread (in percent) for bond k as

∆CSk,t = bk,0 + bk,1Rk,t + bk,2∆r10t + bk,3(∆r10t )2 + bk,4∆slopet

+ bk,5∆volk,t + bk,6RINDEX,t + bk,7∆skewk,t + νk,t

where Rk is a stock return on the bond issuer, r10 is 10-year risk-free yields, slope is the difference between 10

and 2 year yields, vol is the issuer’s stock volatility, RINDEX is the return on the country’s stock index, and

skew is the skewness of issuer’s stock return. This table reports the average slope coefficients and average

adjusted R-squared.
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Table IA2: Credit Spreads Predicted by Alternative Specifications of the Black-Cox
Model with FS Default Boundary, AA+ Rating

Mean 10% 25% 50% 75% 90%

Japan Credit Spreads (bps) 15 4 8 13 20 26
Continuous Coupon 10 0 0 1 11 38
Discrete-Time Recovery 9 1 0 1 11 38
Recovery over Treasury 9 1 0 1 11 37
Zero Coupon 11 0 0 1 11 39

UK Credit Spreads (bps) 74 36 49 72 92 113
Continuous Coupon 6 0 0 0 2 9
Discrete-Time Recovery 19 10 12 15 21 29
Recovery over Treasury 11 5 6 7 10 18
Zero Coupon 6 0 0 0 2 9

Germany Credit Spreads (bps) 57 28 41 53 68 79
Continuous Coupon 5 0 0 0 3 10
Discrete-Time Recovery 13 6 8 11 15 21
Recovery over Treasury 8 2 4 5 8 15
Zero Coupon 5 0 0 0 3 11

France Credit Spreads (bps) 80 32 47 73 100 134
Continuous Coupon 24 0 0 1 21 72
Discrete-Time Recovery 31 1 4 11 28 79
Recovery over Treasury 27 1 2 6 24 73
Zero Coupon 25 0 0 2 23 74

Italy Credit Spreads (bps) 97 50 71 93 120 141
Continuous Coupon 6 0 0 3 8 16
Discrete-Time Recovery 10 4 8 10 17 23
Recovery over Treasury 6 2 4 5 13 19
Zero Coupon 7 0 0 3 10 18

Canada Credit Spreads (bps) 70 34 42 56 72 117
Continuous Coupon 39 3 4 15 41 122
Discrete-Time Recovery 49 11 13 23 55 140
Recovery over Treasury 49 11 13 23 54 138
Zero Coupon 42 3 5 16 48 136

Australia Credit Spreads (bps) 146 74 85 123 220 241
Continuous Coupon 19 0 2 6 24 63
Discrete-Time Recovery 18 2 3 11 31 70
Recovery over Treasury 18 2 3 11 31 69
Zero Coupon 17 0 2 6 22 55

US Credit Spreads (bps) 65 24 37 54 78 117
Continuous Coupon 9 0 0 0 3 18
Discrete-Time Recovery 16 1 4 10 16 28
Recovery over Treasury 16 1 4 10 16 27
Zero Coupon 9 0 0 0 4 20
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Table IA2 – Continued, A Rating

Mean 10% 25% 50% 75% 90%

Japan Credit Spreads (bps) 22 8 12 18 27 40
Continuous Coupon 24 0 0 5 29 72
Discrete-Time Recovery 24 0 0 5 29 73
Recovery over Treasury 24 0 0 5 29 73
Zero Coupon 25 0 0 5 29 73

UK Credit Spreads (bps) 135 64 84 118 155 224
Continuous Coupon 65 0 1 10 48 145
Discrete-Time Recovery 76 4 13 22 60 164
Recovery over Treasury 70 2 6 14 55 155
Zero Coupon 63 0 1 11 50 139

Germany Credit Spreads (bps) 98 45 59 85 114 157
Continuous Coupon 92 0 1 22 120 263
Discrete-Time Recovery 96 1 5 28 129 262
Recovery over Treasury 94 1 3 25 125 264
Zero Coupon 93 0 1 23 122 264

