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Abstract 

 

We test the pricing of the conditional systematic risk (β) of a traded illiquidity factor IML, the 

return premium on illiquid-minus-liquid stocks, when its risk premium is allowed to vary over 

time. We find a positive and significant risk premium on conditional βIML that rises in times of 

financial distress, measured by the corporate bond yield spread or broker–dealer loans (including 

margin loans). Notably, the conditional βIML is unique in being significantly priced across 

individual stocks. None of the unconditional and conditional βs of Fama and French and Carhart 

factors is consistently and significantly priced nor are the βs of popular alternative liquidity-

based factors.  
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1. Introduction  

Illiquidity is known to be priced both as a characteristic and as a systematic risk.1 This 

paper studies the pricing of the conditional systematic risk of a traded liquidity premium factor 

of Illiquid-Minus-Liquid stock portfolios, denoted IML, when its risk premium is time-varying 

depending on financial distress. The mean risk-adjusted IML is about 4% per year and significant 

for our sample period of January 1947 through December 2017.2  Notably, our conditional risk 

of IML, denoted βIML, is different from the illiquidity risks studied by Pastor and Stambaugh 

(2003), Acharya and Pedersen (2005), and Watanabe and Watanabe (2008), denoted βIL. IML is a 

traded return factor representing the return premium on illiquidity while these three studies use 

non-traded factors of innovations in the level of market illiquidity. To illustrate the difference 

between these two βs, consider the standard CAPM. Our βIML is analogous to the β of the risk 

premium factor of market excess return RMrf while βIL is analogous to the β of innovations in the 

level of market volatility (risk) studied by Ang, Hodrick, Xing, and Zhang (2006).  

We hypothesize that investors demand a positive premium on the conditional systematic 

risk of IML that varies as a function of market conditions, being higher in times of financial 

distress. Our hypothesis follows from Brunnermeier and Pedersen’s (2009) theory that higher 

funding illiquidity and binding financial conditions raise both market illiquidity and the shadow 

price of liquidity. Investors who become financially constrained must liquidate their holdings 

and are willing to bear higher costs of illiquidity or pay more for liquidity. This results in higher 

illiquidity – the price impact in liquidation – and in higher shadow price of liquidity.3 We 

propose that investors thus demand a risk premium on stocks with greater exposure to – or β of – 

the illiquidity premium factor IML in times of financial distress and funding constraint, when 

both illiquidity and its shadow price are higher. This prediction is analogous to the theory and 

findings of Lettau and Ludvigson (2001, henceforth LL) that investors price the conditional β of 

the market factor in times of higher risk or risk aversion captured by higher consumption/asset 

                                                 
1 Amihud and Mendelson (1986) and Brennan and Subrahmanyam (1996) find that stock expected return increases 

in stock illiquidity and Pastor and Stambaugh (2003) and Acharya and Pedersen (2005) find that the expected return 

is an increasing function of illiquidity systematic risk unconditionally, using a non-traded illiquidity factor. See a 

review of research on the pricing of liquidity and liquidity risk in Amihud, Mendelson, and Pedersen (2005, 2013).   
2 The IML was found to be positive and significant and to co-move strongly across 45 countries (Amihud, Hameed, 

Kang, and Zhang, 2015). 
3 Acharya, Amihud, and Bharath (2013) find that illiquidity shocks affect corporate bond returns in times of 

financial and economic distress more strongly. 
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ratio denoted cay. Testing our hypothesis, we follow LL in conditioning both IML risk and its 

risk premium on financial distress, allowing them to change over time. 

Specifically, following Cochrane (1996, 2005) and LL,4 we estimate and test a cross-

sectional model of conditional stock expected return as a function of conditional βIML using the 

IML factor that is scaled by lagged instrumental variable which summarizes the investors’ 

conditioning information on financial distress. Our conditioning variable is the yield spread 

between BAA- and AAA-rated corporate bonds, denoted SP, a known proxy for financial 

distress which we find to forecast our key factor IML. This approach allows both conditional βIML 

and its risk premium to vary as functions of the state of the market, being higher in times of 

anticipated financial distress.  

Our main finding is that the conditional βIML is positively and significantly priced in the 

cross-section of stock returns, meaning that expected returns are higher for stocks with greater 

exposure to the illiquidity factor IML in times of financial distress when investors’ aversion to 

illiquidity and thus its risk premium is higher. In contrast, the unconditional βIML (with a constant 

risk premium) is not significantly priced in the cross-section. This finding is similar to those of 

Cochrane (1996) and LL on the significant pricing of the conditional β of their pricing factors 

(with conditional risk premiums that are allowed to vary) while the unconditional β is not 

priced.5  

Our analysis differs from that of Watanabe and Watanabe (2008) who study the pricing 

of a conditional illiquidity-based systematic risk of Acharya and Pedersen (2005) and employ the 

market trading volume as a conditioning variable. First, as pointed out above, we differ in that 

we study the systematic risk of a traded factor that reflects the illiquidity return premium while 

Watanabe and Watanabe (2008) employ a non-traded illiquidity factor of the shocks in the level 

of illiquidity of the market and of individual stocks. Second, while their conditioning variable – 

aggregate market volume – relates to the market trading condition (which is motivated by 

investors’ preference uncertainty), our conditioning variable indicates financial distress and 

investors’ aversion to illiquidity, based on the theory of Brunnermeier and Pedersen (2009). 

                                                 
4 Similar models of the market factor’s conditional β using macroeconomic conditioning variables are proposed by 

Shanken (1990), Ferson and Schadt (1996), Jagannathan and Wang (1996), and Ferson and Harvey (1999). Ferson, 

Sarkissian, and Simin (2008) show that asset pricing models that employ conditional betas estimated from 

conditional asset pricing regressions are robust to data mining and that the pricing result is not spurious. 
5 In general, Cochrane (1996, p. 617) concludes that “[T]he scaled factor models typically perform substantially 

better than the nonscaled factor models.”  
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We highlight the unique significant pricing of the conditional βIML in the cross-section of 

stock returns: none of the β risks of the factors of Fama and French (1993) and Carhart (1997) 

(henceforth denoted FFC factors) is significantly priced in a consistent manner. Specifically, we 

control for the βs of the FFC factors and find no consistent significant pricing for either their 

unconditional βs or for their conditional βs using financial distress as a conditioning variable, as 

we do for the IML factor. Also, the pricing of the conditional βIML remains significant after 

controlling for the conditional β risks of commonly used liquidity-based factors – Pastor and 

Stambaugh (2003), Liu (2006), and shocks to market illiquidity as used by Watanabe and 

Watanabe (2008) – while none of these factors’ conditional β risks is positively and significantly 

priced.6  

Notably, our test assets are individual stocks instead of the often-used stock portfolios 

due to the well-known potential pitfalls in using portfolios for testing asset pricing models.7  

Lewellen, Nagel, and Shanken (2010) show that using test portfolios sorted on stock 

characteristics can impart a strong factor structure across them, providing a hurdle that is too low 

for testing whether factor risks are priced. Jegadeesh et al. (2019) re-examine prominent asset 

pricing models and find that the pricing ability of popular factor loadings are disappointing in the 

cross-section of individual stocks compared to stock characteristics, casting doubt on the pricing 

of existing popular measures of systematic risk.8 In addition, the estimated pricing of factor risks 

may be sensitive to a subjective choice of sorting variables.9 The main drawback of employing 

individual stocks as test assets is the well-known bias due to errors-in-variables (EIV). We attend 

to this problem by employing the EIV bias correction procedure of Litzenberger and 

Ramaswamy (1979) and Chordia, Goyal, and Shanken (2017).  

                                                 
6 Our tests also differ from those of Pastor and Stambaugh (2003), Liu (2006), Korajczyk and Sadka (2008), and 

Watanabe and Watanabe (2008) in that our tests employ individual stocks as test assets while the other tests employ 

characteristics-sorted portfolios as test assets. In addition, these studies do not allow for time-varying risk premiums 

except for Watanabe and Watanabe (2008). 
7 For a review of the potential problems in using stock portfolios in tests of asset pricing models, see Gagliardini, 

Ossola, and Scaillet (2016) and Jegadeesh, Noh, Pukthuanthong, Roll, and Wang (2019).  
8 Recent studies question some earlier studies on the pricing of liquidity-related risks. See Holden and Nam (2019), 

Kazumori et al. (2019), Li, Novy-Marx, and Velikov (2019), and Pontiff and Singla (2019).  
9 Also, the power of an asset pricing test becomes lowered by the low dimensionality issue that can occur when 

employing stock portfolios and including a number of systematic risks and characteristics in the model. This 

problem can hinder identifying priced systematic risks significantly. 
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The selection of our scaling instrument SP, the corporate bond yield spread, follows 

Cochrane (1996) and LL who chose scaling instruments that forecast their pricing factors.10 First, 

we find that SP forecasts the illiquidity premium factor IML. Second, SP is an indicator of 

financial distress, suitably representing the state of funding illiquidity in Brunnermeier and 

Pedersen’s (2009) theory which instigates a rise in the shadow price of illiquidity.  Importantly, 

the corporate bond yield spread is known to reflect an illiquidity premium in addition to the 

default premium, see Chen, Lesmond, and Wei (2007), Dick-Nielsen, Feldhutter, and Lando 

(2012), and Bongaerts, de Jong, and Driessen (2017).  The corporate bond yield spread is also 

found to forecast adverse economic conditions. Fama and French (1989, p. 43) suggest that the 

default spread is “higher when times are poor”. Gilchrist and Zakrajšek (2012) find that the 

BAA-AAA corporate bond yield spread significantly forecasts adverse economic conditions 

(increase in unemployment and decline in industrial production). We also employ an alternative 

conditioning variable that proxies for financial distress and funding constraint: the series of 

broker-dealers’ loans that importantly includes margin loans, which is the basis for the 

Brunnermeier and Pedersen (2009) analysis, relative to their total loans. The test results are 

similar for both measures of funding illiquidity: the conditional βIML on funding illiquidity is 

positively and significantly priced in the cross-section of individual stock returns in times of 

anticipated financial distress. 

Earlier studies on the pricing of conditional liquidity-based systematic risk include 

Martinez, Nieto, Rubio, and Tapia (2005) for Spanish stock market and Acharya, Amihud, and 

Bharath (2013) for corporate bond market, both of which use non-traded illiquidity factors. In 

contrast, in our conditional asset pricing model with time-varying risk premium, the conditional 

βIML employs a traded return factor that captures the return premium on illiquid stocks over 

liquid ones. Jensen and Moorman (2010) show that monetary expansion or contraction, which 

affects funding illiquidity, affects stock illiquidity and also affects the return spread between 

illiquid and liquid stocks but without performing asset pricing tests. 

                                                 
10 Cochrane’s (1996) reasons the selection of his scaling variables – the term yield spread on Treasury bonds, the 

dividend/price ratio and the corporate bond default spread which we denote SP – in that “[T]hese instruments are 

popular forecasters of stock returns” (p. 588). Lettau and Ludvigson (2001) employ a scaling variable cay, the 

consumption/asset ratio, which forecasts the market return factor. They say (p. 1243) that cay “has striking 

forecasting power for excess returns on aggregate stock market indexes.” Ferson and Harvey (1999) include SP 

among their instrumental variables that proxy for time variation in expected return. 
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We proceed as follows. In Section 2, we introduce the IML illiquidity return premium 

factor and examine its risk-adjusted mean, its relation to other factors, and its behavior over time. 

Section 3 presents our main test results on the pricing of the conditional IML factor risk under 

the FFC four-factor model and six prominent stock characteristics controlled. In Section 4, we 

present a number of robustness tests and show that the pricing of the conditional βIML remains 

positive and significant in all these tests. Concluding remarks are presented in Section 5. 

  

2. IML, the return on Illiquid-Minus-Liquid stocks 

2.1. The construction of IML 

We construct a return factor IML of Illiquid-Minus-Liquid stocks, which we expect to 

have a positive risk-adjusted return. This follows Amihud and Mendelson’s (1986) proposition 

that stock illiquidity is positively priced across stocks, and the evidence since then (see summary 

in Amihud, Mendelson, and Pedersen, 2005, 2013). The construction of IML follows Fama and 

French’s (1993) procedure in constructing their return factors SMB (small-minus-big firm size) 

and HML (high-minus-low book-to-market ratio), after having found that the characteristics size 

and book-to-market ratio are priced across stocks. We employ NYSE/AMEX11 stocks with codes 

10 and 11 (common stocks). The sample period covers 71 years, January 1947 through 

December 2017, 852 months in total.  We begin the sample period in 1947 because book values 

of stocks (to calculate book-to-market ratios) which we need in the cross-sectional analysis are 

available on Compustat since the middle of 1951, and we need 60 months before that to estimate 

the β coefficient of IML.12 

To construct the IML, we employ two illiquidity measures, ILLIQ and ZERO, proposed 

respectively by Amihud (2002) and by Lesmond, Ogden, and Trzcinka (1999).  The first 

measure is based on the full information on return, price, and trading volume and the second one 

relies on the counts of days with zero returns or no trading. These measures are found by 

                                                 
11 These are the New York Stock Exchange and American Stock Exchange, where trading could be done directly 

between investors with the intermediation of specialists. The convention in the literature is to exclude Nasdaq stocks 

because, during much of the sample period, Nasdaq trading was conducted through market makers so the trading 

volume was counted twice (e.g., see Amihud (2002); Ben Rephael, Kadan, and Wohl (2013)).  
12 Also, since 1947, we have more than 40 stocks on average in each of the three high-ILLIQ and three low-ILLIQ 

portfolios. While there is no rule for the minimum number of stocks, it is clear that the efficiency and accuracy of 

the analysis are lower with a smaller number of stocks. For example, in May 1933 which is in the middle of the 

Great Depression, there are only 10 stocks in each of the three high-ILLIQ and low-ILLIQ portfolios.  
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Hasbrouck (2009) and by Goyenko et al. (2009) to be strongly correlated with high-frequency 

(intraday) measures of price impact and the bid-ask spread, respectively.13 ILLIQj,t and ZEROj,t 

are calculated for each stock j over a rolling twelve-month window that ends in month t. ILLIQj,t 

is the average daily values of ILLIQj,d = |returnj,d|/dollar volumej,d  (in $million). We delete 

stock-days with trading volume below 100 shares or with return of less than -100% and we also 

delete the highest daily value of ILLIQj,d in each twelve-month period.  A stock is included if its 

price remains between $5 and $1000 and it has more than 200 days of valid return and volume 

data during the twelve-month period.  ZEROj,t is the ratio of the number of days with zero returns 

or no trade divided by the total number of days in the rolling twelve-month window, which is 

used to calculate ILLIQj,t.  Notably, ZERO is not based on trading volume or volatility which are 

components of ILLIQ. Finally, for each month t, we delete the stocks with the highest 1% values 

of ILLIQj,t or ZEROj,t. 

Using ILLIQj,t and ZEROj,t, we construct two return factors IMLILLIQ,t and IMLZERO,t 

separately, employing the same methodology and the same sample of stocks. We sort stocks first 

by return volatility and then by each illiquidity measure in order to mitigate a possible 

confounding between their effects given the positive illiquidity-volatility correlation (Stoll, 

1978) and the evidence on the effect of volatility on expected returns.14  Stocks are sorted into 

three portfolios by StdDevj,t , the standard deviation of daily returns, and within each volatility 

portfolio we sort stocks into five portfolios by either ILLIQj,t or ZEROj,t, all calculated over a 

period of twelve months. This produces 15 (3×5) portfolios for each illiquidity measure.15  We 

calculate the month-t value-weighted average return of the stocks included in the portfolio on 

month t-2 (i.e., skipping month t-1) in order to avoid the effect of short-term reaction of stock 

                                                 
13 ILLIQ is found by Hasbrouck (2009) and by Goyenko et al. (2009) as the best low-frequency proxy for Kyle’s 

(1985) price impact measure that is estimated from intraday data.  ZERO is found Lesmond et al. (1999) and by 

Goyenko et al. (2009) to be highly correlated with realized spread.  Goyenko et al. (2009, p. 155) state that “… in 

more recent years, during the decimals regime, the performance of all measures deteriorates with the exception of 

Zeros and the Amihud measures.” ZERO is used by Lesmond (2005) and by Bekaert, Harvey, and Lundblad (2007) 

to measure illiquidity in global markets. 
14 Levy (1978) and Merton (1987) propose that expected stock return is positively related to idiosyncratic volatility 

because of limited diversification, while Amihud (2002), and Ang, Hodrick, Xing, and Zhang (2006, 2009) find a 

negative effect of (idiosyncratic) volatility on expected return. 
15 This procedure follows the procedure in Fama and French (1993) when constructing their HML factor. They first 

sort stocks by size and then by book-to-market ratio within each size portfolio. 
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returns following unusually large shocks of illiquidity or volatility.16 We adjust returns by 

Shumway’s (1997) method to correct for delisting bias.17  IMLILLIQ,t and IMLZERO,t are the 

averages of the returns on the highest-illiquidity quintile portfolios minus the averages of the 

returns on the lowest-illiquidity quintile portfolios across the three corresponding StdDev 

portfolios. Finally, we calculate IMLt for each month t as the average of IMLILLIQ,t and IMLZERO,t. 

 

2.2. Analysis of IML 

INSERT TABLE 1 

Table 1 presents statistics for the IML return series for the entire sample period of 71 

years or 852 months, from January 1947 to December 2017. For robustness, we also present 

results for two equal subperiods of 35.5 years, 1/1947-6/1982 and 7/1982-12/2017. In Panel A, 

the average IML is 0.319% per month, nearly 4% a year, and it is statistically significant with t = 

3.43.  The median is 0.277% and the fraction of months with positive IML values is 0.550, which 

is significantly greater than 0.50, the chance result. The mean IML is positive and significant in 

both subperiods. 

Panel B presents alphaIML, the risk-adjusted IML after controlling for the FFC risk factors, 

estimated from the following model: 

IMLt = alphaIML + βRMrf*RMrft + βSMB*SMBt + βHML*HMLt + βUMD*UMDt + εt . (1) 

RMrf, SMB, HML, and UMD are, respectively, the market excess return over the T-bill rate, and 

the returns on small-minus-big firms (size factor), high-minus-low book-to-market ratio firms 

(value-growth factor), and winner-minus-loser stocks (momentum factor). 

We find that alphaIML is positive and significant for the entire sample period of 1947 

through 2017 and for each of the two subperiods.  For the entire period, alphaIML is 0.341% per 

month with t = 5.47 and for the first and second subperiods, it is 0.441% with t = 4.94 and 

                                                 
16 This follows Brennan, Chordia, and Subrahmanyam (1998) and Brennan, Chordia, Subrahmanyam, and Tong 

(2012), who discuss the merit of skipping one month. Fu (2009) notes the effect of return reversal on the relation 

between stock return and lagged idiosyncratic volatility. 
17 The last month return of a delisted stock is either the last return available from the Center for Research in Security 

Prices (CRSP), RET, or the delisting return DLRET, if available.  If both are available, the calculated last month 

return proposed by CRSP is (1+RET)*(1+DLRET)-1. If neither the last return nor the delisting return is available 

and the deletion code is in the 500s—which includes 500 (reason unavailable), 520 (became traded over the counter), 

551–573 and 580 (various reasons), 574 (bankruptcy), 580 (various reasons), and 584 (does not meet exchange 

financial guidelines)—the delisting return is assigned to be -30%.  If the delisting code is not in the 500s, the last 

return is set to -1.0. 
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0.288% with t = 3.33, respectively.18  The positive and significant alphaIML after controlling for 

SMB, whose slope coefficient is positive and highly significant, means that the illiquidity 

premium is in excess of the size premium, which itself is partially due to small stocks’ illiquidity.  

HML’s positive slope coefficient suggests a positive relation between illiquidity and the book-to-

market ratio. This is consistent with the finding of Fang, Noe, and Tice (2009) on the negative 

relation between illiquidity and the inverse of book-to-market ratio.   

Panel C presents out-of-sample estimates of one-month-ahead alphaIML,t.  We first 

estimate the coefficients of Model (1) over a rolling window of past 60 months up to month t - 1 

and then use the estimated factors’ coefficients βt-1 to calculate alphaIML,t using the realized 

factors returns in month t: 

alphaIML,t = IMLt – [βRMrf,t-1*RMrft + βSMB,t-1*SMBt + βHML,t-1*HMLt + βUMD,t-1*UMDt] . 

This procedure is repeated by rolling forward the 60-month estimation window one month at a 

time.  The statistics of the series alphaIML,t are presented for January 1952 through December 

2017 since the first five years are used to estimate the first set of β values. The mean of out-of-

sample alphaIML,t is 0.356% per month with t = 5.87.  For the first and second subperiods, the 

mean alphaIML,t is 0.487% with t = 5.36 and 0.242% with t = 3.00, respectively, all statistically 

significant. The medians are close to the means, and the fraction of positive values of alphaIML,t 

is significantly greater than 0.50, the chance result, for the entire period and for each of the two 

subperiods.  

In Panel D we estimate Model (1) separately for each of the two illiquidity factors, 

IMLILLIQ,t and IMLZERO,t. The respective risk-adjusted returns are alphaILLIQ = 0.391% per month 

(t = 6.00) and alphaZERO = 0.291% (t = 4.03), both highly significant, for the entire sample period. 