France Credit Spreads (bps) 100 49 64 90 119 163
Continuous Coupon 154 0 0 15 240 502
Discrete-Time Recovery 159 0 2 22 255 508
Recovery over Treasury 156 0 1 18 249 511
Zero Coupon 152 0 0 16 234 487

Italy Credit Spreads (bps) 155 63 86 131 190 300
Continuous Coupon 39 0 1 10 54 116
Discrete-Time Recovery 44 1 4 16 62 127
Recovery over Treasury 41 1 3 13 58 122
Zero Coupon 41 0 1 11 58 122

Canada Credit Spreads (bps) 102 49 64 88 126 164
Continuous Coupon 25 0 1 9 28 60
Discrete-Time Recovery 26 1 5 13 32 68
Recovery over Treasury 26 1 5 12 32 68
Zero Coupon 27 0 1 10 31 68

Australia Credit Spreads (bps) 170 89 111 150 209 265
Continuous Coupon 8 0 0 0 1 19
Discrete-Time Recovery 7 1 2 4 9 25
Recovery over Treasury 6 1 2 3 8 25
Zero Coupon 9 0 0 0 1 21

US Credit Spreads (bps) 99 39 56 79 116 179
Continuous Coupon 43 0 0 5 36 131
Discrete-Time Recovery 52 2 7 15 46 144
Recovery over Treasury 52 2 7 15 45 143
Zero Coupon 46 0 0 6 41 140
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Table IA2 – Continued, BBB Rating

Mean 10% 25% 50% 75% 90%

Japan Credit Spreads (bps) 35 14 20 29 42 64
Continuous Coupon 48 0 1 12 54 129
Discrete-Time Recovery 49 0 1 12 55 130
Recovery over Treasury 49 0 1 12 55 130
Zero Coupon 49 0 1 12 55 131

UK Credit Spreads (bps) 188 95 121 155 210 295
Continuous Coupon 57 0 3 20 62 162
Discrete-Time Recovery 67 3 14 32 77 181
Recovery over Treasury 61 1 7 25 69 172
Zero Coupon 57 0 3 22 65 163

Germany Credit Spreads (bps) 122 57 74 105 145 207
Continuous Coupon 85 0 0 14 83 243
Discrete-Time Recovery 89 0 4 19 91 252
Recovery over Treasury 86 0 2 16 87 249
Zero Coupon 86 0 0 15 87 238

France Credit Spreads (bps) 147 61 80 117 178 267
Continuous Coupon 158 0 2 34 184 452
Discrete-Time Recovery 164 1 6 41 196 467
Recovery over Treasury 161 1 4 37 190 468
Zero Coupon 157 0 2 36 185 444

Italy Credit Spreads (bps) 152 63 80 112 190 304
Continuous Coupon 105 0 3 37 137 341
Discrete-Time Recovery 106 0 5 39 142 330
Recovery over Treasury 105 1 4 38 139 338
Zero Coupon 107 0 3 38 141 338

Canada Credit Spreads (bps) 171 83 111 154 207 268
Continuous Coupon 58 0 0 3 29 81
Discrete-Time Recovery 77 0 1 6 33 95
Recovery over Treasury 77 0 1 5 33 94
Zero Coupon 76 0 0 4 33 95

Australia Credit Spreads (bps) 195 103 130 176 233 312
Continuous Coupon 14 0 0 0 3 19
Discrete-Time Recovery 17 2 2 4 8 23
Recovery over Treasury 16 1 2 3 8 23
Zero Coupon 17 0 0 0 3 20

US Credit Spreads (bps) 183 66 93 140 221 344
Continuous Coupon 94 0 5 33 116 269
Discrete-Time Recovery 106 5 13 41 128 288
Recovery over Treasury 105 5 13 41 127 286
Zero Coupon 97 0 5 36 124 274
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Table IA2 – Continued, HY Rating

Mean 10% 25% 50% 75% 90%

UK Credit Spreads (bps) 406 225 288 363 468 681
Continuous Coupon 216 1 37 127 281 517
Discrete-Time Recovery 227 4 42 140 309 530
Recovery over Treasury 222 3 40 133 300 529
Zero Coupon 207 1 41 127 267 475

Germany Credit Spreads (bps) 244 120 151 205 298 449
Continuous Coupon 109 0 2 40 148 286
Discrete-Time Recovery 103 0 2 36 149 283
Recovery over Treasury 102 0 2 35 146 284
Zero Coupon 110 0 3 42 152 282

France Credit Spreads (bps) 287 114 167 257 375 519
Continuous Coupon 633 5 84 365 784 1411
Discrete-Time Recovery 649 10 97 381 781 1432
Recovery over Treasury 644 7 93 376 786 1426
Zero Coupon 626 6 87 367 795 1386

Italy Credit Spreads (bps) 217 100 139 205 273 361
Continuous Coupon 250 3 23 181 422 656
Discrete-Time Recovery 252 3 26 188 429 667
Recovery over Treasury 251 3 26 185 428 664
Zero Coupon 250 3 23 179 421 652

Canada Credit Spreads (bps) 317 177 224 290 406 489
Continuous Coupon 213 0 2 41 337 749
Discrete-Time Recovery 208 4 7 53 344 693
Recovery over Treasury 207 4 7 53 343 693
Zero Coupon 202 0 2 46 325 704

US Credit Spreads (bps) 482 160 267 425 606 876
Continuous Coupon 403 22 86 259 581 1025
Discrete-Time Recovery 432 30 97 277 614 1088
Recovery over Treasury 430 30 96 275 611 1083
Zero Coupon 367 25 92 259 532 861

These tables compare the distribution of credit spreads in the data with that generated from different

specifications of the Black-Cox model. The statistics are computed using the panel data from 1997 to 2017

outside of the U.S., while using the data from 1987 to 2015 for the U.S. “Continuous Coupon” refers to the

specification that the bond issuer continuously pays a constant coupon flow until default occurs. “Discrete-

Time Recovery” and “Recovery over Treasury” share the assumption that coupon payments are discrete, with

the coupon frequency calibrated to the data; they differ in the definition of recovery rate. “Zero Coupon”

assumes that the yield spread of a coupon-bearing bond can be reasonably approximated by its counterpart

of a zero-coupon bond with the same maturity. Model-predicted credit spreads under the four specifications

are derived from Eq. (8), (21) (22) and (24), respectively. The default boundary d in all model specifications

is estimated with the Feldhütter and Schaefer (2018) methodology.
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Table IA3: Comparisons of Alternative Estimates of Asset Value and Asset Voaltility

Rating NObs Mean 10% 50% 90% NObs Mean 10% 50% 90%

Japan Italy
D†/K AA+ 31 1.06 1.00 1.04 1.15 3 1.09 1.02 1.08 1.16

A 64 1.04 1.00 1.03 1.09 11 1.03 0.95 1.03 1.13
BBB 63 1.04 1.00 1.04 1.09 18 1.01 0.91 0.99 1.14
HY 0 - - - - 6 1.00 0.93 0.99 1.09

σ†
A/σA AA+ 31 0.97 0.63 0.93 1.35 3 1.02 0.67 0.86 1.75

A 64 1.00 0.68 0.96 1.35 11 1.12 0.77 1.06 1.55
BBB 63 0.99 0.69 0.97 1.32 18 1.16 0.85 1.13 1.50
HY 0 - - - - 6 1.13 0.76 1.13 1.45

UK Canada
D†/K AA+ 15 1.12 1.01 1.10 1.19 3 1.17 0.97 1.16 1.43

A 42 1.03 0.90 1.00 1.21 18 1.13 0.94 1.05 1.46
BBB 40 1.03 0.91 1.00 1.18 51 1.08 0.95 1.03 1.38
HY 13 0.99 0.89 0.97 1.14 5 1.03 0.96 1.03 1.11

σ†
A/σA AA+ 15 0.99 0.71 0.97 1.25 3 0.91 0.46 0.96 1.37

A 42 1.13 0.72 1.05 1.63 18 0.93 0.63 0.90 1.26
BBB 40 1.12 0.75 1.07 1.57 51 0.94 0.64 0.91 1.28
HY 13 1.12 0.75 1.07 1.59 5 0.94 0.60 0.91 1.30