The estimated alphaILLIQ and alphaZERO are also positive and significant for each of the two 

subperiods. This result indicates that the positive and significant risk-adjusted IML return is not 

confined into one particular measure of illiquidity.19 

 

3. The pricing of conditional IML risk 

                                                 
18 The decline in the illiquidity premium over time is shown in Amihud (2002) and Ben Refael, Kadan, and Wohl 

(2015). 
19 Our main empirical results are also robust to choosing IMLILLIQ,t,  IMLZERO,t, or their average, i.e., IMLt. See 

Section 4.2. 
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We test an asset pricing model that includes the conditional systematic risk of the 

illiquidity return premium factor IML. The test is whether investors require higher expected 

returns on stocks whose conditional βIMLs rise in times of higher anticipated funding illiquidity 

and distress. This prediction follows from Brunnermeier and Pedersen’s (2009) proposition that 

the opportunity cost of illiquidity rises in times of funding illiquidity or financing constraints. 

3.1 Methodology and test procedure 

We follow the methodology of Cochrane (1996; 2005, Ch. 8) and LL, which estimates 

and tests asset pricing models with conditioning information proxied by a lagged instrument 

variable.20 These studies propose the following conditional asset pricing model:21  

mt = at-1 + bt-1*Ft = a0 + a1*zt-1 + (b0+b1*zt-1)*Ft = a0 + a1*zt-1 + b0*Ft +  b1*(zt-1*Ft),  (2) 

where mt is the stochastic discount factor, Ft is the pricing factor, and at-1 and bt-1
 are parameters 

that can vary over time and are modeled to depend on zt-1, a conditioning variable that 

summarizes the investors’ information set in time t-1. In Model (2), Cochrane and LL transform 

a one-factor conditional model with time-varying coefficients (the first equality) into a three-

factor unconditional model of zt-1, Ft, and zt-1*Ft with fixed coefficients (the last equality), where 

zt-1*Ft is a scaled factor.22 The scaling instrument zt-1 is selected among instruments that forecast 

the pricing factor Ft and enter the model significantly. For zt, researchers employ variables that 

forecast the market excess return: Cochrane (1996) and Ferson and Harvey (1999) employ the 

dividend/price ratio, the term spread of interest rates, and the corporate bond default yield spread 

(similar to our SP), and LL employ cay, the consumption/asset ratio. 

 The conditional asset pricing Model (2) is equivalent to the following conditional beta 

representation (based on the first equality): 

Et-1[(rj - rf)t]= γ0,t-1 + γF,t-1*βF,j,t-1,     (3)   

where Et-1 is conditional expectation in time t-1, (rj - rf)t is stock j’s excess return over the risk-

free rate rft,  γ0,t-1 is the excess return of a zero-beta portfolio over the risk-free rate, and γF,t-1 and 

βF,j,t-1 are, respectively, the conditional price of risk factor F and conditional exposure of stock j 

                                                 
20 See also Ferson and Schadt (1996), Jagannathan and Wang (1996), and Ferson and Harvey (1999). 
21 For the ease of exposition, we use here a single-factor asset pricing model. Our implementation of the asset 

pricing tests in Section 3.2 employs a multi-factor asset pricing model with the FFC and the IML factors. 
22 Cochrane (2005, p. 144) proposes: “To express the conditional implications of a given model, all you have to do is 

include some well-chosen scaled … portfolio returns… [y]ou can just add new factors, equal to the old factors 

scaled by the conditioning variables and … forget that you ever heard about conditioning information.” 
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to F. Model (2) is also equivalent to the following unconditional multifactor beta representation 

(based on the last equality with the scaled factor zt-1*Ft):  

E[(rj - rf)t]= E[γ0,t]+ γz*βz,j+ γF*βF,j+ γFz*βFz,j ,    (4)     

where E is unconditional expectation, βz,j, βF,j, and βFz,j are the slope coefficients from a time-

series regression of (rj - rf)t on zt-1, Ft, and zt-1*Ft, respectively, and γz, γF, and γFz are their 

associated coefficients in Model (4). Importantly, testing whether γFz is significantly different 

from zero tests whether the conditioning of Ft by zt-1 enters the conditional asset pricing model in 

Model (2) significantly. After estimating and testing γFz, we compute the conditional price of F 

risk (= γF,t-1 in Equation (3)) using the estimates of all γ coefficients from Model (4). LL show 

(pp. 1247-1249) that the conditional price of F risk can be computed as follows:  

γF,t-1 = -(γ0,t-1+ rft-1)*Vart-1[Ft]*(b0+b1*zt-1),    (5)    

        b = -{E[γ0,t+ rft ]*Cov[SFt]}
-1*γ, 

where the three column vectors are defined as b = [a1, b0, b1]', SFt =[zt-1, Ft, zt-1*Ft]', and γ = [γz, 

γF, γFz]', and Vart-1 is the conditional variance and Cov is the unconditional covariance matrix. 

(We use bold-face letters to denote vectors and matrices.) Thus the conditional price of the F risk 

(=γF,t-1) is a function of the scaling instrument zt-1. LL also assume that the conditional risk 

exposure to F is also a function of zt-1. Based on Models (2)-(4), for zt = cayt and Ft = RMrft , LL 

find that γFz is significant and the average of conditional price of F risk is also positive, 

concluding that their conditional version of the CAPM empirically outperforms the 

unconditional CAPM. We follow the same procedure using zt = SPt and Ft = IMLt with added 

controls for commonly-used factors’ risks and stock characteristics in estimating Model (4). 

Following Cochrane (2005) and LL, we select a conditioning variable which forecasts the 

factor whose conditional systematic risk is being studied and whose value can be observed by 

investors prior to making their pricing decision. Our scaling instrument SP, the BAA-AAA 

corporate bond yield spread (in percent points), significantly forecasts the illiquidity return 

premium factor IML. SP is available for the entire sample period of January 1947 through 

December 2017 from the St. Louis Federal Reserve Bank database. The scaling variable is Z1t = 

maSPt,23 the mean-adjusted SPt using the mean over of the preceding ten years. In a regression of 

IMLt on Z1t-1 (and a constant), the slope coefficient of maSPt-1 is 0.788 with t = 2.84 for the 

                                                 
23 We follow here Lettau and Ludvigson (2001) who use the mean-adjusted value of their scaling variable cay and 

Cochrane (1996, p. 588) who similarly transforms his scaling variable, the dividend/price series.   
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sample period.24 The positive effect of SPt-1 on the expected illiquidity premium is consistent 

with Brunnermeier and Pedersen’s (2009) proposition that in financial distress and lower funding 

liquidity, the market illiquidity and its shadow price or premium rise. It is also consistent with SP 

forecasting adverse economic conditions (Gilchrist and Zakrajšek, 2012). The value of SPt-1 is 

available continuously thus SP satisfies Cochrane’s (2005, p. 143) requirement that the 

conditioning variable should be a part of the investors’ information set in time t-1.   

The testing procedure is as follows. In the first stage, we estimate a time-series factor 

model for each stock j over a rolling window of 60 months beginning with the period of January 

1947 to December 1951:  

(rj - rf)t = β0j + βRMrf,j*RMrft + βSMB,j*SMBt + βHML,j*HMLt + βUMD,j*UMDt 

+ βIML,j*IMLt + βIMLZ1,j*IMLt*Z1t-1+ βZ1,j*Z1t-1 ,   (6) 

where rft is one-month U.S. T-bill rate and the model includes the scaled factor IMLt*Z1t-1 to 

capture the time-variations in conditional IML risk exposure and its risk premium. In the second 

stage, in each month s that follows the 60-month estimation window, we employ the Fama-

Macbeth (1973) procedure of estimating a cross-sectional regression of stock excess returns (rj - 

rf)s on the seven β coefficients that are estimated in Model (6) and on six lagged stock 

characteristics: 

(rj - rf)s  = γ0,s + γRMrf,s*βRMrf,j,s-2 + γSMB,s*βSMB,j,s-2 + γHML,s*βHML,j,s-2 + γUMD,s*βUMD,j,s-2 

+ γIML,s*βIML,j,s-2 + γIMLZ1,s*βIMLZ1,j,s-2 + γZ1,s*βZ1,j,s-2  

+ δ1,s*ILLIQmaj,s-2 + δ2,s*StdDevj,s-2 + δ3,s*BMj,s-2 

+ δ4,s*Sizej,s-2 + δ5,s*R12lagj,s-2 + δ6,s*R1lagj,s-1.    (7) 

The six stock characteristics in Model (7) are: (1) ILLIQma, the mean-adjusted stock illiquidity. 

This variable is the ILLIQ value of stock j calculated over a twelve-month period divided by the 

mean of all stocks’ ILLIQ values for that period.25 (2) StdDev, return volatility, measured by the 

standard deviation of daily stock returns over a twelve month period. Volatility is known to be 

positively correlated with ILLIQ and it has its own effect on the cross-section of stock returns 

(Amihud, 2002; Ang et al., 2006). For the calculation of ILLIQ and StdDev, we require to have 

more than 200 days of valid return and volume data, as we did in the construction of IML. (3) 

                                                 
24 Conducting the diagnostic test of Amihud and Hurvich (2004) we find no evidence of a finite-sample bias in the 

slope coefficient due to high autocorrelation in the predictive variable. 
25 This adjustment keeps the mean of ILLIQma stable at 1.0 in all months. See Amihud (2002), and Amihud, 

Hameed, Kang, and Zhang (2015).  
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BM (in logarithm), the book-to-market ratio, using the book value from the firm’s annual 

financial report (data are from Compustat) known as of the end of the previous fiscal year and 

the market value as of December of the year before the year of analysis. Following Fama and 

French (1992), we exclude stocks with negative book values. (4) Size, the logarithm of market 

capitalization. (5) R12lag, the lagged return over eleven months from month s-2 to month s-12 to 

capture the momentum effect. (6) R1lag, the stock return in month s-1 to capture the short-term 

reversal effect. 

Model (7) is estimated over 66 years (792 months), January 1952 through December 

2017. The estimations and tests employ the following three methods:  

(1) Ordinary least squares (OLS), which is commonly used in Fama–Macbeth regressions. 

(2) CGS, the method of Chordia, Goyal, and Shanken (2017) that corrects for the bias in the 

estimation of the γ coefficients which is due to the EIV problem by the estimated β coefficients.26 

This is particularly important since our test assets are individual stocks instead of widely used 

stock portfolios. 

(3) Weighted least squares (WLS), following Asparouhova et al. (2010), to account for possible 

bias due to microstructure noise which inflates the average return of illiquid stock. The weights 

are proportional to the prior month’s gross return, 1 + rj,s-1. 

 Using the estimates of γ (including intercept) from Model (7) we compute the time-series 

of the monthly conditional price of risk of IML employing Equation (5) (in a multi-factor 

version), and then test whether its mean is significantly different from zero.27 Our hypothesis is 

that the mean conditional price of risk is positive.  