Germany Australia
D†/K AA+ 9 1.04 1.00 1.04 1.08 1 1.11 1.04 1.11 1.16

A 28 0.99 0.92 0.98 1.06 10 1.09 1.00 1.08 1.20
BBB 39 0.94 0.85 0.91 1.06 17 1.02 0.95 1.02 1.09
HY 12 0.90 0.81 0.88 1.03 0 - - - -

σ†
A/σA AA+ 9 0.92 0.66 0.89 1.18 1 0.98 0.64 0.94 1.38

A 28 0.89 0.57 0.84 1.24 10 1.01 0.77 0.99 1.28
BBB 39 0.90 0.61 0.87 1.23 17 1.47 1.17 1.44 1.77
HY 12 0.96 0.71 0.93 1.27 0 - - - -

France US
D†/K AA+ 9 1.09 1.01 1.08 1.19 79 1.09 1.00 1.07 1.20

A 24 1.04 0.94 1.02 1.14 312 1.07 0.99 1.04 1.18
BBB 39 1.03 0.94 1.02 1.12 544 1.04 0.97 1.01 1.13
HY 18 1.01 0.92 1.00 1.10 661 0.98 0.92 0.95 1.04

σ†
A/σA AA+ 9 1.03 0.65 0.95 1.58 79 1.00 0.63 0.94 1.56

A 24 1.16 0.78 1.11 1.60 312 1.00 0.63 0.92 1.58
BBB 39 1.17 0.82 1.11 1.61 544 1.01 0.64 0.94 1.62
HY 18 1.27 0.85 1.24 1.74 661 1.06 0.76 1.00 1.64

This table presents summary statistics for JMR-type estimates of model parameters for each country and
for each credit rating. The statistics are computed using the panel data of bond issuers, and NObs is the
number of firms that are in each category. The sample is from 1997 to 2017 for non-U.S. firms, and from
1987 to 2015 for the U.S. firms. D†/K is the model-implied market-to-book ratio of corporate debts. σ†

A/σA
is the ratio of the model-based volatility estimate to the model-free one.
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Table IA4: Firm-Level Inputs: All Non-Financial Bond Issuers

Rating NObs Mean 10% 50% 90% NObs Mean 10% 50% 90%

Japan Germany
K/A AA+ 32 0.40 0.09 0.40 0.68 9 0.44 0.10 0.42 0.76

A 68 0.43 0.18 0.42 0.71 28 0.34 0.12 0.33 0.60
BBB 63 0.50 0.28 0.51 0.70 40 0.33 0.11 0.30 0.61
HY 0 - - - - 26 0.42 0.23 0.38 0.62

σE AA+ 32 0.26 0.15 0.24 0.39 9 0.24 0.16 0.21 0.38
A 68 0.31 0.18 0.30 0.45 28 0.30 0.17 0.26 0.45
BBB 63 0.37 0.23 0.36 0.54 40 0.29 0.18 0.26 0.45
HY 0 - - - - 26 0.37 0.22 0.32 0.54

σA AA+ 32 0.16 0.07 0.15 0.28 9 0.15 0.06 0.15 0.28
A 68 0.18 0.07 0.18 0.27 28 0.20 0.13 0.18 0.29
BBB 63 0.18 0.11 0.18 0.25 40 0.19 0.12 0.19 0.29
HY 0 - - - - 26 0.22 0.14 0.22 0.27

δ AA+ 32 0.009 0.000 0.008 0.016 9 0.012 0.000 0.007 0.035
A 68 0.009 0.000 0.008 0.016 28 0.022 0.004 0.018 0.046
BBB 63 0.005 0.000 0.004 0.012 40 0.028 0.008 0.022 0.055
HY 0 - - - - 26 0.030 0.009 0.029 0.052

UK France
K/A AA+ 15 0.20 0.07 0.18 0.35 10 0.25 0.06 0.19 0.69

A 50 0.29 0.11 0.25 0.51 27 0.28 0.07 0.25 0.56
BBB 49 0.30 0.13 0.28 0.53 42 0.33 0.12 0.32 0.53
HY 24 0.42 0.13 0.39 0.76 23 0.44 0.18 0.44 0.72

σE AA+ 15 0.25 0.16 0.24 0.38 10 0.28 0.17 0.26 0.42
A 50 0.26 0.14 0.24 0.42 27 0.28 0.17 0.25 0.46
BBB 49 0.28 0.17 0.24 0.45 42 0.29 0.17 0.26 0.46
HY 24 0.44 0.23 0.36 0.80 23 0.39 0.22 0.36 0.59

σA AA+ 15 0.20 0.16 0.20 0.27 10 0.22 0.08 0.22 0.29
A 50 0.19 0.12 0.18 0.28 27 0.20 0.13 0.20 0.27
BBB 49 0.20 0.14 0.19 0.26 42 0.20 0.13 0.19 0.26
HY 24 0.27 0.18 0.23 0.31 23 0.22 0.15 0.21 0.27

δ AA+ 15 0.011 0.000 0.004 0.038 10 0.019 0.000 0.019 0.041
A 50 0.016 0.000 0.000 0.051 27 0.019 0.000 0.018 0.042
BBB 49 0.024 0.000 0.028 0.049 42 0.022 0.002 0.020 0.042
HY 24 0.034 0.000 0.034 0.074 23 0.023 0.001 0.018 0.050

This table presents summary statistics for non-financial firms matched to all bonds, including callable bonds.
We do not use callable bonds in computing credit spreads, but we still use these firms in estimating default
boundary. The sample is from 1997 to 2017.
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Table IA4 – Continued

Rating NObs Mean 10% 50% 90% NObs Mean 10% 50% 90%

Italy Australia
K/A AA+ 3 0.27 0.12 0.28 0.36 5 0.52 0.02 0.64 0.83

A 10 0.39 0.20 0.40 0.58 13 0.26 0.10 0.23 0.51
BBB 18 0.51 0.36 0.50 0.69 22 0.28 0.11 0.25 0.54
HY 10 0.64 0.33 0.62 0.91 0 - - - -

σE AA+ 3 0.21 0.12 0.17 0.43 5 0.31 0.19 0.27 0.45
A 10 0.24 0.16 0.22 0.37 13 0.22 0.14 0.19 0.32
BBB 18 0.26 0.18 0.24 0.36 22 0.29 0.18 0.25 0.43
HY 10 0.39 0.28 0.36 0.53 0 - - - -

σA AA+ 3 0.15 0.11 0.13 0.21 5 0.18 0.08 0.09 0.40
A 10 0.15 0.12 0.14 0.19 13 0.16 0.09 0.15 0.23
BBB 18 0.14 0.11 0.14 0.18 22 0.20 0.11 0.20 0.26
HY 10 0.18 0.14 0.17 0.22 0 - - - -

δ AA+ 3 0.049 0.000 0.055 0.062 5 0.006 0.000 0.000 0.021
A 10 0.037 0.013 0.040 0.059 13 0.024 0.000 0.000 0.065
BBB 18 0.038 0.011 0.037 0.065 22 0.034 0.000 0.034 0.059
HY 10 0.037 0.000 0.027 0.087 0 - - - -

Canada U.S.
K/A AA+ 3 0.27 0.12 0.21 0.43 137 0.14 0.03 0.11 0.30

A 30 0.32 0.12 0.33 0.50 501 0.22 0.06 0.19 0.40
BBB 66 0.31 0.14 0.28 0.53 832 0.29 0.09 0.26 0.54
HY 29 0.39 0.13 0.32 0.71 2060 0.47 0.15 0.46 0.82

σE AA+ 3 0.25 0.11 0.27 0.33 137 0.27 0.19 0.27 0.37
A 30 0.23 0.14 0.22 0.35 501 0.31 0.21 0.30 0.42
BBB 66 0.25 0.15 0.22 0.39 832 0.37 0.24 0.35 0.52
HY 29 0.43 0.20 0.34 0.61 2060 0.56 0.32 0.51 0.86