The detailed procedure for the conditional price of risk of IML is as follows. First, using 

the estimates of γ = [γZ1, γRMrf, γSMB, γHML, γUMD, γIML, γIMLZ1]' from Model (7) and based on 

Equation (5),28 we compute b = -{E[γ0,t+ rft ]*Cov[SFt]}
-1*γ, where the 7x1 column vectors are 

                                                 
26 This method follows the bias-correcting method of Litzenberger and Ramaswamy (1979) and Shanken and Zhou 

(2007). It relies on White’s (1980) heteroscedasticity-consistent covariance matrix estimator for the OLS estimates 

of the β values and corrects for the EIV-induced bias in the OLS cross-sectional estimates of the γ values. In a 

single-factor model, the EIV problem induces downward bias in the (absolute) value of the γ coefficient. In a 

multifactor model, the directions of the EIV-induced biases depend not only on the variances of the β estimation 

errors but also on their covariances. Our estimation involves the covariance matrix of the estimated β values. 
27 For their calculation, LL assume that the conditional variance of market factor and zero-beta rate, which are 

Vart-1[Ft] and γ0,t-1+rft-1 in Equation (5), respectively, are approximately constants. We allow the zero-beta rate to 

vary over time and compute rolling sample covariance matrix for conditional covariance matrix of the FFC and IML 

factors for each month using the realizations of those factors over the preceding 36 months.   
28 We use the intercept in Model (7) for γ0,t in Equation (5). 
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defined as b = [a1, b0,RMrf, b0,SMB, b0,HML, b0,UMD, b0,IML, b1,IML]' and SFt = [Z1t-1, RMrft, SMBt, 

HMLt, UMDt, IMLt, Z1t-1*IMLt]', unconditional E[γ0,t+ rft ] is estimated by taking its average, and 

unconditional Cov[SFt] is estimated by taking the sample covariance matrix of SFt over the 

entire sample period. Then, defining the two 5x1 column vectors b0= [b0,RMrf, b0,SMB, b0,HML, 

b0,UMD, b0,IML]' and b1= [0, 0, 0, 0, b1,IML]' from the estimated b, we compute the conditional price 

of F risk (= γF,t-1); the 5x1 column vector γF,t-1 = -(γ0,t-1+ rft-1)*Covt-1[Ft]*(b0+b1*Z1t-1) as in 

Equation (5), where Ft = [RMrft, SMBt, HMLt, UMDt, IMLt]' and conditional Covt-1[Ft] is 

estimated by taking the sample covariance matrix of Ft over the preceding 36 months in month t-

1. Finally, the last element in the calculated vector γF,t is the monthly conditional price of the 

IML risk in month t. While Models (4) and (5) include no stock characteristics, our Model (7) 

controls for the effects on expected return of six commonly-used stock characteristics. As a 

robustness check, we also calculate the conditional price of IML risk with the γ estimates 

obtained from Model (7) without the stock characteristics and find that the results are 

qualitatively similar. 

We employ NYSE/AMEX-listed stocks that satisfy our requirement of having data for all 

the variables in Model (7) and their prices in month s-1 are between $5 and $1000. We then trim 

stocks whose ILLIQ is in the extreme 1% or whose estimated βs are in the 0.5% of each tail of 

the distribution (for each β). We end up having on average 718.8 stocks for the monthly cross-

sectional regressions in Model (7), ranging between 174 and 1084 stocks. Stock returns in the 

monthly cross-sectional regressions are corrected for potential bias due to delisting (or 

survivorship) using Shumway’s (1997) procedure.  

Table 2 presents summary statistics for the 13 explanatory variables in Model (7) that 

include seven β coefficients and six stock characteristics. In the left two columns, we present the 

average of the monthly means and monthly standard deviations that are calculated across all 

stocks in each month s over the 792 months of our sample period, 1952-2017. The right panel 

presents the averages of the monthly pairwise cross-stock correlations among some variables. 

 

INSERT TABLE 2 

 

3.2. Tests results of the pricing of conditional IML risk 
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Our hypothesis is that γIMLZ1 in Model (7) is positive29 and significant and that the average 

of the conditional price of IML risk in Equation (5) is also positive and significant, implying that 

stock expected return is positively affected by its conditional exposure (βIML) to the IML factor in 

times of financial distress. Similar to LL (p. 1266) who suggest that the pricing of the conditional 

market beta “… may be attributable to time variation in risk aversion… or time variation in risk 

itself,” the pricing of conditional βIML can be attributable to the time variation in illiquidity 

premium or variation in illiquidity risk itself.   

The tests of Model (7) that are estimated by the three methods: OLS, CGS, or WLS, 

employ the following two statistics: 

(i) The mean of the monthly slope coefficients and its t-statistic 

(ii) The precision-weighted mean and the respective t-statistic. The weights are proportional to 

the reciprocal of the standard errors of the slope coefficients from the monthly cross-sectional 

regressions, thus more precisely estimated monthly slope coefficients have greater weights.30  

Ferson and Harvey (1999) propose this weighting method to improve the efficiency of the slope 

coefficients estimated by the Fama-Macbeth procedure and mitigate the problem of 

heteroskedasticity. 

INSERT TABLE 3 

 Consistent with our hypothesis, we find in Table 3 that γIMLZ1 is positive and highly 

significant, suggesting that the IML systematic risk conditional on times of financial distress 

enters the asset pricing model significantly. These results hold under all three estimation 

methods: OLS, CGS, and WLS. Specifically, we find that the OLS estimated mean of γIMLZ1 is 

0.062% (t = 3.17) and its precision-weighted mean is 0.040% (t = 3.20).  For the CGS method, 

the mean and precision-weighted mean of γIMLZ1 are 0.060% (t = 3.52) and 0.043% (t = 3.72), 

respectively. For the WLS method, the mean and precision-weighted mean of γIMLZ1 are close to 

those under the OLS method.  

                                                 
29 Suppose that the conditional βIML (= βIML,j,t-1) is modeled as βIML,j,t-1 = βIML0,j + βIMLZ1,j* Z1t-1 for stock j and that a 

bad state is signified by Z1t-1 > 0 in time t-1. Then a higher value of βIMLZ1,j implies a higher value of βIML,j,t-1 across 

stocks in the bad state. Thus a positive value of γIMLZ1 in Model (7) is consistent with the positive pricing of 

conditional βIML in the bad state. 
30 For the weighted mean of the monthly slope coefficients estimated by the CGS method, we use as weights the 

reciprocals of the standard errors of monthly OLS cross-sectional regressions. Chordia et al. (2015) find, through 

simulations, that the Fama–MacBeth standard error estimates by OLS method are practically identical to the true 

standard deviations of the EIV-corrected slope coefficients by the CGS method.  
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We now compute the time-series of the monthly conditional price of risk of IML 

(following the methodology in Equation (5)) using the CGS estimates of Model (7) that includes 

the βs of the four FFC factors as well as the βs of IML, IML scaled by the instrument Z1, and Z1. 

Using the procedure whose details are presented in Section 3.1 above, we find that the average 

conditional price of IML risk is positive at 0.108% per month (= 1.30% per year) with t = 3.34, 

highly significant. We then estimate a time-series regression of the conditional price of IML risk 

on HimaSPt-1, a constant, and RMrft (as a control for the state of the overall market) where 

HimaSPt = 1 when maSPt > 0 (= 0 otherwise). We find that the coefficient of HimaSPt-1 is 

positive and highly significant at 0.239% per month (= 2.87% per year) with t = 3.73.31 That is, 

the conditional price of risk of the IML factor rises significantly in times of financial distress, as 

we propose. 

As a robustness check we calculate the monthly time-series of conditional price of IML 

risk using the CGS estimates of γ coefficients in Model (7) without the six stock characteristics 

and find that the test results are stronger. The average conditional price of IML risk is 0.219% 

per month (= 2.63% per year) with t = 4.60, highly significant. In a time-series regression of the 

monthly conditional price of IML risk on HimaSPt-1 and RMrft, the coefficient of HimaSPt-1 is 

0.376%  (= 4.51% per year) with t = 4.38, indicating again that the price of IML systematic risk 

rises significantly in times of financial distress. 

Notably, none of the unconditional systematic risks of the four FFC factors – βRMrf, βSMB, 

βHML, and βUMD— is significantly priced.  It is also notable that the positive and significant price 

of IML risk is estimated after controlling for illiquidity as a characteristic. We find that the slope 

coefficient δ1 of ILLIQma is positive and significant: By the OLS estimate, δ1 is 0.041% with t = 

2.58.  The other stock characteristics are all significantly priced with signs that have been 

observed in earlier studies. By the OLS estimate, the slope coefficients of StdDev, BM, Size, 

R12lag, and R1lag are -27.935% (t = -4.25), 0.098% (t = 2.45), -0.086% (t = -3.82), 1.116% (t = 

6.77), and -5.047% (t = -14.99), respectively. 

To test whether the unconditional βIML is priced across stocks we estimate a special case 

of Models (6) and (7) where we set to zero the β coefficients of the Z1-related variables in Model 

(6) and the corresponding γ coefficients in Model (7). The estimations of these models provide 

                                                 
31 When excluding RMrft, we find that the coefficient of HimaSPt-1 remains positive and highly significant at 0.238% 

with t = 3.70. Conducting the diagnostics based on Amihud and Hurvich (2004), we find no evidence of small 

sample bias in the estimated slope coefficient of HimaSPt-1. 
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five time-series of monthly risk prices on the unconditional factor βs: γRMrf,s, γSMB,s, γHML,s, γUMD,s, 

and γIML,s. We find that the means and t-statistics of these γ coefficients by the CGS method for 

the FFC factors are as follows: γRMrf,s is 0.210% (t = 2.44); γSMB,s is 0.618% (t = 1.22); γHML,s is 

0.093% (t = 1.94); and γUMD,s is -0.039% (t = -0.58). Importantly, for the pricing of the 

unconditional βIML we find that γIML,s is 0.043% (t = 0.94) which is positive but insignificant. This 

indicates that investors do not require significantly higher expected returns on stocks whose βIMLs 

are unconditionally higher. This result is similar to the findings of Cochrane (1996) and LL on 

the significant pricing of the conditional β of their pricing factors while the unconditional β is not 

significantly priced. 

We conclude that across stocks there is a positive and significant risk premium on the 

conditional systematic risk of the illiquidity return factor IML which rises in times of financial 

distress.    

 

4. Robustness tests  

We present six robustness tests of the positive pricing of the conditional βIML that rises in 

times of financial distress.  

1) Using the baseline Model (7), we examine whether the test results are consistent over time by 

splitting the sample period of 66 years into two non-overlapping subperiods of 33 years each and 

testing our hypothesis separately in each subperiod.  

2) We test whether the results are robust to the measure of illiquidity by separately testing, using 

either IMLILLIQ or IMLZERO,  whether γIMLZ1 and the average of conditional price of IML risk are 

positive and significant when doing the analysis with either IMLILLIQ or IMLZERO.  

3) We test whether the pricing of conditional βIML remains positive and significant after 

expanding the baseline model by conditioning each of the FFC factor βs on Z1t-1 as we do for 

IML. We also test whether the conditional βIML is uniquely priced compared to the other 

conditional βs. 

4) We test whether the pricing of conditional βIML remains positive and significant after 

expanding the baseline model with three liquidity-based factors that were proposed in earlier 

studies, allowing their βs and risk premiums to be conditional on Z1t-1 as we do for IML.  
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Next, we do two tests in which we replace the scaling variable Z1t by other scaling 

variables that are related to financial distress and re-estimate the baseline models of Table 3. We 

use the following alternative scaling variables: 

5) We use as a conditioning variable Z2t = dSPt
+, the positive change or the rise in SPt.  Then, 

finding that the coefficient of βIMLZ2 and the average of associated conditional price of IML risk 

are positive and significant implies a positive pricing of the conditional IML risk when financial 

conditions worsen.  

6) We use for the conditioning variable Z3t the broker-dealer loans series that includes their 

margin loans in excess of total loans. This choice of scaling variable is motivated by 

Brunnermeier and Pedersen’s (2009) theory which is based on the effect of margin loan 

constraint on the rise in illiquidity and in its premium. 

In these robustness tests, we find that the slope coefficient of βIMLZ is positive and highly 

significant and that the average of conditional price of IML risk is also positive and significant as 

we find them to be for the baseline model in Table 3, indicating that the pricing of conditional 

βIML in times of financial distress or funding illiquidity is fairly robust. 

 

4.1 Testing the baseline model over two subperiods.   

We test whether the positive and significant pricing of conditional βIML in times of 

financial distress is consistent over time. We split the sample period of 66 years (January 1952 

through December 2017) into two equal subperiods of 33 years and repeat our tests for each 

subperiod separately. This can be viewed as an out-of-sample test of the pricing of conditional 

βIML over the second subperiod after having observed its pricing in the first subperiod. The test 

results for γIMLZ1 are presented in Table 4 using the CGS bias-correcting method. We find that in 

both subperiods, the means and precision-weighted means of γIMLZ1 are positive and significant. 

Then for each of the two subperiods, we compute the time-series of the monthly conditional 

price of risk of IML (following Equation (5)) using the corresponding CGS estimates of γs.32  

We find that the averages of the monthly conditional price of IML risk is 0.111% with t = 

2.38 and 0.113% with t = 2.33 for the first and second subperiod, respectively. Notably, the 

economic magnitudes of those average conditional prices of IML risk are similar in both 

subperiods indicating consistency over time in the pricing of conditional βIML. The power of the 

                                                 
32 We apply the procedure detailed in Section 3.1 for each subperiod separately. 



 

 

18 

subperiod tests is naturally lower than it is when we use the entire sample period. In time-series 

regressions of the monthly conditional price of IML risk on HimaSPt-1 and RMrft we find that the 

coefficient of HimaSPt-1 is 0.192% (t = 2.01) and 0.334% (t = 3.30) for the first and second 

subperiod, respectively. 

 

INSERT TABLE 4 

 

4.2. Separate tests using IMLILLIQ or IMLZERO.  

We test whether the results are robust to the illiquidity measures that we use in 

constructing the illiquidity return factor IML. We replace IMLt in Model (6) by either IMLILLIQ,t 

or IMLZERO,t and then use the estimated βs of either of these factors in Model (7). The test results 

are qualitatively similar to those reported in Table 3, that is, we find positive and significant 

slope coefficients of βIMLZ1 with either IMLILLIQ or IMLZERO. For example, under the CGS method, 

the mean γIMLZ1 is 0.054% (t = 3.06) or 0.060% (t = 3.18) when using IMLILLIQ or IMLZERO, 

respectively. The average conditional price of risk of IML is positive and significant for either 

IMLILLIQ or IMLZERO being 0.091% (t = 3.15) for IMLILLIQ or 0.143% (t = 4.06) for IMLZERO. In 

time-series regressions of the conditional price of IML risk on HimaSPt-1 (and RMrft as a control), 

we find that the coefficient of HimaSPt-1 is 0.203% (t =3.56) when using IMLILLIQ or 0.273% (t = 

3.91) when using IMLZERO. These results demonstrate that the significant pricing of conditional 

βIML in times of financial distress is robust to the measures of illiquidity used. 

 

4.3. Tests using the conditional βs of the four FFC factors  

This section provides two tests.  First, we test whether the pricing of the conditional βIML 

remains positive and significant when we allow for the β of each of the four FFC factors to be 

estimated conditional on Z1 in the same way as we estimate conditional βIML. Second, we test 

whether the pricing of conditional β with maSP as a conditioning variable is unique to the IML 

factor by testing whether the conditional βs of the FFC factors are also consistently and 

significantly priced. 

The test is conducted as follows. For each factor FF, FF = RMrf, SMB, HML, or UMD, 

we add to Model (6) the term βFFZ1*FFt*Z1t-1 and estimate βFFZ1 together with all the other βs. 

Then, we add βFFZ1 to Model (7) and estimate its slope coefficient γFFZ1 together with the 
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coefficients of all the other variables in Model (7). We first test whether the slope coefficient of 

βIMLZ1 or βFFZ1 is positive and significant. Second, if conditioning of IMLt or FFt on maSPt-1 

enters the asset pricing model significantly, we conduct the estimations and tests on the 

conditional price of IML or FF risk.  

We have two important findings that are presented in the Appendix Table A.1. First, the 

pricing of conditional βIML remains positive and highly significant regardless of which of the 

FFC factors’ conditional βs is added to Model (7). For example, in the model that includes the 

conditional β of FF which is either RMrf, SMB, HML, or UMD, the precision-weighted mean of 

γIMLZ1 is 0.039% (t = 3.28), 0.043% (t = 3.66), 0.042% (t = 3.55), or 0.041% (t = 3.49), 

respectively, using the CGS method.  Then we estimate the average of the time-series of monthly 

conditional price of risk of IML  (following Equation (5)) in a model that includes the conditional 

βFF for FF = RMrf, SMB, HML, or UMD. We find that the average price of the conditional IML 

risk remains positive and significant being, respectively, 0.120% (t = 3.70), 0.128% (t = 3.42), 

0.097% (t = 3.16), or 0.092% (t = 2.96).  In a time-series regression of the conditional price of 

IML risk on HimaSPt-1 and RMrft, we find that the corresponding coefficient of HimaSPt-1 is 

0.242% per month (t = 3.74), 0.264% (t = 3.56), 0.232% (t = 3.81), or 0.230% (t = 3.73), which 

demonstrates the robustness of positive and significant pricing of conditional βIML in the presence 

of the conditional risk of the FFC factors. 

Second, the significant and positive pricing of the conditional β is unique to IML as none 

of the conditional βs of the FFC factors is consistently priced.33 This supports our proposition on 

the link between the pricing of the exposure to the illiquidity factor IML and financial distress or 

funding illiquidity, following Brunnermeier and Pedersen (2009). Detailing the slope coefficient 

of βFFZ1 for FFt = RMrft, SMBt, HMLt, or UMDt, we find under the CGS method that the 

precision-weighted means of γFFZ1 are as follows:  γRMrfZ1 = -0.041% (t = -1.47), γSMBZ1 = 0.010% 

(t = 0.91), γHMLZ1 = 0.021% (t = 1.79), and γUMDZ1 = -0.008% (t = -0.50). This indicates that 

conditioning of FFt on maSPt-1 enters none of the corresponding asset pricing models 

significantly for FFt = RMrft, SMBt, HMLt, or UMDt.34
 In addition, the test results in Table 3 

show that the unconditional βs of these FFC factors are not significantly priced.  

                                                 
33 These results hold both for the entire sample period and for each of the two subperiods. 
34 We further investigate the model which includes SMBt*Z1t-1 given the positive correlation between illiquidity and 

size. For the two equally split subperiods, the precision-weighted means for γIMLZ1 and γSMBZ1 are, respectively, 

0.033% (t = 2.12) and -0.006% (t = -0.40) for the first subperiod and 0.052% (t = 3.01) and 0.026% (t = 1.54) for the 
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We conclude that the pricing of the conditional βIML in times of financial distress remains 

positive and significant in the presence of the conditional βs of the FFC factors and that this 

pricing of conditional β is unique to IML.  

  

4.4. The pricing of the conditional βIML and the conditional βs of other liquidity factors 

We add to our model liquidity-based factors that were used in earlier studies and test 

whether the pricing of the conditional βIML remains positive and significant in the presence of the 

conditional βs of other liquidity-based factors.35 For each of these factors, denoted LFt, we add to 

Model (6) βLF*LFt + βLFZ1*LFt*Z1t-1. We estimate this augmented model over a rolling 60-month 

period, and add the estimated coefficients βLF and βLFZ1 to the cross-sectional regression in Model 

(7). Finally, we estimate the slope coefficients of these βs, γLF and γLFZ1, together with the slope 

coefficients of all the other βs and stock characteristics in Model (7). 

We use three liquidity-based factors that were presented in earlier studies. The first two 

are traded factors that represent a liquidity-based return premium as does IML, and the third is a 

non-traded factor that represent shocks to market-wide (il)liquidity. The three liquidity factors 

are: 

(i) PS, a traded liquidity risk factor due to Pastor and Stambaugh (2003). It is the value-weighted 

average return on the high-minus-low decile portfolios obtained by sorting stocks on the β values 

which are obtained from a regression of each stock return series on innovations in the aggregate 

liquidity index that they propose. This factor has a positive and significant excess return.  PS, 

available from Lubos Pastor’s homepage,36 begins on January, 1968.  

(ii) LIU, a traded illiquidity premium factor proposed by Liu (2006). It is the differential return 

between illiquid and liquid stocks, using Liu’s liquidity measure that is based on non-trading 

days and turnover.  The time series of LIU, kindly provided by the author, is available from 

January, 1947 to December, 2014. The correlation of LIU and IML is 0.46.  While both IML and 

LIU measure the return premium on illiquid-minus-liquid stocks, they differ not only in 

                                                                                                                                                             
second subperiod.  Also, while γHMLZ1 is positive and significant at the 10% level for the entire sample period as 

reported above, this result is not robust across the two subperids. Under the CGS method, the precision-weighted 

means of γHMLZ1 are 0.006% (t = 0.39) and 0.034% (t = 1.87) for the first and second subperiods, respectively. In 

contrast, the precision-weighted means of γIMLZ1 are 0.034% (t = 2.14) and 0.050% (t = 2.84), respectively, both 

being positive and significant.  
35 Notably, while we use individual stocks as test assets, earlier studies employ as test assets stock portfolios sorted 

on some characteristics. 
36 http://faculty.chicagobooth.edu/lubos.pastor/research/liq_data_1962_2017.txt 

http://faculty.chicagobooth.edu/lubos.pastor/research/liq_data_1962_2017.txt
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underlying illiquidity measures but also in their construction. Compared to IML, LIU reflects the 

returns on more extremely illiquid and liquid stocks without controlling for stock return volatility 

(StdDev).37  

(iii) dMILLIQ, the first-order difference of the logarithm of monthly market illiquidity MILLIQ, 

a non-traded factor. MILLIQ is the average over the days of each month of the value-weighted 

average of daily ILLIQ across the stocks that satisfy our data requirements.38 This series is 

available for the entire sample period of our analysis. Testing whether the systematic risk of 

market-wide illiquidity shocks is priced is related to the analyses of Pastor and Stambaugh 

(2003), Acharya and Pedersen (2005), and Watanabe and Watanabe (2008). 