σA AA+ 3 0.16 0.13 0.13 0.20 137 0.24 0.19 0.23 0.28
A 30 0.17 0.10 0.14 0.28 501 0.25 0.19 0.24 0.33
BBB 66 0.18 0.10 0.17 0.27 832 0.27 0.20 0.26 0.38
HY 29 0.25 0.17 0.22 0.32 2060 0.34 0.20 0.31 0.51

δ AA+ 3 0.045 0.021 0.040 0.084 137 0.028 0.002 0.021 0.061
A 30 0.036 0.012 0.037 0.062 501 0.036 0.003 0.029 0.075
BBB 66 0.033 0.000 0.031 0.061 832 0.039 0.005 0.032 0.083
HY 29 0.042 0.013 0.040 0.073 2060 0.042 0.003 0.036 0.087
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Table IA5: Excess Returns on Value-Weighted Portfolios of Corporate Bonds:
Monthly from January 1997 to December 2017

Japan UK Germany France Italy Canada US Australia

Panel A. Investment-Grade Bonds
Avg.Re

t 0.015 0.101 0.086 0.076 0.086 0.119 0.067 0.089
α 0.010 0.035 0.033 0.022 0.019 0.058 -0.016 0.073
t(α) (0.74) (0.41) (0.81) (0.43) (0.25) (0.85) (-0.18) (1.60)
b1 0.005 0.072 0.070 0.087 0.142 0.079 0.106 0.022
t(b1) (0.78) (1.84) (2.51) (3.35) (3.20) (2.17) (1.90) (1.26)
b2 0.009 0.105 0.083 0.081 0.095 0.096 0.121 0.025
t(b2) (2.67) (2.80) (3.63) (3.04) (2.27) (2.47) (2.13) (1.56)
R̄2 0.02 0.11 0.21 0.21 0.17 0.15 0.10 0.04

Panel B. High-Yield Bonds
Avg.Re

t - 0.470 0.394 0.405 0.231 0.416 0.891 -
α - 0.274 0.275 0.249 0.204 0.315 0.435 -
t(α) - (1.33) (1.63) (1.91) (2.01) (1.85) (1.03) -
b1 - 0.225 0.523 0.259 0.129 0.220 -0.219 -
t(b1) - (2.26) (2.19) (3.74) (2.34) (1.35) (-0.40) -
b2 - 0.310 0.125 0.233 0.027 0.142 0.760 -
t(b2) - (2.72) (1.38) (2.53) (0.74) (2.97) (2.21) -
R̄2 - 0.09 0.14 0.11 0.05 0.08 0.03 -

This table reports the estimates of the time-series regression,

Re
c,t = α1,c + β1,cFXPC1,t + β2,cFXPC2,t + uc,t

where FXPCt is the principal component of currency returns of Lustig et al. (2011). Re
c,t is the

value-weighted average returns on corporate bonds in U.S. dollars in excess of the value-weighted
average returns on government security in each country in U.S. dollars. Avg.Re

t is the time-series
average of each portfolio, and values in parentheses are t-statistics.
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Figure IA2: Swap Rates as Risk-Free Rates

The figures on the left column shows the mean (dot) and median (star) credit spreads in the data

and in the Black-Cox model, in which default boundary is estimated using Feldhütter and Schaefer

(2018) approach. The figures on the right compares the median credit spreads using two approaches to

estimate d: i) Bai et al. (diamond) and ii) matching individual bond’s P-default probability (circle).
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Figure IA3: Debt Securities Domestic Ownership in 2017

The figure presents the share of corporate debt securities held by different class of domestic investors as of
2017. The data source is the flow of funds in each country. The type of security included is debt securities
issued by domestic nonfinancial private corporations in countries other than U.K. and Canada. In U.K.
and Canada, such data is not available, and thus we use debt securities issued by UK monetary, financial
institutions and other U.K. residents in U.K., and other Canadian bonds (other than government debt
securities) in Canada.

In the European countries, the breakdown between insurance and pension funds is not

available, and thus pension fund’s holding is included in “Insurance”. Furthermore,

in the European countries, other financial institutions are included in “Mutual Funds”.
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