INSERT TABLE 5 

We find that the conditional βIML is positively and significantly priced in all model 

specifications with any of the alternative liquidity factors. Table 5 presents the test results of the 

slope coefficient of βIMLZ1 in the presence of βLF  and βLFZ1, the βs of the other liquidity factors 

and their scaled factors, LF = PS, LIU, or dMILLIQ. To save space we present the results only 

under the CGS estimation method for the slope coefficients of the liquidity-related βs. The cross-

sectional regression models include all the other βs and stock characteristics in Model (7). We 

find that the slope coefficient of βIMLZ1 remains positive and highly significant in the presence of 

the three alternative liquidity-related βs. Then, using the CGS estimates of γs in Model (7), we 

compute the conditional price of IML risk (following Equation (5)) in the presence of the βs of 

LF = PS, LIU, or dMILLIQ. We find that the average of monthly conditional price of IML risk is 

0.140% (t = 3.41), 0.079% (t = 2.61), or 0.091% (t = 2.84), respectively. Estimating time-series 

regressions of the conditional price of IML risk on HimaSPt-1 and RMrft, the corresponding 

coefficient of HimaSPt-1 is 0.342% per month (t = 4.20), 0.207% (t = 3.43), or 0.216% (t = 3.37). 

In contrast, none of conditional βs of the other liquidity factors is significantly and 

consistently priced. In Table 5, none of the means of the γLFZ1 coefficients is significant, 

indicating that conditioning of LFt by maSPt-1 does not enter the corresponding asset pricing 

model significantly. In addition, we find that the average of monthly conditional price of LF risk  

                                                 
37 LIU is based on extreme decile portfolios sorted on his illiquidity measure with equally weighted returns, while 

IML is based on quintile portfolios double sorted on ILLIQ and StdDev with value-weighted returns. The mean 

return of LIU is nearly halved when using value-weighted returns, see Liu (2006, p. 642).  
38 The value weighting employs the stock capitalization at the end of the preceding month.  Included are common 

stocks (codes 10 and 11) that trade on NYSE/AMEX whose price is between $5 and $1,000 at the end of the 

preceding month. For each day, we delete the 1% of stocks with the highest ILLIQ, which are possible outliers.  
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is -0.103% per month (t = -3.42), -0.019% (t = -0.91), or -0.027% (t = -1.11), respectively, for 

LF = PS, LIU, or dMILLIQ. When running time-series regressions of the conditional price of LF 

risk on HimaSPt-1 and RMrft, we find that the coefficient of HimaSPt-1 is -0.081% (t = -1.32), 

0.065% (t = 1.39), or -0.317% (t = -1.08), respectively, for LF = PS, LIU, or dMILLIQ. 

A question that comes up is why the conditional βIML outperforms the conditional βs of 

the other liquidity-based factors, PS and LIU, in the cross-sectional asset pricing tests. We note 

that Cochrane (1996) and LL select conditioning variables that predict their pricing factors. The 

reason may be that our conditioning variable, lagged maSP, does not predict the factors PS and 

LIU while it does predict IML as shown earlier. Notably, among the liquidity-based factors tested 

only IML satisfies the suggested link by Cochrane (1996) and LL between pricing the factor 

whose conditional risk is being tested and our conditioning variable maSP which captures 

financial distress. Estimating a time-series regression of LFt = PSt or LIUt on maSPt-1, the slope 

coefficient of maSPt-1 is insignificant being, respectively, 0.162 with t = 0.41 and -0.114 with t = 

-0.33. The slope coefficient of maSPt-1 is similarly insignificant when adding RMrft as a control 

variable. 

In summary, we find that the positive and significant pricing of the conditional βIML in 

times of financial distress survives a “horse race” with the conditional βs of other liquidity-based 

factors and that none of them is significantly priced as the conditional βIML is priced. 

 

4.5. Using as a conditioning variable the positive change in SP    

We employ a different scaling variable, the rise in SPt which indicates worsening of a 

financial and economic state.  Denoting by dSPt the first-order difference in SPt, the new 

conditioning variable is Z2t = dSPt
+, which equals dSPt when dSPt > 0 and zero otherwise. We 

estimate Models (6) and (7) using this scaling variable. The associated cross-sectional test results 

on βIMLZ2, presented in Table 6, Panel A, are qualitatively similar to those in Table 3 with Z1t.39 

 By the CGS method the mean and precision-weighted mean of γIMLZ2 are 0.013% (t = 

3.50) and 0.005% (t = 2.56), respectively. Under the OLS and WLS methods, the mean and 

precision-weighted mean are also significantly positive.  Next, we compute the monthly time-

                                                 
39 Employing both dSPt

+ and dSPt
− as conditioning variables does not affect the significance of the slope coefficient 

of βIMLZ2, while the slope coefficient of βIMLZ2’ based on Z2t’ = dSPt
− is insignificant, where dSPt

− equals dSPt when 

dSPt ≤ 0 and zero otherwise. This indicates that the conditioning of IMLt only by Z2t-1 enters the associated 

conditional asset pricing model significantly.  
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series of the conditional price of risk of IML using the CGS estimates of γs in Model (7) that 

employs Z2. We find that the average conditional price of IML risk is 0.080% per month (= 

0.96% per year) and significant with t = 2.25. In a time-series regression of the monthly 

conditional price of IML risk on HidSPt-1
+ and RMrft, we find that the coefficient of HidSPt-1

+
 is 

positive at 0.280% per month (=3.36% per year) and highly significant with t = 3.99, where 

HidSPt
+ = 1 if dSPt > 0 and zero otherwise. 

In summary, with this scaling variable that proxies for worsening financial distress, the 

pricing of the conditional βIML remains positive and significant. 

 

INSERT TABLE 6 

 

4.6. Using broker-dealer loans series as a conditioning variable 

 We employ a proxy measure of funding illiquidity or financial constraint based on loans 

made by brokers and dealers that include their margin loans. The use of this proxy is motivated 

by Brunnermeier and Pedersen (2009, p. 2202) who link margin requirements and dealer funding 

to market liquidity.  Here, funding illiquidity is indicated by a decline in broker-dealer loans, 

which include margin loans, relative to a benchmark series of total loans of brokers and dealers.   

We use the following series, available from the Federal Reserve Bank of St. Louis. S1 is the 

series “Security brokers and dealers; other loans and advances; assets” (SBDOLAA)40 that 

includes “margin accounts at brokers and dealers.” S2 is a benchmark loan series, defined as 

“Security brokers and dealers; loans; liability” (series SBDLL).  These series are quarterly, 

available for the period Q1/1952 to Q4/2017. They are generally upward trending with a sharp 

decline at the end of 2008 during the most recent financial crisis. The mean ratio S1/S2 is 0.604, 

the median ratio is 0.619, and the interquartile range is 0.447 to 0.741. The series is highly 

persistent with a first-order serial correlation of 0.88. 

We construct a series of the quarterly change in the ratio of these two series: dS12q = 

(S1/S2)q - (S1/S2)q-1 in quarter q. Next, we examine the economic significance of this series by 

relating it to other economic series. We find the following results. First, dS12q is negatively 

correlated with dSPq, the quarterly change in the yield spread between BAA- and AAA-rated 

                                                 
40 The definitions are available in the web site of the Federal Reserve Bank of St. Louis for the respective series. The 

components of the series SBDOLAA are available from this web site 

https://www.federalreserve.gov/apps/fof/SeriesAnalyzer.aspx?s=FL663069005&t= 

https://www.federalreserve.gov/apps/fof/SeriesAnalyzer.aspx?s=FL663069005&t
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corporate bonds (using the average spread over the quarter). In a regression of dS12q on dSPq, the 

slope coefficient is -0.087 with t = -3.92. This means that in times of financial distress, the series 

that includes broker-dealer margin loans declines relative to the benchmark loan series. Second, 

broker-dealer margin loans increase (decrease) following a rise (fall) in stock prices.  In a 

regression of dS12q on RMrfq-1, the quarterly market excess return, (and an intercept), the slope 

coefficient is 0.192 with t = 3.60. Finally, lagged dS12q negatively and significantly forecasts 

IMLq, the quarterly compounded monthly IMLt. Regressing IMLq on dS12q-1 (and an intercept), 

the slope coefficient of dS12q-1 is -0.119 with t = -2.90 and when adding to the model RMrfq as a 

control, the slope coefficient of dS12q-1 is -0.112 with t = -2.72.  This suggests that a decline in 

broker-dealer margin loans, which indicates financing constraint, forecasts a rise in the expected 

illiquidity premium.  These results are consistent with Brunnermeier and Pedersen’s (2009) 

theory on the effect of the margin loans and financial constraint on the shadow price of liquidity 

and on the effect of shocks to market price on subsequent margin loans.  

We now estimate Model (6) replacing Z1t-1 by Z3t-1 = -dS12q-1, the value of the series in 

the quarter that precedes the quarter of month t. We multiply dS12 by -1 to make Z3 positively 

related to funding illiquidity and financial distress as are Z1 and Z2 above. Since the data on S1 

and S2 are available from Q1/1952, the cross-sectional monthly estimation of Model (7) is 

conducted over the period of August 1957 through December 2017 (725 months). We expect that 

γIMLZ3 is positive and significant and the average of the associated conditional price of IML risk is 

positive and significant as in our earlier analyses.  

The cross-sectional test results in Table 6, Panel B for γIML and γIMLZ3 show that γIMLZ3 is 

positive and significant.41 The mean and precision-weighted mean of γIMLZ3 under the CGS 

method are, respectively, 0.019% with t = 2.15 and 0.012% with t = 2.02.  Under the OLS 

method, the mean and precision-weighted mean of γIMLZ3 are 0.018% (t = 2.13) and 0.012% (t = 

2.03), respectively.  The results are similar under the WLS method. With the CGS estimates of γs 

in Model (7), we compute the monthly conditional price of IML risk as in Equation (5) and find 

that its average is positive at 0.147% per month (=1.76% per year) and is highly significant with 

t = 4.28. When a running time-series regression of the conditional price of IML risk on HiZ3t-1 

                                                 
41 Regarding the pricing of the other factors’ βs, we find that only the means and precision-weighted means of γHML 

are positive and marginally significant at the 10% level under all three estimation methods. 
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and RMrft, we find that the coefficient of HiZ3t-1 is positive at 0.146% per month (=1.75% per 

year) and significant with t = 2.13, where HiZ3t = 1 if Z3t is positive and zero otherwise. 

 In conclusion, using a loan-based conditioning variable that includes broker-dealer’s 

margin loans, we find that the conditional systematic risk of the IML factor is positively and 

significantly priced in times of financial distress and funding illiquidity, which is consistent with 

its pricing evidence when using the corporate bond yield spread. 

 

5. Conclusion 

This paper tests whether the market is pricing the conditional systematic risks of the 

illiquidity return premium factor, denoted IML.  The conditional IML systematic risk (= βIML) and 

its conditional premium are modeled to be functions of financial distress and funding illiquidity 

using as a proxy the yield differential between BAA- and AAA-rated corporate bonds. We find 

that expected returns are higher for stocks with greater sensitivity to the illiquidity return 

premium factor IML in times of greater financial distress and funding illiquidity. This pricing 

evidence of conditional βIML remains robustly positive and significant after controlling for the 

conditional and unconditional βs of the FFC return factors. Further, we find that the pricing of 

the conditional βIML is positive and significant in the presence of the conditional βs of several 

commonly used illiquidity-based factors and of stock characteristics including size and illiquidity. 

Our finding also holds when using an alternative proxy for financial distress and funding 

illiquidity: the (negative of the) difference between the loans made by brokers and dealers, which 

include their margin loans, and a benchmark of their total loans. In all, stock’s greater exposure 

to the IML factor in times of financial distress is positively and significantly priced. 
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 Table 1: Time-series estimation results for the illiquidity return premium factor IML 

(Illiquid-Minus-Liquid)  

IML is the differential return between the highest-illiquidity and lowest-illiquidity quintile 

portfolios of stocks. We sort stocks by either one of the two measures of illiquidity: (1) ILLIQ, 

the average daily values of |return|/dollar volume, or (2) ZERO, the proportion of zero-return or 

no-trading days. Both measures are calculated over a rolling window of twelve months. In each 

month, stocks are first sorted into three portfolios by the standard deviation (StdDev) of their 

daily returns, and within each tercile portfolio, stocks are sorted into five portfolios by ILLIQ or 

by ZERO. This produces 15 (3x5) portfolios for each illiquidity measure.  Value-weighted 

average returns are calculated for each portfolio for each month t using the ranking done in 

month t-2 (i.e., skipping one month after the portfolio formation period). The IML for each 

illiquidity measure is the average return on the three highest-illiquidity quintile portfolios (across 

the volatility portfolios) minus the average return on the three lowest-illiquidity quintile 

portfolios. This produces IMLILLIQ and IMLZERO. Finally, we define IML = (IMLILLIQ + 

IMLZERO)/2. The returns are in monthly percentage points. We use NYSE/AMEX stocks and 

apply some filters (details are provided in the text). Estimations are performed for the entire 

sample period of 71 years (852 months), January 1947 to December 2017, and for each of its two 

equal subperiods. 

Panel A: Statistics on IML returns. The p-values are from tests of whether the fraction of 

positive returns is 0.50, the result due to chance.  All other numbers in parentheses (in all panels) 

are t-statistics, employing robust standard errors (White, 1980). 

Panel B: The intercept alphaIML and the β coefficients of the FFC factors obtained from the 

regression model 

IMLt = alphaIML + βRMrf*RMrft + βSMB*SMBt + βHML*HMLt + βUMD*UMDt + εt , (1) 

RMrf is the market return in the excess of the risk-free rate, SMB and HML are the Fama and 

French (1993) factors of size and the book-to-market (BE/ME) ratio, and UMD is the Carhart 

(1997) momentum factor. (We denote them as FFC factors.) The calculation of t-statistics (in 

parentheses) employs robust standard errors (White, 1980).  

Panel C: Out-of-sample, one-month-ahead rolling alphaIML,t. Model (1) is estimated over a 

rolling window of 60 months beginning in January 1947.  For month 61, alphaIML,t = IMLt – 

[βRMrf,t-1*RMrft + βSMB,t-1*SMBt + βHML,t-1*HMLt + βUMD,t-1*UMDt], using the β values estimated 

from the previous 60-month estimation window. The values of the out-of-sample alphaIML,t begin 

in January 1952.  

Panel D: Estimates of Model (1) separately for IMLILLIQ and IMLZERO. 
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 1947–2017 1947-6/1982 7/1982–2017 

 

Panel A: Statistics on IML 

Mean  0.319 (3.43) 0.385 (2.77) 0.254 (2.05) 

Median  0.277 0.295 0.227 

Fraction positive 0.550 0.549 0.552 

Serial correlation -0.057 -0.040 -0.079 

N 852 426 426 

 

Panel B: Regression of IML on the FFC factors 

alphaIML 0.341 (5.47) 0.441 (4.94) 0.288 (3.33) 

βRMrf -0.287 (-15.59) -0.328 (-13.00) -0.234 (-10.08) 

βSMB 0.606 (18.87) 0.595 (13.56) 0.574 (12.88) 

βHML 0.404 (12.34) 0.468 (8.02) 0.366 (10.00) 

βUMD -0.078 (-3.77) -0.206 (-5.37) -0.006 (-0.26) 

R2 0.61 0.66 0.61 

 

Panel C: One-month-ahead rolling alphaIML,t 

Mean alphaIML,t  0.356 (5.87) 0.487 (5.36) 0.242 (3.00) 

Median 0.330 0.480 0.293 

Fraction positive  0.587 0.617 0.561 

Serial correlation 0.073 0.124 0.017 

N 792 366 426 

 

Panel D: Estimated intercepts (alpha) of Model (1) for IMLILLIQ and IMLZERO 

alphaILLIQ  0.391 (6.00) 0.500 (5.66) 0.328 (3.57) 

alphaZERO 0.291 (4.03) 0.382 (3.75) 0.247 (2.41) 

Both include FFC factors Yes Yes Yes 



 

 

33 

Table 2:   Summary statistics of the variables 
This table presents summary statistics for the seven β coefficients and six stock characteristics that are 

calculated for each stock for each month over 66 years, from January 1952 through December 2017. The 

β coefficients are estimated from the following time-series regression model over a rolling window of 60 

months for each stock j, with the first window being January 1947 to December 1951: 

(rj-rf)t = β0j + βRMrf,j*RMrft + βSMB,j*SMBt + βHML,j*HMLt + βUMD,j*UMDt + βIML,j*IMLt 

         + βIMLZ1,j*IMLt*Z1t-1+ βZ1,j*Z1t-1.       (6) 

The dependent variable is the monthly return on stock j, rj,t, in excess of the risk-free rate rft.  The first 

four factors are those of Fama and French (1993) and Carhart (1997) (see Table 1). The variable IML is 

the return on the illiquid-minus-liquid portfolios (see Table 1). Z1t is the differential yield between BAA- 

and AAA-rated corporate bonds (denoted SPt) in excess of the moving average over the preceding ten 

years. As for stock characteristics, ILLIQma is stock illiquidity (see Table 1), mean adjusted by division 

by the mean of ILLIQ values across all the stocks used in the monthly cross-sectional regressions, and 

StdDev is return volatility, measured by the standard deviation of daily returns. Both ILLIQ and StdDev 

are calculated from daily data over a twelve-month rolling window. The variable BM (in logarithm) is the 

book-to-market ratio, using the book value from the firm’s annual financial report known as of the end of 

the previous fiscal year and the market value as of December of the year before the year of analysis. The 

variable Size (in logarithm) is the market capitalization and R12lag is the lagged cumulative stock return 

over past eleven months. These stock characteristics are lagged, skipping one month, so that, e.g., the 

observation for January, 1952 is obtained from the period that ends on November, 1951. The variable 

R1lag is the one-month lagged stock return. 

 

The table presents the averages of the monthly cross-stock mean and standard deviation, and of the 

monthly pairwise cross-stock correlations among the variables that are used in that month’s cross-

sectional regression. For the right panel, we focus on the three liquidity-based variables: βIML, βIMLZ1, and 

ILLIQma. 

 

 Average of 

cross-sectional…  

Average of cross-sectional  

pairwise correlations between… 

Variable Mean Std. Dev.  βIML βIMLZ1 ILLIQma 

βRMrf 1.023 0.426 0.261 0.030 -0.056 

βSMB 0.355 0.926 -0.587 -0.006 0.186 

βHML 0.199 0.727 -0.394 -0.017 0.050 

βUMD -0.055 0.430 0.175 -0.054 -0.011 

βIML 0.024 1.104 1.000 0.070 0.080 

βIMLZ1 0.054 2.378 0.070 1.000 0.015 

βZ1 0.000 0.053 0.016 -0.136 -0.016 

ILLIQma 1.000 1.757 0.080 0.015 1.000 

StdDev 0.019 0.006 -0.195 0.015 0.214 

BM -0.439 0.629 0.046 0.013 0.231 

Size 20.295 1.450 -0.058 -0.018 -0.642 

R12lag 0.131 0.240 0.016 0.015 0.014 

R1lag 0.011 0.077 0.003 0.011 0.012 
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Table 3: Pricing of stock systematic risks and characteristics in the cross-section 
This table presents the test results of the Fama-Macbeth monthly cross-sectional regressions of Model (7) 

with individual stock returns. For each month s, we estimate a cross-sectional regression of stock excess 

returns (rj - rf)s on the seven β coefficients that are estimated by Model (6) and on the six stock 

characteristics (see Table 2): 

 

(rj - rf)s  = γ0,s + γRMrf,s*βRMrf,j,s-2 + γSMB,s*βSMB,j,s-2 + γHML,s*βHML,j,s-2 + γUMD,s*βUMD,j,s-2 + γIML,s*βIML,j,s-2 

 + γIMLZ1,s*βIMLZ1,j,s-2 + γZ1,s*βZ1,j,s-2 + δ1,s*ILLIQmaj,s-2 + δ2,s*StdDevj,s-2 + δ3,s*BMj,s-2  

 + δ4,s*Sizej,s-2 + δ5,s*R12lagj,s-2 + δ6,s*R1lagj,s-1.       (7) 

 

The model is estimated across stocks over the period from January 1952 through December 2017, that is, 

792 months.  We present the mean of each slope coefficient and the precision-weighted (“wtd”) mean 

where the weight is the reciprocal of the standard error of the slope coefficient. We employ three 

estimation methods: (1) ordinary least squares (OLS), (2) the bias-correcting method of Chordia, Goyal 

and Shanken (2017) (CGS), and (3) weighted least square (WLS), following Asparouhova et al. (2010). 

The slope coefficients are in percentages. The corresponding t-statistics are presented in parentheses. The 

Avg adj. R2 is the average of monthly adjusted R2 values of cross-sectional regressions.  

 
 Estimation method 

 OLS CGS WLS 

Coefficient of Mean Wtd mean Mean Wtd mean Mean Wtd mean 

βRMrf 0.206 

(1.33) 

0.138 

(0.72) 

0.163 

(0.99) 

0.111 

(0.47) 

0.203 

(1.31) 

0.135 

(0.69) 

βSMB 0.048 

(0.92) 

0.033 

(0.73) 

0.079 

(1.62) 

0.052 

(1.23) 

0.049 

(0.92) 

0.032 

(0.71) 

βHML 0.082 

(1.74) 

0.071 

(1.72) 

0.080 

(1.75) 

0.075 

(1.84) 

0.071 

(1.51) 

0.063 

(1.54) 

βUMD -0.027 

(-0.40) 

0.009 

(0.16) 

0.020 

(0.29) 

0.034 

(0.61) 

-0.020 

(-0.30) 

0.014 

(0.25) 

βIML 0.011 

(0.23) 

0.005 

(0.13) 

0.039 

(0.89) 

0.026 

(0.65) 

0.005 

(0.12) 

0.001 

(0.03) 

βIMLZ1 0.062 

(3.17) 

0.040 

(3.20) 

0.060 

(3.52) 

0.043 

(3.72) 

0.062 

(3.21) 

0.041 

(3.26) 

βZ1 -0.330 

(-0.49) 

-0.572 

(-1.31) 

-0.441 

(-1.15) 

-0.333 

(-0.89) 

-0.221 

(-0.33) 

-0.517 

(-1.19) 

ILLIQma 0.041 

(2.58) 

0.029 

(2.52) 

0.040 

(2.57) 

0.029 

(2.51) 

0.036 

(2.30) 

0.025 

(2.23) 

StdDev -27.935 

(-4.25) 

-29.989 

(-4.98) 

-27.536 

(-4.12) 

-29.931 

(-4.93) 

-26.834 

(-4.07) 

-29.002 

(-4.81) 

BM 0.098 

(2.45) 

0.090 

(2.52) 

0.093 

(2.32) 

0.083 

(2.29) 

0.107 

(2.68) 

0.097 

(2.71) 

Size -0.086 

(-3.82) 

-0.077 

(-3.67) 

-0.081 

(-3.61) 

-0.074 

(-3.48) 

-0.087 

(-3.85) 

-0.079 

(-3.70) 

R12lag 1.116 

(6.77) 

0.946 

(6.16) 

1.036 

(6.31) 

0.874 

(5.80) 

1.149 

(6.99) 

0.976 

(6.36) 

R1lag -5.047 

(-14.99) 

-4.811 

(-15.15) 

-5.151 

(-15.48) 

-4.884 

(-15.44) 

-4.907 

(-14.68) 

-4.650 

(-14.87) 

Avg adj. R2 10.96% 

 

10.52% 10.98% 
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Table 4: Pricing over two subperiods of stock systematic risks and characteristics 
This table replicates the asset pricing tests presented in Table 3 with the statistics for the slope 

coefficients presented separately for two equal subperiods. The results are based on the estimations 

according to the CGS bias-correcting method. The slope coefficients are in percentages and their t-

statistics are presented in parentheses. The variables and the estimation procedure are the same as those in 

Table 3 and are explained in the legend there. 

 

 Subperiod I: 1952 through 1984 Subperiod II: 1985 through 2017 

Coefficient of  Mean Wtd mean Mean Wtd mean 

βIML 0.034 

(0.51) 

0.013 

(0.25) 

0.044 

(0.77) 

0.038 

(0.64) 

βIMLZ1 0.051 

(2.00) 

0.037 

(2.38) 

0.069 

(3.07) 

0.049 

(2.86) 

Avg adj. R2 11.00% 10.42% 
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Table 5: Pricing of the conditional βIML in the presence of other liquidity-based βs 
This table presents the test results of Fama–MacBeth monthly cross-sectional regressions of stock returns. 

We first add to Model (6) βLF*LFt + βLFZ1*LFt*Z1t-1 where LFt is one of the following three liquidity-

based factors: (1) PS, the traded factor of Pastor and Stambaugh (2003) (available from Lubos Pastor’s 

homepage), the value-weighted average return on stocks with high exposure to innovations in their 

aggregate liquidity relative to that on stocks with low exposure (using decile portfolios); (2) LIU, the 

traded factor of the return premium on high-minus-low illiquidity portfolio using Liu’s (2006) measure 

based on non-trading days and turnover and obtained from the author; and (3) dMILLIQ, a non-traded 

factor of the first-order changes in the monthly value-weighted market illiquidity (in logarithm). Then, we 

add to Model (7) βLF  and βLFZ1 and estimate their slope coefficients γLF and γLFZ1 in cross-sectional 

regressions. 

 

To save space, the table presents only the slope coefficients that are related to the liquidity βs. The 

estimation of those slope coefficients includes all the other βs and six stock characteristics in Model (7). 

The estimation employs the CGS bias-correcting method. Explanations of the estimation method and the 

test statistics are given in the legend of Table 3. 

   
 Coefficient of Mean Wtd mean 

LFt = PSt. 

Data period: 

2/1973–2017 

 

βIML 0.059 

(1.15) 

0.046 

(1.03) 

βIMLZ1 0.087 

(3.83) 

0.059 

(3.54) 

ΒLF -0.076 

(-0.96) 

-0.064 

(-0.90) 

ΒLFZ1 -0.039 

(-1.29) 

-0.028 

(-1.30) 

LFt = LIUt. 

Data period:  

1952–2014 

 

βIML 0.014 

(0.31) 

0.002 

(0.05) 

βIMLZ1 0.055 

(3.13) 

0.042 

(3.49) 

ΒLF -0.045 

(-0.74) 

-0.020 

(-0.40) 

ΒLFZ1 0.012 

(0.57) 

0.026 

(2.12) 

LFt = dMILLIQt. 

Data period:  

1952–2017 

 

βIML 0.041 

(0.90) 

0.029 

(0.71) 

βIMLZ1 0.062 

(3.42) 

0.042 

(3.48) 

ΒLF -0.348 

(-1.08) 

-0.177 

(-0.60) 

ΒLFZ1 -0.057 

(-0.55) 

-0.052 

(-0.71) 
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Table 6: Pricing of the conditional βIML with alternative conditioning variables  
This table presents the test results of Fama–MacBeth monthly cross-sectional regressions using two 

alternative conditioning variables that replace Z1 in Models (6) and (7) described in the legends of Tables 

2 and 3.  

Panel A: Z2t = dSPt
+, the positive value of dSPt = SPt - SPt-1 (it is zero otherwise), where SPt is the yield 

spread between BAA- and AAA-rated corporate bonds.  

Panel B: Z3q = -dS12q = - ( (S1/S2)q - (S1/S2)q-1), the change in the ratio of two quarterly loan series for 

quarter q. S1q is broker-dealers loans that include their margin loans (SBDOLAA) and S2q is the 

benchmark loans (SBDLL). These series are available since Q1/1952. 

 

The data source for all series is the Federal Reserve Bank of St. Louis. To save space, we present only the 

test results for the slope coefficients of the βs of IML-related variables. Explanations of the estimation 

methods and the test statistics are given in the legend of Table 3. 

 

 Estimation method 

 OLS CGS WLS 

Coefficient of Mean Wtd mean Mean Wtd mean Mean Wtd mean 

Panel A: Z2t = dSPt
+, the value of the rise in the corporate bond yield spread. 

βIML 0.040 

(0.85) 

0.030 

(0.74) 

0.033 

(0.69) 

0.017 

(0.42) 

0.031 

(0.66) 

0.024 

(0.59) 

βIMLZ2 0.014 

(3.26) 

0.005 

(2.57) 

0.013 

(3.50) 

0.005 

(2.56) 

0.014 

(3.20) 

0.005 

(2.41) 

Avg Adjusted R2 11.04% 10.63% 11.07% 

Panel B: Z3q is the (negative of the) change in broker-dealers loans that include their margin 

loans relative to the benchmark of broker-dealers all loans series.  
βIML 0.084 

(1.79) 

0.066 

(1.59) 

0.088 

(1.85) 

0.070 

(1.69) 

0.079 

(1.67) 

0.062 

(1.50) 

βIMLZ3 0.018 

(2.13) 

0.012 

(2.03) 

0.019 

(2.15) 

0.012 

(2.02) 

0.018 

(2.12) 

0.012 

(2.02) 

Avg adj. R2 10.82% 10.44% 10.83% 
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Table A.1: Pricing of the conditional βIML in the presence of conditional βs of the FFC 

factors 
This table presents the test results of an extended model of Model (7) with the conditional βs of the FFC 

factors. Explanations of the estimation method and the test statistics are provided in the legends of Tables 

2 and 3. First, Model (6) is augmented by βFFZ1,j*FFt*Z1t-1, where FFt = RMrft, SMBt, HMLt, or UMDt. The 

estimated βFFZ1 is then added to Model (7), and finally its slope coefficient γFFZ1 is estimated with all the 

other variables in Model (7).  

 

To save space, the table presents only the slope coefficients that are related to the βs of IML and FF 

factors. The estimation employs the CGS bias-correcting method. 

   
 Coefficient of Mean Wtd mean 

FFt = RMrft 

 

βIML 0.042 

(0.93) 

0.034 

(0.85) 

βIMLZ1 0.054 

(3.12) 

0.039 

(3.28) 

ΒFF 0.181 

(2.13) 

0.117 

(1.51) 

ΒFFZ1 -0.017 

(-0.47) 

-0.041 

(-1.47) 

FFt = SMBt 

 

βIML 0.052 

(1.14) 

0.041 

(1.04) 

βIMLZ1 0.061 

(3.50) 

0.043 

(3.66) 

ΒFF 0.077 

(1.54) 

0.057 

(1.31) 

ΒFFZ1 0.020 

(1.35) 

0.010 

(0.91) 

FFt = HMLt 

 

 

 

 

 

 

 

βIML 0.030 

(0.66) 

0.019 

(0.47) 

βIMLZ1 0.058 

(3.48) 

0.042 

(3.55) 

ΒFF 0.069 

(1.46) 

0.066 

(1.57) 

ΒFFZ1 0.030 

(1.78) 

0.021 

(1.79) 

FFt = UMDt 

 

βIML 0.026 

(0.58) 

0.020 

(0.51) 

βIMLZ1 0.059 

(3.41) 

0.041 

(3.49) 

ΒFF 0.002 

(0.03) 

0.031 

(0.53) 

ΒFFZ1 -0.058 

(-1.83) 

-0.008 

(-0.50) 

 

 

 

 

 


